JP2022031111A - METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY POWDER AND Fe-BASED AMORPHOUS ALLOY - Google Patents

METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY POWDER AND Fe-BASED AMORPHOUS ALLOY Download PDF

Info

Publication number
JP2022031111A
JP2022031111A JP2021048151A JP2021048151A JP2022031111A JP 2022031111 A JP2022031111 A JP 2022031111A JP 2021048151 A JP2021048151 A JP 2021048151A JP 2021048151 A JP2021048151 A JP 2021048151A JP 2022031111 A JP2022031111 A JP 2022031111A
Authority
JP
Japan
Prior art keywords
alloy powder
amorphous alloy
based amorphous
powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021048151A
Other languages
Japanese (ja)
Inventor
伸彦 千綿
Nobuhiko Chiwata
元基 太田
Motoki Ota
伸二 山本
Shinji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN202110895635.2A priority Critical patent/CN114086089A/en
Publication of JP2022031111A publication Critical patent/JP2022031111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a method for producing Fe-based nanocrystal alloy powder capable of obtaining satisfactory magnetic properties by suppressing the coarsening of crystal grains and the precipitation of Fe2B crystals while generating bcc-Fe(Si) fine crystals.SOLUTION: A method for producing Fe-based nanocrystal alloy powder has a process in which Fe-based amorphous alloy powder is heat-treated under the conditions that the average temperature rising speed from 300°C to 400°C upon the temperature rising of Fe-based amorphous alloy powder is defined as TA and the average temperature rising speed from 400°C to the maximum temperature is defined as TB, TA is 2 to 10°C/min, TB is 1.5 to 8°C/min and also TA>TB.SELECTED DRAWING: Figure 1

Description

本発明は、Fe基ナノ結晶合金粉末の製造方法、およびFe基アモルファス合金に関する。 The present invention relates to a method for producing an Fe-based nanocrystalline alloy powder and an Fe-based amorphous alloy.

Fe基ナノ結晶合金用に製造されたFe基アモルファス合金に熱処理を施すことにより、Fe基アモルファス合金に微細結晶を析出させて、微細結晶を有するFe基ナノ結晶合金を得ることができる。
一般的に、Fe基アモルファス合金は、合金溶湯を単ロール法等により急冷凝固させて、薄帯状のFe基アモルファス合金(Fe基アモルファス合金薄帯)として得られる。Fe基ナノ結晶合金の磁心を構成する場合、まず、Fe基アモルファス合金薄帯を磁心等の形状に成形する。次いで、磁心形状に成形されたFe基アモルファス合金薄帯に磁場中を含む熱処理を施して、Fe基アモルファス合金薄帯に微細結晶粒を析出させる。それにより、良好な磁気特性を有するFe基ナノ結晶合金薄帯からなる磁心を得ることができる(たとえば、特許文献1を参照)。
By heat-treating the Fe-based amorphous alloy produced for the Fe-based nanocrystal alloy, fine crystals can be precipitated in the Fe-based amorphous alloy to obtain an Fe-based nanocrystal alloy having fine crystals.
Generally, the Fe-based amorphous alloy is obtained as a thin band-shaped Fe-based amorphous alloy (Fe-based amorphous alloy thin band) by quenching and solidifying the molten alloy by a single roll method or the like. When constructing the magnetic core of the Fe-based nanocrystalline alloy, first, the Fe-based amorphous alloy strip is formed into a shape such as a magnetic core. Next, the Fe-based amorphous alloy strip formed into a magnetic core shape is subjected to a heat treatment including in a magnetic field to precipitate fine crystal grains on the Fe-based amorphous alloy strip. Thereby, a magnetic core made of an Fe-based nanocrystal alloy strip having good magnetic properties can be obtained (see, for example, Patent Document 1).

上記単ロール法等により得られるFe基ナノ結晶合金の形態が薄帯であるため、作製できる磁心の形状の自由度は制限される。つまり、所望とする磁心の高さに相当する幅に合金薄帯をスリットし、所望とする内径及び外径に合わせて合金薄帯を巻回して成形されることから、その形状は、トロイダル形状、レーストラック形状等に限定される。
他方、従来、多様な磁心形状の要求がある。このため、Fe基ナノ結晶合金が粉末で生産できれば、プレスや押し出し等の成形方法を適用することで多様な形状を有する磁心を比較的容易に成形できる。そこで、Fe基ナノ結晶合金においても粉末を得る検討がなされている。(たとえば、特許文献2を参照)
Since the form of the Fe-based nanocrystal alloy obtained by the single roll method or the like is a thin band, the degree of freedom in the shape of the magnetic core that can be produced is limited. That is, the alloy strip is slit to a width corresponding to the desired height of the magnetic core, and the alloy strip is wound and formed according to the desired inner and outer diameters. Therefore, the shape is a toroidal shape. , Limited to race track shapes, etc.
On the other hand, conventionally, there are demands for various magnetic core shapes. Therefore, if the Fe-based nanocrystalline alloy can be produced as a powder, magnetic cores having various shapes can be relatively easily formed by applying a forming method such as pressing or extrusion. Therefore, studies have been made to obtain powder even in Fe-based nanocrystal alloys. (See, for example, Patent Document 2)

特公平4-4393号公報Special Fair No. 4-4393 Gazette 特開2017-95773号公報Japanese Unexamined Patent Publication No. 2017-95773

Fe基アモルファス合金を熱処理して、微細結晶(以下、ナノ結晶とも言う)を析出させて、Fe基ナノ結晶合金を得る場合、磁気特性に優れるナノ結晶組織を得るためには、熱処理時に急速加熱を施す必要がある。しかしながら、Fe基アモルファス合金粉末の熱処理において、粉末内のアモルファス領域でナノ結晶が析出する際には発熱が伴う。Fe基アモルファス合金粉末の熱処理の際、急速加熱による加熱と、粉末内のナノ結晶化に伴う発熱とが重なり、それにより粉末の温度上昇が過剰となる場合がある。このように、粉末の温度上昇が過剰となると、粉末の温度が適切な熱処理温度を超えてしまい、結晶粒の粗大化やFeB結晶の析出を生じる。その結果、良好な磁気特性のFe基ナノ結晶合金粉末が得られなくなる。
本開示は、微細結晶を生成させつつ、結晶粒の粗大化やFeB結晶の析出を抑制し、良好な磁気特性が得られるFe基ナノ結晶合金粉末の製造方法を提供することを課題とする。
また、本開示のFe基ナノ結晶合金粉末の製造方法に用いることに適したFe基アモルファス合金を提供することを課題とする。
When a Fe-based amorphous alloy is heat-treated to precipitate fine crystals (hereinafter, also referred to as nanocrystals) to obtain a Fe-based nanocrystal alloy, rapid heating is performed during the heat treatment in order to obtain a nanocrystal structure having excellent magnetic properties. Need to be applied. However, in the heat treatment of the Fe-based amorphous alloy powder, heat is generated when nanocrystals are precipitated in the amorphous region in the powder. During the heat treatment of the Fe-based amorphous alloy powder, the heating by rapid heating and the heat generated by the nanocrystallization in the powder overlap, which may cause the temperature of the powder to rise excessively. As described above, when the temperature of the powder rises excessively, the temperature of the powder exceeds an appropriate heat treatment temperature, resulting in coarsening of crystal grains and precipitation of Fe 2B crystals. As a result, Fe-based nanocrystalline alloy powder having good magnetic properties cannot be obtained.
An object of the present disclosure is to provide a method for producing Fe - based nanocrystal alloy powder, which can obtain good magnetic properties by suppressing coarsening of crystal grains and precipitation of Fe 2B crystals while generating fine crystals. do.
Another object of the present invention is to provide an Fe-based amorphous alloy suitable for use in the method for producing the Fe-based nanocrystalline alloy powder of the present disclosure.

