JP2022034697A - Work support system, and work support method - Google Patents
Work support system, and work support method Download PDFInfo
- Publication number
- JP2022034697A JP2022034697A JP2020138516A JP2020138516A JP2022034697A JP 2022034697 A JP2022034697 A JP 2022034697A JP 2020138516 A JP2020138516 A JP 2020138516A JP 2020138516 A JP2020138516 A JP 2020138516A JP 2022034697 A JP2022034697 A JP 2022034697A
- Authority
- JP
- Japan
- Prior art keywords
- prediction
- past
- support system
- prediction error
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004364 calculation method Methods 0.000 claims abstract description 32
- 238000007619 statistical method Methods 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 3
- 238000010586 diagram Methods 0.000 claims description 7
- 238000009472 formulation Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000013135 deep learning Methods 0.000 claims description 3
- 238000010801 machine learning Methods 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- Game Theory and Decision Science (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Educational Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、機械学習の予測値に基づき業務計画を策定する管理者を支援する業務支援システム及び業務支援方法に関する。 The present invention relates to a business support system and a business support method that support a manager who formulates a business plan based on predicted values of machine learning.
機械学習であるニューラルネットワークやディープラーニング、重回帰分析など統計的な予測モデルを用いて予測値を求める予測システムが、様々な分野において実用化されつつある。これらの予測モデルは、あらかじめ学習段階に入力項目と出力項目の値が揃った学習データを与え、予測モデルの計算値ができるだけ合致するように予測モデル内のパラメータの値を適切な値に調節する。その後、予測段階ではこの予測モデルに入力項目の値を与え、予測値を計算する。 Prediction systems that obtain predicted values using statistical prediction models such as neural networks, deep learning, and multiple regression analysis, which are machine learning, are being put to practical use in various fields. These prediction models give training data in which the values of input items and output items are aligned in advance at the training stage, and adjust the values of the parameters in the prediction model to appropriate values so that the calculated values of the prediction model match as much as possible. .. After that, in the prediction stage, the value of the input item is given to this prediction model, and the prediction value is calculated.
予測モデルは学習段階に与えた学習データとできるだけ合致するように同定されるが、予測値は必ずしも正確ではない。これは、学習データの質や量が十分でない場合などには顕著となる。したがって、予測値を参考にして業務計画を策定する管理者は、予測値をどの程度信頼して良いかを判断することが困難である。また、予測値がどの程度ずれるか予測誤差をおおよそ推測できる場合であっても、それに応じてリソースをどのように配分するかなど業務計画をすぐには立案できない場合もある。 Predictive models are identified to match the training data given to the learning stage as closely as possible, but the predicted values are not always accurate. This becomes remarkable when the quality and quantity of training data are not sufficient. Therefore, it is difficult for the manager who formulates the business plan with reference to the predicted value to judge how much the predicted value can be trusted. In addition, even if it is possible to roughly estimate the prediction error of how much the predicted value deviates, it may not be possible to immediately formulate a business plan such as how to allocate resources accordingly.
本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1の下水流入量予測装置では、構成要素として、予測値と予測誤差を記憶する記憶部と、予測ステップ幅決定部とを備える。この構成により、現在の時刻から下水流入量を予測しようとする未来の時刻までの時間長を任意に変化させられるとしている。
As a background technology in this technical field, for example, there is a technology such as
また、特許文献2の電力予測方法、装置、及びプログラムでは、地点毎の電力データの多数組の乱数データあるいは一地点の時間帯毎の電力データや2時間帯間の相関係数値を再現する多数組の乱数データを発生させ、それらに基づく予測値を度数分布として纏めることが記されている。これにより、電力系統の運用者は、地域の合計発電出力の予測される範囲と確度とを得ることができるとしている。
Further, in the power prediction method, device, and program of
また、特許文献3には、回帰モデルやニューラルネットなどを用いた従来の予測方法において、将来の予測値の誤差を評価するために、エラーバーや標準偏差などを用いることが示されている。(図13等)
Further,
しかしながら、上記特許文献1には予測誤差がどの程度であったかをユーザーへ示す機能に関して記載されていない。予測誤差の統計値も示されないため、ユーザーは予測値がどの程度外れる可能性が高いか分からない。
However, the above-mentioned
また、上記特許文献2は予測値の度数分布であり、誤差の度数分布ではないため、ユーザーは予測値がどの程度外れる可能性が高いかが分からない。
Further, since
また、上記特許文献3のように最大最小や3σを示すエラーバーを用いた場合でも、予測誤差が偏った分布となる可能性があり、ユーザーは予測値がどの程度外れるのか正確に把握することができない。
Further, even when an error bar indicating the maximum / minimum or 3σ is used as in
したがって、これらの特許文献の技術を用いても、業務計画を策定する管理者は予測値をどの程度信頼して良いか判断できない。まして、リソースを今後どのように配分するかなど業務計画を予測値に基づいてすぐに立案できない。 Therefore, even if the techniques of these patent documents are used, the manager who formulates the business plan cannot judge how much the predicted value can be trusted. Moreover, it is not possible to immediately formulate a business plan based on predicted values, such as how to allocate resources in the future.
そこで、本発明の目的は、機械学習の予測値に基づく業務計画の策定を支援する業務支援システム及び業務支援方法において、業務計画を策定する管理者が予測値をどの程度信頼して良いかを正確に判断することができ、なおかつ、迅速な業務計画の立案が可能な業務支援システム及び業務支援方法を提供することにある。 Therefore, an object of the present invention is to determine how much the manager who formulates a business plan can trust the predicted value in a business support system and a business support method that support the formulation of a business plan based on the predicted value of machine learning. The purpose is to provide a business support system and a business support method that can make an accurate judgment and can quickly formulate a business plan.
