JP2022029964A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2022029964A
JP2022029964A JP2020133582A JP2020133582A JP2022029964A JP 2022029964 A JP2022029964 A JP 2022029964A JP 2020133582 A JP2020133582 A JP 2020133582A JP 2020133582 A JP2020133582 A JP 2020133582A JP 2022029964 A JP2022029964 A JP 2022029964A
Authority
JP
Japan
Prior art keywords
battery cell
bus bar
battery
electrode plate
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020133582A
Other languages
Japanese (ja)
Other versions
JP7218330B2 (en
Inventor
雄司 片山
Yuji Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2020133582A priority Critical patent/JP7218330B2/en
Publication of JP2022029964A publication Critical patent/JP2022029964A/en
Application granted granted Critical
Publication of JP7218330B2 publication Critical patent/JP7218330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To solve the problem that it is difficult to assemble a battery pack in conventional configuration.SOLUTION: A battery pack comprises: a battery cell 10 in which a power body is accommodated; an electrode plate 11 which is attached to a lid of the battery cell 10 and caulked with a current collecting component within the battery cell; and a bus bar terminal welded to the electrode plate 11. The electrode plate 11 includes an inclined plane which is formed so as to separate from the lid of the battery cell as it is away from a position of caulking. The bus bar terminal includes: a composition plane 32a having such an inclination as to be close to the lid of the battery cell as it is close toward the position of the caulking; and base parts 33a and 33b which are formed continuously with one end of the composition plane 32a and transfer weighting in a direction toward the inclined plane to the composition plane 32a. When a surface constituting the lid of the battery cell 10 is defined as a horizontal surface, a first angle α which is an angle formed from the horizontal surface and the inclined plane is smaller than a second angle β which is an angle formed from the horizontal surface and the composition plane 32a.SELECTED DRAWING: Figure 4

Description

本発明は、例えば、車両の駆動用バッテリとして利用される組電池に関する。 The present invention relates to, for example, an assembled battery used as a battery for driving a vehicle.

自動車等の車両では、駆動用電力を供給するために、複数の電池を組み合わせた組電池が用いられる。組電池は、複数の電池セルを積層するように重ね、積層した電池を直列接続した電池スタックを少なくとも1つ含む。そして、電池スタックでは、電池セルを積層した状態で隣接する電池セルの上面の高さにばらつきが生じる。そこで、このような高さにばらつきがある電極同士を電気的に接続する技術が特許文献1に開示されている。 In a vehicle such as an automobile, an assembled battery in which a plurality of batteries are combined is used to supply electric power for driving. The assembled battery includes at least one battery stack in which a plurality of battery cells are stacked so as to be stacked and the stacked batteries are connected in series. Then, in the battery stack, the heights of the upper surfaces of the adjacent battery cells vary in the state where the battery cells are stacked. Therefore, Patent Document 1 discloses a technique for electrically connecting electrodes having such variations in height.

特許文献1に記載の組電池の製造方法は、バスバーを保持した複数の保持部を薄肉の連結部により連鎖的に連結したバスバーホルダを、電池セルの電極に近付けて、各電池セルの電極の高さのばらつきに合わせて各連結部の連結片を変形させる。また、各保持部のバスバーを、ガイドと位置決めピンとの隙間の範囲内で支持板に沿う方向に移動させ、さらに、支持板と係止突起との間で位置決めピンに沿う方向に移動させて、隣り合う2つの電池セルの電極に接点部が接触する姿勢の位置にバスバーを移動させる。すると、隣り合う2つの連結部の開口の内側に配置されたバスバーの接点部が、隣り合う2つの電池セルの電極にそれぞれ接触し密着する。 In the method for manufacturing an assembled battery described in Patent Document 1, a bus bar holder in which a plurality of holding portions holding a bus bar are connected in a chain by a thin-walled connecting portion is brought close to the electrode of the battery cell, and the electrode of each battery cell is formed. The connecting piece of each connecting portion is deformed according to the variation in height. Further, the bus bar of each holding portion is moved in the direction along the support plate within the range of the gap between the guide and the positioning pin, and further moved in the direction along the positioning pin between the support plate and the locking projection. The bus bar is moved to a position where the contact portion contacts the electrodes of two adjacent battery cells. Then, the contact portion of the bus bar arranged inside the opening of the two adjacent connecting portions comes into contact with and closely adheres to the electrodes of the two adjacent battery cells.

特開2019-160597号公報Japanese Unexamined Patent Publication No. 2019-160597

しかしながら、隣り合う電極を連結するバスバー(以下バスバー端子と称す)は、サイズが小さいという特徴がある。そして、隣接する電極間に高さの差があることがあるため、溶接する際には加重をかけて、高さの差に起因する溶接不良を防止する必要がある。そのため、バスバー端子を溶接する際には、加重をかける場所と溶接を行う箇所がほぼ同一の箇所となるため、加重をかける場所の位置精度が必要になる問題がある。しかしながら、この加重をかける場所の位置精度に関する問題について特許文献1ではなんら解決されていない。 However, the bus bar connecting adjacent electrodes (hereinafter referred to as a bus bar terminal) is characterized in its small size. Since there may be a difference in height between adjacent electrodes, it is necessary to apply a load when welding to prevent welding defects due to the difference in height. Therefore, when welding the bus bar terminal, the place where the load is applied and the place where the welding is performed are almost the same place, so that there is a problem that the position accuracy of the place where the load is applied is required. However, Patent Document 1 does not solve the problem of the position accuracy of the place where the weight is applied.

本発明は、上記事情に鑑みてなされたものであり、組電池の組み立てを容易にすることを目的とするものである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to facilitate the assembly of an assembled battery.

