JP2022032384A - Planetary gear device - Google Patents

Planetary gear device Download PDF

Info

Publication number
JP2022032384A
JP2022032384A JP2020136090A JP2020136090A JP2022032384A JP 2022032384 A JP2022032384 A JP 2022032384A JP 2020136090 A JP2020136090 A JP 2020136090A JP 2020136090 A JP2020136090 A JP 2020136090A JP 2022032384 A JP2022032384 A JP 2022032384A
Authority
JP
Japan
Prior art keywords
gear
internal gear
internal
external
external gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020136090A
Other languages
Japanese (ja)
Other versions
JP7422627B2 (en
Inventor
温子 村越
Atsuko MURAKOSHI
正幸 石塚
Masayuki Ishizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2020136090A priority Critical patent/JP7422627B2/en
Publication of JP2022032384A publication Critical patent/JP2022032384A/en
Application granted granted Critical
Publication of JP7422627B2 publication Critical patent/JP7422627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)

Abstract

To reduce friction loss between an external gear and an internal gear.SOLUTION: A planetary gear device 1 comprises an external gear 11 and an internal gear 31G. On at least one tooth surface of the external gear 11 and the internal gear 31G, DLC coatings 111, 311G having a surface hydrogen content of 10 at% or less are provided, and lubricant T interposed in a meshing part between the external teeth of the external gear 11 and the internal teeth of the internal gear 31G contains fatty acid ester-based ashless friction modifier and/or aliphatic amine-based ashless friction modifier.SELECTED DRAWING: Figure 2

Description

本発明は、遊星歯車装置に関する。 The present invention relates to a planetary gear device.

従来、遊星歯車装置の一種である波動歯車装置では、外歯歯車の表面と内歯歯車の表面にDLC(Diamond Like Carbon)被膜を形成することにより駆動時の摩擦損失の低減を図っていた(例えば、特許文献1参照)。 Conventionally, in a wave gear device, which is a kind of planetary gear device, a DLC (Diamond Like Carbon) coating is formed on the surface of an external gear and the surface of an internal gear to reduce friction loss during driving (). For example, see Patent Document 1).

国際公開第2019/155831号International Publication No. 2019/155831

しかしながら、上記従来技術では、外歯歯車と内歯歯車の間の適正な潤滑剤に配慮がなく、外歯歯車と内歯歯車の間の摩擦低減を十分に図ることができず、駆動時の摩擦損失の低減には改善の余地があった。
本発明は、上記事情に鑑みてなされたもので、外歯歯車と内歯歯車の間の摩擦損失の低減を図ることを目的とする。
However, in the above-mentioned prior art, there is no consideration for an appropriate lubricant between the external gear and the internal gear, and it is not possible to sufficiently reduce the friction between the external gear and the internal gear during driving. There was room for improvement in reducing friction loss.
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the friction loss between the external gear and the internal gear.

本発明は、外歯歯車と、内歯歯車と、を備えた遊星歯車装置であって、前記外歯歯車および前記内歯歯車の少なくとも一方の歯面に、表面の水素含有量が10at%以下であるDLC被膜が設けられ、前記外歯歯車の外歯と前記内歯歯車の内歯の噛合い部に介在される潤滑剤が、脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含む構成とする。 The present invention is a planetary gear device including an external gear and an internal gear, wherein the surface hydrogen content of the external gear and at least one of the internal gears is 10 at% or less. A DLC coating is provided, and the lubricant interposed in the meshing portion between the outer teeth of the external gear and the internal teeth of the internal gear is a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based lubricant. The configuration includes an ashless friction modifier.

本発明によれば、外歯歯車と内歯歯車の間の摩擦損失の低減を図ることができる。 According to the present invention, it is possible to reduce the friction loss between the external gear and the internal gear.

本実施形態に係る撓み噛合い式歯車装置を示す軸方向断面図である。It is sectional drawing in the axial direction which shows the bending meshing type gear apparatus which concerns on this embodiment. 外歯歯車と第1内歯歯車との噛合い部を軸方向から見た拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the meshing portion between the external gear and the first internal gear as viewed from the axial direction. 遊星歯車装置である偏心揺動型歯車装置の出力回転数と損失率との関係を求めた線図である。It is a diagram which obtained the relationship between the output rotation speed and the loss rate of an eccentric swing type gear device which is a planetary gear device.

以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[撓み噛合い式歯車装置の構成]
図1は、本発明に係る遊星歯車装置としての撓み噛合い式歯車装置1を示す軸方向断面図である。
この図に示すように、撓み噛合い式歯車装置1は、筒型の撓み噛合い式歯車装置であり、起振体軸10、外歯歯車11、内歯歯車としての第1内歯歯車31G及び第2内歯歯車32G、起振体軸受12、ケーシング33、第1カバー34、第2カバー35を備える。
[Structure of flexible meshing gear device]
FIG. 1 is an axial sectional view showing a flexure meshing gear device 1 as a planetary gear device according to the present invention.
As shown in this figure, the flexure meshing gear device 1 is a tubular flexure meshing gear device, and has a oscillating body shaft 10, an external gear 11, and a first internal gear 31G as an internal gear. A second internal gear 32G, a vibration exciter bearing 12, a casing 33, a first cover 34, and a second cover 35 are provided.