上記課題を解決するために、本発明は、業務計画の策定を支援する業務支援システムにおいて、過去の予測値と過去の実績値、或いは過去の予測値と過去の実績値から算出された過去の予測誤差を記憶する記憶部と、過去の予測誤差を統計処理し、予測誤差統計処理結果を求める統計解析部と、前記統計解析部で求めた予測誤差統計処理結果を将来の予測値に加減算して予測誤差反映予測値を求める予測誤差反映予測値計算部と、前記予測誤差反映予測値計算部で求めた予測誤差反映予測値を表示する表示部と、を備えることを特徴とする。 In order to solve the above problems, the present invention is a business support system that supports the formulation of a business plan, in which the past predicted value and the past actual value, or the past predicted value and the past actual value are calculated. A storage unit that stores prediction errors, a statistical analysis unit that statistically processes past prediction errors and obtains prediction error statistical processing results, and a prediction error statistical processing result obtained by the statistical analysis unit are added to or subtracted from future prediction values. It is characterized by including a prediction error reflection prediction value calculation unit for obtaining a prediction error reflection prediction value, and a display unit for displaying the prediction error reflection prediction value obtained by the prediction error reflection prediction value calculation unit.
また、本発明は、業務計画の策定を支援する業務支援方法であって、(a)過去の予測値と過去の実績値から過去の予測誤差を算出するステップと、(b)前記(a)ステップで算出した過去の予測誤差を統計処理し、予測誤差統計処理結果を求めるステップと、(c)前記(b)ステップで求めた予測誤差統計処理結果を将来の予測値に加減算して予測誤差反映予測値を求めるステップと、(d)前記(c)ステップで求めた予測誤差反映予測値を表示部に表示するステップと、を有することを特徴とする。 Further, the present invention is a business support method for supporting the formulation of a business plan, in which (a) a step of calculating a past prediction error from a past predicted value and a past actual value, and (b) the above (a). Prediction error by statistically processing the past prediction error calculated in step and obtaining the prediction error statistical processing result, and (c) adding or subtracting the prediction error statistical processing result obtained in step (b) to the future prediction value. It is characterized by having a step of obtaining a reflected predicted value, and (d) a step of displaying the predicted error reflected predicted value obtained in the step (c) above on the display unit.
本発明によれば、機械学習の予測値に基づく業務計画の策定を支援する業務支援システム及び業務支援方法において、業務計画を策定する管理者が予測値をどの程度信頼して良いかを正確に判断することができ、なおかつ、迅速な業務計画の立案が可能な業務支援システム及び業務支援方法を実現することができる。 According to the present invention, in a business support system and a business support method that support the formulation of a business plan based on the predicted value of machine learning, it is possible to accurately determine how much the manager who formulates the business plan can trust the predicted value. It is possible to realize a business support system and a business support method that can make a judgment and can quickly formulate a business plan.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
以下、図面を用いて本発明の実施例を説明する。各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same components are designated by the same reference numerals, and detailed description of overlapping portions will be omitted.
なお、本発明の業務支援システムが支援する対象の業務は、具体的には貨物の配送業務、プラントや装置の運転業務などが挙げられるが、予測値を参考にして将来の業務計画を決定する業務であればこれらに限定されない。 The business to be supported by the business support system of the present invention specifically includes freight delivery business, plant and equipment operation business, etc., and the future business plan is determined with reference to the predicted values. If it is a business, it is not limited to these.