上記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> Fe基アモルファス合金粉末を熱処理して、Fe基ナノ結晶合金粉末を製造するFe基ナノ結晶合金粉末の製造方法であって、
前記Fe基アモルファス合金粉末の昇温時の300℃から400℃までの平均昇温速度をTAとし、400℃から最高温度までの平均昇温速度をTBとしたとき、TAが2℃/分~10℃/分であり、TBが1.5℃/分~8℃/分であり、かつTA>TBである条件で、前記Fe基アモルファス合金粉末を熱処理するFe基ナノ結晶合金粉末の製造方法。
<2> 結晶粒径が100nm以下のbcc-Fe(Si)微細結晶を有し、前記bcc-Fe(Si)微細結晶が50体積%以上であるFe基ナノ結晶合金粉末を製造する、<1>に記載のFe基ナノ結晶合金粉末の製造方法。
<3> 前記Fe基ナノ結晶合金粉末の組成が、原子比でSiを3~8%、Bを11~17%、Cuを0.7~1.8%、Snを0.05~0.7%、Crを0~1.5%、Nbを0~1.0%、Moを0~1.0%、および残部で表され、前記残部はFeと不純物とからなる<1>または<2>に記載のFe基ナノ結晶合金粉末の製造方法。
<4> 前記Fe基アモルファス合金粉末として、直径が50nm以下のCuの微結晶がアモルファス相中に分散して存在しているFe基アモルファス合金からなる粉末を用いる、<1>~<3>のいずれか1項に記載のFe基ナノ結晶合金粉末の製造方法。
<5> 前記Cuの微結晶が1×10-4個/nm以上6×10-4個/nm以下の範囲で存在している、<4>に記載のFe基ナノ結晶合金粉末の製造方法。
<6> 直径が50nm以下のCuの微結晶がアモルファス相中に分散して存在しているFe基アモルファス合金。
<7> 前記Cuの微結晶が1×10-4個/nm以上6×10-4個/nm以下の範囲で存在している<6>に記載のFe基アモルファス合金。
<8> 前記Fe基アモルファス合金の組成が、原子比でSiを3~8%、Bを11~17%、Cuを0.7~1.8%、Snを0.05~0.7%、Crを0~1.5%、Nbを0~1.0%、Moを0~1.0%、および残部で表され、前記残部はFeと不純物とからなる<6>または<7>に記載のFe基アモルファス合金。
Specific means for solving the above problems include the following aspects.
<1> A method for producing Fe-based nanocrystalline alloy powder by heat-treating Fe-based amorphous alloy powder to produce Fe-based nanocrystalline alloy powder.
When the average temperature rise rate from 300 ° C. to 400 ° C. when the temperature of the Fe-based amorphous alloy powder is raised is TA, and the average temperature rise rate from 400 ° C. to the maximum temperature is TB, TA is 2 ° C./min to A method for producing an Fe-based nanocrystalline alloy powder by heat-treating the Fe-based amorphous alloy powder under the conditions of 10 ° C./min, TB of 1.5 ° C./min to 8 ° C./min, and TA> TB. ..
<2> A Fe-based nanocrystal alloy powder having bcc-Fe (Si) fine crystals having a crystal grain size of 100 nm or less and having 50% by volume or more of the bcc-Fe (Si) fine crystals is produced. <1 > The method for producing an Fe-based nanocrystalline alloy powder.
<3> The composition of the Fe-based nanocrystalline alloy powder is 3 to 8% for Si, 11 to 17% for B, 0.7 to 1.8% for Cu, and 0.05 to 0% for Sn in terms of atomic ratio. It is represented by 7%, Cr is 0 to 1.5%, Nb is 0 to 1.0%, Mo is 0 to 1.0%, and the balance, and the balance is <1> or <which consists of Fe and impurities. A method for producing an Fe-based nanocrystalline alloy powder according to 2>.
<4> As the Fe-based amorphous alloy powder, a powder made of an Fe-based amorphous alloy in which fine crystals of Cu having a diameter of 50 nm or less are dispersed in the amorphous phase is used. The method for producing an Fe-based nanocrystalline alloy powder according to any one item.
<5> The Fe-based nanocrystal alloy powder according to <4>, wherein the Cu microcrystals are present in the range of 1 × 10 -4 pieces / nm 2 or more and 6 × 10 -4 pieces / nm 2 or less. Production method.
<6> An Fe-based amorphous alloy in which fine crystals of Cu having a diameter of 50 nm or less are dispersed in an amorphous phase.
<7> The Fe-based amorphous alloy according to <6>, wherein the Cu microcrystals are present in the range of 1 × 10 -4 pieces / nm 2 or more and 6 × 10 -4 pieces / nm 2 or less.
<8> The composition of the Fe-based amorphous alloy is 3 to 8% for Si, 11 to 17% for B, 0.7 to 1.8% for Cu, and 0.05 to 0.7% for Sn in terms of atomic ratio. , Cr is 0 to 1.5%, Nb is 0 to 1.0%, Mo is 0 to 1.0%, and the balance is represented by the balance, which is composed of Fe and impurities <6> or <7>. The Fe-based amorphous alloy according to.

本開示によれば、微細結晶を生成させつつ、結晶粒の粗大化やFeB結晶の析出を抑制し、良好な磁気特性が得られるFe基ナノ結晶合金粉末の製造方法が得られる。また、本開示によれば、本開示のFe基ナノ結晶合金粉末の製造方法に用いることに適したFe基アモルファス合金が得られる。 According to the present disclosure, it is possible to obtain a method for producing Fe - based nanocrystal alloy powder, which can obtain good magnetic properties by suppressing coarsening of crystal grains and precipitation of Fe 2B crystals while producing fine crystals. Further, according to the present disclosure, an Fe-based amorphous alloy suitable for use in the method for producing the Fe-based nanocrystalline alloy powder of the present disclosure can be obtained.

実施例1のFe基ナノ結晶合金粉末の透過型電子顕微鏡観察画像である。6 is a transmission electron microscope observation image of the Fe-based nanocrystalline alloy powder of Example 1. 本実施例のFe基アモルファス合金の透過型電子顕微鏡観察画像である。It is a transmission electron microscope observation image of the Fe-based amorphous alloy of this Example. 図2の模式図である。It is a schematic diagram of FIG.

以下、本開示の実施形態によって、本開示を具体的に説明するが、本開示はこれらの実施形態により限定されるものではない。
本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素、及び符号については、説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。
Hereinafter, the present disclosure will be specifically described with reference to the embodiments of the present disclosure, but the present disclosure is not limited to these embodiments.
When the embodiments of the present disclosure are described with reference to the drawings, the description of overlapping components and reference numerals in the drawings may be omitted. The components shown by the same reference numerals in the drawings mean that they are the same components.

本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present disclosure, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.

本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
本開示において、Fe基アモルファス合金粉末はFe基アモルファス合金からなる粉末である。
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
In the present disclosure, the Fe-based amorphous alloy powder is a powder made of a Fe-based amorphous alloy.

本開示の一実施形態に係るFe基ナノ結晶合金粉末の製造方法は、Fe基アモルファス合金粉末の昇温時の300℃から400℃までの平均昇温速度をTAとし、400℃から最高温度までの平均昇温速度をTBとしたとき、TAが2℃/分~10℃/分であり、TBが1.5℃/分~8℃/分であり、かつTA>TBである条件で、Fe基アモルファス合金粉末を熱処理して、Fe基ナノ結晶合金粉末を製造する方法である。このFe基アモルファス合金粉末は、熱処理によりFe基ナノ結晶合金粉末となるように製造された、Fe基ナノ結晶合金粉末用のFe基アモルファス合金粉末である。 In the method for producing an Fe-based nanocrystalline alloy powder according to an embodiment of the present disclosure, the average temperature rise rate from 300 ° C. to 400 ° C. when the temperature of the Fe-based amorphous alloy powder is raised is set to TA, and the temperature is raised from 400 ° C. to the maximum temperature. When the average temperature rise rate of is TB, TA is 2 ° C./min to 10 ° C./min, TB is 1.5 ° C./min to 8 ° C./min, and TA> TB. This is a method for producing an Fe-based nanocrystalline alloy powder by heat-treating an Fe-based amorphous alloy powder. This Fe-based amorphous alloy powder is an Fe-based amorphous alloy powder for Fe-based nanocrystalline alloy powder produced so as to become an Fe-based nanocrystalline alloy powder by heat treatment.