起振体軸10は、回転軸O1を中心に回転する中空筒状の軸であり、回転軸O1に垂直な断面の外形が非円形(例えば楕円状)の起振体10Aと、起振体10Aの軸方向の両側に設けられた軸部10B、10Cとを有する。楕円状は、幾何学的に厳密な楕円に限定されるものではなく、略楕円を含む。軸部10B、10Cは、回転軸O1に垂直な断面の外形が円形の軸である。
なお、以下の説明では、回転軸O1に沿った方向を「軸方向」、回転軸O1に垂直な方向を「径方向」、回転軸O1を中心とする回転方向を「周方向」という。また、軸方向のうち、外部の被駆動部材と連結されて減速された運動を当該被駆動部材に出力する側(図中の左側)を「出力側」といい、出力側とは反対側(図中の右側)を「反出力側」という。
The exciter shaft 10 is a hollow tubular shaft that rotates around the rotation shaft O1, and has a non-circular (for example, elliptical) outer shape of the cross section perpendicular to the rotation shaft O1 and a vibrating body 10A. It has shaft portions 10B and 10C provided on both sides in the axial direction of 10A. The ellipse is not limited to a geometrically exact ellipse and includes a substantially ellipse. The shaft portions 10B and 10C are shafts having a circular outer shape in a cross section perpendicular to the rotation shaft O1.
In the following description, the direction along the rotation axis O1 is referred to as "axial direction", the direction perpendicular to the rotation axis O1 is referred to as "diametrical direction", and the rotation direction centered on the rotation axis O1 is referred to as "circumferential direction". Further, in the axial direction, the side (left side in the figure) that is connected to the external driven member and outputs the decelerated motion to the driven member is called the "output side", and is the side opposite to the output side (the output side). The right side in the figure) is called the "anti-output side".

外歯歯車11は、可撓性を有するとともに回転軸O1を中心とする円筒状の部材であり、外周に歯が設けられている。 The external gear 11 has flexibility and is a cylindrical member centered on the rotating shaft O1, and has teeth on the outer periphery thereof.

第1内歯歯車31Gと第2内歯歯車32Gは、回転軸O1を中心として起振体軸10の周囲で回転を行う。これら第1内歯歯車31Gと第2内歯歯車32Gは、軸方向に並んで設けられ、外歯歯車11と噛合している。具体的には、第1内歯歯車31G及び第2内歯歯車32Gの一方が、外歯歯車11の軸方向の中央より片側の歯部に噛合し、他方が、外歯歯車11の軸方向の中央よりもう一方の片側の歯部に噛合する。
このうち、第1内歯歯車31Gは、第1内歯歯車部材31の内周部の該当箇所に内歯が設けられて構成される。一方、第2内歯歯車32Gは、第2内歯歯車部材32の内周部の該当箇所に内歯が設けられて構成される。
The first internal gear 31G and the second internal gear 32G rotate around the exciter shaft 10 about the rotation shaft O1. The first internal gear 31G and the second internal gear 32G are provided side by side in the axial direction and mesh with the external gear 11. Specifically, one of the first internal gear 31G and the second internal gear 32G meshes with the tooth portion on one side of the center of the external gear 11 in the axial direction, and the other meshes with the tooth portion on one side in the axial direction of the external gear 11. It meshes with the tooth on the other side of the center.
Of these, the first internal gear 31G is configured by providing internal teeth at the corresponding portion of the inner peripheral portion of the first internal gear member 31. On the other hand, the second internal gear 32G is configured by providing internal teeth at a corresponding portion of the inner peripheral portion of the second internal gear member 32.

起振体軸受12は、例えばコロ軸受であり、起振体10Aと外歯歯車11との間に配置される。起振体10Aと外歯歯車11とは、起振体軸受12を介して相対回転可能となっている。
起振体軸受12は、外歯歯車11の内側に嵌入される外輪12aと、複数の転動体(コロ)12bと、複数の転動体12bを保持する保持器12cとを有する。
複数の転動体12bは、第1内歯歯車31Gの径方向内方に配置され、周方向に並ぶ第1群の転動体12bと、第2内歯歯車32Gの径方向内方に配置され、周方向に並ぶ第2群の転動体12bとを有する。これらの転動体12bは、起振体10Aの外周面と外輪12aの内周面とを転走面として転動する。外輪12aは、複数の転動体12bの配列に対応して同形状のものが軸方向に二つ並んで設けられている。なお、起振体軸受12は、起振体10Aとは別体の内輪を有してもよい。
The oscillating body bearing 12 is, for example, a roller bearing, and is arranged between the oscillating body 10A and the external gear 11. The exciter 10A and the external gear 11 can rotate relative to each other via the exciter bearing 12.
The oscillating body bearing 12 has an outer ring 12a fitted inside the external gear 11, a plurality of rolling elements (rollers) 12b, and a cage 12c for holding the plurality of rolling elements 12b.
The plurality of rolling elements 12b are arranged in the radial direction of the first internal gear 31G, and are arranged in the radial direction of the rolling elements 12b of the first group arranged in the circumferential direction and the second internal gear 32G. It has a second group of rolling elements 12b arranged in the circumferential direction. These rolling elements 12b roll with the outer peripheral surface of the oscillator 10A and the inner peripheral surface of the outer ring 12a as rolling surfaces. Two outer rings 12a having the same shape are provided side by side in the axial direction corresponding to the arrangement of the plurality of rolling elements 12b. The oscillating body bearing 12 may have an inner ring separate from the oscillating body 10A.

起振体軸受12及び外歯歯車11の軸方向の両側には、これらに当接して、これらの軸方向の移動を規制する規制部材としてのスペーサリング41、42が設けられている。 Spacer rings 41 and 42 are provided on both sides of the oscillating body bearing 12 and the external gear 11 in the axial direction as a restricting member that abuts on them and regulates their axial movement.

ケーシング33は、ボルト51により第1内歯歯車部材31と連結され、第2内歯歯車32Gの外径側を覆う。ケーシング33は、内周部に形成された主軸受38(例えばクロスローラ軸受)の外輪部を有しており、当該主軸受38を介して第2内歯歯車部材32を回転自在に支持している。撓み噛合い式歯車装置1が外部の相手装置と接続される際、ケーシング33と第1内歯歯車部材31は相手装置に共締めにより連結される。 The casing 33 is connected to the first internal gear member 31 by a bolt 51 and covers the outer diameter side of the second internal gear 32G. The casing 33 has an outer ring portion of a main bearing 38 (for example, a cross roller bearing) formed on the inner peripheral portion, and rotatably supports the second internal gear member 32 via the main bearing 38. There is. When the flexible meshing gear device 1 is connected to an external mating device, the casing 33 and the first internal gear member 31 are co-tightened to the mating device.

