JP2022035048A - Method for manufacturing rare-earth bond magnet - Google Patents

Method for manufacturing rare-earth bond magnet Download PDF

Info

Publication number
JP2022035048A
JP2022035048A JP2020139109A JP2020139109A JP2022035048A JP 2022035048 A JP2022035048 A JP 2022035048A JP 2020139109 A JP2020139109 A JP 2020139109A JP 2020139109 A JP2020139109 A JP 2020139109A JP 2022035048 A JP2022035048 A JP 2022035048A
Authority
JP
Japan
Prior art keywords
rare earth
resin
magnet
molding
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020139109A
Other languages
Japanese (ja)
Inventor
秀治 辻本
Hideji Tsujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020139109A priority Critical patent/JP2022035048A/en
Publication of JP2022035048A publication Critical patent/JP2022035048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for manufacturing a rare-earth bond magnet having a high magnet strength with excellent manufacturing efficiency.SOLUTION: A method for manufacturing a rare-earth bond magnet includes: a step S1 of preparing rare-earth alloy magnet powder; a step S2 of preparing a resin composition for molding containing a resin for molding; a step S3 of kneading the rare-earth alloy magnet powder and the resin composition for molding, and manufacturing a compound for a rare-earth bond magnet; a step S4 of compressing the compound for the rare-earth bond magnet, and manufacturing a compression molding; a step S5 of heat treating the compression molding, and manufacturing a bond magnet molding; a step S7 of impregnating the bond magnet molding with a resin composition for impregnation, and manufacturing an impregnation molding; a step S8 of immersing the immersion molding in a curing agent, and curing a resin for impregnation of a surface layer part of the impregnation molding; and a step S9 of heating the impregnation molding after the resin for impregnation of the surface layer part has been cured, and curing the resin for impregnation.SELECTED DRAWING: Figure 1

Description

本発明は高い磁石強度を有する希土類系ボンド磁石の製造方法に関する。 The present invention relates to a method for producing a rare earth-based bonded magnet having high magnet strength.

希土類系永久磁石は高い磁気特性を有しており、今日、様々な分野で使用されている。希土類系永久磁石は使用する原料粉末や製造方法により焼結磁石とボンド磁石とに大きく分類されるが、希土類系ボンド磁石(以下、単にボンド磁石と称する)は、希土類系焼結磁石に比べて形状の自由度が大きく、さらに、磁石粉末同士の間に絶縁物である樹脂が存在している為、電気抵抗が高いという利点を有している。しかしながらボンド磁石は磁石粉末を樹脂バインダーによって結合した構造であるため、希土類系焼結磁石に比べて磁石強度が低くならざるをえず、高い磁石強度を要する用途への採用は困難であった。 Rare earth permanent magnets have high magnetic properties and are used in various fields today. Rare earth permanent magnets are roughly classified into sintered magnets and bonded magnets depending on the raw material powder used and the manufacturing method. Rare earth bonded magnets (hereinafter referred to simply as bonded magnets) are compared with rare earth sintered magnets. It has a large degree of freedom in shape, and has an advantage of high electrical resistance because a resin that is an insulator exists between the magnet powders. However, since the bonded magnet has a structure in which magnet powder is bonded with a resin binder, the magnet strength has to be lower than that of a rare earth-based sintered magnet, and it is difficult to use it in applications requiring high magnet strength.

国際公開第2012/118001号(特許文献1)は、混錬時に添加する樹脂量と有機溶剤量とを一定の範囲として作製したボンド磁石用コンパウンドを強圧縮することによって、高い成形体密度及び高い磁気特性を有するボンド磁石を製造する方法を開示している。しかしながら、磁石強度は特に高強度を必要としない用途のものにとどまっている。 International Publication No. 2012/118001 (Patent Document 1) states that a compound for a bonded magnet produced by keeping the amount of resin added at the time of kneading and the amount of organic solvent within a certain range is strongly compressed to obtain a high molded body density and high molding density. A method for manufacturing a bonded magnet having magnetic properties is disclosed. However, the magnet strength is limited to those for applications that do not require particularly high strength.

特開2017-34097号(特許文献2)は、通常の圧縮ボンド磁石や特許文献1に記載の強圧縮ボンド磁石に採用可能で、高温における機械的強度に優れる成形用樹脂を開示している。このような樹脂を採用することによってある程度機械的強度は向上するものの、例えば、高速回転するモーターなどの、より高い強度が求められる用途では十分とは言えない。 Japanese Patent Application Laid-Open No. 2017-34097 (Patent Document 2) discloses a molding resin that can be used for ordinary compression bond magnets and the strong compression bond magnets described in Patent Document 1 and has excellent mechanical strength at high temperatures. Although the mechanical strength is improved to some extent by adopting such a resin, it cannot be said that it is sufficient for applications requiring higher strength such as a motor that rotates at high speed.

一方、特開平4-27102号(特許文献3)は、希土類系磁石粉末を常温で固体状のエポキシ樹脂、硬化剤、及び硬化促進剤を含有するバインダー1によって成形し、バインダー1を熱硬化させた成形体に対し、エポキシ樹脂と硬化剤(イミダゾール化合物)とを含むバインダー2を真空含浸させ、含浸させたバインダー2を熱硬化させることによってボンド磁石を製造する方法を開示している。特許文献3に記載の方法によれば、強度に優れるエポキシ樹脂によって成形して熱硬化させた成形体に対し、さらに強度に優れるエポキシ樹脂を前記成形体に存在する空隙に含浸させた後、熱硬化させるため、前記空隙がエポキシ樹脂によって埋められ、磁石強度の大幅な向上が期待できる。しかしながら、含浸樹脂組成物(バインダー2)は含浸樹脂(エポキシ樹脂)と硬化剤(イミダゾール化合物)とを含んでおり、真空含浸装置の樹脂槽内で、常温でも徐々に硬化が始まってしまうためにポットライフを有しており、頻繁に含浸樹脂を入れ替えたり、真空含浸装置を清掃したりする必要があり生産効率が悪い。 On the other hand, Japanese Patent Application Laid-Open No. 4-27102 (Patent Document 3) forms a rare earth magnet powder with a binder 1 containing a solid epoxy resin, a curing agent, and a curing accelerator at room temperature, and heat-cures the binder 1. Disclosed is a method for producing a bonded magnet by vacuum-impregnating a binder 2 containing an epoxy resin and a curing agent (imidazole compound) with the molded body and thermally curing the impregnated binder 2. According to the method described in Patent Document 3, a molded product molded with an epoxy resin having excellent strength and thermosetting is impregnated with an epoxy resin having further excellent strength in the voids existing in the molded product, and then heated. Since it is cured, the voids are filled with epoxy resin, and a significant improvement in magnet strength can be expected. However, the impregnated resin composition (binder 2) contains an impregnated resin (epoxy resin) and a curing agent (imidazole compound), and the curing gradually starts even at room temperature in the resin tank of the vacuum impregnating device. It has a pot life, and it is necessary to frequently replace the impregnated resin and clean the vacuum impregnated device, resulting in poor production efficiency.