本開示の一実施形態において、Fe基ナノ結晶合金粉末は、bcc-Fe(Si)微細結晶(以下、「bcc-Fe微細結晶」または「ナノ結晶」とも言う)を有する。Fe基ナノ結晶合金粉末のbcc-Fe微細結晶は、結晶粒径が100nm以下であることが好ましい。このbcc-Fe微細結晶は、平均結晶粒径が10~50nmであることが好ましい。また、本開示のFe基ナノ結晶合金粉末は、bcc-Fe微細結晶が50体積%以上であることが好ましい。なお、Fe基ナノ結晶合金粉末において、bcc-Fe微細結晶以外の部分は、アモルファス相であってもよい。ここで、bcc-Fe微細結晶の体積分率は、Fe基ナノ結晶合金粉末の合金組織を透過型電子顕微鏡(TEM)で観察し、略球状組織(bcc-Fe微細結晶)の面積を合計し、観察視野面積に対する比率から算出できる。 In one embodiment of the present disclosure, the Fe-based nanocrystal alloy powder has bcc-Fe (Si) fine crystals (hereinafter, also referred to as "bcc-Fe fine crystals" or "nanocrystals"). The bcc-Fe fine crystals of the Fe-based nanocrystal alloy powder preferably have a crystal grain size of 100 nm or less. The bcc-Fe fine crystals preferably have an average crystal grain size of 10 to 50 nm. Further, the Fe-based nanocrystal alloy powder of the present disclosure preferably contains 50% by volume or more of bcc-Fe fine crystals. In the Fe-based nanocrystal alloy powder, the portion other than the bcc—Fe fine crystals may be an amorphous phase. Here, for the volume fraction of the bcc-Fe fine crystals, the alloy structure of the Fe-based nanocrystal alloy powder is observed with a transmission electron microscope (TEM), and the areas of the substantially spherical structures (bcc-Fe fine crystals) are totaled. , Can be calculated from the ratio to the observation field area.

本開示の一実施形態において、Fe基ナノ結晶合金粉末の組成が、原子比でSiを3~8%、Bを11~17%、Cuを0.7~1.8%、Snを0.05~0.7%、Crを0~1.5%、Nbを0~1.0%、Moを0~1.0%、および残部で表されることが好ましい。ここで、残部はFeと不純物とからなる。なお、Cr、Nb、Moは、それぞれ0%であってもよい。
Fe基ナノ結晶合金粉末の組成が、この組成であることにより、本開示の熱処理方法により得られるFe基ナノ結晶合金粉末は、磁気特性に優れるナノ結晶組織を安定して備えることができる。
また、本開示の実施形態において、Fe基ナノ結晶合金粉末用のFe基アモルファス合金粉末、並びに、このFe基アモルファス合金粉末を構成するFe基アモルファス合金も同様の組成であることが好ましい。
In one embodiment of the present disclosure, the composition of the Fe-based nanocrystalline alloy powder is such that Si is 3 to 8%, B is 11 to 17%, Cu is 0.7 to 1.8%, and Sn is 0. It is preferably represented by 05 to 0.7%, Cr of 0 to 1.5%, Nb of 0 to 1.0%, Mo of 0 to 1.0%, and the balance. Here, the balance consists of Fe and impurities. In addition, Cr, Nb, and Mo may be 0% respectively.
When the composition of the Fe-based nanocrystal alloy powder is this composition, the Fe-based nanocrystal alloy powder obtained by the heat treatment method of the present disclosure can stably provide a nanocrystal structure having excellent magnetic properties.
Further, in the embodiment of the present disclosure, it is preferable that the Fe-based amorphous alloy powder for the Fe-based nanocrystalline alloy powder and the Fe-based amorphous alloy constituting the Fe-based amorphous alloy powder have the same composition.

本開示の熱処理方法によるナノ結晶組織の出現には2つの重要な要素が必要である。一つ目は、昇温時の300℃~400℃の温度領域で、ナノ結晶の核となるCuやSnを主体とするアモルファス相とは異なる相(以下、「異質相」とも言う)が十分な数の数密度で存在することである。これには、Cu量とSn量が大きく関連する。CuとSnの合計の含有量(原子%)は1.2原子%以上が好ましく、さらに好ましくは1.3原子%以上である。これにより、十分な数密度の異質相が得られる。また、それらの合計が1.85原子%以下である場合、クラスターの粗大化を抑えることができ、高い数密度が維持される。さらに、CuとSnの合計は1.8原子%以下であることが好ましい。 Two important factors are required for the appearance of nanocrystal structures by the heat treatment method of the present disclosure. The first is that in the temperature range of 300 ° C to 400 ° C when the temperature rises, a phase different from the amorphous phase mainly composed of Cu and Sn, which is the core of nanocrystals (hereinafter, also referred to as “heterogeneous phase”) is sufficient. It exists in a number density. This is largely related to the amount of Cu and the amount of Sn. The total content (atomic%) of Cu and Sn is preferably 1.2 atomic% or more, more preferably 1.3 atomic% or more. This gives a heterogeneous phase with a sufficient number density. Further, when the total of them is 1.85 atomic% or less, the coarsening of the cluster can be suppressed and the high number density is maintained. Further, the total of Cu and Sn is preferably 1.8 atomic% or less.

二つ目は、昇温時の400℃以上の温度領域における過昇温の範囲である。ここで、過昇温とは、狙いの熱処理温度を超えて粉末が昇温されることである。アモルファス相の結晶化では集団的な結晶化により発熱し、400℃以上の温度領域での過昇温の原因となる。生産効率と磁気特性の両立を目指す本開示の製法によれば、過昇温が生じた場合でも、その過昇温の範囲は20~30℃程度に抑制され、結晶粒の粗大化やFeB結晶の析出を抑制できる。その際、残留アモルファス相の熱的安定性が高いと、過度な結晶粒成長が抑えられるとともに過昇温の不均一性を許容でき、当該目的の粉末が得やすくなる。残留アモルファス相の熱的安定性の向上には、B、Nb、Mo、Siが大きく関係している。そのため、B、Si、Nb、Mo量を適量含有させる必要がある。したがって、Bは11原子%以上、Siは3原子%以上であることが好ましい。さらに、Bは13原子%以上、Siは4原子%以上であることがより好ましい。また、Nb、Moは必須元素ではないが、NbまたはMoの少なくとも一方を含有させることが好ましい。NbまたはMoは、含有させる場合、0.2原子%以上がより好ましい。 The second is the range of overheating in the temperature range of 400 ° C. or higher at the time of temperature rise. Here, the overheating means that the temperature of the powder exceeds the target heat treatment temperature. In the crystallization of the amorphous phase, heat is generated by collective crystallization, which causes excessive temperature rise in the temperature range of 400 ° C. or higher. According to the manufacturing method of the present disclosure aiming at both production efficiency and magnetic characteristics, even if an overheating occurs, the range of the overheating is suppressed to about 20 to 30 ° C., coarsening of crystal grains and Fe 2 Precipitation of B crystals can be suppressed. At that time, if the thermal stability of the residual amorphous phase is high, excessive crystal grain growth can be suppressed and non-uniformity of excessive temperature rise can be tolerated, and the desired powder can be easily obtained. B, Nb, Mo, and Si are largely related to the improvement of the thermal stability of the residual amorphous phase. Therefore, it is necessary to contain an appropriate amount of B, Si, Nb, and Mo. Therefore, it is preferable that B is 11 atomic% or more and Si is 3 atomic% or more. Further, it is more preferable that B is 13 atomic% or more and Si is 4 atomic% or more. Although Nb and Mo are not essential elements, it is preferable to contain at least one of Nb and Mo. When Nb or Mo is contained, it is more preferably 0.2 atomic% or more.

さらに、Fe量は飽和磁束密度に大きく影響し、高い含有量であればより高い飽和磁束密度が得られる。したがって、Fe量は89重量%以上が好ましく、さらに好ましくは90重量%以上である。また、原子比で表すと、Fe量は78%以上が好ましく、さらには80%以上が好ましい。 Further, the amount of Fe greatly affects the saturation magnetic flux density, and a higher content allows a higher saturation magnetic flux density to be obtained. Therefore, the amount of Fe is preferably 89% by weight or more, more preferably 90% by weight or more. In terms of atomic ratio, the Fe amount is preferably 78% or more, more preferably 80% or more.