第1カバー34は、ボルト52により第1内歯歯車部材31と連結され、外歯歯車11と第1内歯歯車31Gとの噛合い箇所を軸方向の反出力側から覆う。第1カバー34と起振体軸10の軸部10Bとの間には軸受36(例えば玉軸受)が配置されており、第1カバー34は、当該軸受36を介して起振体軸10を回転自在に支持している。 The first cover 34 is connected to the first internal gear member 31 by a bolt 52, and covers the meshing portion between the external gear 11 and the first internal gear 31G from the counter-output side in the axial direction. A bearing 36 (for example, a ball bearing) is arranged between the first cover 34 and the shaft portion 10B of the exciter shaft 10, and the first cover 34 uses the exciter shaft 10 via the bearing 36. Supports rotatably.

第2カバー35は、ボルト53により第2内歯歯車部材32と連結され、外歯歯車11と第2内歯歯車32Gとの噛合い箇所を軸方向の出力側から覆う。第2カバー35と起振体軸10の軸部10Cとの間には軸受37(例えば玉軸受)が配置されており、第2カバー35は、当該軸受37を介して起振体軸10を回転自在に支持している。撓み噛合い式歯車装置1が外部の相手装置と接続される際、第2カバー35と第2内歯歯車部材32は、相手装置の被駆動部材に共締めにより連結され、減速された回転を当該被駆動部材に出力する。 The second cover 35 is connected to the second internal gear member 32 by a bolt 53, and covers the meshing portion between the external gear 11 and the second internal gear 32G from the output side in the axial direction. A bearing 37 (for example, a ball bearing) is arranged between the second cover 35 and the shaft portion 10C of the exciter shaft 10, and the second cover 35 uses the exciter shaft 10 via the bearing 37. Supports rotatably. When the flexure meshing gear device 1 is connected to an external mating device, the second cover 35 and the second internal tooth gear member 32 are connected to the driven member of the mating device by co-tightening to reduce the rotation. Output to the driven member.

さらに、撓み噛合い式歯車装置1は、シール用のオイルシール43,44,45及びOリング46,47,48を備える。
オイルシール43は、軸方向の反出力側の端部で、起振体軸10の軸部10Bと第1カバー34との間に配置され、反出力側への潤滑剤の流出を抑制する。オイルシール44は、軸方向の出力側の端部で、起振体軸10の軸部10Cと第2カバー35との間に配置され、出力側への潤滑剤の流出を抑制する。オイルシール45は、ケーシング33と第2内歯歯車部材32との間に配置され、この部分からの潤滑剤の流出を抑制する。
Oリング46,47,48は、第1内歯歯車部材31と第1カバー34との間、第1内歯歯車部材31とケーシング33との間、第2内歯歯車部材32と第2カバー35との間にそれぞれ設けられ、これらの間で潤滑剤が移動することを抑制する。
Further, the flexure meshing gear device 1 includes oil seals 43, 44, 45 for sealing and O-rings 46, 47, 48.
The oil seal 43 is arranged between the shaft portion 10B of the exciter shaft 10 and the first cover 34 at the end portion on the counter-output side in the axial direction, and suppresses the outflow of the lubricant to the counter-output side. The oil seal 44 is arranged between the shaft portion 10C of the exciter shaft 10 and the second cover 35 at the end portion on the output side in the axial direction, and suppresses the outflow of the lubricant to the output side. The oil seal 45 is arranged between the casing 33 and the second internal gear member 32, and suppresses the outflow of the lubricant from this portion.
The O-rings 46, 47, 48 are between the first internal gear member 31 and the first cover 34, between the first internal gear member 31 and the casing 33, and between the second internal gear member 32 and the second cover. Each is provided between the 35 and 35, and suppresses the movement of the lubricant between them.

[外歯歯車と内歯歯車の間の摩擦損失低減対策]
外歯歯車11と内歯歯車としての第1内歯歯車31Gの噛合い部における摩擦損失低減対策について説明する。
図2は外歯歯車11と第1内歯歯車31Gとの噛合い部を軸方向から見た拡大断面図である。
[Measures to reduce friction loss between external gears and internal gears]
A measure for reducing friction loss in the meshing portion between the external gear 11 and the first internal gear 31G as the internal gear will be described.
FIG. 2 is an enlarged cross-sectional view of the meshing portion between the external gear 11 and the first internal gear 31G as viewed from the axial direction.

前述した外歯歯車11は、歯車に使用される一般的な金属材料としての構造用合金鋼を母材としており、例えば、SNCM(ニッケルクロムモリブデン鋼)を母材とする。第1内歯歯車31G及び第2内歯歯車32Gは、歯車に使用される一般的な金属材料としての構造用合金鋼を母材としており、例えば、SCM(クロムモリブデン鋼)を母材とする。外歯歯車11の母材は、第1内歯歯車31G及び第2内歯歯車32Gの母材よりも硬度が高い。 The above-mentioned external gear 11 uses structural alloy steel as a general metal material used for gears as a base material, and for example, SNCM (nickel chrome molybdenum steel) as a base material. The first internal gear 31G and the second internal gear 32G use structural alloy steel as a general metal material used for gears as a base material, and for example, SCM (chromoly molybdenum steel) as a base material. .. The base material of the external gear 11 has a higher hardness than the base material of the first internal gear 31G and the second internal gear 32G.