図1から図4を参照して、本発明の実施例1に係る業務支援システム及び業務支援方法について説明する。 The business support system and the business support method according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
図1は、本実施例の業務支援システムの全体構成を示す図である。先ず、記憶部10に記憶されていた過去の予測誤差12は統計解析部14に与えられる。また、過去に機械学習などの手法で学習を実施した際の日時データを記憶している学習時期記憶部32からは、予測モデルの学習時期34が特定期間設定部28に与えられる。
FIG. 1 is a diagram showing an overall configuration of the business support system of this embodiment. First, the
特定期間設定部28には予測モデルの学習時期34が表示されるとともに、それを参考にして管理者が特定期間設定入力値30を入力できる画面が表示される。入力した特定期間設定入力値30は統計解析部14に与えられる。
The
統計解析部14は、特定期間設定入力値30に対応する時期のデータを過去の予測誤差12の中から取り出して統計解析する。その結果として得られた予測誤差統計処理結果16は予測誤差反映予測値計算部18に与えられる。予測誤差反映予測値計算部18には、予測部26で予測された将来の予測値20も与えられる。予測部26は基準となる時刻より将来の予測値を出力する。
The
予測誤差反映予測値計算部18では、将来の予測値20に予測誤差統計処理結果16を加減算して予測誤差反映予測値22を求め、表示部24に与える。表示部24では、予測誤差反映予測値22を画面に表示する。例えば、一方の軸が時間(日数)であり、他方の軸が将来の予測誤差反映予測値22であるグラフを表示する。これにより、管理者は過去の予測誤差の統計値を加味した予測値を知ることができ、業務計画をより的確に策定することができる。
The prediction error reflection prediction
また、表示部24には将来の予測値20も与えられ、予測誤差反映予測値計算部18で加減算される前の将来の予測値20も表示する。これにより、管理者は予測誤差がどの程度であったかを知ることができ、予測値をどの程度信頼して良いかを正確に判断することができる。
Further, the
上述の例では記憶部10から過去の予測誤差12を統計解析部14に与えてそのまま用いたが、記憶部10には過去の予測値と過去の実績値が記憶されていても良く、その場合には統計解析部14では前処理として過去の予測誤差12を過去の予測値と過去の実績値に基づいて計算し、それを統計解析することでも良い。
In the above example, the
実績値記憶部43に記憶されている過去の時点での実績値45も表示部24に与えられる。また、予測値記憶部42に記憶されている過去の時点での予測値36も表示部24に与えられる。表示部24には過去の時点での実績値45と過去の時点での予測値36を表示する。これにより、これまで過去にどの程度の精度で将来の予測値20が正しかったかを知ることができる。
The
過去の時点での予測値36は、同じ過去の時点であってもどの程度先を予測したかによって複数存在する場合がある。例えば、時間長として10分、20分、30分の3期間の将来の予測値20を予測する予測部26がある場合、昨日12時00分の段階では12時10分、12時20分、12時30分の3つの将来の予測値20が得られたことになる。その10分後の12時10分には、12時20分、12時30分、12時40分の3つの将来の予測値20が得られたことになる。
There may be a plurality of predicted
これらの将来の予測値20をすべて表示部24に表示すると画面が煩雑となるため、一部の情報のみに絞って表示するのも良い。これにより、情報の把握が容易になると同時に、勘違いや見誤り発生のリスクを低減できる。情報の絞り方の一つとして以下に時間長を一定とする方法について述べるが、絞り方はこれのみに限定されない。
If all of these future predicted
一定の時間長50を設定するのが、対象データ時間長設定部48である。対象データ時間長設定部48で設定された時間長50は表示部24に与えられる。例えば時間長50を10分と設定すると、表示部24で昨日12時30分の箇所には12時20分に10分後を予測した将来の予測値20を表示し、12時10分に20分後を予測した将来の予測値20や12時00分に30分後を予測した将来の予測値20があっても画面には表示しない。
The target data time
予測誤差統計処理結果記憶部38が記憶している過去の時点での予測誤差統計処理結果40は過去時点予測誤差反映予測値計算部44に与えられる。過去時点予測誤差反映予測値計算部44には予測値記憶部42から過去の時点での予測値36も与えられる。過去時点予測誤差反映予測値計算部44では過去の時点での予測値36に過去の時点での予測誤差統計処理結果40を加減算することによって過去時点予測誤差反映予測値46を求め、表示部24に与える。表示部24では、この過去時点予測誤差反映予測値46を画面上に表示する。これにより、過去の時点での過去時点予測誤差反映予測値46がどのように推移したかを知ることができる。
The prediction error
ここで、過去時点予測誤差反映予測値計算部44に与えられる過去の時点での予測誤差統計処理結果40は実績値記憶部43に記憶されている過去の時点での実績値45と予測値記憶部42に記憶されている過去の時点での予測値36を統計処理した結果でも良い。
Here, the prediction error
図2は表示部24の表示画面の一例である。図中上部の下向きの黒塗り三角形が横軸(日数)=0日を示しており、ここが現在の時点を示している。横軸(日数)の0日以降、4日にかけて点線の折れ線で将来の予測値20が表示されている。予測誤差反映予測値22は横軸(日数)の1日、2日、3日、4日の箇所に90度だけ左回転したヒストグラムで表示されている。一方、横軸(日数)が負の値である-4日から0日までの箇所には過去から現在の推移が折れ線で示されており、実線が過去の時点での実績値45、点線が過去の時点での予測値36である。
FIG. 2 is an example of the display screen of the
この図2においては、横軸(日数)の1日、2日、3日、4日の箇所に表示されたヒストグラムは多くの点が将来の予測値20を示す点線よりも下にある。これは、これまでの過去に得られた実績値が予測モデル(予測部26)で求めた将来の予測値20に比べて低かったことを意味している。
In FIG. 2, the histograms displayed at the 1st, 2nd, 3rd, and 4th days on the horizontal axis (days) have many points below the dotted line indicating the future predicted
図2中に表示されているヒストグラムは、次の手順で求める。 The histogram displayed in FIG. 2 is obtained by the following procedure.