以下、本開示の一実施形態に係るFe基ナノ結晶合金粉末の製造方法の工程順に沿って、説明する。
本開示において、Fe基ナノ結晶合金粉末を製造する場合、まずFe基ナノ結晶合金粉末用のFe基アモルファス合金粉末を製造する。次いで、Fe基アモルファス合金粉末を熱処理することにより、Fe基ナノ結晶合金粉末を製造する。これは、Fe基ナノ結晶合金を製造する場合、最初にFe基アモルファス合金を製造して、そのFe基アモルファス合金を熱処理して、Fe基ナノ結晶合金を製造する方法に沿ったものである。
Hereinafter, the process order of the method for producing the Fe-based nanocrystalline alloy powder according to the embodiment of the present disclosure will be described.
In the present disclosure, when producing Fe-based nanocrystalline alloy powder, first, Fe-based amorphous alloy powder for Fe-based nanocrystalline alloy powder is produced. Next, the Fe-based nanocrystalline alloy powder is produced by heat-treating the Fe-based amorphous alloy powder. This is in line with the method of first producing an Fe-based amorphous alloy and then heat-treating the Fe-based amorphous alloy to produce an Fe-based nanocrystalline alloy when producing a Fe-based nanocrystalline alloy.

まず、本実施形態に用いるFe基アモルファス合金粉末について、記載する。
本実施形態に用いるFe基アモルファス合金粉末は、Fe基アモルファス合金からなる粉末であり、アトマイズ法等により、合金溶湯を急冷凝固させて得ることができる。このとき、合金溶湯は、目的とするFe基ナノ結晶合金粉末を得るための合金組成に合わせる。
First, the Fe-based amorphous alloy powder used in this embodiment will be described.
The Fe-based amorphous alloy powder used in this embodiment is a powder made of an Fe-based amorphous alloy, and can be obtained by quenching and solidifying the molten alloy by an atomizing method or the like. At this time, the molten alloy is adjusted to the alloy composition for obtaining the desired Fe-based nanocrystalline alloy powder.

<合金溶湯>
合金溶湯は、所望とする合金組成になるように純鉄、フェロボロン、フェロシリコン等の各元素源を配合し、誘導加熱炉等で合金融点まで加熱溶融して作製する。これにより、目的とするFe基ナノ結晶合金粉末の合金組成の合金溶湯を得ることができる。
<Alloy molten metal>
The molten alloy is prepared by blending each element source such as pure iron, ferroboron, and ferrosilicon so as to have a desired alloy composition, and heating and melting to the melting point of the alloy in an induction heating furnace or the like. This makes it possible to obtain an alloy molten metal having an alloy composition of the desired Fe-based nanocrystalline alloy powder.

<アトマイズ法>
Fe基アモルファス合金粉末を製造する方法として、合金溶湯にガスや水といった媒体を高速で衝突させて粉砕させるアトマイズ法がある。本実施形態のFe基アモルファス合金粉末においても、アトマイズ法を用いて製造することができる。
例えば、特開2017-155341号公報に記載の製造装置(ジェットアトマイズ装置)等を用いたアトマイズ法を用いることができる。
アトマイズ法は種々の方式が知られており、その製造条件は公知の製造技術から適宜選択しFe基アモルファス合金を得ることができる。
<Atomize method>
As a method for producing Fe-based amorphous alloy powder, there is an atomizing method in which a medium such as gas or water is made to collide with a molten alloy at high speed to be pulverized. The Fe-based amorphous alloy powder of the present embodiment can also be produced by using the atomizing method.
For example, an atomizing method using the manufacturing apparatus (jet atomizing apparatus) described in JP-A-2017-155341 can be used.
Various atomizing methods are known, and the production conditions thereof can be appropriately selected from known production techniques to obtain an Fe-based amorphous alloy.

また、本実施形態において、例えば、国際公開第2019/49865号に記載の金属粉末製造装置を用いて、Fe基アモルファス合金粉末を作製することが好ましい。
本実施形態のFe基アモルファス合金粉末は、合金溶湯を急冷凝固することにより得られる。そのため、合金溶湯を粉砕させた後、粉砕された微粉末(合金溶湯)を速やかに凝固冷却する必要がある。そこで、冷却能の高い水や溶媒を採用して、その冷却能の高い水や溶媒を粉砕された微粉末(合金溶湯)に噴射したり、粉砕された微粉末(合金溶湯)を冷却能の高い水や溶媒に突入させたりすることが好ましい。
国際公開第2019/49865号に記載の金属粉末製造装置では、旋回水流を用いており、合金溶湯を急冷凝固させることに適している。
Further, in the present embodiment, it is preferable to produce an Fe-based amorphous alloy powder by using, for example, the metal powder production apparatus described in International Publication No. 2019/49965.
The Fe-based amorphous alloy powder of the present embodiment is obtained by quenching and solidifying the molten alloy. Therefore, after crushing the molten alloy, it is necessary to quickly solidify and cool the crushed fine powder (melted alloy). Therefore, water or solvent with high cooling capacity is adopted, and the water or solvent with high cooling capacity is sprayed onto the crushed fine powder (alloy molten metal), or the crushed fine powder (alloy molten metal) is cooled. It is preferable to plunge into high water or solvent.
The metal powder manufacturing apparatus described in International Publication No. 2019/49965 uses a swirling water flow and is suitable for quenching and solidifying a molten alloy.

<Fe基アモルファス合金、およびFe基アモルファス合金粉末>
本開示におけるFe基アモルファス合金粉末は、アモルファス相を備える合金粉末である。このアモルファス相を備える合金粉末を構成するFe基アモルファス合金は、アモルファス相中に、ナノスケールのCuの微結晶が存在していることが好ましい。なお、ナノスケールのCuの微結晶とは、直径が50nm以下である。また、好ましくは、直径が30nm以下であり、より好ましくは、直径が20nm以下である。また、直径が1nm以上であることが好ましく、より好ましくは直径が5nm以上である。
また、Cuの微結晶は、1×10-4個/nm以上6×10-4個/nm以下の範囲でアモルファス相中に分散して存在していることが好ましい。
このCuの微結晶が存在していると、熱処理してbcc-Fe微細結晶を生成させることに役立ち、磁気特性の良好なFe基ナノ結晶合金粉末を得ることに役立つ。
また、本開示のFe基アモルファス合金粉末を構成するFe基アモルファス合金は、Cuの微結晶以外の部分は、アモルファス相であることが好ましい。
つまり、直径が50nm以下のCuの微結晶がアモルファス相中に分散して存在しているFe基アモルファス合金は、本開示のFe基ナノ結晶合金粉末用のFe基アモルファス合金粉末を構成するFe基アモルファス合金として適している。
<Fe-based amorphous alloy and Fe-based amorphous alloy powder>
The Fe-based amorphous alloy powder in the present disclosure is an alloy powder having an amorphous phase. In the Fe-based amorphous alloy constituting the alloy powder having the amorphous phase, it is preferable that nanoscale Cu microcrystals are present in the amorphous phase. The nanoscale Cu microcrystals have a diameter of 50 nm or less. Further, the diameter is preferably 30 nm or less, and more preferably 20 nm or less. Further, the diameter is preferably 1 nm or more, more preferably 5 nm or more.
Further, it is preferable that the microcrystals of Cu are dispersed in the amorphous phase in the range of 1 × 10 -4 pieces / nm 2 or more and 6 × 10 -4 pieces / nm 2 or less.
The presence of these Cu microcrystals is useful for heat treatment to generate bcc—Fe microcrystals and is useful for obtaining Fe-based nanocrystal alloy powder with good magnetic properties.
Further, in the Fe-based amorphous alloy constituting the Fe-based amorphous alloy powder of the present disclosure, it is preferable that the portion other than the microcrystals of Cu is an amorphous phase.
That is, the Fe-based amorphous alloy in which fine crystals of Cu having a diameter of 50 nm or less are dispersed in the amorphous phase is the Fe group constituting the Fe-based amorphous alloy powder for the Fe-based nanocrystalline alloy powder of the present disclosure. Suitable as an amorphous alloy.