そして、図2に示すように、外歯歯車11の第1内歯歯車31Gに対する噛合い部の表面(歯部の表面)には、水素含有量が10at%以下であるDLC(Diamond Like Carbon)被膜111(いわゆる水素フリーDLC被膜)が形成されている。
また、第1内歯歯車31Gの外歯歯車11に対する噛合い部の表面(歯部の表面)にも、水素含有量が10at%以下であるDLC被膜311G(水素フリーDLC被膜)が形成されている。
さらに、外歯歯車11のDLC被膜111と第1内歯歯車31GのDLC被膜311Gとの間には潤滑剤Tが介在している。
Then, as shown in FIG. 2, DLC (Diamond Like Carbon) having a hydrogen content of 10 at% or less is formed on the surface (surface of the tooth portion) of the meshing portion of the external gear 11 with respect to the first internal gear 31G. A coating 111 (so-called hydrogen-free DLC coating) is formed.
Further, a DLC coating 311G (hydrogen-free DLC coating) having a hydrogen content of 10 at% or less is also formed on the surface (surface of the tooth portion) of the meshing portion of the first internal gear 31G with respect to the external gear 11. There is.
Further, the lubricant T is interposed between the DLC coating 111 of the external gear 11 and the DLC coating 311G of the first internal gear 31G.

DLC被膜は、水素含有量が少ないものほど大幅な摩擦低減効果を発揮させることが可能である。従って、DLC被膜111,311Gは、水素原子の含有量が10.0at%以下、より好ましくは水素原子の含有量が1.0at%以下、さらには、水素を含まないa-C系(アモルファスカーボン系)のDLC被膜を用いることが好ましい。
また、DLC被膜111,311Gの膜厚は、0.3~1.5[μm]の範囲で形成することが好適である。これらのDLC被膜111,311Gは、各種PVD法、例えば、アーク式イオンプレーティング法により形成される。
The lower the hydrogen content of the DLC film, the greater the effect of reducing friction. Therefore, the DLC coatings 111 and 311G have a hydrogen atom content of 10.0 at% or less, more preferably a hydrogen atom content of 1.0 at% or less, and further, an aC-based (amorphous carbon-based) DLC that does not contain hydrogen. It is preferable to use a coating.
Further, the film thickness of the DLC coatings 111 and 311G is preferably formed in the range of 0.3 to 1.5 [μm]. These DLC coatings 111 and 311G are formed by various PVD methods, for example, an arc ion plating method.

一方、DLC被膜111,311Gが形成される前の外歯歯車11及び第1内歯歯車31Gの噛合い部の互いの表面は、いずれも、表面粗さRaを0.08[μm]以下とすることが好ましい。表面粗さRaが0.08[μm]を超えると、この表面粗さに起因して生じる突起により、DLC被膜111,311Gに局所的な摺動が生じて、被膜に割れを誘発し易くなる。表面粗さRaを0.08[μm]以下とすることにより、DLC被膜111,311Gの割れを抑制し、長期間に渡って保護することができる。なお、母材の表面粗さRaは0.03[μm]以下とするとより好適である。
なお、第2内歯歯車32Gの外歯歯車11に対する噛合い部の表面には、DLC被膜は形成されないが、当該噛合い部の表面も、表面粗さRaを0.08[μm]以下、さらには、0.03[μm]以下とすることが好ましい。
On the other hand, the surface roughness Ra of each of the meshing portions of the external gear 11 and the first internal gear 31G before the DLC coatings 111 and 311G are formed shall be 0.08 [μm] or less. Is preferable. When the surface roughness Ra exceeds 0.08 [μm], the protrusions caused by this surface roughness cause local sliding on the DLC coatings 111 and 311G, and the coating is likely to be cracked. By setting the surface roughness Ra to 0.08 [μm] or less, cracking of the DLC coatings 111 and 311G can be suppressed and protection can be achieved for a long period of time. It is more preferable that the surface roughness Ra of the base metal is 0.03 [μm] or less.
Although no DLC film is formed on the surface of the meshing portion of the second internal gear 32G with respect to the external gear 11, the surface of the meshing portion also has a surface roughness Ra of 0.08 [μm] or less, and further. , 0.03 [μm] or less is preferable.

DLC被膜111,311G間に介在する潤滑剤Tは、鉱油、合成油、油脂及びこれらの混合物などの潤滑油基油として通常使用されるものを基油として、脂肪酸エステル系無灰摩擦調整剤と脂肪族アミン系無灰摩擦調整剤の一方又は両方を含有している。
上記脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤としては、炭素数6~30の直鎖状又は分枝状炭化水素基を有する脂肪酸エステル、脂肪酸アミン化合物、及びこれらの任意混合物が挙げられる。炭素数を6~30の範囲とすることで大きな摩擦低減効果を得ることできる。
また、潤滑剤Tに含まれる脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤の含有量は、潤滑油組成物全量基準で、0.05~3.0%であることが好ましい。含有量が0.05%未満であると摩擦低減効果が小さくなり、3.0%を超えると沈殿が生じ易くなる。
The lubricant T interposed between the DLC coatings 111 and 311G is a fatty acid ester-based ashless friction modifier using what is normally used as a lubricating oil base oil such as mineral oils, synthetic oils, fats and oils and mixtures thereof. It contains one or both of an aliphatic amine-based ashless friction modifier.
The fatty acid ester-based ashless friction modifier and / or the aliphatic amine-based ashless friction modifier includes fatty acid esters having linear or branched hydrocarbon groups having 6 to 30 carbon atoms, fatty acid amine compounds, and fatty acid amine compounds. Examples thereof include arbitrary mixtures thereof. A large friction reduction effect can be obtained by setting the carbon number in the range of 6 to 30.
The content of the fatty acid ester-based ashless friction modifier and / or the aliphatic amine-based ashless friction modifier contained in the lubricant T is preferably 0.05 to 3.0% based on the total amount of the lubricating oil composition. .. If the content is less than 0.05%, the friction reducing effect becomes small, and if it exceeds 3.0%, precipitation is likely to occur.

また、潤滑剤Tは、清浄剤としてポリブテニルコハク酸イミド及び/又はその誘導体を含有する。ポリブテニルコハク酸イミド及び/又はその誘導体の含有量は、0.1~15%が望ましく、0.1%未満では清浄性効果が低減し、15%を超えると含有量に見合う清浄性効果が上がらず、抗乳化性が悪化し得る。 Further, the lubricant T contains polybutenyl succinimide and / or a derivative thereof as a cleaning agent. The content of polybutenyl succinimide and / or its derivative is preferably 0.1 to 15%, and if it is less than 0.1%, the cleaning effect is reduced, and if it exceeds 15%, the cleaning effect commensurate with the content is not increased. Anti-emulsifying properties can be exacerbated.