(1)先ず、ヒストグラムとして描く統計処理の対象となるデータを決める。そのために、特定期間設定部28で特定期間設定入力値30を入力する。ここで解析対象とするデータの期間を設定する。特定期間設定部28には予測モデルの学習時期34が表示される。例えば、前回の予測モデルの学習時期34は3か月前、前々回の予測モデルの学習時期34は1年3か月前、さらにその前の予測モデルの学習時期34は2年6か月前、のように表示される。
(1) First, the data to be statistically processed to be drawn as a histogram is determined. Therefore, the specific period setting
管理者はこの情報を参考にして、ヒストグラムの対象となるデータをいつからいつまでのデータとするか特定期間設定部28で入力する。例えば、過去2か月前から1か月前のように期間を設定すると、前回の予測モデルの学習時期34より後の1か月の期間を解析対象と設定できる。
The administrator refers to this information and inputs the data to be the target of the histogram in the specific
(2)統計解析部14では、(1)で設定した特定期間設定入力値30の期間の過去の予測誤差12に対して統計解析を実施する。例えば図2の横軸(日数)が「1日」の箇所に表示されるヒストグラムは、現在から時間長として1日だけ将来を予測した過去の予測誤差12を用いる。過去の予測誤差12の度数分布データの例を表1に示す。
(2) The
また、表1のデータをヒストグラムとして表示した結果を図3に示す。図3を見ると、貨物数の予測誤差のデータ範囲の最小値は-50[個/日]、最大値は-10[個/日]であることが分かる。予測誤差は平均で-30[個/日]程度でありその周辺の度数が高いため、1日だけ将来の予測値20も-30[個/日]程度だけ将来の予測値20から外れる可能性が高いと推測できる。図2の横軸(日数)が1日の箇所で点線により示された予測値は235[個/日]であるため、実績値は235-30=205[個/日]程度となる可能性が高いと推測できる。このように予測値と図3があれば、将来の予測値20が実際にはどの程度の値となる可能性が高いかを把握することができる。
The results of displaying the data in Table 1 as a histogram are shown in FIG. Looking at FIG. 3, it can be seen that the minimum value of the data range of the prediction error of the number of cargoes is -50 [pieces / day] and the maximum value is -10 [pieces / day]. Since the prediction error is about -30 [pieces / day] on average and the frequency around it is high, the
別々の図ではなくこれを一目で把握できるよう、図3のヒストグラムを90度左方向に回転させ、予測誤差のデータ区間の値を将来の予測値20を加えた位置へ配置したのが図2中の横向きのヒストグラムである。
In order to grasp this at a glance instead of separate figures, the histogram in FIG. 3 was rotated 90 degrees to the left, and the value of the data section of the prediction error was placed at the position where the
図3のヒストグラムで最も度数が高い-25[個/日]~-35[個/日]の部分は、図2の中では縦軸(貨物数)が210(=235-25)[個/日]~200(=235-35)[個/日]の位置に表示される。同様に、度数が低い-10[個/日]~-15[個/日]の部分は、図2の縦軸(貨物数)が225(=235-10)[個/日]~220(=235-15)[個/日]の位置に表示される。 In the histogram of Fig. 3, the part with the highest frequency of -25 [pieces / day] to -35 [pieces / day] has a vertical axis (number of cargoes) of 210 (= 235-25) [pieces / day] in Fig. 2. It is displayed at the position of [day] to 200 (= 235-35) [pieces / day]. Similarly, in the part where the frequency is low -10 [pieces / day] to -15 [pieces / day], the vertical axis (number of cargoes) in Fig. 2 is 225 (= 235-10) [pieces / day] to 220 ( = 235-15) Displayed at the [piece / day] position.
このように90度左方向に回転させたヒストグラムを表示することで、横軸(日数)が1日の箇所では貨物数が205(=235-30)[個/日]程度となる可能性が高いことを一目で把握することができる。 By displaying the histogram rotated 90 degrees to the left in this way, there is a possibility that the number of cargoes will be about 205 (= 235-30) [pieces / day] where the horizontal axis (days) is one day. You can see at a glance what is expensive.
予測誤差のヒストグラムは必ずしも図3で示したような左右対称にはならず、例えば横軸(日数)=4日の箇所で示されるように、度数の高いデータ区間が中央ではなく一方に偏っている場合がある。特許文献3のように、単にエラーバーで予測誤差を表示するとこのような偏りを全く認識ができず、判断を誤る可能性がある。そこで、図2に示すように、ヒストグラムで表示することにより、過去に度数の高かった値が明確となり、より適切な判断が可能となる。
The histogram of the prediction error is not always symmetrical as shown in FIG. 3, and the data section with high frequency is biased to one side instead of the center, for example, as shown at the horizontal axis (days) = 4 days. There may be. If the prediction error is simply displayed by the error bar as in
不十分な量や質の学習データで学習した予測モデルは一般的に精度が低いため、図2で示したヒストグラムの縦方向(予測誤差)の幅は大きく、将来の予測値20からのズレも大きい。時間の経過とともにデータが徐々に増え、それも含めた学習データで再学習を繰り返すと精度が上がり、図2に横向きで示したヒストグラムの幅は小さくなり、将来の予測値20からのズレも小さくなる。
Since the prediction model trained with training data of insufficient quantity and quality is generally inaccurate, the width of the histogram shown in FIG. 2 in the vertical direction (prediction error) is large, and the deviation from the
特定期間設定入力値30を前回の学習後、前々回の学習後、前々回より前の学習後、のように切り替えてヒストグラムの形状やその位置を確認することで、管理者は学習データが蓄積されて学習が進み、どの程度精度が向上しているかを確認することが可能となる。
By switching the specific period setting
図2の横軸(日数)が負の値である-4日から0日までの期間において、実線で示されているのが過去の時点での実績値45、点線で示されているのが過去の時点での予測値36である。過去の時点での予測値36は、例えばそれぞれの時点において時間長として1日だけ将来を予測した値である。この図では、-4日から0日まで過去の時点での実績値45が過去の時点での予測値36よりも小さかったことを示している。
In the period from -4 days to 0 days when the horizontal axis (number of days) in Fig. 2 is a negative value, the
これら実線と点線で示される折れ線に加え、図2の横軸(日数)が負の値である-4日から0日までに関しては、横軸(日数)が1日から4日までと同様に横向きのヒストグラムで過去時点予測誤差反映予測値46を重畳して表示しても良い。これにより、過去の時点での予測値36に対し、過去の時点での過去時点予測誤差反映予測値46がどのように推移したかを知ることができる。
In addition to these solid and dotted lines, the horizontal axis (days) in Fig. 2 is a negative value-4 days to 0 days, the horizontal axis (days) is the same as 1 to 4 days. The past time prediction error