本発明の組電池の一態様は、電力体が収納される電池セルと、前記電池セルの蓋に取り付けられ、前記電池セル内の終電部品とカシメ固定される電極板と、前記電極板に溶接されるバスバー端子と、を有し、前記電極板は、前記カシメ固定の位置から離れるに従って前記電池セルの蓋から離れるように形成される傾斜面を有し、前記バスバー端子は、前記カシメ固定の位置に向かって近づくに従って、前記電池セルの蓋に近づくような傾斜を有する接合面と、前記接合面の一端と連続して形成され、前記接合面に対して前記傾斜面に向かう方向の加重を伝達するベース部と、を有し、前記電池セルの蓋を構成する面を水平面としたとき、前記水平面と前記傾斜面とがなす角である第1の角度は、前記水平面と前記接合面とがなす角である第2の角度よりも小さい。 One aspect of the assembled battery of the present invention is a battery cell in which a power source is housed, an electrode plate attached to the lid of the battery cell and caulked and fixed to the last electric component in the battery cell, and welded to the electrode plate. The electrode plate has an inclined surface formed so as to move away from the lid of the battery cell as the distance from the caulked fixing position increases, and the bus bar terminal has the caulked fixing position. A joint surface having an inclination that approaches the lid of the battery cell as it approaches the position and one end of the joint surface are continuously formed, and a load is applied to the joint surface in the direction toward the inclined surface. When the surface constituting the lid of the battery cell is a horizontal surface having a base portion for transmission, the first angle, which is an angle formed by the horizontal surface and the inclined surface, is the joint surface between the horizontal surface and the inclined surface. It is smaller than the second angle, which is the angle formed by the battery.

本発明の組電池は、溶接対象の場所とは異なるバスバー端子のベース部を介して溶接対象の接合面を傾斜面に押しつける加重を付与する。 The assembled battery of the present invention applies a load that presses the joint surface of the welding target against the inclined surface via the base portion of the bus bar terminal different from the location of the welding target.

本発明の組電池によれば、組電池の組み立てを容易にすることができる。 According to the assembled battery of the present invention, the assembled battery can be easily assembled.

実施の形態1にかかる組電池の一部の斜視図である。It is a perspective view of a part of the assembled battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる組電池の一部の上面図である。It is a top view of a part of the assembled battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる組電池のバスバー端子の斜視図である。It is a perspective view of the bus bar terminal of the assembled battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる組電池のバスバー端子の組み込み方法を説明する図である。It is a figure explaining the method of incorporating the bus bar terminal of the assembled battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる組電池のバスバー端子によって電池セルの高さの差を吸収する様子を説明する図である。It is a figure explaining how the bus bar terminal of the assembled battery which concerns on Embodiment 1 absorbs the difference in the height of a battery cell. 実施の形態2にかかる組電池のスペーサ枠の構造を説明する図である。It is a figure explaining the structure of the spacer frame of the assembled battery which concerns on Embodiment 2. FIG. 実施の形態2にかかる組電池のスペーサ枠に電池セルを組み込んだ状態を説明する図である。It is a figure explaining the state in which the battery cell is incorporated in the spacer frame of the assembled battery which concerns on Embodiment 2. FIG. 実施の形態2にかかる組電池のスペーサ枠による公差管理の簡略化の効果を説明する模式図である。It is a schematic diagram explaining the effect of the simplification of tolerance management by the spacer frame of the assembled battery which concerns on Embodiment 2. FIG. 実施の形態2にかかる組電池のスペーサ枠による電池セルの傾き低減効果を説明する模式図である。It is a schematic diagram explaining the effect of reducing the inclination of a battery cell by the spacer frame of the assembled battery which concerns on Embodiment 2. FIG.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In order to clarify the explanation, the following description and drawings are omitted or simplified as appropriate. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.

以下で説明する組電池は、複数の電池セルが直列接続され1つの電池として機能する電池スタックの1つを説明するが、組電池は、複数の電池スタックが並列接続されていてもよい。また、以下では、実施の形態1にかかる組電池の特徴の1つである組電池の構造的な特徴について説明する。 The assembled battery described below describes one of the battery stacks in which a plurality of battery cells are connected in series and functions as one battery, but the assembled battery may have a plurality of battery stacks connected in parallel. Further, in the following, the structural characteristics of the assembled battery, which is one of the characteristics of the assembled battery according to the first embodiment, will be described.

図1に実施の形態1にかかる組電池の一部の斜視図を示す。図1では、電池スタックを構成する電池セルのうち7つ分を抜き出したものである。図1に示すように、電池スタックは、電池セル10をスペーサ枠20を介して積層するように重ねたものである。図1では、複数の電池セル10うち元も右側に位置する電池セル10のみが見える状態となっており、他の電池セル10は、スペーサ枠20により隠れた状態となっている。図1において見える電池セル10にあるように、電池セル10は、電極となる電極板11を有する。 FIG. 1 shows a perspective view of a part of the assembled battery according to the first embodiment. In FIG. 1, seven of the battery cells constituting the battery stack are extracted. As shown in FIG. 1, the battery stack is a stack of battery cells 10 stacked so as to be laminated via a spacer frame 20. In FIG. 1, of the plurality of battery cells 10, only the battery cell 10 originally located on the right side can be seen, and the other battery cells 10 are hidden by the spacer frame 20. As shown in the battery cell 10 visible in FIG. 1, the battery cell 10 has an electrode plate 11 as an electrode.

また、実施の形態1にかかる組電池1では重ね合わせた電池の上部にバスバー枠30を設け、バスバー枠30内に配置するバスバー端子により隣接する2つの電池セル10の電極を電気的に接続する。以下では、このバスバー端子及びバスバー端子が接続される電極板11の詳細な構成について説明する。 Further, in the assembled battery 1 according to the first embodiment, the bus bar frame 30 is provided on the upper portion of the stacked batteries, and the electrodes of the two adjacent battery cells 10 are electrically connected by the bus bar terminals arranged in the bus bar frame 30. .. Hereinafter, the detailed configuration of the bus bar terminal and the electrode plate 11 to which the bus bar terminal is connected will be described.

なお、図1では、バスバーカバー40を示した。バスバーカバー40は、電池セル10の2つの電極のそれぞれに対して設けられるバスバー枠30の端部付近をつなぐように積層された電池セル10及びスペーサ枠20の上部にはめ込まれる。詳しくは後述するが、このバスバーカバー40は、バスバー端子に対して加重を付与する加圧部品としても機能する。 In addition, in FIG. 1, the bus bar cover 40 is shown. The bus bar cover 40 is fitted in the upper part of the battery cell 10 and the spacer frame 20 laminated so as to connect the vicinity of the end portion of the bus bar frame 30 provided for each of the two electrodes of the battery cell 10. As will be described in detail later, the bus bar cover 40 also functions as a pressure component that applies a load to the bus bar terminal.