国際公開第2012/118001号International Publication No. 2012/118001 特開2017-34097号公報JP-A-2017-34097 特開平4-27102号公報Japanese Unexamined Patent Publication No. 427102

特許文献3に記載の方法において、ポットライフを考慮せず含浸樹脂を使用する方法として、含浸樹脂(エポキシ樹脂)と硬化剤(イミダゾール化合物)とを含む含浸樹脂組成物を用いる代わりに、含浸樹脂(エポキシ樹脂)のみを先に成形体に含浸させ、その後で硬化剤(イミダゾール化合物)を含浸させる方法が考えられる。しかしながら、この方法では、含浸樹脂を成形体に含浸させた時点では硬化剤を含まないため、含浸樹脂が硬化する前に成形体から流れ出すといった問題が生じる場合がある。 In the method described in Patent Document 3, as a method of using the impregnated resin without considering the pot life, instead of using the impregnated resin composition containing the impregnated resin (epoxy resin) and the curing agent (imidazole compound), the impregnated resin is used. A method is conceivable in which the molded body is first impregnated with only (epoxy resin) and then impregnated with a curing agent (imidazole compound). However, this method does not contain a curing agent at the time when the impregnated resin is impregnated into the molded body, so that there may be a problem that the impregnated resin flows out from the molded body before it is cured.

さらに、潜在性硬化剤として知られているジシアンジアミドを硬化剤として使用して、常温でのポットライフを長くする方法も考えられる。しかしながら、ジシアンジアミドを含む含浸樹脂組成物を成形体に含浸させ、成形体中の含浸樹脂を硬化させるために加熱すると、含浸樹脂が硬化する前に、含浸樹脂組成物が低粘化して成形体から流れ出すといった問題が生じることがわかった。 Further, a method of prolonging the pot life at room temperature by using dicyandiamide known as a latent curing agent as a curing agent is also conceivable. However, when the impregnated resin composition containing dicyandiamide is impregnated into the molded body and heated to cure the impregnated resin in the molded body, the impregnated resin composition becomes less viscous from the molded body before the impregnated resin is cured. It turned out that there was a problem such as flowing out.

従って、本発明の目的は、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造する方法を提供することである。 Therefore, an object of the present invention is to provide a method for producing a rare earth-based bonded magnet having high magnet strength with excellent production efficiency.

上記目的に鑑み鋭意検討の結果、本発明者は、希土類ボンド磁石の製造工程において、例えば、希土類系ボンド磁石組成物(希土類磁石粉末、エポキシ樹脂及び硬化剤を含む)を成形し、熱硬化させて得られた成形体に、含浸樹脂(エポキシ樹脂)と硬化剤(ジシアンジアミド)とを含む含浸樹脂組成物を含浸させた後、その成形体を液状の硬化剤(例えば、トリエチルテトラミン)に浸漬し、成形体表層部の含浸樹脂を硬化させることにより、後工程で成形体を加熱した際に、成形体に含浸させた含浸樹脂組成物が成形体表面から流れ出すという問題が発生することなく、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造することができることを見出し本発明に想到した。 As a result of diligent studies in view of the above objectives, the present inventor has formed, for example, a rare earth-based bond magnet composition (including rare earth magnet powder, epoxy resin and curing agent) and thermally cured it in the process of manufacturing a rare earth bond magnet. The obtained molded product is impregnated with an impregnated resin composition containing an impregnated resin (epoxy resin) and a curing agent (dicyandiamide), and then the molded product is immersed in a liquid curing agent (for example, triethyltetramine). By curing the impregnated resin on the surface layer of the molded body, the impregnated resin composition impregnated in the molded body does not flow out from the surface of the molded body when the molded body is heated in a subsequent step. We have found that a rare earth-based bonded magnet having magnet strength can be manufactured with excellent production efficiency, and have arrived at the present invention.

すなわち、希土類系ボンド磁石を製造する本発明の方法は、
希土類系合金磁石粉末を準備する工程と、
成形用樹脂を含む成形用樹脂組成物を準備する工程と、
前記希土類系合金磁石粉末と前記成形用樹脂組成物とを混錬し、希土類系ボンド磁石用コンパウンドを作製する工程と、
前記希土類系ボンド磁石用コンパウンドを圧縮して圧縮成形体を作製する工程と、
前記圧縮成形体を熱処理してボンド磁石成形体を作製する工程と、
前記ボンド磁石成形体に対し、含浸用樹脂を含む含浸用樹脂組成物を含浸させて含浸成形体を作製する工程と、
前記含浸成形体を液状の硬化剤に浸漬して前記含浸成形体の表層部の前記含浸用樹脂を硬化させる工程と、
前記表層部の前記含浸用樹脂を硬化させた後の前記含浸成形体を加熱して、前記含浸成形体の内部の前記含浸用樹脂を硬化させる工程と
を含むことを特徴とする。
That is, the method of the present invention for producing a rare earth-based bonded magnet is
The process of preparing rare earth alloy magnet powder and
The process of preparing a molding resin composition containing a molding resin, and
A step of kneading the rare earth alloy magnet powder and the molding resin composition to prepare a compound for a rare earth bond magnet.
The process of compressing the compound for rare earth-based bonded magnets to produce a compression molded product, and
The step of heat-treating the compression molded body to produce a bonded magnet molded body, and
A step of impregnating the bonded magnet molded product with an impregnating resin composition containing an impregnating resin to prepare an impregnated molded product.
A step of immersing the impregnated molded product in a liquid curing agent to cure the impregnating resin on the surface layer portion of the impregnated molded product.
It is characterized by including a step of heating the impregnated molded product after curing the impregnating resin on the surface layer portion to cure the impregnating resin inside the impregnated molded product.