また、潤滑剤Tは、ジチオリン酸亜鉛を含有する。ジチオリン酸亜鉛は、酸化防止能、腐食防止能、耐荷重性能向上能、摩耗防止能等を有する。上記ジチオリン酸亜鉛の含有量は、潤滑油組成物全量基準且つリン元素換算量で0.1%以下であることが好ましい。これを超えると、摩擦低減効果を低減するおそれがある。 Further, the lubricant T contains zinc dithiophosphate. Zinc dithiophosphate has antioxidant ability, corrosion prevention ability, load-bearing performance improving ability, wear prevention ability and the like. The content of the zinc dithiophosphate is preferably 0.1% or less based on the total amount of the lubricating oil composition and the phosphorus element equivalent amount. If it exceeds this, the friction reducing effect may be reduced.

[撓み噛合い式歯車装置の減速動作]
続いて、撓み噛合い式歯車装置1の減速動作について説明する。
モータ等の駆動源により起振体軸10の回転駆動が行われると、起振体10Aの運動が外歯歯車11に伝わる。このとき、外歯歯車11は、起振体10Aの外周面に沿った形状に規制され、軸方向から見て、長軸部分と短軸部分とを有する楕円形状に撓んでいる。さらに、外歯歯車11は、固定された第1内歯歯車31Gと長軸部分で噛合っている。このため、外歯歯車11は起振体10Aと同じ回転速度で回転することはなく、外歯歯車11の内側で起振体10Aが相対的に回転する。そして、この相対的な回転に伴って、外歯歯車11は長軸位置と短軸位置とが周方向に移動するように撓み変形する。この変形の周期は、起振体軸10の回転周期に比例する。
[Deceleration operation of flexible meshing gear device]
Subsequently, the deceleration operation of the flexure meshing gear device 1 will be described.
When the exciter shaft 10 is rotationally driven by a drive source such as a motor, the motion of the exciter 10A is transmitted to the external gear 11. At this time, the external gear 11 is restricted to a shape along the outer peripheral surface of the exciter 10A, and is bent into an elliptical shape having a long axis portion and a short axis portion when viewed from the axial direction. Further, the external gear 11 meshes with the fixed first internal gear 31G at a long shaft portion. Therefore, the external gear 11 does not rotate at the same rotation speed as the exciting body 10A, and the exciting body 10A rotates relatively inside the external gear 11. Then, with this relative rotation, the external gear 11 bends and deforms so that the major axis position and the minor axis position move in the circumferential direction. The period of this deformation is proportional to the rotation period of the exciter shaft 10.

外歯歯車11が撓み変形する際、その長軸位置が移動することで、外歯歯車11と第1内歯歯車31Gとの噛合う位置が回転方向に変化する。ここで、例えば、外歯歯車11の歯数が100で、第1内歯歯車31Gの歯数が102だとすると、噛合う位置が一周するごとに、外歯歯車11と第1内歯歯車31Gとの噛合う歯がずれていき、これにより外歯歯車11が回転(自転)する。上記の歯数であれば、起振体軸10の回転運動は減速比100:2で減速されて外歯歯車11に伝達される。この場合、減速比は「50」となる。 When the external gear 11 bends and deforms, its long axis position moves, so that the meshing position between the external gear 11 and the first internal gear 31G changes in the rotational direction. Here, for example, assuming that the number of teeth of the external gear 11 is 100 and the number of teeth of the first internal gear 31G is 102, the external gear 11 and the first internal gear 31G are engaged every time the meshing position goes around. The meshing teeth of the teeth are displaced, which causes the external tooth gear 11 to rotate (rotate). With the above number of teeth, the rotational motion of the exciter shaft 10 is decelerated at a reduction ratio of 100: 2 and transmitted to the external gear 11. In this case, the reduction ratio is "50".

一方、外歯歯車11は第2内歯歯車32Gとも噛合っているため、起振体軸10の回転によって外歯歯車11と第2内歯歯車32Gとの噛合う位置も回転方向に変化する。ここで、第2内歯歯車32Gの歯数と外歯歯車11の歯数とが同数であるとすると、外歯歯車11と第2内歯歯車32Gとは相対的に回転せず、外歯歯車11の回転運動が減速比1:1で第2内歯歯車32Gへ伝達される。これらによって、起振体軸10の回転運動が減速比100:2で減速されて、第2内歯歯車部材32及び第2カバー35へ伝達され、この回転運動が被駆動部材に出力される。 On the other hand, since the external gear 11 also meshes with the second internal gear 32G, the meshing position between the external gear 11 and the second internal gear 32G also changes in the rotation direction due to the rotation of the exciter shaft 10. .. Here, assuming that the number of teeth of the second internal gear 32G and the number of teeth of the external gear 11 are the same, the external gear 11 and the second internal gear 32G do not rotate relatively, and the external teeth The rotational movement of the gear 11 is transmitted to the second internal tooth gear 32G at a reduction ratio of 1: 1. As a result, the rotational movement of the exciter shaft 10 is decelerated at a reduction ratio of 100: 2 and transmitted to the second internal gear member 32 and the second cover 35, and this rotational movement is output to the driven member.