図2を参照してバスバー端子について説明する。図2は、実施の形態1にかかる組電池の一部の上面図である。なお、図2では、バスバー端子31の全体を示すためにバスバーカバー40が取り付けられていない状態を示した。図2に示すように、実施の形態1にかかる組電池1では、バスバー端子31がバスバー枠30の枠内に配置される。また、バスバー端子31は、隣り合う2つの電池セル10の電極板11を接続するようにU字形状を有する。 The bus bar terminal will be described with reference to FIG. FIG. 2 is a top view of a part of the assembled battery according to the first embodiment. Note that FIG. 2 shows a state in which the bus bar cover 40 is not attached in order to show the entire bus bar terminal 31. As shown in FIG. 2, in the assembled battery 1 according to the first embodiment, the bus bar terminal 31 is arranged in the frame of the bus bar frame 30. Further, the bus bar terminal 31 has a U-shape so as to connect the electrode plates 11 of two adjacent battery cells 10.

続いて、バスバー端子31の単体の構成について説明する。図3に実施の形態1にかかる組電池のバスバー端子31の斜視図を示す。図3に示すように、バスバー端子31は、U字形状を有する。そして、一方の端部に互いに隣接する電池セル10のうちの一方の電池セル10の電極板11(以下、電極板11aとも称す)に接合される接合面32aが設けられ、他方の端部に互いに隣接する電池セル10うちの他方の電池セル10の電極板11(以下、電極板11bとも称す)に接合される接合面32bが設けられる。そして、接合面32aと接合面32bとの一端を接続するようにベース部33が設けられる。ベース部33は、側面視ではL字形状を有し、L字形状の一端において接合面32a及び接合面32bと接続される。 Subsequently, the configuration of a single bus bar terminal 31 will be described. FIG. 3 shows a perspective view of the bus bar terminal 31 of the assembled battery according to the first embodiment. As shown in FIG. 3, the bus bar terminal 31 has a U-shape. Then, a bonding surface 32a to be joined to the electrode plate 11 (hereinafter, also referred to as an electrode plate 11a) of one of the battery cells 10 of the battery cells 10 adjacent to each other is provided at one end, and the other end is provided with a bonding surface 32a. A bonding surface 32b to be joined to an electrode plate 11 (hereinafter, also referred to as an electrode plate 11b) of the other battery cell 10 of the battery cells 10 adjacent to each other is provided. Then, the base portion 33 is provided so as to connect one end of the joint surface 32a and the joint surface 32b. The base portion 33 has an L-shape when viewed from the side, and is connected to the joint surface 32a and the joint surface 32b at one end of the L-shape.

また、詳しくは、後述するが、バスバー端子31を構成する板の板厚は、電極板11を構成する板の板厚よりも薄く形成される。特に、バスバー端子31の接合面32a及び接合面32bの板厚は、電極板11を構成する板の板厚よりも薄く形成される。また、接合面32a及び接合面32bは、電池セル10の蓋を構成する面を水平面としたとき、バスバー枠30内に収まった状態で、解放端となる他端側が当該水平面に対して電池セル10側に近づくような傾斜を有する。 Further, as will be described in detail later, the plate thickness of the plate constituting the bus bar terminal 31 is formed to be thinner than the plate thickness of the plate constituting the electrode plate 11. In particular, the plate thickness of the joint surface 32a and the joint surface 32b of the bus bar terminal 31 is formed to be thinner than the plate thickness of the plate constituting the electrode plate 11. Further, when the surface constituting the lid of the battery cell 10 is a horizontal surface, the joint surface 32a and the joint surface 32b are housed in the bus bar frame 30, and the other end side of the open end is the battery cell with respect to the horizontal surface. It has an inclination that approaches the 10 side.

続いて、バスバー端子31の組み込み方法について説明する。図4に実施の形態1にかかる組電池のバスバー端子の組み込み方法を説明する図を示す。図4は、接合面32と電極板11との接合部分がわかる組電池1の断面図である。 Subsequently, a method of incorporating the bus bar terminal 31 will be described. FIG. 4 shows a diagram illustrating a method of incorporating the bus bar terminal of the assembled battery according to the first embodiment. FIG. 4 is a cross-sectional view of the assembled battery 1 in which the joint portion between the joint surface 32 and the electrode plate 11 can be seen.

図4に示すように、実施の形態1にかかる組電池1では、電極板11が電池セル10の蓋に取り付けられ、電池セル10内の終電部品とカシメ固定される。そして、電極板11は、カシメ固定の位置から離れるに従って電池セル10の蓋から離れるように形成される傾斜面を有する。この傾斜面は、電池セル10の蓋を水平面とした場合、当該水平面とのなす角が第1の角度αとなるように形成される。 As shown in FIG. 4, in the assembled battery 1 according to the first embodiment, the electrode plate 11 is attached to the lid of the battery cell 10 and is caulked and fixed to the last train component in the battery cell 10. The electrode plate 11 has an inclined surface formed so as to move away from the lid of the battery cell 10 as the distance from the crimping fixing position increases. This inclined surface is formed so that when the lid of the battery cell 10 is a horizontal plane, the angle formed by the horizontal plane is the first angle α.

また、図4では、バスバー端子31のベース部33を構成する面を平行面33aと垂直面33bとにより構成する物とした。平行面33aと垂直面33bは、バスバー枠30を構成する枠体に沿ってL字形状となるように形成される。そして、垂直面33bの一端に連続して形成されるように接合面32aが設けられる。そして、接合面32aは、電池セル10の蓋を水平面とした場合、当該水平面とのなす角が第2の角度βとなるように形成される。また、接合面32aは、電極板11のカシメ固定の位置に向かって近づくに従って電池セル10の蓋に近づく傾斜を有する。 Further, in FIG. 4, the surface constituting the base portion 33 of the bus bar terminal 31 is composed of a parallel surface 33a and a vertical surface 33b. The parallel surface 33a and the vertical surface 33b are formed so as to have an L-shape along the frame body constituting the bus bar frame 30. Then, the joint surface 32a is provided so as to be continuously formed at one end of the vertical surface 33b. When the lid of the battery cell 10 is a horizontal plane, the joint surface 32a is formed so that the angle formed by the horizontal plane is the second angle β. Further, the joint surface 32a has an inclination toward the lid of the battery cell 10 as it approaches the position where the electrode plate 11 is fixed by caulking.