前記希土類系合金磁石粉末は、希土類系急冷合金磁石粉末であるのが好ましい。 The rare earth alloy magnet powder is preferably a rare earth quenching alloy magnet powder.

前記成形用樹脂は熱硬化性エポキシ樹脂であるのが好ましい。 The molding resin is preferably a thermosetting epoxy resin.

前記含浸用樹脂は液体状の熱硬化性エポキシ樹脂であるのが好ましい。 The impregnating resin is preferably a liquid thermosetting epoxy resin.

前記含浸用樹脂組成物は、前記含浸用樹脂と潜在性硬化剤とを含むのが好ましい。 The impregnating resin composition preferably contains the impregnating resin and a latent curing agent.

前記潜在性硬化剤はジシアンジアミドであるのが好ましい。 The latent curing agent is preferably dicyandiamide.

前記含浸成形体を浸漬する液状の硬化剤はトリエチルテトラミンであるのが好ましい。 The liquid curing agent for immersing the impregnated molded product is preferably triethyltetramine.

本発明によれば、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造する方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a rare earth-based bonded magnet having high magnet strength with excellent production efficiency.

本発明の希土類系ボンド磁石の製造方法を示すフローチャート図である。It is a flowchart which shows the manufacturing method of the rare earth type bond magnet of this invention.

以下、図1を参照しながら本発明による希土類系ボンド磁石の製造方法の一例を説明する。 Hereinafter, an example of a method for manufacturing a rare earth-based bonded magnet according to the present invention will be described with reference to FIG.

(1) 希土類系合金磁石粉末を準備する工程S1
まず、希土類系合金磁石粉末を準備する。本発明で使用できる希土類系合金磁石粉末に特段制限はない。例えば、所定の組成の合金の溶湯をメルトスピニング法やストリップキャスト法などのロール急冷法により急冷して作製した急冷合金薄帯を粉砕して製造したものが挙げられる。好適な希土類系合金磁石粉末としては、例えば、米国特許第4802931号に記載のNd-Fe-B系急冷合金磁石粉末が挙げられる。本発明の方法は、他の磁粉を用いたボンド磁石の製造にも適用でき、例えば、Sm-Fe-N系磁性粉末も好適に使用できる。
(1) Process of preparing rare earth alloy magnet powder S1
First, a rare earth alloy magnet powder is prepared. There are no particular restrictions on the rare earth alloy magnet powder that can be used in the present invention. For example, a molten alloy having a predetermined composition is quenched by a roll quenching method such as a melt spinning method or a strip casting method to pulverize a quenching alloy strip produced. Suitable rare earth alloy magnet powders include, for example, Nd-Fe-B-based quenching alloy magnet powders described in US Pat. No. 4,409,31. The method of the present invention can also be applied to the production of bonded magnets using other magnetic powders, and for example, Sm-Fe-N-based magnetic powders can also be preferably used.

(2) 成形用樹脂組成物を準備する工程S2
成形用樹脂含む成形用樹脂組成物を準備する。成形用樹脂組成物には、必要に応じて硬化剤及び有機溶剤を含んでいても良い。成形用樹脂として熱硬化性樹脂を用いる。熱硬化性樹脂(成形用樹脂)としては、特に限定されないが、エポキシ樹脂を用いるのが好ましい。エポキシ樹脂を用いる場合、例えば、ビスフェノールA型エポキシ等が望ましい。硬化剤としては、特に限定されないが、潜在性硬化剤として知られているジシアンジアミド等が好ましく、ジシアンジアミドが特に好ましい。成形用樹脂と硬化剤との混合比は、成形用樹脂及び硬化剤の種類、組み合わせによって適切な量を選択すれば良い。
(2) Step of preparing the resin composition for molding S2
A molding resin composition containing a molding resin is prepared. The molding resin composition may contain a curing agent and an organic solvent, if necessary. A thermosetting resin is used as the molding resin. The thermosetting resin (molding resin) is not particularly limited, but it is preferable to use an epoxy resin. When an epoxy resin is used, for example, bisphenol A type epoxy or the like is desirable. The curing agent is not particularly limited, but dicyandiamide or the like known as a latent curing agent is preferable, and dicyandiamide is particularly preferable. As the mixing ratio of the molding resin and the curing agent, an appropriate amount may be selected depending on the type and combination of the molding resin and the curing agent.

有機溶剤としては、常温で気体となる揮発性の有機溶剤が好ましい。好適に使用され得る有機溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、トルエン、キシレンなどが挙げられる。安全性や取扱い性の観点から、メチルエチルケトンなどのケトン類が最も好ましい。 As the organic solvent, a volatile organic solvent that becomes a gas at room temperature is preferable. Examples of the organic solvent that can be preferably used include acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene and the like. From the viewpoint of safety and handleability, ketones such as methyl ethyl ketone are most preferable.

成形用樹脂組成物は2種類以上のエポキシ樹脂や、硬化剤などを含有してもよい。このような成形用樹脂組成物としては、例えば、特許文献2記載の樹脂組成物や、DIC社製エピクロン4050、三菱ケミカル社製JER7007Pなどが挙げられる。 The molding resin composition may contain two or more types of epoxy resins, a curing agent, and the like. Examples of such a resin composition for molding include the resin composition described in Patent Document 2, Epicron 4050 manufactured by DIC Corporation, and JER7007P manufactured by Mitsubishi Chemical Corporation.