統計解析部14での統計解析としては、上述したヒストグラム以外にも、過去の予測誤差12を対象とするものであれば最大値、最小値、平均値、最頻値、中央値、標準偏差を求める方法でも良い。いずれについても、将来の予測値20に加減算して図2の図中で表示する。最大値と最小値であれば、エラーバーとして表示する。平均値や最頻値、中央値であれば1点あるいは短い1本の線として表示する。標準偏差を使う場合には、平均値から標準偏差の定数倍を減算した値及び平均値に標準偏差の定数倍を加算した値をエラーバーとして表示する。これらのヒストグラム、エラーバー、1点あるいは短い1本の線の表示はいずれも別々にではなく、重複して同時に表示しても良い。
In the statistical analysis by the
表示部24で表示する度数分布を示す図としては、図4に示すように、例えばヒストグラム、色、色の濃淡、幅の大小、長さの長短、折れ線グラフ、曲線、包絡線などによって表示しても良い。
As a diagram showing the frequency distribution displayed on the
なお、図1の予測部26は、ニューラルネットワーク、ディープラーニング、重回帰計算のうち少なくとも一つを備えるが、学習データを用いて機械学習する計算手法であればこれらのみには限らない。
The
以上説明したように、本実施例の業務支援システムは、過去の予測値(過去の時点での予測値36)と過去の実績値(過去の時点での実績値45)、或いは過去の予測値と過去の実績値から算出された過去の予測誤差12を記憶する記憶部(記憶部10,予測値記憶部42,実績値記憶部43)と、過去の予測誤差12を統計処理し、予測誤差統計処理結果16を求める統計解析部14と、統計解析部14で求めた予測誤差統計処理結果16を将来の予測値20に加減算して予測誤差反映予測値22を求める予測誤差反映予測値計算部18と、予測誤差反映予測値計算部18で求めた予測誤差反映予測値22を表示する表示部24を備えている。
As described above, the business support system of this embodiment has a past predicted value (predicted
また、本実施例の業務支援方法は、(a)過去の予測値(過去の時点での予測値36)と過去の実績値(過去の時点での実績値45)から過去の予測誤差12を算出するステップと、(b)(a)ステップで算出した過去の予測誤差12を統計処理し、予測誤差統計処理結果16を求めるステップと、(c)(b)ステップで求めた予測誤差統計処理結果16を将来の予測値20に加減算して予測誤差反映予測値22を求めるステップと、(d)(c)ステップで求めた予測誤差反映予測値22を表示部24に表示するステップを有している。
Further, in the business support method of this embodiment, (a) a
これにより、業務計画を策定する管理者は過去の実績に基づく予測部の予測誤差を把握したうえで、将来の予測値がどの程度の値となるかを容易に推測でき、より適切な業務計画の策定に活用できる。 As a result, the manager who formulates the business plan can easily guess how much the future forecast value will be after grasping the prediction error of the forecasting department based on the past performance, and a more appropriate business plan. It can be used for the formulation of.
さらに、管理者は自身で推測した値を図形の移動で設定することで対話的に将来の業務計画を自動計算できるため、業務計画を短時間に策定することができる。 Furthermore, since the manager can interactively and automatically calculate the future business plan by setting the value estimated by himself / herself by moving the figure, the business plan can be formulated in a short time.
図5から図8を参照して、本発明の実施例2に係る業務支援システム及び業務支援方法について説明する。 The business support system and the business support method according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 8.
図5は、本実施例の業務支援システムの全体構成を示す図である。図5に示す本実施例の業務支援システムは、実施例1(図1)で示した構成要素に、図形位置情報52、業務計画自動計算部54、業務計画56、影響を受けるデータ58が加わっている。その他の構成は、実施例1(図1)と同様である。このうち図形位置情報52について図6を用いて説明する。
FIG. 5 is a diagram showing an overall configuration of the business support system of this embodiment. In the business support system of this embodiment shown in FIG. 5, the
図6では、横軸(日数)として1日、2日、3日、4日の箇所に正方形が表示されている。この図形は管理者が推測した貨物数を示しており、マウスやキーボード、タッチパネルなどの操作により、それぞれの日において表示部24で上下に移動することができる。図形の形状は正方形には限定されず、異なる形状であっても良い。移動した図形の縦軸(貨物数)の値が図形位置情報52となる。
In FIG. 6, squares are displayed on the horizontal axis (number of days) at the 1st, 2nd, 3rd, and 4th days. This figure shows the number of cargoes estimated by the administrator, and can be moved up and down on the
図5に示すように、図形位置情報52は表示部24から業務計画自動計算部54に与えられる。業務計画自動計算部54では図形位置情報52に基づいて業務計画56を計算して表示部24に与える。また、業務計画56によって影響を受けるデータ58も表示部24に与えられて表示される。
As shown in FIG. 5, the
表示部24に表示される業務計画56の例を図7に示す。立案する業務計画56はこの例では稼働させるトラックの運転台数である。図6で示した貨物数に対し、それを配送するトラックが何台必要かを示したものがこの図7である。横軸(日数)として-4日~0日まではトラック運転台数に関する本日を含む過去の実績値が表示されており、横軸(日数)として1日~4日までが将来の業務計画56に相当する。
FIG. 7 shows an example of the
業務計画56の計算方法にはさまざまな方法があるが、一つの単純な方法としては図形位置情報52によって設定された貨物数をトラック1台あたりの輸送能力で除算し、その値を切り上げて整数化する。図6と図7は同一画面内で同時に表示されることが望ましく、図6中の図形(正方形)を上下へ移動させる操作に応じて図7の業務計画56の表示がリアルタイムで変化することが望ましい。
There are various calculation methods for the
業務計画を策定する管理者は、貨物数の将来の予測値20やその予測値に過去の予測誤差の度数分布を加減算した予測誤差反映予測値22を図6で確認しながら貨物数を推測し、推測数が変わればトラック運転台数が何台になるかを対話的に容易に把握できる。
The manager who formulates the business plan estimates the number of cargoes while checking the future predicted
トラックの運転台数が少ないことが望ましい場合、推測数をわずかに小さくすることでトラック運転台数を1台減らすことができるのであれば、推測数を減らした条件での計画を容易に策定できる。逆に、推測数をわずかに大きくすることでトラック運転台数が1台増えるのであれば、リスクを考えて推測数を増やした条件での計画を策定することも可能である。 If it is desirable to have a small number of trucks in operation, and if the number of trucks in operation can be reduced by one by slightly reducing the estimated number, it is easy to formulate a plan under the condition that the estimated number is reduced. On the contrary, if the number of trucks operated increases by one by slightly increasing the estimated number, it is possible to formulate a plan under the condition that the estimated number is increased in consideration of the risk.