Fe基ナノ結晶合金粉末において、熱処理後の合金中に含まれるナノ結晶の結晶粒微細化の方法として、溶融合金を急冷凝固して得られたアモルファス相中に、より微細なbcc-Fe微細結晶を析出させる方法がある。しかしながら、均一な厚みが得られる合金薄帯の場合には均一な熱処理が容易であるが、合金粉末の場合、粉末体積(粉末の粒径)のバラツキから結晶化の進行度の制御が難しい。特に冷却速度が遅くなりやすい大径の粉末では、過剰な結晶化の進行によりナノ結晶が粗大化したり、Fe-B系化合物の析出といった磁気特性を大きく劣化させる相が析出したりするため、適用が容易ではなかった。 In the Fe-based nanocrystal alloy powder, as a method for refining the crystal grains of the nanocrystals contained in the alloy after heat treatment, finer bcc-Fe fine crystals are contained in the amorphous phase obtained by quenching and solidifying the molten alloy. There is a method of precipitating. However, in the case of an alloy strip that can obtain a uniform thickness, uniform heat treatment is easy, but in the case of alloy powder, it is difficult to control the progress of crystallization due to the variation in powder volume (powder particle size). Especially for large-diameter powders whose cooling rate tends to be slow, nanocrystals become coarse due to the progress of excessive crystallization, and phases that significantly deteriorate magnetic properties such as precipitation of Fe-B compounds precipitate. Was not easy.

しかしながら、本開示による、ナノスケールのCuの微結晶が存在しているFe基アモルファス合金からなるFe基アモルファス合金粉末の場合、熱処理過程において、熱処理前において存在するCuの微結晶がbcc-Fe微細結晶の核生成サイトの役割を持ち、bcc-Fe微細結晶の発生確率を高める効果を有する。一方、bcc-Fe微細結晶の発生確率が上がるとbcc-Fe微細結晶の数密度が増え、結果として微細結晶の平均結晶粒径が減少する。bcc-Fe微細結晶の平均結晶粒径が減少すると、ランダム磁気異方性の効果により透磁率が高くなり、低損失化が実現しやすくなる。 However, in the case of the Fe-based amorphous alloy powder made of the Fe-based amorphous alloy in which nanoscale Cu microcrystals are present according to the present disclosure, the Cu microcrystals present before the heat treatment are fine bcc-Fe in the heat treatment process. It has the role of a crystal nucleation site and has the effect of increasing the generation probability of bcc-Fe fine crystals. On the other hand, when the generation probability of bcc-Fe fine crystals increases, the number density of bcc-Fe fine crystals increases, and as a result, the average crystal grain size of the fine crystals decreases. When the average crystal grain size of the bcc-Fe fine crystals decreases, the magnetic permeability increases due to the effect of random magnetic anisotropy, and it becomes easy to realize low loss.

加えて、熱処理過程において熱処理前において存在するCuの微結晶がbcc-Fe微細結晶の核生成サイトの役割を有するため、300℃以上で徐々に析出するbcc-Fe微細結晶析出時の発熱が徐々に生じることになり、熱処理を施す粉末全体の急激な温度上昇を抑制でき、bcc-Fe微細結晶の粗大化を防止することができる。 In addition, since the Cu microcrystals existing before the heat treatment in the heat treatment process serve as a nucleation site for the bcc-Fe fine crystals, the heat generated during the precipitation of the bcc-Fe fine crystals that gradually precipitates at 300 ° C. or higher gradually increases. It is possible to suppress a rapid temperature rise of the entire powder to be heat-treated, and it is possible to prevent coarsening of bcc-Fe fine crystals.

<熱処理>
本実施形態では、Fe基アモルファス合金粉末を熱処理して、Fe基ナノ結晶合金粉末を製造する。
熱処理に用いる炉は所望の温度が得られれば連続炉でも固定炉でも可能である。連続炉を用いる場合は、Fe基アモルファス合金と反応をしない容器(たとえばセラミックス)に粉末を入れ、連続搬送装置にて連続的に温度を設定した炉内に搬送搬出する方法でもよい。また、特開2018-204072号公報に示されたように粉末を連続的に熱処理炉内に投入してもよい。固定炉であれば、Fe基アモルファス合金と反応をしない容器に入れた粉末を温度制御プログラムにより連続的に温度を上昇させて加熱できる。
<Heat treatment>
In the present embodiment, the Fe-based amorphous alloy powder is heat-treated to produce the Fe-based nanocrystalline alloy powder.
The furnace used for the heat treatment can be a continuous furnace or a fixed furnace as long as the desired temperature can be obtained. When a continuous furnace is used, a method may be used in which powder is placed in a container (for example, ceramics) that does not react with the Fe-based amorphous alloy, and the powder is transported and carried out into a furnace whose temperature is continuously set by a continuous transfer device. Further, as shown in Japanese Patent Application Laid-Open No. 2018-204072, the powder may be continuously put into the heat treatment furnace. In a fixed furnace, the powder in a container that does not react with the Fe-based amorphous alloy can be heated by continuously raising the temperature by a temperature control program.

いずれの場合においても粉末の酸化を抑制するために、アルゴンや窒素といった不活性ガスを封入もしくは流入させた不活性雰囲気であることが望ましい。この場合、炉内の全体を不活性雰囲気にする方法のほか、粉末容器内に不活性ガスを充満たさせて封入したり流入させたりする、といった方法でも良い。 In either case, in order to suppress the oxidation of the powder, it is desirable to have an inert atmosphere in which an inert gas such as argon or nitrogen is enclosed or inflowed. In this case, in addition to the method of creating an inert atmosphere in the entire furnace, a method of filling the powder container with the inert gas and enclosing or inflowing the gas may be used.

本実施形態の熱処理では、昇温時、アモルファス相中に生じるbcc-Fe微細結晶の析出および成長、並びにCuが析出する温度域である300℃から400℃までの平均昇温速度TAを2℃/分~10℃/分とする。 In the heat treatment of the present embodiment, the precipitation and growth of bcc-Fe fine crystals generated in the amorphous phase at the time of temperature rise, and the average temperature rise rate TA from 300 ° C. to 400 ° C., which is the temperature range in which Cu precipitates, are 2 ° C. The temperature is from / min to 10 ° C / min.

平均昇温速度TAが2℃/分より遅い場合は、アモルファス相中に析出するbcc-Fe微細結晶の数密度が不足し粗大な結晶となり磁気特性を劣化させる。また、Cuの微結晶も析出するが温度上昇が緩やかであるため、個々のCuの微結晶の大きさが粗大化する。このため、bcc-Fe微細結晶の核となるような微細で分散して存在するようなCuの微結晶の状態が得られず、結果としてナノ結晶粒子を粗大させる原因となる。したがって、平均昇温速度TAは2℃/分以上とする。好ましくは、3℃/分以上である。 When the average temperature rise rate TA is slower than 2 ° C./min, the number density of bcc-Fe fine crystals precipitated in the amorphous phase is insufficient, resulting in coarse crystals and deteriorating magnetic properties. Further, although microcrystals of Cu are also precipitated, the temperature rise is gradual, so that the size of each microcrystal of Cu becomes coarse. For this reason, it is not possible to obtain the state of Cu microcrystals that are finely dispersed and exist as the core of bcc-Fe microcrystals, and as a result, it causes the nanocrystal particles to become coarse. Therefore, the average temperature rise rate TA is set to 2 ° C./min or more. It is preferably 3 ° C./min or higher.

平均昇温速度TAが10℃/分を超える場合は、アモルファス相中でbcc-Fe微細結晶が析出する際の発熱で温度が急激に上昇する。その結果、粉末の温度が急激に上昇し、粉末温度が400℃を大きく超える結果となったり、粒径が異なる粉末毎でbcc-Fe微細結晶の析出にバラツキが生じる原因になったりする。したがって、平均昇温速度TAは10℃/分以下とする。また、好ましくは9.8℃/分以下である。 When the average temperature rise rate TA exceeds 10 ° C./min, the temperature rises sharply due to heat generated when bcc-Fe fine crystals are precipitated in the amorphous phase. As a result, the temperature of the powder rises sharply, resulting in the powder temperature greatly exceeding 400 ° C., or causing variations in the precipitation of bcc-Fe fine crystals among powders having different particle sizes. Therefore, the average temperature rise rate TA is set to 10 ° C./min or less. Further, it is preferably 9.8 ° C./min or less.