(3) 希土類系ボンド磁石用コンパウンドを作製する工程S3
続いて、工程S1で準備した希土類系合金磁石粉末と工程S2で準備した成形用樹脂組成物とを混練して希土類系ボンド磁石用コンパウンドを作製する。混練に使用する成形用樹脂組成物は、希土類系合金磁石粉末と成形用樹脂組成物とを規定量で混合したときに、希土類系合金磁石粉末100質量部に対して、成形用樹脂(エポキシ樹脂)を0.5~4.0質量部、有機溶剤を3~7質量部含有するように調節及び混合するのが好ましい。
(3) Process for manufacturing a compound for rare earth-based bonded magnets S3
Subsequently, the rare earth alloy magnet powder prepared in step S1 and the molding resin composition prepared in step S2 are kneaded to prepare a compound for rare earth bond magnets. The molding resin composition used for kneading is a molding resin (epoxy resin) with respect to 100 parts by mass of the rare earth alloy magnet powder when the rare earth alloy magnet powder and the molding resin composition are mixed in a specified amount. ) Is preferably adjusted and mixed so as to contain 0.5 to 4.0 parts by mass and 3 to 7 parts by mass of the organic solvent.

有機溶剤の割合が3質量部未満であると、混練の際、樹脂が磁石粉末表面に行き渡るまでに有機溶剤が揮発してしまい、均一被覆ができない恐れがある。また、有機溶剤の割合が7質量部を超えると有機溶剤が揮発するまでに時間がかかり、生産性の面から好ましくない。このような割合で混練して、混練中に有機溶剤を揮発させてコンパウンドを作製すると、個々の粉末粒子の表面が樹脂によって薄くかつ均一に被覆されたコンパウンドを作製することができる。好ましい実施形態において、コンパウンド中の樹脂は希土類系合金磁石粉末を構成する磁石粉末粒子を90%以上の被覆率で被覆し、その樹脂の厚さは0.1μm以上1μm以下である。このようなコンパウンドは磁石粉末粒子が高い被覆率で薄く均一に被覆されている為、磁石粉末粒子同士が接しても導通し難く、最終的に高い電気抵抗を有するボンド磁石を得ることができる。後工程の圧縮成形時の金型の損傷を低減するためには、コンパウンドにステアリン酸カルシウムなどの潤滑剤などを添加・混合しても良い。なお成形用樹脂を有機溶剤で希釈せずに、希土類系合金磁石粉末と成形用樹脂とをブレンドして混錬しても良い。 If the proportion of the organic solvent is less than 3 parts by mass, the organic solvent may volatilize before the resin reaches the surface of the magnet powder during kneading, and uniform coating may not be possible. Further, if the proportion of the organic solvent exceeds 7 parts by mass, it takes time for the organic solvent to volatilize, which is not preferable from the viewpoint of productivity. By kneading at such a ratio and volatilizing the organic solvent during kneading to prepare a compound, it is possible to prepare a compound in which the surface of each powder particle is thinly and uniformly coated with a resin. In a preferred embodiment, the resin in the compound covers the magnet powder particles constituting the rare earth alloy magnet powder with a coverage of 90% or more, and the thickness of the resin is 0.1 μm or more and 1 μm or less. In such a compound, since the magnet powder particles are thinly and uniformly coated with a high coverage, it is difficult for the magnet powder particles to conduct even if they come into contact with each other, and finally a bonded magnet having a high electric resistance can be obtained. In order to reduce damage to the mold during compression molding in the subsequent process, a lubricant such as calcium stearate may be added or mixed with the compound. The rare earth alloy magnet powder and the molding resin may be blended and kneaded without diluting the molding resin with an organic solvent.

(4) 圧縮成形体を作製する工程S4
次に、前記希土類系ボンド磁石用コンパウンドを圧縮して圧縮成形体を作製する。この圧縮成形工程では、圧縮成形体の密度が希土類系合金磁石粉末の真密度の70%以上90%以下の範囲になるように希土類系ボンド磁石用コンパウンドを圧縮するのが好ましく、成形圧力は80~2000 MPaの範囲であるのが好ましく、200~1000 MPaの範囲であるのがより好ましい。成形圧力が80 MPa未満であると、高い磁石密度が得られにくい。また、2000 MPaを超えると、金型への負荷が大きくなりすぎるため好ましくない。圧縮成形に用いるプレス装置としては、例えば、メカ式冷間プレス機や特許文献1に記載の超高圧粉末プレス装置が挙げられる。本発明の方法は、特許文献1記載の強圧縮高密度磁石に限定されることなく、汎用の圧縮ボンド磁石にも適用可能であり、高速回転モーターなどの高い磁石強度が必要な用途に好適に採用される。
(4) Step of manufacturing a compression molded product S4
Next, the compound for rare earth-based bonded magnets is compressed to produce a compression molded product. In this compression molding step, it is preferable to compress the compound for rare earth bond magnets so that the density of the compression molded body is in the range of 70% or more and 90% or less of the true density of the rare earth alloy magnet powder, and the molding pressure is 80. The range is preferably in the range of ~ 2000 MPa, more preferably in the range of 200 to 1000 MPa. If the forming pressure is less than 80 MPa, it is difficult to obtain a high magnet density. Further, if it exceeds 2000 MPa, the load on the mold becomes too large, which is not preferable. Examples of the press device used for compression molding include a mechanical cold press machine and an ultra-high pressure powder press device described in Patent Document 1. The method of the present invention is not limited to the strong compression high-density magnet described in Patent Document 1, but is also applicable to general-purpose compression bond magnets, and is suitable for applications requiring high magnet strength such as high-speed rotary motors. Will be adopted.