そして、実施の形態1にかかる組電池1では、バスバーカバー40をベース部33の平行面33aに押し当て、バスバーカバー40を介して平行面33aに加重を付加する。これにより、接合面32aが電極板11に押し当てられる。このとき、ベース部33をL字形状としていることで、接合面32aを電極板11に押し当てた際に接合面32aに変位を生じさせやすくなる。また、実施の形態1にかかる組電池1では、第1の角度αを第2の角度βよりも小さくする。これにより、バスバー端子31を電極板11に押し当てた際に接合面32aに変位を生じさせ、後述する電池セル10の高さの差を吸収することができる。 Then, in the assembled battery 1 according to the first embodiment, the bus bar cover 40 is pressed against the parallel surface 33a of the base portion 33, and a load is applied to the parallel surface 33a via the bus bar cover 40. As a result, the joint surface 32a is pressed against the electrode plate 11. At this time, since the base portion 33 has an L-shape, the joint surface 32a is likely to be displaced when the joint surface 32a is pressed against the electrode plate 11. Further, in the assembled battery 1 according to the first embodiment, the first angle α is made smaller than the second angle β. As a result, when the bus bar terminal 31 is pressed against the electrode plate 11, the joint surface 32a is displaced, and the difference in height of the battery cell 10, which will be described later, can be absorbed.

なお、実施の形態1にかかる組電池1では、バスバー端子31の板厚を電極板11の板厚よりも薄くする。特に、バスバー端子31の接合面の板厚を電極板11の板厚よりも薄くすると好適である。これにより、電極板11に接合面を押し当てた際に接合面32に変位を生じやすくさせることができる。 In the assembled battery 1 according to the first embodiment, the plate thickness of the bus bar terminal 31 is made thinner than the plate thickness of the electrode plate 11. In particular, it is preferable that the plate thickness of the joint surface of the bus bar terminal 31 is thinner than the plate thickness of the electrode plate 11. As a result, when the joint surface is pressed against the electrode plate 11, the joint surface 32 can be easily displaced.

続いて、実施の形態1にかかる組電池1において、隣接する電池セル10に対してバスバー端子31を組み付けた状態について説明する。そこで、図5に実施の形態1にかかる組電池のバスバー端子によって電池セルの高さの差を吸収する様子を説明する図を示す。図5は、図4のV-V線に沿った組電池1の断面図であって、2つの電池セル10を含む部分を示したものである。 Subsequently, in the assembled battery 1 according to the first embodiment, a state in which the bus bar terminal 31 is assembled to the adjacent battery cells 10 will be described. Therefore, FIG. 5 shows a diagram illustrating a state in which the difference in height of the battery cells is absorbed by the bus bar terminal of the assembled battery according to the first embodiment. FIG. 5 is a cross-sectional view of the assembled battery 1 along the VV line of FIG. 4, showing a portion including two battery cells 10.

図5に示す例では、電池セル10aと電池セル10aに隣接する電池セル10bを示した。また、図5では、電池セル10aに対して電池セル10bが高さH分だけ高い位置で組み付けられた状態を示した。 In the example shown in FIG. 5, the battery cell 10a and the battery cell 10b adjacent to the battery cell 10a are shown. Further, FIG. 5 shows a state in which the battery cell 10b is assembled at a position higher by the height H with respect to the battery cell 10a.

このような場合、電池セル10aの電極板11aと接合面32aとの接合状態を示すA-A線に沿った断面をみると、電極板11aの傾斜面と接合面32aは点aで接する。このとき、電極板11aの傾斜面が接合面32a側に近づくような傾斜を有しているため、電極板11aの傾斜面と接合面32aとの距離は接合面32aと電池セル10aの蓋との距離ほどは離れない。 In such a case, looking at the cross section along the line AA showing the bonding state between the electrode plate 11a and the bonding surface 32a of the battery cell 10a, the inclined surface of the electrode plate 11a and the bonding surface 32a are in contact with each other at the point a. At this time, since the inclined surface of the electrode plate 11a has an inclination so as to approach the joint surface 32a side, the distance between the inclined surface of the electrode plate 11a and the joint surface 32a is the distance between the joint surface 32a and the lid of the battery cell 10a. Not as far as the distance.

また、電池セル10bの電極板11bと接合面32bとの接合状態を示すB-B線に沿った断面をみると、電極板11bの傾斜面と接合面32bとは面全体が接する。この電池セル10b側では、バスバー端子31を電極板11に押し当てた際に接合面32bが高さH分だけ変位して、電極板11bの傾斜面と接合面32bとは面全体が接する状態となる。 Further, looking at the cross section along the line BB showing the bonding state between the electrode plate 11b and the bonding surface 32b of the battery cell 10b, the inclined surface of the electrode plate 11b and the bonding surface 32b are in contact with each other. On the battery cell 10b side, when the bus bar terminal 31 is pressed against the electrode plate 11, the joint surface 32b is displaced by the height H, and the inclined surface of the electrode plate 11b and the joint surface 32b are in contact with each other. It becomes.

上記説明より、実施の形態1にかかる組電池1では、バスバー端子31の接合面について、接合面の開放端が電池セル10の蓋に近づくような傾斜を持たせ、バスバー端子31のベース部33に加重を付与することで、接合面を電極板11に押し当てた際に隣り合う電池セル10の組み付けにおいて生じた高さを吸収する変位を接合面に生じさせる。これにより、実施の形態1にかかる組電池1では、バスバー端子31の溶接箇所を押さえつけることなくバスバー端子31の溶接箇所に加重を付与しながらバスバー端子31と電極板11とを溶接することができる。つまり、実施の形態1にかかる組電池1では、組電池の組み立てを容易化することができる。 From the above description, in the assembled battery 1 according to the first embodiment, the joint surface of the bus bar terminal 31 is inclined so that the open end of the joint surface approaches the lid of the battery cell 10, and the base portion 33 of the bus bar terminal 31 is provided. By applying a load to the joint surface, a displacement that absorbs the height generated in the assembly of the adjacent battery cells 10 when the joint surface is pressed against the electrode plate 11 is generated on the joint surface. As a result, in the assembled battery 1 according to the first embodiment, the bus bar terminal 31 and the electrode plate 11 can be welded while applying a load to the welded portion of the bus bar terminal 31 without pressing the welded portion of the bus bar terminal 31. .. That is, in the assembled battery 1 according to the first embodiment, it is possible to facilitate the assembly of the assembled battery.