[本実施形態の技術的効果]
上記撓み噛合い式歯車装置1は、外歯歯車11の第1内歯歯車31G及び第2内歯歯車32Gに対する噛合い部である歯面及び第1内歯歯車31Gの外歯歯車11に対する噛合い部である歯面に、水素含有量が10at%以下であるDLC被膜111,311Gが設けられ、外歯歯車11の外歯と第1内歯歯車31Gの内歯の噛合い部に介在される潤滑剤Tが脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含む構成としている。
DLC被膜は、高硬度であり、耐熱性、摩耗低減効果に優れ、水素含有量を10at%以下とするとさらに飛躍的な摩耗低減効果を得ることができる。
また、潤滑剤Tは、脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含み、さらには、ポリブテニルコハク酸イミド及び/又はその誘導体を含んでいるので、高い摩擦低減効果を得ることができる。
従って、外歯歯車11と第1内歯歯車31Gの双方の噛合い部に水素含有量10at%以下のDLC被膜111,311Gを形成し、これらの間に上記潤滑剤Tを介在させることにより、相乗的に極めて高い摩擦低減効果を得ることが可能となり、撓み噛合い式歯車装置1の駆動時において、外歯歯車11と第1内歯歯車31Gの摩擦による損失を飛躍的に低減することが可能となる。
さらに、水素含有量10at%以下のDLC被膜と潤滑剤Tによる摩擦低減効果により、外歯歯車11と第1内歯歯車31Gの双方について摩耗量を極めて低減することができるため、摩耗による噛合い誤差を抑制し、長期にわたって高精度での動作を継続的に行うことが可能となる。
[Technical effect of this embodiment]
In the deflection meshing type gear device 1, the meshing portion of the external gear 11 with respect to the first internal gear 31G and the second internal gear 32G and the tooth surface of the first internal gear 31G with respect to the external gear 11 DLC coatings 111,311G having a hydrogen content of 10 at% or less are provided on the tooth surface, which is a portion, and is interposed between the external teeth of the external gear 11 and the internal teeth of the first internal gear 31G. The lubricant T is configured to contain a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based ashless friction modifier.
The DLC film has high hardness, is excellent in heat resistance and wear reduction effect, and when the hydrogen content is 10 at% or less, a further dramatic wear reduction effect can be obtained.
Further, since the lubricant T contains a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based ashless friction modifier, and further contains a polybutenyl succinate imide and / or a derivative thereof. A high friction reducing effect can be obtained.
Therefore, the DLC coatings 111 and 311G having a hydrogen content of 10 at% or less are formed on the meshing portions of both the external gear 11 and the first internal gear 31G, and the lubricant T is interposed between them. It is possible to synergistically obtain an extremely high friction reduction effect, and it is possible to dramatically reduce the loss due to friction between the external gear 11 and the first internal gear 31G when the flexible meshing gear device 1 is driven. It will be possible.
Furthermore, the friction reduction effect of the DLC coating having a hydrogen content of 10 at% or less and the lubricant T can extremely reduce the amount of wear on both the external gear 11 and the first internal gear 31G, so that meshing due to wear can be achieved. It is possible to suppress errors and continuously perform high-precision operation for a long period of time.

また、撓み噛合い式歯車装置1では、外歯歯車11と歯数が異なる第1内歯歯車31GにDLC被膜311Gが設けられ、外歯歯車11と歯数が等しい第2内歯歯車32GにはDLC被膜が設けられていない。
一般に、撓み噛合い式歯車装置において、外歯歯車に対して相対的に回転を生じる第1内歯歯車は、外歯歯車に対して相対的に回転を生じない第2内歯歯車に比して、摩耗が生じ易い。
しかしながら、上述のように、第1内歯歯車31GにDLC被膜311Gが設けられることにより、第1内歯歯車31Gの摩擦低減が図られ、その摩耗量が低減するので、摩耗によって生じる外歯歯車11と第1内歯歯車31Gとの噛合い誤差と外歯歯車11と第2内歯歯車32Gとの噛合い誤差の差が低減し、撓み噛合い式歯車装置1では、長期間に渡って精度良く減速動作を被駆動部材側に伝達することが可能となる。
また、水素フリーのDLC被膜の形成領域を必要最小限とすることにより、被膜形成コストの低減を図ることが可能となる。
Further, in the flexure meshing type gear device 1, a DLC coating 311G is provided on the first internal gear 31G having a different number of teeth from the external gear 11, and the second internal gear 32G having the same number of teeth as the external gear 11 is provided. Is not provided with a DLC coating.
Generally, in a flexure meshing gear device, the first internal gear that rotates relative to the external gear is compared to the second internal gear that does not rotate relative to the external gear. Therefore, wear is likely to occur.
However, as described above, by providing the DLC coating 311G on the first internal gear 31G, the friction of the first internal gear 31G is reduced and the amount of wear thereof is reduced, so that the external gear caused by the wear is reduced. The difference between the meshing error between the 11 and the first internal gear 31G and the meshing error between the external gear 11 and the second internal gear 32G is reduced, and the deflection meshing gear device 1 reduces the difference in meshing error over a long period of time. It is possible to accurately transmit the deceleration operation to the driven member side.
Further, by minimizing the formation region of the hydrogen-free DLC film, it is possible to reduce the film formation cost.

図3は遊星歯車装置である偏心揺動型歯車装置の出力回転数と損失率との関係を求めた線図である。
図3において、実線は、偏心体軸に設けられた偏心体の外周と、偏心体軸受のコロの外周と、内歯歯車の内歯を構成する外ピンの外周と、外歯歯車の自転回転を取り出す内ピン及び内ローラのそれぞれの外周とに、水素含有のDLC被膜を形成した偏心揺動型歯車装置の特性を示し、破線は上記各部においてDLC被膜を形成していない偏心揺動型歯車装置の特性を示す。
DLC被膜を形成していない偏心揺動型歯車装置は、出力回転数が5[rpm]未満となる低速域で損失率が高くなるが、DLC被膜を形成した偏心揺動型歯車装置は同低速域において、損失率が低く抑えられていることが顕著に表れている。
FIG. 3 is a diagram showing the relationship between the output rotation speed and the loss rate of the eccentric swing type gear device which is a planetary gear device.
In FIG. 3, the solid line shows the outer circumference of the eccentric body provided on the eccentric body shaft, the outer circumference of the roller of the eccentric body bearing, the outer circumference of the outer pin constituting the inner tooth of the internal gear, and the rotation rotation of the external gear. The characteristics of the eccentric swing type gear device in which a hydrogen-containing DLC film is formed on the outer periphery of each of the inner pin and the inner roller are shown. The characteristics of the device are shown.
The eccentric swing type gear device without the DLC coating has a high loss rate in the low speed range where the output rotation speed is less than 5 [rpm], but the eccentric swing type gear device with the DLC coating has the same low speed. It is remarkable that the loss rate is kept low in the region.