熱処理の最高温度は、Fe基アモルファス合金を示差走査熱量計(DSC)によって測定(昇温速度20℃/分)し、第1(最初、低温側)の発熱ピーク(bcc-Fe微細結晶析出による発熱ピーク)が現れる温度以上で、かつ第2(高温側)の発熱ピーク(粗大結晶析出による発熱ピーク)が現れる温度未満であるのが好ましい。この際、大量の合金粉末をひとつのバッチで熱処理する際には、昇温速度および発熱を考慮して第1の発熱ピークの±30℃程度の温度を最高温度とすることが有効である。 The maximum temperature of the heat treatment is measured by measuring the Fe-based amorphous alloy with a differential scanning calorimeter (DSC) (heating rate 20 ° C./min), and the first (first, low temperature side) exothermic peak (bcc-Fe fine crystal precipitation). It is preferable that the temperature is equal to or higher than the temperature at which the exothermic peak) appears and is lower than the temperature at which the second (high temperature side) exothermic peak (exothermic peak due to coarse crystal precipitation) appears. At this time, when heat-treating a large amount of alloy powder in one batch, it is effective to set the temperature of about ± 30 ° C. of the first heat generation peak as the maximum temperature in consideration of the rate of temperature rise and heat generation.

400℃から最高温度までの平均昇温速度TBは、1.5℃/分~8℃/分とする。
平均昇温速度TBが1.5℃/分よりも遅い場合は、最高温度までの到達時間が長くなりナノ結晶粒子が粗大化する原因となる。平均昇温速度TBが8℃/分を超える場合は、アモルファス相中でbcc-Fe微細結晶が析出する際の発熱で温度が急激に上昇する。その結果、所望の最高温度を超え、ナノ結晶が粗大化したりFe-B系化合物の析出といった磁気特性を大きく劣化させる相が析出したりする。好ましくは2℃/分以上であり、さらに好ましくは、3℃/分以上である。また、好ましくは7℃/分以下であり、さらに好ましくは、6℃/分以下である。また、最高温度に到達した際に、粉末の温度が均一となるように昇温速度は緩やかでることが好ましく、平均昇温速度TBは平均昇温速度TAの30%~70%であることが好ましく、さらに好ましくは40%~60%である。
The average temperature rise rate TB from 400 ° C. to the maximum temperature is 1.5 ° C./min to 8 ° C./min.
If the average temperature rise rate TB is slower than 1.5 ° C./min, the time to reach the maximum temperature becomes long, which causes the nanocrystal particles to become coarse. When the average temperature rise rate TB exceeds 8 ° C./min, the temperature rises sharply due to heat generated when bcc-Fe fine crystals are precipitated in the amorphous phase. As a result, the desired maximum temperature is exceeded, and a phase that significantly deteriorates magnetic properties such as coarsening of nanocrystals and precipitation of Fe—B-based compounds is precipitated. It is preferably 2 ° C./min or higher, and more preferably 3 ° C./min or higher. Further, it is preferably 7 ° C./min or less, and more preferably 6 ° C./min or less. Further, when the maximum temperature is reached, the temperature rise rate is preferably slow so that the temperature of the powder becomes uniform, and the average temperature rise rate TB is 30% to 70% of the average temperature rise rate TA. It is preferable, more preferably 40% to 60%.

したがって、本開示の熱処理において、Fe基アモルファス合金粉末の昇温時の300℃から400℃までの平均昇温速度をTAとし、400℃から最高温度までの平均昇温速度をTBとしたとき、TAを2℃/分~10℃/分とし、TBを1.5℃/分~8℃/分とし、かつTA>TBとする。 Therefore, in the heat treatment of the present disclosure, when the average temperature rise rate from 300 ° C. to 400 ° C. at the time of temperature rise of the Fe-based amorphous alloy powder is TA and the average temperature rise rate from 400 ° C. to the maximum temperature is TB. TA is 2 ° C./min to 10 ° C./min, TB is 1.5 ° C./min to 8 ° C./min, and TA> TB.

以上の熱処理を施す場合、最高温度で保持する工程としてもよい。このとき、最高温度での保持時間は、昇温時間に対して十分短い時間でよい。たとえば、5分から15分でも良い。最高温度到達後の合金粉末の冷却は炉中で徐々に冷却を行うことも可能であるが、次の工程までの時間を短縮するためにすばやく実施してもよい。この際に容器ごと炉内から取り出し、炉外の不活性雰囲気中に暴露して冷却することもできる。 When the above heat treatment is applied, it may be a step of keeping at the maximum temperature. At this time, the holding time at the maximum temperature may be sufficiently shorter than the temperature rising time. For example, it may be 5 to 15 minutes. Cooling of the alloy powder after reaching the maximum temperature can be carried out gradually in the furnace, but it may be carried out quickly in order to shorten the time to the next step. At this time, the entire container can be taken out of the furnace and exposed to the inert atmosphere outside the furnace for cooling.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。
表1に示す合金組成になるように、純鉄、フェロボロン、フェロシリコン等の各元素源を配合し、誘導加熱炉で加熱して溶融した合金溶湯を得た。その合金溶湯を、国際公開第2019/49865号に記載の急冷凝固装置(ジェットアトマイズ装置)を用いて微粒化および急冷凝固させてFe基アモルファス合金粉末を得た。フレームジェットの推定温度は1300~1600℃、旋回流速度をおよそ160m/秒とした。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Each element source such as pure iron, ferroboron, and ferrosilicon was blended so as to have the alloy composition shown in Table 1, and heated in an induction heating furnace to obtain a molten alloy. The molten alloy was atomized and rapidly cooled and solidified using the quenching solidification device (jet atomizing device) described in International Publication No. 2019/49965 to obtain an Fe-based amorphous alloy powder. The estimated temperature of the frame jet was 1300 to 1600 ° C., and the swirling flow velocity was about 160 m / sec.

Figure 2022031111000002
Figure 2022031111000002

得られたFe基アモルファス合金粉末の粒度確認と熱処理時の最高温度を決定するために粒度分布測定とDSC測定を実施した。粒度分布はマイクロトラック・ベル社製の粒度分布測定装置(MT3000)を用いてd10=10.0μm、d50=24.4μm、およびd90=49.8μmを採取した。また、DSC測定は日立ハイテク社製(EXTRA6000)装置を用い、測定粉末量30~40mg、温度範囲200~750℃、昇温速度20℃/分として行った。得られたプロファイルの第1ピーク408℃と第2ピーク534℃から熱処理時の最高温度を決定した。 In order to confirm the particle size of the obtained Fe-based amorphous alloy powder and determine the maximum temperature during heat treatment, particle size distribution measurement and DSC measurement were performed. For the particle size distribution, d10 = 10.0 μm, d50 = 24.4 μm, and d90 = 49.8 μm were collected using a particle size distribution measuring device (MT3000) manufactured by Microtrac Bell. The DSC measurement was performed using a Hitachi High-Tech (EXTRA6000) device with a measured powder amount of 30 to 40 mg, a temperature range of 200 to 750 ° C., and a heating rate of 20 ° C./min. The maximum temperature at the time of heat treatment was determined from the first peak 408 ° C. and the second peak 534 ° C. of the obtained profile.

Fe基アモルファス合金と反応しない容器(ステンレス・アルミ製)を用意し、その容器にFe基アモルファス合金粉末を入れ、投入した粉末の中央部に熱電対を挿入し粉末の温度を測定した。容器はあらかじめ目的である加熱温度よりも高い温度で加熱し、あらかじめ表面の水分などの付着物からの加熱によるガスを放出させた。
熱処理用の炉内の均熱帯に位置するようにFe基アモルファス合金粉末を投入した容器を設置し不活性ガスを流入させた。不活性ガスの流入量は酸素濃度0.1%以下となるように調整した。
A container (made of stainless steel / aluminum) that does not react with the Fe-based amorphous alloy was prepared, the Fe-based amorphous alloy powder was placed in the container, and a thermocouple was inserted into the center of the charged powder to measure the temperature of the powder. The container was preheated to a temperature higher than the target heating temperature in advance, and gas due to heating from deposits such as moisture on the surface was released in advance.
A container containing Fe-based amorphous alloy powder was installed so as to be located in the tropics in the heat treatment furnace, and the inert gas was allowed to flow in. The inflow of the inert gas was adjusted so that the oxygen concentration was 0.1% or less.