また、実施の形態1にかかる組電池1では、バスバー端子31に加重を付与する治具がバスバー端子31と電極板11とを溶接する箇所から離れているため、治具にスパッタによる汚れを防止する対策をする必要がない。 Further, in the assembled battery 1 according to the first embodiment, since the jig for applying a load to the bus bar terminal 31 is separated from the portion where the bus bar terminal 31 and the electrode plate 11 are welded, the jig is prevented from being contaminated by spatter. There is no need to take measures.

また、実施の形態1にかかる組電池1では、第1の角度αを第2の角度βよりも小さくする。これにより、実施の形態1にかかる組電池1では、バスバー端子31により電極板11が電気的に接続される2つの電池セル10の組み付け高さに差が生じても、当該高さの差を接合面の変位により吸収することができる。このとき、バスバー端子31の板厚を電極板11の板厚よりも薄くすることで、この変位をさらに容易にすることができる。 Further, in the assembled battery 1 according to the first embodiment, the first angle α is made smaller than the second angle β. As a result, in the assembled battery 1 according to the first embodiment, even if there is a difference in the assembled height of the two battery cells 10 to which the electrode plate 11 is electrically connected by the bus bar terminal 31, the difference in height is caused. It can be absorbed by the displacement of the joint surface. At this time, by making the plate thickness of the bus bar terminal 31 thinner than the plate thickness of the electrode plate 11, this displacement can be further facilitated.

実施の形態2
実施の形態2では、組電池1で用いられるスペーサ枠20について詳細に説明する。実施の形態2では、電池セル10の蓋が設けられる面を表面、上面に対向する面を底面とし、底面から表面に向かう方向を高さ方向(例えば、Y方向)、電池セル10の一方の電極から他方の電極に向かう方向を幅方向(例えば、X方向)、高さ方向及び幅方向に直交する方向を奥行き方向(例えば、Z方向)とする。
Embodiment 2
In the second embodiment, the spacer frame 20 used in the assembled battery 1 will be described in detail. In the second embodiment, the surface on which the lid of the battery cell 10 is provided is the front surface, the surface facing the upper surface is the bottom surface, and the direction from the bottom surface to the surface is the height direction (for example, the Y direction), and one of the battery cells 10. The direction from one electrode to the other electrode is the width direction (for example, the X direction), and the direction orthogonal to the height direction and the width direction is the depth direction (for example, the Z direction).

図6に実施の形態2にかかる組電池のスペーサ枠20の構造を説明する図を示す。図6では、X方向から見たスペーサ枠20の側面図(例えば右側面図)を図面中段に示し、右側面図の左方向から見た第1面の側面図を図面上段に示し、左側面図の右方向から見た第2面の側面図を図面下段に示した。 FIG. 6 shows a diagram illustrating the structure of the spacer frame 20 of the assembled battery according to the second embodiment. In FIG. 6, a side view (for example, a right side view) of the spacer frame 20 seen from the X direction is shown in the middle part of the drawing, and a side view of the first surface seen from the left side of the right side view is shown in the upper part of the drawing. The side view of the second surface seen from the right side of the figure is shown in the lower part of the drawing.

図6に示すように、スペーサ枠20は、第1面側のスペーサ枠20の外周を囲む枠を有する。そして、枠に囲まれる領域の平坦面にX基準面を形成する。このX基準面は、電池セル10の側面のうちX方向に延在する面が接する。また、枠を構成する面のうちX方向に対向する第1の側面と第2の側面の一方にY基準面を形成する。また、Y基準面に対向する面に弾性部22を形成する。なお、Y基準面に弾性部22を形成することもできる。Y基準面には、電池セル10においてX方向で対向する側面の一方が当接する。 As shown in FIG. 6, the spacer frame 20 has a frame surrounding the outer periphery of the spacer frame 20 on the first surface side. Then, the X reference plane is formed on the flat surface of the region surrounded by the frame. The X reference plane is in contact with the side surface of the battery cell 10 extending in the X direction. Further, a Y reference surface is formed on one of the first side surface and the second side surface facing the X direction among the surfaces constituting the frame. Further, the elastic portion 22 is formed on the surface facing the Y reference surface. The elastic portion 22 can also be formed on the Y reference plane. One of the side surfaces of the battery cell 10 facing in the X direction abuts on the Y reference surface.

スペーサ枠20は、枠を構成する面のうちY方向に対向する上面と下面のうち下面に弾性部23を形成する。また、上面には支持面(例えば、Z基準面)を形成する。詳しくは後述するが、Z基準面には電池セル10の電極板11が当接する。また、Z基準面が形成される側には、スペーサ枠20にバスバー枠30を固定するスペーサ枠固定爪21が形成される。 The spacer frame 20 forms an elastic portion 23 on the upper surface of the surfaces constituting the frame facing in the Y direction and the lower surface of the lower surface. Further, a support surface (for example, a Z reference surface) is formed on the upper surface. As will be described in detail later, the electrode plate 11 of the battery cell 10 comes into contact with the Z reference surface. Further, on the side where the Z reference surface is formed, a spacer frame fixing claw 21 for fixing the bus bar frame 30 to the spacer frame 20 is formed.

また、図6の下段に示すように、第2面には櫛歯構造24が形成される。この櫛歯構造24は電池セル10を冷却するための冷却風の流路を構成するものである。 Further, as shown in the lower part of FIG. 6, a comb tooth structure 24 is formed on the second surface. The comb tooth structure 24 constitutes a flow path for cooling air for cooling the battery cell 10.