前述した撓み噛合い式歯車装置1では、DLC被膜の中でも特に摩擦低減効果に優れる水素フリーのDLC被膜を利用しており、このような水素フリーのDLC被膜を利用した場合にも、出力回転数が5[rpm]未満となる低速域で損失率を低く抑えられることは容易に類推可能である。
従って本発明にかかる遊星歯車装置は、出力回転数が5[rpm]以下で使用される場合に好適といえる。
The above-mentioned flexure meshing gear device 1 uses a hydrogen-free DLC film having an excellent friction-reducing effect among the DLC films, and even when such a hydrogen-free DLC film is used, the output rotation speed is high. It can be easily inferred that the loss rate can be kept low in the low speed range where is less than 5 [rpm].
Therefore, it can be said that the planetary gear device according to the present invention is suitable when the output rotation speed is 5 [rpm] or less.

[その他]
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限られない。
例えば、上記撓み噛合い式歯車装置1では、外歯歯車11と第1内歯歯車31Gのそれぞれの噛合い部(歯面)に水素フリーのDLC被膜111,311Gを形成する構成を例示したが、外歯歯車11側の噛合い部(歯面)又は第1内歯歯車31G側の噛合い部(歯面)のいずれか一方に形成する構成としても良い。
さらに、撓み噛合い式歯車装置1では、外歯歯車11の第1内歯歯車31Gに対する噛合い部に水素フリーのDLC被膜111を形成することを例示したが、外歯歯車11の第2内歯歯車32Gに対する噛合い部にも水素フリーのDLC被膜を形成しても良い。
また、第2内歯歯車32Gの外歯歯車11に対する噛合い部(歯面)にも水素フリーのDLC被膜を形成しても良い。
[others]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
For example, in the above-mentioned bending meshing type gear device 1, a configuration is exemplified in which hydrogen-free DLC coatings 111 and 311G are formed on the meshing portions (tooth surfaces) of the external tooth gear 11 and the first internal tooth gear 31G, respectively. , The meshing portion (tooth surface) on the external gear 11 side or the meshing portion (tooth surface) on the first internal gear 31G side may be formed.
Further, in the flexure meshing type gear device 1, it is exemplified that a hydrogen-free DLC coating 111 is formed in the meshing portion of the external gear 11 with respect to the first internal gear 31G, but the second inner of the external gear 11 is illustrated. A hydrogen-free DLC coating may also be formed on the meshing portion with respect to the tooth gear 32G.
Further, a hydrogen-free DLC coating may be formed on the meshing portion (tooth surface) of the second internal gear 32G with respect to the external gear 11.

さらに、外歯歯車11については、図1に示すように、軸方向の両端面11a及び内周11bにも水素フリーのDLC被膜を形成しても良い。つまり、外歯歯車11の全体に水素フリーのDLC被膜を形成しても良い。
また、クロスローラ軸受からなる主軸受38の転動体の表面(外周および中心軸方向端面の両方を含む)にも水素フリーのDLC被膜を形成しても良い。
上述した水素フリーのDLC被膜の形成面とその摺動面との間には、潤滑剤Tと同じ潤滑剤を介在させることが好ましい。
Further, for the external gear 11, as shown in FIG. 1, a hydrogen-free DLC coating may be formed on both end faces 11a and the inner circumference 11b in the axial direction. That is, a hydrogen-free DLC film may be formed on the entire external gear 11.
Further, a hydrogen-free DLC coating may be formed on the surface (including both the outer peripheral surface and the end surface in the central axial direction) of the rolling element of the main bearing 38 made of the cross roller bearing.
It is preferable to interpose the same lubricant as the lubricant T between the surface on which the hydrogen-free DLC film is formed and the sliding surface thereof.

このように、水素フリーのDLC被膜を形成した各部材は、摩擦低減効果を得ることができ、摩擦損失の低減及び耐摩耗性の向上を図ると共に、相手側の部材の摺動面の傷や摩耗の発生を抑制することが可能となる。また、摩擦損失低減の効果は、出力回転数が5[rpm]以下で特に顕著に得られる。 In this way, each member on which the hydrogen-free DLC film is formed can obtain a friction reduction effect, reduce friction loss and improve wear resistance, and damage the sliding surface of the mating member. It is possible to suppress the occurrence of wear. Further, the effect of reducing the friction loss is particularly remarkable when the output rotation speed is 5 [rpm] or less.

また、上記実施形態では、遊星歯車装置として筒型の撓み噛合い式歯車装置を例示したが、本発明は、内歯歯車と外歯歯車とを有する遊星歯車機構であればいずれにも適用可能である。
例えば、本発明は、カップ型又はシルクハット型の撓み噛合い式歯車装置にも適用可能であり、さらには、センタークランク型の偏心揺動型減速装置、偏心体を有する2個以上の軸が減速装置の軸心からオフセットして配置された所謂振り分け型の偏心揺動型減速装置、単純遊星歯車装置にも適用可能である。
Further, in the above embodiment, the cylindrical flexure meshing gear device is exemplified as the planetary gear device, but the present invention can be applied to any planetary gear mechanism having an internal gear and an external gear. Is.
For example, the present invention can also be applied to a cup-type or top-hat-type flexible meshing gear device, further, a center crank-type eccentric swing-type speed reducer, and two or more shafts having an eccentric body. It can also be applied to so-called distribution type eccentric swing type reduction gears and simple planetary gears arranged offset from the axis of the reduction gear.