炉の加熱を制御する温度制御装置に温度制御プログラムをセットし熱処理実施した。加熱は連続的に実施するが、目標温度に近づくと温度制御プログラムにより加熱速度が自動的に低下する。そこで、予め粉末容器に合金粉末入れ熱電対を挿入して温度を測定し、所定の昇温速度となるようにプログラムを施した。実施例および比較例の熱処理温度条件を表2に示す。 A temperature control program was set in the temperature control device that controls the heating of the furnace, and heat treatment was performed. Heating is performed continuously, but when the target temperature is approached, the heating rate is automatically reduced by the temperature control program. Therefore, an alloy powder-filled thermocouple was inserted into the powder container in advance, the temperature was measured, and a program was applied so that the temperature rise rate reached a predetermined level. Table 2 shows the heat treatment temperature conditions of Examples and Comparative Examples.

Figure 2022031111000003
Figure 2022031111000003

表2に記載する熱処理条件にて、実施例1,2、比較例1,2のFe基ナノ結晶合金粉末を作製した。実施例1,2および比較例1,2の粉末の評価として、以下の評価を行った。評価結果を表3に示す。
<飽和磁束密度>
実施例1,2、比較例1,2の各粉末の飽和磁束密度(Ms)を、振動試料型磁力計(VSM)装置(BHV-35)を用いて測定した。それぞれ0.25~0.30gの粉末を秤量し樹脂製カプセルに詰めて試料とした。測定磁界は-10,000~10,000Oeの範囲にて測定した。
The Fe-based nanocrystalline alloy powders of Examples 1 and 2 and Comparative Examples 1 and 2 were prepared under the heat treatment conditions shown in Table 2. The following evaluations were performed as evaluations of the powders of Examples 1 and 2 and Comparative Examples 1 and 2. The evaluation results are shown in Table 3.
<Saturation magnetic flux density>
The saturation magnetic flux density (Ms) of each of the powders of Examples 1 and 2 and Comparative Examples 1 and 2 was measured using a vibration sample magnetometer (VSM) device (BHV-35). 0.25 to 0.30 g of each powder was weighed and packed in resin capsules to prepare a sample. The measured magnetic field was measured in the range of 10,000 to 10,000 Oe.

<コアロス>
実施例1,2、比較例1,2の各粉末とシリコーン樹脂を5wt%加え成形圧1t/cmで成形し、外径13.5mm、内径7.50mm、厚さ2.5mmのリングコアを作製した。作製したリングコア(磁心)に直径0.25mmの1次巻銅線、2次巻銅線を各18回巻き付けた試料をB-Hアナライザ(SY-8218)を用い、測定磁束密度Bm=20、周波数f=3000kHzの条件で測定し、コアロスPを得た。
<Core loss>
5 wt% of each powder of Examples 1 and 2 and Comparative Examples 1 and 2 and a silicone resin were added and molded at a molding pressure of 1 t / cm 2 , and a ring core having an outer diameter of 13.5 mm, an inner diameter of 7.50 mm and a thickness of 2.5 mm was formed. Made. Using a BH analyzer (SY-8218), a sample in which a primary-wound copper wire having a diameter of 0.25 mm and a secondary-wound copper wire are wound 18 times each on the prepared ring core (magnetic core) is used, and the measured magnetic flux density is Bm = 20. The core loss P was obtained by measurement under the condition of frequency f = 3000 kHz.

Figure 2022031111000004
Figure 2022031111000004

表3に示すとおり、実施例1,2は、飽和磁束密度(Ms)が比較例と同等であって、160emu/g以上と、高い値を示している。また、実施例1,2は、コアロスPが比較例に対し、大幅に低減されている。以上により、本実施例によれば、良好な磁気特性のFe基ナノ結晶合金粉末が得られた。 As shown in Table 3, in Examples 1 and 2, the saturation magnetic flux density (Ms) is equivalent to that of the comparative example, and shows a high value of 160 emu / g or more. Further, in Examples 1 and 2, the core loss P is significantly reduced as compared with the comparative example. As described above, according to this example, Fe-based nanocrystalline alloy powder having good magnetic properties was obtained.

実施例1,2、比較例1,2のFe基ナノ結晶合金粉末について、断面(内部)を、透過型電子顕微鏡によって観察し透過型電子顕微鏡観察画像(TEM像)を得た。図1に、実施例1のTEM像を示す。実施例1のFe基ナノ結晶合金粉末は、bcc-Fe微細結晶が全域に発達している。bcc-Fe微細結晶の直径は30nm程度であり、良好な磁気特性を有する組織の特徴を備える組織となっている。なお、実施例2も同様の組織となっていた。 The cross section (inside) of the Fe-based nanocrystal alloy powders of Examples 1 and 2 and Comparative Examples 1 and 2 was observed with a transmission electron microscope to obtain a transmission electron microscope observation image (TEM image). FIG. 1 shows a TEM image of Example 1. In the Fe-based nanocrystal alloy powder of Example 1, bcc-Fe fine crystals are developed over the entire area. The diameter of the bcc-Fe fine crystal is about 30 nm, and the structure has the characteristics of a structure having good magnetic properties. In addition, Example 2 had the same organization.

実施例1,2のFe基ナノ結晶合金粉末において、熱処理前のFe基アモルファス合金粉末について、断面(内部)を、透過型電子顕微鏡によって観察し透過型電子顕微鏡観察画像(TEM像)を得た。このFe基アモルファス合金粉末は、アトマイズにより得られた粉末であり、アトマイズによる急冷凝固後の組織に相当する。すなわち、このFe基アモルファス合金粉末のTEM像は、Fe基アモルファス合金のTEM像でもある。
図2に本実施例のFe基アモルファス合金のTEM像を示す。また、図3に、図2のTEM像を加工した模式図を示す。
In the Fe-based nanocrystalline alloy powders of Examples 1 and 2, the cross section (inside) of the Fe-based amorphous alloy powder before heat treatment was observed with a transmission electron microscope to obtain a transmission electron microscope observation image (TEM image). .. This Fe-based amorphous alloy powder is a powder obtained by atomization, and corresponds to the structure after quenching and solidification by atomization. That is, the TEM image of the Fe-based amorphous alloy powder is also a TEM image of the Fe-based amorphous alloy.
FIG. 2 shows a TEM image of the Fe-based amorphous alloy of this example. Further, FIG. 3 shows a schematic diagram obtained by processing the TEM image of FIG. 2.

図2,3に示すとおり、本実施例のFe基アモルファス合金粉末を構成するFe基アモルファス合金は、Cuの微結晶が分散して存在している。この図中の丸い形態のものがCuの微結晶である。これがCuであることは、SEMエネルギー分散型X線分析(SEM-EDX)分析で確認した。
このCuの微結晶は、直径が10nm程度であり、TEM像から算出したところ、3×10-4個/nm程度の密度で分散している。このCuの微結晶の密度は、TEM像から確認できるCuの微結晶の数を確認して、面積当たりの個数(個/nm)とした。
なお、TEM像を得る条件は、加速電圧:200.0kV、倍率:600,000倍であり、装置は、日本電子株式会社製JEM-2800を用いた。
このCuの微結晶が存在するFe基アモルファス合金からなるFe基アモルファス合金粉末を本開示の熱処理方法で熱処理することにより、良好な磁気特性のFe基ナノ結晶合金粉末が得られた。つまり、直径が50nm以下のCuの微結晶がアモルファス相中に分散して存在しているFe基アモルファス合金は、良好な磁気特性のFe基ナノ結晶合金粉末を製造するためのFe基アモルファス合金粉末に適した合金である。
As shown in FIGS. 2 and 3, in the Fe-based amorphous alloy constituting the Fe-based amorphous alloy powder of this example, microcrystals of Cu are dispersed and exist. The round shape in this figure is a microcrystal of Cu. It was confirmed by SEM energy dispersive X-ray analysis (SEM-EDX) analysis that this was Cu.
The diameter of the Cu microcrystals is about 10 nm, and when calculated from the TEM image, they are dispersed at a density of about 3 × 10 -4 pieces / nm 2 . The density of the Cu microcrystals was set to the number per area (pieces / nm 2 ) by confirming the number of Cu microcrystals that can be confirmed from the TEM image.
The conditions for obtaining a TEM image were an acceleration voltage of 200.0 kV and a magnification of 600,000 times, and JEM-2800 manufactured by JEOL Ltd. was used as the apparatus.
By heat-treating the Fe-based amorphous alloy powder made of the Fe-based amorphous alloy in which the Cu microcrystals are present by the heat treatment method of the present disclosure, an Fe-based nanocrystal alloy powder having good magnetic properties was obtained. That is, the Fe-based amorphous alloy in which fine crystals of Cu having a diameter of 50 nm or less are dispersed in the amorphous phase is the Fe-based amorphous alloy powder for producing the Fe-based nanocrystalline alloy powder having good magnetic properties. It is an alloy suitable for.