(5) 圧縮成形体を熱処理してボンド磁石成形体を作製する工程S5
以上のようにして圧縮成形された圧縮成形体を熱処理することにより、成形用樹脂が硬化してボンド磁石用成形体が得られる。熱処理条件は使用する樹脂の硬化条件に準ずればよいが、好ましくは150℃以上300℃以下である。希土類系合金磁石粉末としてNd-Fe-B系急冷合金磁石粉末を採用する場合、特に酸化され易いため、熱処理雰囲気は10 Pa以下の減圧雰囲気中(特に、真空度1 Pa以下の真空中)、Arガスや窒素ガスなどの不活性ガス雰囲気中などの非酸化性雰囲気が好ましい。同様に酸化防止の観点から、熱処理時間(上記温度範囲の保持時間)は、好ましくは1分以上4時間以下である。
(5) Step of heat-treating the compression molded body to produce a bonded magnet molded body S5
By heat-treating the compression-molded body as described above, the molding resin is cured to obtain a bonded magnet-molded body. The heat treatment conditions may be based on the curing conditions of the resin to be used, but are preferably 150 ° C. or higher and 300 ° C. or lower. When Nd-Fe-B-based quenching alloy magnet powder is used as the rare earth alloy magnet powder, it is particularly easily oxidized, so the heat treatment atmosphere is in a reduced pressure atmosphere of 10 Pa or less (especially in a vacuum of 1 Pa or less). A non-oxidizing atmosphere such as in an inert gas atmosphere such as Ar gas or nitrogen gas is preferable. Similarly, from the viewpoint of preventing oxidation, the heat treatment time (retention time in the above temperature range) is preferably 1 minute or more and 4 hours or less.

(6) 含浸用樹脂組成物を準備する工程S6
含浸用樹脂組成物は、含浸用樹脂を主成分として、必要に応じて、前記含浸用樹脂の希釈剤、硬化剤等を含んでなる組成物である。本願において、含浸用樹脂組成物は、含浸用樹脂のみで構成されるものも含む。
(6) Step of preparing the resin composition for impregnation S6
The impregnating resin composition is a composition containing the impregnating resin as a main component and, if necessary, a diluent, a curing agent, etc. of the impregnating resin. In the present application, the impregnating resin composition includes those composed only of the impregnating resin.

含浸用樹脂は、熱硬化性の樹脂であれば限定されないが、特に熱硬化性エポキシ樹脂であるのが好ましい。熱硬化性エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂より低粘度のビスフェノールF型エポキシ樹脂が望ましい。熱硬化性エポキシ樹脂を含む含浸用樹脂組成物は、エポキシ樹脂以外の樹脂を含んでいても良い。 The impregnating resin is not limited as long as it is a thermosetting resin, but a thermosetting epoxy resin is particularly preferable. The thermosetting epoxy resin is not particularly limited, but for example, a bisphenol F type epoxy resin having a lower viscosity than the bisphenol A type epoxy resin is desirable. The impregnating resin composition containing a thermosetting epoxy resin may contain a resin other than the epoxy resin.

含浸用樹脂組成物は、後述の工程S7において、ボンド磁石成形体にすみやかに含浸させることができる程度の比較的低粘度の液体状であることが必要である。従って、含浸用樹脂としても液体状の樹脂を使用するのが好ましい。常温で固体又は高粘の液体であっても加温又は反応性の希釈剤で希釈することによって含浸時に低粘度の液体状であれば良い。 The impregnating resin composition needs to be in a liquid state having a relatively low viscosity so that the bonded magnet molded body can be quickly impregnated in the step S7 described later. Therefore, it is preferable to use a liquid resin as the impregnating resin. Even if it is a solid or a highly viscous liquid at room temperature, it may be in the form of a low-viscosity liquid at the time of impregnation by heating or diluting with a reactive diluent.

硬化剤は必ずしも必要ではないが、熱硬化を促進させるために使用するのが好ましい。硬化剤としては、潜在性硬化剤として知られているジシアンジアミド等を使用するのが好ましい。潜在性硬化剤を使用することにより、長いポットライフを確保することができ、真空含浸装置における樹脂の入れ替えや樹脂槽清掃のサイクルが長く、生産効率が高い。 A curing agent is not always necessary, but it is preferably used to accelerate thermal curing. As the curing agent, it is preferable to use dicyandiamide or the like known as a latent curing agent. By using the latent curing agent, a long pot life can be secured, the cycle of resin replacement and resin tank cleaning in the vacuum impregnation device is long, and the production efficiency is high.

(7) 含浸用樹脂組成物を含浸させて含浸成形体を作製する工程S7
続いて、工程S5で作製したボンド磁石成形体に対し、工程S6で準備した含浸用樹脂組成物を含浸させて含浸成形体を作製する。含浸の方法としては、真空加圧法、真空法、加圧法、浸漬法、遠心法等の方法を採用することができるが、特に真空加圧法による含浸が好ましい。これらの方法で含浸処理する際には、含浸用樹脂組成物のボンド磁石成形体への含浸を容易にするため、含浸用樹脂組成物及び/又はボンド磁石成形体を加熱するのが好ましい。
(7) Step of impregnating the impregnating resin composition to prepare an impregnated molded product S7
Subsequently, the bonded magnet molded body prepared in step S5 is impregnated with the impregnating resin composition prepared in step S6 to prepare an impregnated molded body. As a method of impregnation, a vacuum pressurization method, a vacuum method, a pressurization method, an immersion method, a centrifugal method or the like can be adopted, but impregnation by the vacuum pressurization method is particularly preferable. When the impregnation treatment is performed by these methods, it is preferable to heat the impregnating resin composition and / or the bonded magnet molded body in order to facilitate the impregnation of the impregnating resin composition into the bonded magnet molded body.

(8) 含浸成形体を液状の硬化剤に浸漬する工程S8
次いで、工程S6作製した含浸成形体を液状の硬化剤に浸漬する。ここで用いる硬化剤としては、液状で、含浸用樹脂を室温で硬化させることができるものであれば特に限定されないが、TETA(トリエチレンテトラミン)などが望ましい。液状の硬化剤の粘度は25℃で80 P(8 Pa・s)以下であるのが望ましく、50 P(5 Pa・s)以下であるのがさらに望ましい。含浸成形体を液状の硬化剤に浸漬することにより、含浸成形体の表層部の含浸用樹脂が硬化され、その結果、成形体内部に含浸させた含浸用樹脂が次工程の熱処理により成形体表面にしみ出してくるのを防止できる。
(8) Step of immersing the impregnated molded product in a liquid curing agent S8
Next, the impregnated molded product prepared in step S6 is immersed in a liquid curing agent. The curing agent used here is not particularly limited as long as it is liquid and can cure the impregnating resin at room temperature, but TETA (triethylenetetramine) or the like is desirable. The viscosity of the liquid curing agent is preferably 80 P (8 Pa · s) or less at 25 ° C, and more preferably 50 P (5 Pa · s) or less. By immersing the impregnated molded product in a liquid curing agent, the impregnating resin on the surface layer of the impregnated molded product is cured, and as a result, the impregnating resin impregnated inside the molded product is applied to the surface of the molded product by the heat treatment in the next step. You can prevent it from seeping out.