1 撓み噛合い式歯車装置(遊星歯車装置)
10 起振体軸
10A 起振体
11 外歯歯車
11a 両端面
11b 内周
31G 第1内歯歯車(内歯歯車)
32G 第2内歯歯車(内歯歯車)
111,311G DLC被膜
O1 回転軸
T 潤滑剤
1 Flexion meshing gear device (planetary gear device)
10 Exciting body shaft 10A Exciting body 11 External gear 11a Both end faces 11b Inner circumference 31G First internal gear (internal gear)
32G 2nd internal gear (internal gear)
111,311G DLC film O1 rotary shaft T lubricant

Claims (6)

外歯歯車と、内歯歯車と、を備えた遊星歯車装置であって、
前記外歯歯車および前記内歯歯車の少なくとも一方の歯面に、表面の水素含有量が10at%以下であるDLC被膜が設けられ、
前記外歯歯車の外歯と前記内歯歯車の内歯の噛合い部に介在される潤滑剤が、脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含む遊星歯車装置。
A planetary gear device equipped with external gears and internal gears.
A DLC coating having a surface hydrogen content of 10 at% or less is provided on at least one tooth surface of the external gear and the internal gear.
A planet in which the lubricant interposed in the meshing portion between the outer teeth of the external gear and the internal teeth of the internal gear contains a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based ashless friction modifier. Gear device.
前記潤滑剤は、ポリブテニルコハク酸イミド及び/又はその誘導体を含有する請求項1に記載の遊星歯車装置。 The planetary gear device according to claim 1, wherein the lubricant contains polybutenyl succinimide and / or a derivative thereof. 起振体を備え、
前記外歯歯車は、前記起振体により撓み変形し、
前記内歯歯車は、第1内歯歯車および第2内歯歯車を有し、
前記遊星歯車装置は、前記第1内歯歯車と前記外歯歯車の歯数が異なり、前記第2内歯歯車と前記外歯歯車の歯数が同じである撓み噛合い式歯車装置であり、
前記第1内歯歯車と前記外歯歯車に前記DLC被膜が設けられ、前記第2内歯歯車には前記DLC被膜が設けられない請求項1又は2に記載の遊星歯車装置。
Equipped with a oscillating body,
The external tooth gear is deformed and deformed by the oscillating body, and is deformed.
The internal gear has a first internal gear and a second internal gear, and the internal gear has a first internal gear and a second internal gear.
The planetary gear device is a deflection mesh gear device in which the number of teeth of the first internal gear and the external gear are different, and the number of teeth of the second internal gear and the external gear is the same.
The planetary gear device according to claim 1 or 2, wherein the first internal gear and the external gear are provided with the DLC coating, and the second internal gear is not provided with the DLC coating.
前記外歯歯車の軸方向両側の端面に前記DLC被膜が設けられた請求項1から3のいずれか一項に記載の遊星歯車装置。 The planetary gear device according to any one of claims 1 to 3, wherein the DLC coating is provided on both end faces in the axial direction of the external gear. 前記外歯歯車の内周に前記DLC被膜が設けられた請求項1から4のいずれか一項に記載の遊星歯車装置。 The planetary gear device according to any one of claims 1 to 4, wherein the DLC coating is provided on the inner circumference of the external gear. 出力回転数が5[rpm]以下で使用される請求項1から5のいずれか一項に記載の遊星歯車装置。 The planetary gear device according to any one of claims 1 to 5, which is used at an output rotation speed of 5 [rpm] or less.
JP2020136090A 2020-08-12 2020-08-12 planetary gear system Active JP7422627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020136090A JP7422627B2 (en) 2020-08-12 2020-08-12 planetary gear system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020136090A JP7422627B2 (en) 2020-08-12 2020-08-12 planetary gear system

Publications (2)

Publication Number Publication Date
JP2022032384A true JP2022032384A (en) 2022-02-25
JP7422627B2 JP7422627B2 (en) 2024-01-26

Family

ID=80349856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020136090A Active JP7422627B2 (en) 2020-08-12 2020-08-12 planetary gear system

Country Status (1)

Country Link
JP (1) JP7422627B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555844B2 (en) 1999-04-09 2004-08-18 三宅 正二郎 Sliding member and manufacturing method thereof
JP3965694B2 (en) 2003-05-27 2007-08-29 日産自動車株式会社 Low friction sliding cam / follower combination and lubricating oil composition used therefor
JP4918972B2 (en) 2005-07-27 2012-04-18 日産自動車株式会社 High speed sliding member
JP7072144B2 (en) 2018-02-07 2022-05-20 国立研究開発法人宇宙航空研究開発機構 Wave gear device

Also Published As

Publication number Publication date
JP7422627B2 (en) 2024-01-26

Similar Documents

Publication Publication Date Title
JP6327910B2 (en) Eccentric oscillation type speed reducer
KR101266266B1 (en) Reduction apparatus
KR102189370B1 (en) Wave gear device
JP6871818B2 (en) Flexible meshing gear device
JP7077036B2 (en) Rolling element bearing transmission
JP2022032384A (en) Planetary gear device
JP7163466B1 (en) Strain wave gearing
CN113357317A (en) Flexible engagement type gear device
JP2022038565A (en) Deflection engagement type gear device
CN103270336B (en) Gear drive
JP7454946B2 (en) Flexible mesh gear system
JP7221077B2 (en) Flexible mesh gear device and manufacturing method thereof
JP2021099113A (en) Flexible meshing type gear device and method for manufacturing the same
JP7282053B2 (en) Flexible meshing gearbox, series of gearboxes, manufacturing method and designing method thereof
JP7283683B2 (en) transmission
EP4299949A1 (en) Internally meshing planetary gear apparatus and joint apparatus for robot
EP4299950A1 (en) Internally engaged planetary gear device and robot joint device
JP7262368B2 (en) Gear device series, manufacturing method and design method thereof
JP2021101114A (en) Flexible meshing type gear device
JP2018091414A (en) Flexible meshing-type gear unit
WO2023079701A1 (en) Strain wave gear device
JP7466471B2 (en) Flexible mesh gear device
JP7386608B2 (en) Flexible mesh gear system
JP7221132B2 (en) flexural mesh gearbox
JP6858690B2 (en) Deflection meshing gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240116

R150 Certificate of patent or registration of utility model

Ref document number: 7422627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150