続いて、図6の第1面側に電池セル10を組み込んだ状態について説明する。そこで、図7に実施の形態2にかかる組電池のスペーサ枠に電池セルを組み込んだ状態を説明する図を示す。図7に示すように、実施の形態2にかかる組電池1では、弾性部22によりスペーサ枠20に組み込まれた電池セル10は、Z方向の側面がY基準面に押し当てられる。また、実施の形態2にかかる組電池1では、弾性部23によりスペーサ枠20に組み込まれた電池セル10は、電極板11がZ基準面に押し当てられる。 Subsequently, a state in which the battery cell 10 is incorporated on the first surface side of FIG. 6 will be described. Therefore, FIG. 7 shows a diagram illustrating a state in which the battery cell is incorporated in the spacer frame of the assembled battery according to the second embodiment. As shown in FIG. 7, in the assembled battery 1 according to the second embodiment, the side surface of the battery cell 10 incorporated in the spacer frame 20 by the elastic portion 22 is pressed against the Y reference surface. Further, in the assembled battery 1 according to the second embodiment, the electrode plate 11 of the battery cell 10 incorporated in the spacer frame 20 by the elastic portion 23 is pressed against the Z reference plane.

このとき、スペーサ枠20では、Z基準面に電極板11を押し当てる構成とすることで、公差管理を簡略化する。また、スペーサ枠20では、Z基準面の幅と弾性部23の幅を適切に設定することで電池セル10の製造工程で生じた電池セル10のケース膨張による電池セル10の傾きを低減する。 At this time, the spacer frame 20 is configured to press the electrode plate 11 against the Z reference surface, thereby simplifying tolerance management. Further, in the spacer frame 20, the inclination of the battery cell 10 due to the case expansion of the battery cell 10 generated in the manufacturing process of the battery cell 10 is reduced by appropriately setting the width of the Z reference surface and the width of the elastic portion 23.

そこで、模式図を用いて公差管理の簡略化と、電池セル10の傾き防止の効果について図7及び図8を参照して説明する。なお、図7及び図8では、スペーサ枠20の効果を説明するために比較例としてスペーサ枠200を示す。また、図7及び図8では、スペーサ枠20に実施の形態1で説明した電池セル10を組み込み、比較例となるスペーサ枠200には電極の形状が電池セル10とは異なる電池セル100を組み込む。 Therefore, the simplification of tolerance management and the effect of preventing the tilt of the battery cell 10 will be described with reference to FIGS. 7 and 8 by using a schematic diagram. In addition, in FIG. 7 and FIG. 8, a spacer frame 200 is shown as a comparative example in order to explain the effect of the spacer frame 20. Further, in FIGS. 7 and 8, the battery cell 10 described in the first embodiment is incorporated in the spacer frame 20, and the battery cell 100 having an electrode shape different from that of the battery cell 10 is incorporated in the spacer frame 200 as a comparative example. ..

まず、図8に実施の形態2にかかる組電池のスペーサ枠20による公差管理の簡略化の効果を説明する模式図を示す。図8では、上段にスペーサ枠200に電池セル100を組み込んだ比較例を示し、下段に実施の形態2にかかるスペーサ枠20に電池セル10を組み込んだものを示した。なお、スペーサ枠200とスペーサ枠20とではZ基準面が当接する部分が異なる。また、スペーサ枠200は、弾性部22及び弾性部23に相当する弾性部220及び弾性部230を有する。 First, FIG. 8 shows a schematic diagram illustrating the effect of simplifying tolerance management by the spacer frame 20 of the assembled battery according to the second embodiment. In FIG. 8, a comparative example in which the battery cell 100 is incorporated in the spacer frame 200 is shown in the upper row, and the battery cell 10 is incorporated in the spacer frame 20 according to the second embodiment in the lower row. The portion of the spacer frame 200 and the spacer frame 20 in which the Z reference surface abuts is different. Further, the spacer frame 200 has an elastic portion 22 and an elastic portion 220 and an elastic portion 230 corresponding to the elastic portion 23.

図8に示すように、比較例では、スペーサ枠200のZ基準面が電池セル100の蓋に当接する。この場合、スペーサ枠200の底面(例えば、溶接基準面)から電池セル100の蓋の表面までの長さL10の公差と、溶接の対象となる電極板110の厚さL20の公差の2つの公差を管理しなければならない。 As shown in FIG. 8, in the comparative example, the Z reference surface of the spacer frame 200 abuts on the lid of the battery cell 100. In this case, there are two tolerances, a tolerance of length L10 from the bottom surface of the spacer frame 200 (for example, the welding reference surface) to the surface of the lid of the battery cell 100, and a tolerance of the thickness L20 of the electrode plate 110 to be welded. Must be managed.

一方、実施の形態2にかかるスペーサ枠20では、Z基準面が電池セル10の電極板11に当接する。そのため、実施の形態2にかかるスペーサ枠20では、スペーサ枠200の底面(例えば、溶接基準面)から電池セル10の電極板11の表面までの長さL1の公差のみを管理すれば、溶接対象の電極板11の高さ管理が可能である。 On the other hand, in the spacer frame 20 according to the second embodiment, the Z reference surface abuts on the electrode plate 11 of the battery cell 10. Therefore, in the spacer frame 20 according to the second embodiment, if only the tolerance of the length L1 from the bottom surface of the spacer frame 200 (for example, the welding reference surface) to the surface of the electrode plate 11 of the battery cell 10 is managed, it is a welding target. The height of the electrode plate 11 can be controlled.

続いて、図9に実施の形態2にかかる組電池のスペーサ枠による電池セルの傾き低減効果を説明する模式図を示す。図9では、Z基準面を含むスペーサ枠及び電池セルの断面を示した。また、図9においても、上段にスペーサ枠200に電池セル100を組み込んだ比較例を示し、下段に実施の形態2にかかるスペーサ枠20に電池セル10を組み込んだものを示した。 Subsequently, FIG. 9 shows a schematic diagram illustrating the effect of reducing the inclination of the battery cell by the spacer frame of the assembled battery according to the second embodiment. FIG. 9 shows a cross section of the spacer frame including the Z reference plane and the battery cell. Further, also in FIG. 9, a comparative example in which the battery cell 100 is incorporated in the spacer frame 200 is shown in the upper row, and the battery cell 10 is incorporated in the spacer frame 20 according to the second embodiment in the lower row.