(9) 含浸成形体を熱処理して希土類系ボンド磁石を作製する工程S9
続いて、工程S8で作製した含浸成形体を熱処理して成形体内部の含浸用樹脂を硬化させ、希土類系ボンド磁石を作製する。希土類系合金磁石粉末としてNd-Fe-B系急冷合金磁石粉末を採用する場合、特に酸化され易いため、熱処理雰囲気は工程S5と同様の非酸化性雰囲気で行うのが好ましい。
(9) Step of heat-treating the impregnated molded body to produce a rare earth-based bonded magnet S9
Subsequently, the impregnated molded body produced in step S8 is heat-treated to cure the impregnating resin inside the molded body to produce a rare earth-based bonded magnet. When Nd-Fe-B-based quenching alloy magnet powder is used as the rare earth alloy magnet powder, it is particularly easily oxidized, so that the heat treatment atmosphere is preferably a non-oxidizing atmosphere similar to that in step S5.

特許文献3のように硬化剤を含む含浸用樹脂組成物を使用する場合、常温でも徐々に含浸用樹脂の硬化が始まってしまう。そのため含浸用樹脂組成物にはポットライフがあり、ポットライフが短いと頻繁に樹脂の入れ替えや樹脂槽の清掃が必要になるので、ポットライフができるだけ長い樹脂を使うのが好ましいが、そのような樹脂は硬化時間が長く、かつ硬化温度も高いため、生産効率が悪く、磁気特性を劣化させる恐れがある。このように、硬化剤を含有する含浸用樹脂組成物を用いる場合は、ポットライフと、生産効率及び磁気特性劣化率の両立が難しい。 When an impregnating resin composition containing a curing agent is used as in Patent Document 3, curing of the impregnating resin gradually starts even at room temperature. Therefore, the resin composition for impregnation has a pot life, and if the pot life is short, it is necessary to frequently replace the resin or clean the resin tank. Therefore, it is preferable to use a resin having a pot life as long as possible. Since the resin has a long curing time and a high curing temperature, the production efficiency is poor and the magnetic properties may be deteriorated. As described above, when the impregnating resin composition containing a curing agent is used, it is difficult to achieve both pot life, production efficiency and deterioration rate of magnetic properties.

これに対して本発明の方法においては、工程S8で含浸成形体の表層部を液状の硬化剤で硬化させるため、ポットライフが長い含浸用樹脂組成物を使用した場合であっても、工程S9において熱処理を行う際に、含浸させた含浸用樹脂が成形体表面にしみ出すことがないので、高温での熱処理が可能となり、ポットライフ、生産効率、磁気特性の劣化率及び磁石強度のすべてを解決できることができる。 On the other hand, in the method of the present invention, since the surface layer portion of the impregnated molded product is cured with a liquid curing agent in step S8, even when an impregnating resin composition having a long pot life is used, step S9 Since the impregnated resin for impregnation does not seep out to the surface of the molded product during the heat treatment, the heat treatment at a high temperature is possible, and the pot life, production efficiency, deterioration rate of magnetic properties, and magnet strength are all affected. Can be solved.

工程S5と工程S6との間にボンド磁石成形体の加工工程を追加してもよい。すなわち、ボンド磁石成形体を加工し、加工後のボンド磁石成形体に対して工程S6で準備した含浸用樹脂組成物を含浸させてもよい。また、工程S9の後に加工工程を追加してもよい。すなわち、工程S9で作製したボンド磁石を加工して完成品としてもよい。また、工程S9の後に種々の表面処理を行ってもよい。このように、工程S1~工程S9は、順番は上記の順であるが、各々の工程の間、後に他の工程を追加してもよい。 A processing process of the bonded magnet molded body may be added between the process S5 and the process S6. That is, the bonded magnet molded body may be processed, and the processed bond magnet molded body may be impregnated with the impregnating resin composition prepared in step S6. Further, a processing step may be added after the step S9. That is, the bond magnet produced in step S9 may be processed into a finished product. Further, various surface treatments may be performed after step S9. As described above, the order of the steps S1 to S9 is as described above, but other steps may be added after each step.

上記の実施形態では、工程S1(希土類系合金磁石粉末を準備する工程)から工程S9(含浸成形体を熱処理して希土類系ボンド磁石を作製する工程)までを説明したが、本発明は上記の実施形態に限定されない。 In the above embodiment, steps S1 (step of preparing rare earth alloy magnet powder) to step S9 (step of heat-treating the impregnated molded body to produce a rare earth-based bonded magnet) have been described. It is not limited to the embodiment.

例えば、希土類系合金磁石粉末、エポキシ樹脂及び硬化剤を混練した混練物を圧縮して熱処理することにより得られるボンド磁石成形体を入手し、これに含浸用樹脂組成物を含浸させて含浸成形体を作製し(工程S7)、この含浸成形体を液状の硬化剤に浸漬し(工程S8)、熱処理する(工程S9)ことにより希土類系ボンド磁石を得ることができる。 For example, a bonded magnet molded product obtained by compressing and heat-treating a kneaded product obtained by kneading a rare earth alloy magnet powder, an epoxy resin and a curing agent is obtained, and the impregnated molded product is impregnated with an impregnating resin composition. (Step S7), the impregnated molded product is immersed in a liquid curing agent (Step S8), and heat-treated (Step S9) to obtain a rare earth-based bonded magnet.

希土類系合金磁石粉末として、メルトスピニング法で得られたNd-Fe-B系急冷合金磁石粉末(マグネクエンチ社製MQP-13-9)を準備した。 As a rare earth alloy magnet powder, Nd-Fe-B quenching alloy magnet powder (MQP-13-9 manufactured by Magnequench) obtained by the melt spinning method was prepared.