Claims (8)

Fe基アモルファス合金粉末を熱処理して、Fe基ナノ結晶合金粉末を製造するFe基ナノ結晶合金粉末の製造方法であって、
前記Fe基アモルファス合金粉末の昇温時の300℃から400℃までの平均昇温速度をTAとし、400℃から最高温度までの平均昇温速度をTBとしたとき、TAが2℃/分~10℃/分であり、TBが1.5℃/分~8℃/分であり、かつTA>TBである条件で、前記Fe基アモルファス合金粉末を熱処理するFe基ナノ結晶合金粉末の製造方法。
A method for producing Fe-based nanocrystalline alloy powder by heat-treating Fe-based amorphous alloy powder to produce Fe-based nanocrystalline alloy powder.
When the average temperature rise rate from 300 ° C. to 400 ° C. when the temperature of the Fe-based amorphous alloy powder is raised is TA, and the average temperature rise rate from 400 ° C. to the maximum temperature is TB, TA is 2 ° C./min to A method for producing an Fe-based nanocrystalline alloy powder by heat-treating the Fe-based amorphous alloy powder under the conditions of 10 ° C./min, TB of 1.5 ° C./min to 8 ° C./min, and TA> TB. ..
結晶粒径が100nm以下のbcc-Fe(Si)微細結晶を有し、前記bcc-Fe(Si)微細結晶が50体積%以上であるFe基ナノ結晶合金粉末を製造する、請求項1に記載のFe基ナノ結晶合金粉末の製造方法。 The first aspect of claim 1, wherein an Fe-based nanocrystal alloy powder having bcc-Fe (Si) fine crystals having a crystal grain size of 100 nm or less and having 50% by volume or more of the bcc-Fe (Si) fine crystals is produced. Method for producing Fe-based nanocrystalline alloy powder. 前記Fe基ナノ結晶合金粉末の組成が、原子比でSiを3~8%、Bを11~17%、Cuを0.7~1.8%、Snを0.05~0.7%、Crを0~1.5%、Nbを0~1.0%、Moを0~1.0%、および残部で表され、前記残部はFeと不純物とからなる請求項1または請求項2に記載のFe基ナノ結晶合金粉末の製造方法。 The composition of the Fe-based nanocrystalline alloy powder is 3 to 8% for Si, 11 to 17% for B, 0.7 to 1.8% for Cu, and 0.05 to 0.7% for Sn in terms of atomic ratio. Cr is 0 to 1.5%, Nb is 0 to 1.0%, Mo is 0 to 1.0%, and the balance is represented by claim 1 or claim 2, wherein the balance is composed of Fe and impurities. The method for producing a Fe-based nanocrystalline alloy powder according to the above method. 前記Fe基アモルファス合金粉末として、直径が50nm以下のCuの微結晶がアモルファス相中に分散して存在しているFe基アモルファス合金からなる粉末を用いる、請求項1~請求項3のいずれか1項に記載のFe基ナノ結晶合金粉末の製造方法。 Any one of claims 1 to 3 which uses, as the Fe-based amorphous alloy powder, a powder made of an Fe-based amorphous alloy in which microcrystals of Cu having a diameter of 50 nm or less are dispersed in an amorphous phase. The method for producing an Fe-based nanocrystalline alloy powder according to the above item. 前記Cuの微結晶が1×10-4個/nm以上6×10-4個/nm以下の範囲で存在している、請求項4に記載のFe基ナノ結晶合金粉末の製造方法。 The method for producing an Fe-based nanocrystal alloy powder according to claim 4, wherein the Cu microcrystals are present in the range of 1 × 10 -4 pieces / nm 2 or more and 6 × 10 -4 pieces / nm 2 or less. 直径が50nm以下のCuの微結晶がアモルファス相中に分散して存在しているFe基アモルファス合金。 An Fe-based amorphous alloy in which fine crystals of Cu having a diameter of 50 nm or less are dispersed in an amorphous phase. 前記Cuの微結晶が1×10-4個/nm以上6×10-4個/nm以下の範囲で存在している請求項6に記載のFe基アモルファス合金。 The Fe-based amorphous alloy according to claim 6, wherein the Cu microcrystals are present in the range of 1 × 10 -4 pieces / nm 2 or more and 6 × 10 -4 pieces / nm 2 or less. 前記Fe基アモルファス合金の組成が、原子比でSiを3~8%、Bを11~17%、Cuを0.7~1.8%、Snを0.05~0.7%、Crを0~1.5%、Nbを0~1.0%、Moを0~1.0%、および残部で表され、前記残部はFeと不純物とからなる請求項6または請求項7に記載のFe基アモルファス合金。 The composition of the Fe-based amorphous alloy is 3 to 8% for Si, 11 to 17% for B, 0.7 to 1.8% for Cu, 0.05 to 0.7% for Sn, and Cr in terms of atomic ratio. The 6th or 7th claim, wherein 0 to 1.5%, Nb is 0 to 1.0%, Mo is 0 to 1.0%, and the balance is represented by the balance, which is composed of Fe and impurities. Fe-based amorphous alloy.
JP2021048151A 2020-08-05 2021-03-23 METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY POWDER AND Fe-BASED AMORPHOUS ALLOY Pending JP2022031111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110895635.2A CN114086089A (en) 2020-08-05 2021-08-05 Method for manufacturing Fe-based nanocrystalline alloy powder and Fe-based amorphous alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132786 2020-08-05
JP2020132786 2020-08-05

Publications (1)

Publication Number Publication Date
JP2022031111A true JP2022031111A (en) 2022-02-18

Family

ID=80324386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048151A Pending JP2022031111A (en) 2020-08-05 2021-03-23 METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY POWDER AND Fe-BASED AMORPHOUS ALLOY

Country Status (1)

Country Link
JP (1) JP2022031111A (en)

Similar Documents

Publication Publication Date Title
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JP6088192B2 (en) Manufacturing method of dust core
JP6493639B1 (en) Fe-based nanocrystalline alloy powder and method for producing the same, Fe-based amorphous alloy powder, and magnetic core
JP6892009B2 (en) Alloy powder, Fe-based nanocrystalline alloy powder and magnetic core
WO2007032531A1 (en) Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
JP7387008B2 (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same
JP2013055182A (en) Soft magnetic alloy powder, nanocrystal soft magnetic alloy powder, production method therefor, and powder magnetic core
JP6673536B1 (en) Powder for magnetic core, magnetic core and coil parts using the same
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JPWO2020196608A1 (en) Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
JP2022031111A (en) METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY POWDER AND Fe-BASED AMORPHOUS ALLOY
JP2020158831A (en) Soft magnetic alloy and magnetic part
CN114086089A (en) Method for manufacturing Fe-based nanocrystalline alloy powder and Fe-based amorphous alloy
JP2020186422A (en) Fe-BASED NANOCRYSTAL ALLOY AND METHOD FOR PRODUCING THE SAME
WO2020179535A1 (en) Magnetic powder and method for manufacturing same, magnetic core and method for manufacturing same, and coil component
JP2021036074A (en) Fe-BASED ALLOY COMPOSITION, Fe-BASED ALLOY COMPOSITION POWDER, AND MAGNETIC CORE
Chen et al. The Influence of Annealing Temperature on Microstructure and Magnetic Properties of Fe74Co3Si8B10Al1Nb4 Amorphous Alloy Ribbons
KR20230041640A (en) Fe-based soft magnetic alloy and method for manufacturing thereof
JP2022152452A (en) Soft magnetic powder and magnetic substance core
TW201623636A (en) Amorphous alloy thin strip structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240215