自動計算された将来の業務計画により影響を受けるデータ58の表示例を図8に示す。将来の業務計画により影響を受けるデータ58として、倉庫内在庫貨物の数の推移が折れ線グラフで表示されている。図7と同様に、横軸(日数)として-4日~0日までは倉庫内在庫貨物の本日を含む過去の実績値が表示されている。横軸(日数)として1日~4日までが将来の業務計画56により影響を受けるデータ58である。影響を受けるデータ58の計算方法にはさまざまな方法があるが、単純な方法としては図6の貨物数から図7のトラック運転台数にトラック1台あたりの輸送能力を乗じた値を減算した結果に、その前時刻までの倉庫内在庫貨物を加算した値として計算できる。
FIG. 8 shows a display example of the
図8も図6と同一画面内で同時に表示されることが望ましく、図6の図形(正方形)を上下に移動させる操作に応じて図8の影響を受けるデータ58の表示がリアルタイムで変化することが望ましい。
It is desirable that FIG. 8 is also displayed at the same time on the same screen as FIG. 6, and the display of the
影響を受けるデータ58が一項目ではなく複数項目ある場合には、それぞれの項目に関する影響を受けるデータ58のトレンドグラフも同時に同一画面に表示されることが良い。図8の例では倉庫内在庫貨物が表示されているが、業務計画を策定する管理者は図6中の図形(正方形)を上下に移動させながら倉庫内在庫貨物の数の変化を見ることで、倉庫容量の上限値を念頭においたうえで倉庫内在庫貨物の数が適正な水準となるよう、トラック運転台数の計画を策定できる。
When the affected
以上説明したように、本実施例によれば、自動計算した業務計画によって影響されるデータも表示されるため、実施例1の効果に加えて、表示される業務計画と影響されるデータとを確認しながら推測値を調整できる。 As described above, according to this embodiment, the data affected by the automatically calculated business plan is also displayed. Therefore, in addition to the effect of the first embodiment, the displayed business plan and the affected data are displayed. You can adjust the estimated value while checking.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above embodiments have been described in detail to aid in understanding of the present invention and are not necessarily limited to those comprising all of the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
10…記憶部
12…過去の予測誤差
14…統計解析部
16…予測誤差統計処理結果
18…予測誤差反映予測値計算部
20…将来の予測値
22…予測誤差反映予測値
24…表示部
26…予測部
28…特定期間設定部
30…特定期間設定入力値
32…学習時期記憶部
34…予測モデルの学習時期
36…過去の時点での予測値
38…予測誤差統計処理結果記憶部
40…過去の時点での予測誤差統計処理結果
42…予測値記憶部
43…実績値記憶部
44…過去時点予測誤差反映予測値計算部
45…過去の時点での実績値
46…過去時点予測誤差反映予測値
48…対象データ時間長設定部
50…時間長
52…図形位置情報
54…業務計画自動計算部
56…業務計画
58…影響を受けるデータ
10 ...
Claims (15)
過去の予測値と過去の実績値、或いは過去の予測値と過去の実績値から算出された過去の予測誤差を記憶する記憶部と、
過去の予測誤差を統計処理し、予測誤差統計処理結果を求める統計解析部と、
前記統計解析部で求めた予測誤差統計処理結果を将来の予測値に加減算して予測誤差反映予測値を求める予測誤差反映予測値計算部と、
前記予測誤差反映予測値計算部で求めた予測誤差反映予測値を表示する表示部と、
を備えることを特徴とする業務支援システム。 In a business support system that supports the formulation of business plans
A storage unit that stores past predicted values and past actual values, or past predicted errors calculated from past predicted values and past actual values.
Statistical analysis unit that statistically processes past prediction errors and obtains prediction error statistical processing results,
Prediction error reflection predicted value calculation unit that obtains the prediction error reflection prediction value by adding / subtracting the prediction error statistical processing result obtained by the statistical analysis unit to the future prediction value.
A display unit that displays the prediction error reflection prediction value obtained by the prediction error reflection prediction value calculation unit, and a display unit.
A business support system characterized by being equipped with.