三菱ケミカル社製ビスフェノールA型エポキシ樹脂JER1004と、三菱ケミカル社製硬化剤DICY7(ジシアンジアミド)とを、質量比100:1.5でメチルエチルケトン(MEK)に溶解し、成形用樹脂組成物を作製した。MEKの量は混錬される急冷合金磁石粉末100質量部に対して4.5質量部となるように調整した。 A bisphenol A type epoxy resin JER1004 manufactured by Mitsubishi Chemical Corporation and a curing agent DICY7 (dicyandiamide) manufactured by Mitsubishi Chemical Corporation were dissolved in methyl ethyl ketone (MEK) at a mass ratio of 100: 1.5 to prepare a resin composition for molding. The amount of MEK was adjusted to 4.5 parts by mass with respect to 100 parts by mass of the quenching alloy magnet powder to be kneaded.

100質量部のNd-Fe-B系急冷合金磁石粉末に対して、MEKを除く樹脂量(エポキシ樹脂と硬化剤との合計)が2.0質量部となるように成形用樹脂組成物を混合し、溶液中のMEKが完全に揮発するまで混錬した。得られた混練物に、0.07質量部のステアリン酸カルシウムを混合して希土類系ボンド磁石用コンパウンドを作製した。 A molding resin composition was mixed with 100 parts by mass of Nd-Fe-B-based quenching alloy magnet powder so that the amount of resin excluding MEK (total of epoxy resin and curing agent) was 2.0 parts by mass. The mixture was kneaded until the MEK in the solution was completely volatilized. 0.07 parts by mass of calcium stearate was mixed with the obtained kneaded product to prepare a compound for rare earth-based bonded magnets.

得られた希土類系ボンド磁石用コンパウンドに対して6 ton/cm2(588 MPa)の成形圧力で圧縮成形を行うことにより圧縮成形体を作製した。この成形体を、真空雰囲気中で150℃の温度で2時間熱処理して、ボンド磁石成形体を作製した。 A compression molded product was produced by compression molding the obtained compound for rare earth bond magnets at a molding pressure of 6 ton / cm 2 (588 MPa). This molded product was heat-treated at a temperature of 150 ° C. for 2 hours in a vacuum atmosphere to prepare a bonded magnet molded product.

続いて、三菱ケミカル社製ビスフェノールF型エポキシ樹脂jER806と、三菱ケミカル社製反応性希釈剤YED216Dと、三菱ケミカル社製硬化剤DICY7とを、質量比85.5:9.5:5.0で混合し、液体状の含浸用樹脂組成物を作製した。 Subsequently, Mitsubishi Chemical's bisphenol F type epoxy resin jER806, Mitsubishi Chemical's reactive diluent YED216D, and Mitsubishi Chemical's curing agent DICY7 were mixed at a mass ratio of 85.5: 9.5: 5.0 to form a liquid. A resin composition for impregnation was prepared.

この含浸用樹脂組成物を真空加圧法にて、ボンド磁石成形体に含浸させて含浸成形体を作製した。含浸は、真空状態(1 kPa)でボンド磁石成形体を含浸用樹脂組成物に30分間浸漬することにより行った。続いてこの含浸成形体を、液状の硬化剤[TETA;粘度15 P(1.5 Pa・s)]に25℃で3時間浸漬した。硬化剤に浸漬することで含浸成形体の表層部のエポキシ樹脂が硬化した。表層部が硬化した含浸成形体を切断し、断面を光学顕微鏡で観察したところ、含浸成形体の内部のエポキシ樹脂は硬化していなかった。 The impregnated resin composition was impregnated into a bonded magnet molded product by a vacuum pressurization method to prepare an impregnated molded product. The impregnation was performed by immersing the bonded magnet molded product in the resin composition for impregnation for 30 minutes in a vacuum state (1 kPa). Subsequently, this impregnated molded product was immersed in a liquid curing agent [TETA; viscosity 15 P (1.5 Pa · s)] at 25 ° C. for 3 hours. By immersing in a curing agent, the epoxy resin on the surface layer of the impregnated molded product was cured. When the impregnated molded body having the surface layer portion cured was cut and the cross section was observed with an optical microscope, the epoxy resin inside the impregnated molded body was not cured.

表層部のエポキシ樹脂を硬化させた後の含浸成形体を160℃で2時間加熱して、本発明の希土類系ボンド磁石を作製した。得られた希土類系ボンド磁石を切断し断面を光学顕微鏡で観察したところ、含浸させたエポキシ樹脂は内部まで硬化していることが確認できた。 The impregnated molded product after curing the epoxy resin on the surface layer was heated at 160 ° C. for 2 hours to prepare a rare earth-based bonded magnet of the present invention. When the obtained rare earth-based bond magnet was cut and the cross section was observed with an optical microscope, it was confirmed that the impregnated epoxy resin was cured to the inside.

本発明によれば、高い磁石強度を有する希土類系ボンド磁石を優れた生産効率で製造する方法を得られる。 According to the present invention, it is possible to obtain a method for producing a rare earth-based bonded magnet having high magnet strength with excellent production efficiency.