図9に示すように、比較例にかかるスペーサ枠200は、Z基準面のZ方向の長さである幅W120と電極板110の幅W2との差が、スペーサ枠20のZ基準面の幅W12と電極板11の幅W2との差よりも大きくなる。また、比較例にかかるスペーサ枠200は、弾性部230のZ方向の長さである幅W110と電池セル10の底面の幅W1との差が、スペーサ枠20の弾性部23の幅W11と電池セル10の底面の幅W1との差よりも大きくなる。 As shown in FIG. 9, in the spacer frame 200 according to the comparative example, the difference between the width W120, which is the length of the Z reference surface in the Z direction, and the width W2 of the electrode plate 110 is the width of the Z reference surface of the spacer frame 20. It is larger than the difference between W12 and the width W2 of the electrode plate 11. Further, in the spacer frame 200 according to the comparative example, the difference between the width W110, which is the length of the elastic portion 230 in the Z direction, and the width W1 of the bottom surface of the battery cell 10 is the difference between the width W11 of the elastic portion 23 of the spacer frame 20 and the battery. It is larger than the difference from the width W1 of the bottom surface of the cell 10.

ここで、比較例にかかるスペーサ枠200では、実施の形態2にかかるスペーサ枠20よりも電池セル10と当接する部分の長さ(或いは幅)が小さくなる。そのため、電池セル100の製造工程で電池セル100に膨らみが生じると、電池セル100が傾いてスペーサ枠200に固定されてしまうはめ込み不良が生じるおそれがある。しかしながら、実施の形態2にかかるスペーサ枠20では、電池セル10と当接する部分の長さ(或いは幅)がスペーサ枠200よりも大きいため膨らみが生じても電池セル10が傾くことなくスペーサ枠20をはめ込むことができる。 Here, in the spacer frame 200 according to the comparative example, the length (or width) of the portion in contact with the battery cell 10 is smaller than that in the spacer frame 20 according to the second embodiment. Therefore, if the battery cell 100 is bulged in the manufacturing process of the battery cell 100, the battery cell 100 may be tilted and fixed to the spacer frame 200, resulting in a fitting failure. However, in the spacer frame 20 according to the second embodiment, the length (or width) of the portion in contact with the battery cell 10 is larger than that of the spacer frame 200, so that the spacer frame 20 does not tilt even if swelling occurs. Can be fitted.

上記説明より、実施の形態2にかかるスペーサ枠20によれば、電池セル10に製造工程上でケースの膨張が生じても電池セル10を傾けることなくスペーサ枠20にはめ込むことができる。スペーサ枠20への電池セル10のはめ込みにおいて電池セル10に傾きが生じるとバスバー端子31を電極板11に溶接する際に溶接不良が生じる可能性が高くなる。しかし、実施の形態2にかかるスペーサ枠20を用いることで電池セル10のケース膨張によらず電池セル10の傾きを防止することができるため、バスバー端子31と電極板11の溶接の信頼性を向上させることができる。 From the above description, according to the spacer frame 20 according to the second embodiment, even if the case expands in the battery cell 10 in the manufacturing process, the battery cell 10 can be fitted into the spacer frame 20 without tilting. If the battery cell 10 is tilted when the battery cell 10 is fitted into the spacer frame 20, there is a high possibility that a welding defect will occur when the bus bar terminal 31 is welded to the electrode plate 11. However, by using the spacer frame 20 according to the second embodiment, it is possible to prevent the battery cell 10 from tilting regardless of the expansion of the case of the battery cell 10, so that the reliability of welding between the bus bar terminal 31 and the electrode plate 11 can be improved. Can be improved.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.

1 組電池
10 電池セル
11 電極板
20 スペーサ枠
21 スペーサ枠固定爪
22 弾性部
23 弾性部
24 櫛歯構造
30 バスバー枠
31 バスバー端子
32 接合面
33 ベース部
40 バスバーカバー
1 set battery 10 battery cell 11 electrode plate 20 spacer frame 21 spacer frame fixing claw 22 elastic part 23 elastic part 24 comb tooth structure 30 bus bar frame 31 bus bar terminal 32 joint surface 33 base part 40 bus bar cover

Claims (6)