基準時刻より将来の予測値を出力する予測部を備えることを特徴とする業務支援システム。 In the business support system according to claim 1,
A business support system characterized by having a prediction unit that outputs future prediction values from the reference time.
前記予測部は、ニューラルネットワーク、ディープラーニング、重回帰計算のうち少なくとも1つを備えることを特徴とする業務支援システム。 In the business support system according to claim 2,
The prediction unit is a business support system including at least one of a neural network, deep learning, and multiple regression calculation.
前記表示部は、一方の軸が時間であり、他方の軸が将来の予測誤差反映予測値であるグラフを表示することを特徴とする業務支援システム。 In the business support system according to any one of claims 1 to 3,
The display unit is a business support system characterized in that one axis is time and the other axis displays a graph which is a predicted value reflecting a future prediction error.
前記統計解析部で統計処理の対象となる過去の予測誤差の期間を設定可能な特定期間設定部を備えることを特徴とする業務支援システム。 In the business support system according to any one of claims 1 to 4,
A business support system including a specific period setting unit capable of setting a period of past prediction errors to be subject to statistical processing in the statistical analysis unit.
予測モデルが学習した時期である予測モデル学習時期を記憶する学習時期記憶部を備え、
前記学習時期記憶部から出力された予測モデル学習時期が前記特定期間設定部に表示されることを特徴とする業務支援システム。 In the business support system according to claim 5,
Equipped with a learning time storage unit that stores the prediction model learning time, which is the time when the prediction model learned.
A business support system characterized in that a predictive model learning time output from the learning time storage unit is displayed in the specific period setting unit.
前記予測誤差統計処理結果が度数分布を示す図であることを特徴とする業務支援システム。 In the business support system according to any one of claims 1 to 6,
A business support system characterized in that the prediction error statistical processing result is a diagram showing a frequency distribution.
前記度数分布を示す図は、ヒストグラム、色、色の濃淡、幅の大小、長さの長短、折れ線グラフ、曲線、包絡線のうち、少なくともいずれかで示されることを特徴とする業務支援システム。 In the business support system according to claim 7,
The diagram showing the frequency distribution is a business support system characterized in that it is shown by at least one of a histogram, a color, a shade of color, a size of a width, a length of a length, a line graph, a curve, and an envelope.
前記表示部に、前記予測部から出力された将来の予測値を表示することを特徴とする業務支援システム。 In the business support system according to claim 2,
A business support system characterized in that a future predicted value output from the predicted unit is displayed on the display unit.
前記記憶部は、過去の時点での予測値を記憶する予測値記憶部と、
過去の時点での実績値を記憶する実績値記憶部と、を備え、
前記予測値記憶部から出力された過去の時点での予測値と、前記実績値記憶部から出力された過去の時点での実績値とを前記表示部に表示することを特徴とする業務支援システム。 In the business support system according to any one of claims 1 to 9,
The storage unit includes a predicted value storage unit that stores predicted values at a past time point and a predicted value storage unit.
Equipped with an actual value storage unit that stores actual values at the past time,
A business support system characterized in that the predicted value at a past time point output from the predicted value storage unit and the actual value at a past time point output from the actual value storage unit are displayed on the display unit. ..
前記記憶部は、過去の時点での予測誤差統計処理結果を記憶する予測誤差統計処理結果記憶部と、
前記予測誤差統計処理結果記憶部に記憶された過去の時点での予測誤差統計処理結果と、前記予測値記憶部に記憶された過去の時点での予測値を加減算して過去時点予測誤差反映予測値を求める過去時点予測誤差反映予測値計算部と、を備え、
前記過去時点予測誤差反映予測値計算部で求めた過去時点予測誤差反映予測値を前記表示部に表示することを特徴とする業務支援システム。 In the business support system according to claim 10,
The storage unit includes a prediction error statistical processing result storage unit that stores prediction error statistical processing results at a past time point.
Prediction error Prediction error reflection prediction by adding or subtracting the prediction error statistical processing result stored in the prediction error statistical processing result storage unit at the past time point and the prediction value at the past time point stored in the prediction value storage unit. It is equipped with a forecast value calculation unit that reflects past time forecast errors to obtain values.
A business support system characterized in that the past time prediction error reflection prediction value obtained by the past time prediction error reflection prediction value calculation unit is displayed on the display unit.
予測対象の未来の時刻までの時間長が異なる複数の予測値があり、
前記過去時点予測誤差反映予測値計算部で用いる対象データの時間長を指定する対象データ時間長設定部を備えることを特徴とする業務支援システム。 In the business support system according to claim 11,
There are multiple forecast values with different time lengths to the future time of the forecast target,
A business support system including a target data time length setting unit for designating a time length of target data used in the past time point prediction error reflection prediction value calculation unit.
前記表示部に上下へ移動可能な図形を重畳表示し、前記図形の位置に応じて将来の業務計画を自動計算する業務計画自動計算部と、
前記業務計画自動計算部で自動計算された将来の業務計画を表示する画面と、
を備えることを特徴とする業務支援システム。 In the business support system according to any one of claims 1 to 12,
A business plan automatic calculation unit that superimposes a figure that can be moved up and down on the display unit and automatically calculates a future business plan according to the position of the figure.
A screen for displaying a future business plan automatically calculated by the business plan automatic calculation unit, and
A business support system characterized by being equipped with.
前記業務計画自動計算部で自動計算された将来の業務計画により影響を受けるデータを前記表示部に表示することを特徴とする業務支援システム。 In the business support system according to claim 13,
A business support system characterized in that data affected by a future business plan automatically calculated by the business plan automatic calculation unit is displayed on the display unit.