Claims (7)

希土類系合金磁石粉末を準備する工程と、
成形用樹脂を含む成形用樹脂組成物を準備する工程と、
前記希土類系合金磁石粉末と前記成形用樹脂組成物とを混錬し、希土類系ボンド磁石用コンパウンドを作製する工程と、
前記希土類系ボンド磁石用コンパウンドを圧縮して圧縮成形体を作製する工程と、
前記圧縮成形体を熱処理してボンド磁石成形体を作製する工程と、
前記ボンド磁石成形体に対し、含浸用樹脂を含む含浸用樹脂組成物を含浸させて含浸成形体を作製する工程と、
前記含浸成形体を液状の硬化剤に浸漬して前記含浸成形体の表層部の前記含浸用樹脂を硬化させる工程と、
前記表層部の前記含浸用樹脂を硬化させた後の前記含浸成形体を加熱して、前記含浸成形体の内部の前記含浸用樹脂を硬化させる工程と
を含むことを特徴とする希土類系ボンド磁石の製造方法。
The process of preparing rare earth alloy magnet powder and
The process of preparing a molding resin composition containing a molding resin, and
A step of kneading the rare earth alloy magnet powder and the molding resin composition to prepare a compound for a rare earth bond magnet.
The process of compressing the compound for rare earth-based bonded magnets to produce a compression molded product, and
The step of heat-treating the compression molded body to produce a bonded magnet molded body, and
A step of impregnating the bonded magnet molded product with an impregnating resin composition containing an impregnating resin to prepare an impregnated molded product.
A step of immersing the impregnated molded product in a liquid curing agent to cure the impregnating resin on the surface layer portion of the impregnated molded product.
A rare earth-based bond magnet comprising a step of heating the impregnated molded body after curing the impregnating resin on the surface layer portion to cure the impregnating resin inside the impregnated molded body. Manufacturing method.
請求項1に記載の希土類系ボンド磁石の製造方法において、
前記希土類系合金磁石粉末は、希土類系急冷合金磁石粉末であることを特徴とする希土類系ボンド磁石の製造方法。
In the method for manufacturing a rare earth-based bonded magnet according to claim 1,
A method for producing a rare earth-based bonded magnet, wherein the rare-earth-based alloy magnet powder is a rare-earth-based quenching alloy magnet powder.
請求項1又は2に記載の希土類系ボンド磁石の製造方法において、
前記成形用樹脂が熱硬化性エポキシ樹脂であることを特徴とする希土類系ボンド磁石の製造方法。
In the method for manufacturing a rare earth-based bonded magnet according to claim 1 or 2.
A method for producing a rare earth-based bonded magnet, wherein the molding resin is a thermosetting epoxy resin.
請求項1~3のいずれか1に記載の希土類系ボンド磁石の製造方法において、
前記含浸用樹脂が液体状の熱硬化性エポキシ樹脂であることを特徴とする希土類系ボンド磁石の製造方法。
In the method for manufacturing a rare earth-based bonded magnet according to any one of claims 1 to 3.
A method for producing a rare earth-based bonded magnet, wherein the impregnating resin is a liquid thermosetting epoxy resin.
請求項1~4のいずれかに記載の希土類系ボンド磁石の製造方法において、
前記含浸用樹脂組成物が、前記含浸用樹脂と潜在性硬化剤とを含むことを特徴とする希土類系ボンド磁石の製造方法。
In the method for manufacturing a rare earth-based bonded magnet according to any one of claims 1 to 4.
A method for producing a rare earth-based bonded magnet, wherein the impregnating resin composition contains the impregnating resin and a latent curing agent.
請求項5に記載の希土類系ボンド磁石の製造方法において、
前記潜在性硬化剤がジシアンジアミドであることを特徴とする希土類系ボンド磁石の製造方法。
In the method for manufacturing a rare earth-based bonded magnet according to claim 5.
A method for producing a rare earth-based bonded magnet, wherein the latent curing agent is dicyandiamide.
請求項1~6のいずれかに記載の希土類系ボンド磁石の製造方法において、
前記含浸成形体を浸漬する液状の硬化剤がトリエチルテトラミンであることを特徴とする希土類系ボンド磁石の製造方法。
In the method for manufacturing a rare earth-based bonded magnet according to any one of claims 1 to 6.
A method for producing a rare earth-based bonded magnet, wherein the liquid curing agent for immersing the impregnated molded product is triethyltetramine.
JP2020139109A 2020-08-20 2020-08-20 Method for manufacturing rare-earth bond magnet Pending JP2022035048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139109A JP2022035048A (en) 2020-08-20 2020-08-20 Method for manufacturing rare-earth bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139109A JP2022035048A (en) 2020-08-20 2020-08-20 Method for manufacturing rare-earth bond magnet

Publications (1)

Publication Number Publication Date
JP2022035048A true JP2022035048A (en) 2022-03-04

Family

ID=80443829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139109A Pending JP2022035048A (en) 2020-08-20 2020-08-20 Method for manufacturing rare-earth bond magnet

Country Status (1)

Country Link
JP (1) JP2022035048A (en)

Similar Documents

Publication Publication Date Title
KR101906068B1 (en) Method For Preparing R-Fe-B Based Sintered Magnet
US20150187494A1 (en) Process for preparing rare earth magnets
WO2010071111A1 (en) Iron-based magnetic alloy powder containing rare earth element, method for producing same, resin composition for bonded magnet obtained from same, bonded magnet, and compacted magnet
CN109641277B (en) Method for producing metal powder and metal powder
JP2010232468A (en) Rare earth bonded magnet
JP2010232468A5 (en)
JP2009099580A (en) Rare earth bond magnet and manufacturing method thereof
US6179894B1 (en) Method of improving compressibility of a powder and articles formed thereby
US20160303651A1 (en) Magnet Manufacturing Method And Magnet
JP2022035048A (en) Method for manufacturing rare-earth bond magnet
JP7252768B2 (en) Method for manufacturing rare earth bonded magnet
JPH0547528A (en) Manufacturing method of anisotropical rare earth bonded magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP5412172B2 (en) Rare earth permanent magnet and method for producing the same
JP4721357B2 (en) Manufacturing method of Nd-based bonded magnet
JP2014120492A (en) High heat resistant bond magnet, process of manufacturing the same, and motor
KR20210044502A (en) Manufacturing method of sintered magnet
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JP4412376B2 (en) Salt-water resistant magnet alloy powder, and resin composition for bond magnet, bond magnet or compacted magnet obtained by using the same
JP3160817B2 (en) Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet
JP6438713B2 (en) Rare earth iron-based magnet powder and bonded magnet using the same
JP2013258169A (en) Bond magnet, method of manufacturing the same, and motor
JP4116690B2 (en) Rare earth bonded magnet composition and rare earth bonded magnet
JPH04337603A (en) Rare-earth metal and resin composite molded body and production thereof
KR102236096B1 (en) Method for manufacturing ceramic bonded magnet and ceramic bonded magnet manufactured therefrom