電力体が収納される電池セルと、
前記電池セルの蓋に取り付けられ、前記電池セル内の終電部品とカシメ固定される電極板と、
前記電極板に溶接されるバスバー端子と、を有し、
前記電極板は、前記カシメ固定の位置から離れるに従って前記電池セルの蓋から離れるように形成される傾斜面を有し、
前記バスバー端子は、
前記カシメ固定の位置に向かって近づくに従って、前記電池セルの蓋に近づくような傾斜を有する接合面と、
前記接合面の一端と連続して形成され、前記接合面に対して前記傾斜面に向かう方向の加重を伝達するベース部と、を有し、
前記電池セルの蓋を構成する面を水平面としたとき、前記水平面と前記傾斜面とがなす角である第1の角度は、前記水平面と前記接合面とがなす角である第2の角度よりも小さい組電池。
The battery cell that houses the power unit and
An electrode plate attached to the lid of the battery cell and crimped to the last train component in the battery cell.
Has a bus bar terminal welded to the electrode plate,
The electrode plate has an inclined surface formed so as to move away from the lid of the battery cell as the distance from the caulked fixing position increases.
The bus bar terminal is
A joint surface having an inclination that approaches the lid of the battery cell as it approaches the caulking fixing position.
It has a base portion that is continuously formed with one end of the joint surface and transmits a load in a direction toward the inclined surface to the joint surface.
When the surface constituting the lid of the battery cell is a horizontal plane, the first angle formed by the horizontal plane and the inclined surface is larger than the second angle formed by the horizontal plane and the joint surface. Also a small set battery.
前記傾斜面を構成する板の板厚は、前記接合面を構成する板の板厚よりも厚い請求項1に記載の組電池。 The assembled battery according to claim 1, wherein the plate thickness of the plate constituting the inclined surface is thicker than the plate thickness of the plate constituting the joint surface. 前記バスバー端子の周囲を固定するバスバー枠を有し、
前記ベース部は、前記バスバー枠を構成する枠体に沿ってL字型に形成される請求項1又は2に記載の組電池。
It has a bus bar frame that fixes the periphery of the bus bar terminal.
The assembled battery according to claim 1 or 2, wherein the base portion is formed in an L shape along a frame body constituting the bus bar frame.
前記ベース部に対して前記電池セル側に向かって加重を付与する加圧部品をさらに有する請求項1乃至3のいずれか1項に記載の組電池。 The assembled battery according to any one of claims 1 to 3, further comprising a pressure component that applies a load to the base portion toward the battery cell side. 複数の前記電池セルの間に設けられるスペーサ枠をさらに有し、
前記スペーサ枠は、
前記電池セルの蓋が設けられる面を表面、前記上面に対向する面を底面とし、前記底面から前記表面に向かう方向を高さ方向、前記電池セルの一方の電極から他方の電極に向かう方向を幅方向、前記高さ方向及び前記幅方向に直交する方向を奥行き方向とした場合、
前記幅方向において対向する第1の側面及び第2の側面と、
前記高さ方向において対向する上面及び下面と、
前記第1の側面と前記第2の側面の少なくとも一方に設けられる第1の弾性部と、
前記下面に設けられる第2の弾性部と、
前記上面に設けられ、前記電極板に当接する支持面と、
を有する請求項1乃至4のいずれか1項に記載の組電池。
Further having a spacer frame provided between the plurality of battery cells,
The spacer frame is
The surface on which the lid of the battery cell is provided is the front surface, the surface facing the upper surface is the bottom surface, the direction from the bottom surface to the surface is the height direction, and the direction from one electrode of the battery cell to the other electrode is. When the width direction, the height direction, and the direction orthogonal to the width direction are defined as the depth direction,
The first side surface and the second side surface facing each other in the width direction,
The upper and lower surfaces facing each other in the height direction,
A first elastic portion provided on at least one of the first side surface and the second side surface, and
A second elastic portion provided on the lower surface and
A support surface provided on the upper surface and in contact with the electrode plate,
The assembled battery according to any one of claims 1 to 4.
前記第1の弾性部と前記第2の弾性部の前記奥行き方向の長さは、前記電池セルの前記底面の前記奥行き方向の長さの70%以上の長さを有し、
前記支持面の前記奥行き方向の長さは、前記電極板の前記奥行き方向の長さの70%以上の長さを有する請求項5に記載の組電池。
The length of the first elastic portion and the second elastic portion in the depth direction has a length of 70% or more of the length of the bottom surface of the battery cell in the depth direction.
The assembled battery according to claim 5, wherein the length of the support surface in the depth direction is 70% or more of the length of the electrode plate in the depth direction.
JP2020133582A 2020-08-06 2020-08-06 assembled battery Active JP7218330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020133582A JP7218330B2 (en) 2020-08-06 2020-08-06 assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133582A JP7218330B2 (en) 2020-08-06 2020-08-06 assembled battery

Publications (2)

Publication Number Publication Date
JP2022029964A true JP2022029964A (en) 2022-02-18
JP7218330B2 JP7218330B2 (en) 2023-02-06

Family

ID=80323804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133582A Active JP7218330B2 (en) 2020-08-06 2020-08-06 assembled battery

Country Status (1)

Country Link
JP (1) JP7218330B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175329A (en) * 2013-03-06 2014-09-22 Jm Energy Corp Power storage module and connection method thereof, and bus bar
WO2017130705A1 (en) * 2016-01-29 2017-08-03 三洋電機株式会社 Power supply device, vehicle in which same is used, and bus bar
WO2017208804A1 (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Terminal connection structure, battery stack body, and method for forming terminal connection structure
JP2018152238A (en) * 2017-03-13 2018-09-27 トヨタ自動車株式会社 Battery pack
WO2019188214A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Bus bar and cell stack
JP2019216040A (en) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 Storage element module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5590391B2 (en) 2010-07-27 2014-09-17 日立オートモティブシステムズ株式会社 Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175329A (en) * 2013-03-06 2014-09-22 Jm Energy Corp Power storage module and connection method thereof, and bus bar
WO2017130705A1 (en) * 2016-01-29 2017-08-03 三洋電機株式会社 Power supply device, vehicle in which same is used, and bus bar
WO2017208804A1 (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Terminal connection structure, battery stack body, and method for forming terminal connection structure
JP2018152238A (en) * 2017-03-13 2018-09-27 トヨタ自動車株式会社 Battery pack
WO2019188214A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Bus bar and cell stack
JP2019216040A (en) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 Storage element module

Also Published As

Publication number Publication date
JP7218330B2 (en) 2023-02-06

Similar Documents

Publication Publication Date Title
CN111279513B (en) Battery pack including battery pack frame capable of preventing welding defect and pressing jig for preparing the same
US11374290B2 (en) Power supply device, vehicle in which same is used, and bus bar
EP2341568B1 (en) Battery module comprising a plurality of battery units and means for connecting them
JP6467211B2 (en) Power storage module
US20200295321A1 (en) Power supply device
KR101107082B1 (en) Rechargeable battery
US20210210821A1 (en) Power supply device, vehicle using same, bus bar, and electrical connection method for battery cell using same bus bar
EP2887427A1 (en) Battery module with bus-bar holder
CN108140791B (en) Wiring module, detection terminal, and method for manufacturing detection terminal
US20060127754A1 (en) Battery pack
US20230150072A1 (en) Automatic pressure jig device for bringing electrode lead into close contact with busbar, and battery module manufacturing system comprising same
JP2007324004A (en) Battery pack and manufacturing method of battery pack
KR102088609B1 (en) Battery pack, bus bar holder used for battery pack, and manufacturing method of battery pack
US20220302543A1 (en) Apparatus and method for assembling battery module
KR20220052184A (en) Battery module and battery pack comprising the same
CN114256542A (en) Battery module and battery pack including the same
CN109643772A (en) Secondary cell
JP2022029964A (en) Battery pack
CN114503348A (en) Battery module and method for manufacturing same
JP7434582B2 (en) Battery modules, battery packs containing them, and automobiles
KR102257175B1 (en) Battery cell and method for producing a battery cell
WO2024180950A1 (en) Power storage device
US20230197999A1 (en) Method for manufacturing cell
US20230088451A1 (en) Battery pack and manufacturing method of battery pack
JP7319952B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230125

R150 Certificate of patent or registration of utility model

Ref document number: 7218330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150