(a)過去の予測値と過去の実績値から過去の予測誤差を算出するステップと、
(b)前記(a)ステップで算出した過去の予測誤差を統計処理し、予測誤差統計処理結果を求めるステップと、
(c)前記(b)ステップで求めた予測誤差統計処理結果を将来の予測値に加減算して予測誤差反映予測値を求めるステップと、
(d)前記(c)ステップで求めた予測誤差反映予測値を表示部に表示するステップと、
を有することを特徴とする業務支援方法。 It is a business support method that supports the formulation of business plans.
(A) Steps to calculate the past prediction error from the past predicted value and the past actual value,
(B) A step of statistically processing the past prediction error calculated in the above (a) step to obtain a prediction error statistical processing result, and a step of obtaining the prediction error statistical processing result.
(C) A step of adding / subtracting the prediction error statistical processing result obtained in the step (b) to the future prediction value to obtain a prediction error reflection predicted value.
(D) A step of displaying the prediction error reflection predicted value obtained in the step (c) above on the display unit, and
A business support method characterized by having.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020138516A JP7492407B2 (en) | 2020-08-19 | 2020-08-19 | Business Support System |
PCT/JP2021/015986 WO2022038832A1 (en) | 2020-08-19 | 2021-04-20 | Business support system and business support method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020138516A JP7492407B2 (en) | 2020-08-19 | 2020-08-19 | Business Support System |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022034697A true JP2022034697A (en) | 2022-03-04 |
JP7492407B2 JP7492407B2 (en) | 2024-05-29 |
Family
ID=80322708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020138516A Active JP7492407B2 (en) | 2020-08-19 | 2020-08-19 | Business Support System |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7492407B2 (en) |
WO (1) | WO2022038832A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023223533A1 (en) * | 2022-05-20 | 2023-11-23 | 日本電気株式会社 | Estimation device, estimation method, and program |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3994910B2 (en) | 2003-05-08 | 2007-10-24 | 株式会社日立製作所 | Electricity trading support system |
JP5190311B2 (en) | 2008-07-09 | 2013-04-24 | 株式会社東芝 | Method and apparatus for creating a scenario for forecasting future demand for a transaction object |
JP2014054048A (en) | 2012-09-06 | 2014-03-20 | Toshiba Corp | Power prediction method, device, and program |
JP5886407B1 (en) * | 2014-12-05 | 2016-03-16 | 中国電力株式会社 | Prediction device |
JP6481468B2 (en) * | 2015-03-31 | 2019-03-13 | 日本電気株式会社 | Predictive distribution estimation system, predictive distribution estimation method, and predictive distribution estimation program |
JP2016211877A (en) | 2015-04-30 | 2016-12-15 | 三菱電機株式会社 | Flow-in amount of wastewater measuring device |
JP7253913B2 (en) * | 2018-12-25 | 2023-04-07 | 株式会社日立製作所 | Data processing device and data processing method |
-
2020
- 2020-08-19 JP JP2020138516A patent/JP7492407B2/en active Active
-
2021
- 2021-04-20 WO PCT/JP2021/015986 patent/WO2022038832A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023223533A1 (en) * | 2022-05-20 | 2023-11-23 | 日本電気株式会社 | Estimation device, estimation method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP7492407B2 (en) | 2024-05-29 |
WO2022038832A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
De Treville et al. | Valuing lead time | |
Kelepouris et al. | The impact of replenishment parameters and information sharing on the bullwhip effect: A computational study | |
Marcellino | Forecast pooling for European macroeconomic variables | |
Karmaker | Determination of optimum smoothing constant of single exponential smoothing method: a case study | |
Bergman et al. | A Bayesian approach to demand forecasting for new equipment programs | |
JP2003316950A (en) | System and method for credit evaluation | |
US20070156510A1 (en) | Methods and systems for determining reliability of product demand forecasts | |
Saggar et al. | Gender diversity in corporate boardrooms and risk disclosure: Indian evidence | |
CN111192087A (en) | Vegetable and fruit price management method, server, terminal and computer readable storage medium | |
Elsa et al. | Inventory management practices and organization performance of steel industries in Nairobi County, Kenya | |
Rakićević et al. | Focus forecasting in supply chain: the case study of fast moving consumer goods company in Serbia | |
CN110930248A (en) | Credit risk prediction model construction method and system, storage medium and electronic equipment | |
WO2022038832A1 (en) | Business support system and business support method | |
Li et al. | Optimizing a production-inventory system under a cost target | |
Kannebley Jr | Tests for the hysteresis hypothesis in Brazilian industrialized exports: a threshold cointegration analysis | |
Trapero et al. | Demand forecasting under lost sales stock policies | |
US9596360B1 (en) | Telecommunication price-based routing apparatus, system and method | |
Palma et al. | A multiobjective model for the cutting pattern problem with unclear preferences | |
Öller et al. | Smooth and timely business cycle indicators for noisy Swedish data | |
CN109978458B (en) | Decision information visual expression method for rapid collaborative response of logistics transportation business | |
CN111598660A (en) | Computer screening device and method for screening suppliers and storage medium | |
Werner et al. | Price Effects of the Minimum Wage: A Survey Data Analysis for the G erman Construction Sector | |
CN116415987A (en) | Product delivery method and device based on generalized addition model, medium and equipment | |
Småros | Information sharing and collaborative forecasting in retail supply chains | |
Halvarsson | Identifying high-growth firms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7492407 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |