JP2007324004A - Battery pack and manufacturing method of battery pack - Google Patents

Battery pack and manufacturing method of battery pack Download PDF

Info

Publication number
JP2007324004A
JP2007324004A JP2006154052A JP2006154052A JP2007324004A JP 2007324004 A JP2007324004 A JP 2007324004A JP 2006154052 A JP2006154052 A JP 2006154052A JP 2006154052 A JP2006154052 A JP 2006154052A JP 2007324004 A JP2007324004 A JP 2007324004A
Authority
JP
Japan
Prior art keywords
terminal
electrode terminal
battery
fixing portion
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006154052A
Other languages
Japanese (ja)
Inventor
Eiji Orisaka
英司 折坂
Tomokazu Kondo
近藤  朋和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006154052A priority Critical patent/JP2007324004A/en
Publication of JP2007324004A publication Critical patent/JP2007324004A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack in which a plurality of unit cells are connected and which is simple and connects unit cells excellently, and to provide its manufacturing method. <P>SOLUTION: The secondary battery 10 has a plurality of battery modules 101 arranged in which a plurality of sealed batteries 120 are connected by a bus bar 160 in a row and in series. When the sealed batteries 120, 120 arranged adjacently are connected, the bus bar 160 is adhered to an external positive electrode terminal 131 of one of the sealed battery 120 and the external negative electrode terminal 151 of the other sealed battery 120, thereupon, a plastic deformation planned part 164 of the bus bar 160 is plastic deformed so that the positions of a first adhesion part 161 and a second adhesion part 162 may conform respectively to the positions of the external positive electrode terminal 131 and the external negative electrode terminal 151. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、組電池及び組電池の製造方法に関する。   The present invention relates to an assembled battery and a method for manufacturing the assembled battery.

近年、ポータブル機器や携帯機器などの電源として、また、電気自動車やハイブリッド自動車などの電源として、様々な二次電池が提案されている。このような二次電池は、単体の単位電池を複数連結して構成されている。   In recent years, various secondary batteries have been proposed as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles. Such secondary batteries are configured by connecting a plurality of unit batteries.

ところで、二次電池では、隣り合う単位電池を連結するにあたり、2つの単位電池を並べて配置したときに、一方の単位電池の電極端子と、他方の単位電池の電極端子との間隔に、通常、単位電池ごとに寸法差が生じる。この寸法差は、製造された電池本体や電極端子について、これらの形状寸法に個々の寸法公差を有することに起因する。このため、一方の電極端子と、他方の電極端子とが適切に接続できるように、種々の工夫がなされている(例えば、特許文献1及び特許文献2参照)。   By the way, in the secondary battery, when two unit cells are arranged side by side when connecting adjacent unit cells, the interval between the electrode terminal of one unit cell and the electrode terminal of the other unit cell is usually Dimensional differences occur for each unit battery. This dimensional difference is caused by having individual dimensional tolerances in the shape and dimensions of the manufactured battery body and electrode terminals. For this reason, various ideas are made so that one electrode terminal and the other electrode terminal can be connected appropriately (for example, refer to patent documents 1 and patent documents 2).

特開平4−248254号公報JP-A-4-248254 特開平9−223494号公報JP-A-9-223494

特許文献1に開示された密閉形鉛蓄電池は、電池の電極端子として、板状の陽極端子及び陰極端子を有する素電池(単位電池)を2つ直列に接続して構成されている。この素電池のうち、陰極端子は、銅のような折り曲げできる導電材料からなり、陽極端子よりも長くなっている。2つの素電池は、その一方の素電池の陽極端子と他方の素電池の陰極端子とが対向する位置に配置され、各素電池とも、陰極端子を折り曲げて、隣接する素電池の陽極端子の上端に当接させるようになっている。各素電池は、陰極端子と陽極端子との当接部分を溶着やハンダ付けにより固着して連結されている。   The sealed lead-acid battery disclosed in Patent Literature 1 is configured by connecting two unit cells (unit cells) having a plate-like anode terminal and a cathode terminal in series as electrode terminals of the battery. In this unit cell, the cathode terminal is made of a conductive material that can be bent, such as copper, and is longer than the anode terminal. The two unit cells are arranged at a position where the anode terminal of one unit cell and the cathode terminal of the other unit cell face each other, and each unit cell is bent by the cathode terminal and connected to the anode terminal of the adjacent unit cell. It is made to contact the upper end. Each unit cell is connected by fixing the contact portion between the cathode terminal and the anode terminal by welding or soldering.

また、特許文献2に開示された電池では、隣り合う単電池同士について、接続端子板(端子間連結部材)により一方の電池の正極端子と他方の電池の負極端子とを直列に接続して、複数の単電池が連結されている。特許文献2の電池では、正極端子及び負極端子は、それぞれ、雄ネジの首側に段差部を設けたボルト形状となっている。また、接続端子板は、平板状になっていて、一方側に正極端子を挿通させる正極側の開口と、他方側に負極端子を挿通させる負極側の開口とを有している。この接続端子板では、正極側開口は、その中に正極端子が余裕をもって挿通できる所定直径となっている。同様に、負極側開口も、その中に負極端子が余裕をもって挿通できる所定直径となっている。   Moreover, in the battery disclosed in Patent Document 2, between adjacent unit cells, the positive terminal of one battery and the negative terminal of the other battery are connected in series by a connection terminal plate (inter-terminal connecting member), A plurality of single cells are connected. In the battery of Patent Document 2, each of the positive electrode terminal and the negative electrode terminal has a bolt shape in which a step portion is provided on the neck side of the male screw. The connection terminal plate has a flat plate shape, and has a positive side opening through which the positive terminal is inserted on one side and a negative side opening through which the negative terminal is inserted. In this connection terminal plate, the positive electrode side opening has a predetermined diameter through which the positive electrode terminal can be inserted with a margin. Similarly, the opening on the negative electrode side has a predetermined diameter through which the negative electrode terminal can be inserted with a margin.

単電池同士の連結では、接続端子板を、その正極側の開口に一方の単電池の正極端子を挿通し、負極側の開口に他方の単電池の負極端子を挿通して、正極端子の段差部と負極端子の段差部に載置するようになっている。すると、正極側の開口の内側と正極端子の外周との間、及び、負極側の開口の内側と負極端子の外周との間には、それぞれ隙間部ができるため、これらの隙間部に導電性ペーストを注入して、隙間部の隙間を埋めている。このように、接続端子板と正極端子とを電気的に接触させる接触部や、接続端子板と負極端子とを電気的に接触させる接触部の面積を大きくして、正極端子及び負極端子と接続端子板との接続抵抗を低く抑えようとしている。この接続端子板は、正極端子の雄ネジに螺合した固定ナットと正極端子の段差部との間、及び、負極端子の雄ネジに螺合した固定ナットと負極端子の段差部との間に挟まれて、各単電池に固定されている。   In the connection between unit cells, the connecting terminal plate is inserted into the positive electrode side through the positive terminal of one unit cell, the negative electrode side through the negative terminal of the other unit cell, and the step of the positive terminal It is placed on the step portion of the negative electrode terminal. As a result, gaps are formed between the inside of the positive electrode side opening and the outer periphery of the positive electrode terminal, and between the inside of the negative electrode side opening and the outer periphery of the negative electrode terminal. The paste is injected to fill the gaps in the gaps. In this way, the area of the contact portion that makes electrical contact between the connection terminal plate and the positive electrode terminal and the contact portion that makes electrical contact between the connection terminal plate and the negative electrode terminal are increased to connect with the positive electrode terminal and the negative electrode terminal. It tries to keep the connection resistance with the terminal board low. This connection terminal plate is between the fixed nut screwed into the male screw of the positive electrode terminal and the stepped portion of the positive electrode terminal, and between the fixed nut screwed into the male screw of the negative electrode terminal and the stepped portion of the negative electrode terminal. It is sandwiched and fixed to each unit cell.

しかしながら、特に、自動車向けの二次電池では、さらに簡単で隣り合う単位電池同士を良好に連結できる方法が求められている。   However, in particular, for secondary batteries for automobiles, there is a demand for a method that is simpler and that allows adjacent unit cells to be connected well.

本発明は、かかる現状に鑑みてなされたものであって、単位電池が複数連結してなる組電池において、簡単で単位電池同士を良好に連結した組電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and an assembled battery in which a plurality of unit cells are connected to each other, and an object thereof is to provide an assembled battery in which unit cells are well connected and a manufacturing method thereof. And

その解決手段は、電極端子を有する複数の単位電池と、上記複数の単位電池のうち、第1単位電池及びこの第1単位電池との相対的な位置が固定された第2単位電池における、上記第1単位電池の第1電極端子と上記第2単位電池の第2電極端子とを電気的に導通する端子間連結部材であって、上記第1電極端子に固着した第1固着部、上記第2電極端子に固着した第2固着部、及び、上記第1固着部と第2固着部とを結ぶ連結部、を有する端子間連結部材と、を備える組電池の製造方法であって、上記端子間連結部材の上記連結部の少なくとも一部である塑性変形予定部を塑性変形させて塑性変形部とし、上記端子間連結部材を、上記第1固着部及び第2固着部の位置が上記第1電極端子及び上記第2電極端子の位置にそれぞれ適合する形態とする塑性変形工程を備える組電池の製造方法である。   The solution includes a plurality of unit batteries having electrode terminals, and the first unit battery and the second unit battery in which a relative position of the first unit battery is fixed among the plurality of unit batteries. An inter-terminal connecting member for electrically connecting the first electrode terminal of the first unit battery and the second electrode terminal of the second unit battery, wherein the first fixing portion is fixed to the first electrode terminal, An inter-terminal connection member comprising: a second fixing portion fixed to a two-electrode terminal; and a connecting portion connecting the first fixing portion and the second fixing portion. A plastic deformation planned portion, which is at least a part of the connecting portion of the inter-connection member, is plastically deformed to be a plastic deformation portion, and the inter-terminal connecting member is positioned at the first fixing portion and the second fixing portion. A shape that matches the position of the electrode terminal and the second electrode terminal. It is a manufacturing method of an assembled battery comprising a plastic deformation step of a.

第1単位電池と第2単位電池とを端子間連結部材を用いて連結する場合、単位電池の大きさや電極端子の位置には寸法公差が含まれており、互いに固定された第1,第2単位電池のうち、第1単位電池の第1電極端子に対する、第2単位電池の第2電極端子の位置は、本来の位置からずれるときがある。
しかしながら、本発明の組電池の製造方法では、第1単位電池と第2単位電池とを連結するのに、第1固着部と第2固着部とを結ぶ連結部の少なくとも一部に塑性変形予定部を有する端子間連結部材を用いる。そして、この端子間連結部材を、第1電極端子及び第2電極端子に固着するにあたり、塑性変形工程において、塑性変形予定部を、第1固着部及び第2固着部の位置が、第1電極端子及び第2電極端子の位置に、それぞれ適合するように、塑性変形させる。
このようにすることにより、単位電池の大きさや電極端子の位置にバラツキが生じていても、個々の状態に合わせて塑性変形予定部を塑性変形させて塑性変形部とすることができるので、第1固着部及び第2固着部の位置を、第1電極端子及び第2電極端子の位置に、それぞれ適合させることができる。
したがって、第1電極端子に対し第1固着部を、また第2電極端子に対し第2固着部を、適切な位置に配置した状態で、固着することができるようになる。
When the first unit battery and the second unit battery are connected using the inter-terminal connecting member, the size of the unit battery and the position of the electrode terminal include dimensional tolerances, and the first and second fixed to each other. Among the unit cells, the position of the second electrode terminal of the second unit cell with respect to the first electrode terminal of the first unit cell may be displaced from the original position.
However, in the method for manufacturing an assembled battery of the present invention, in order to connect the first unit battery and the second unit battery, at least a part of the connecting portion connecting the first fixing portion and the second fixing portion is scheduled to be plastically deformed. An inter-terminal connecting member having a portion is used. In fixing the inter-terminal connecting member to the first electrode terminal and the second electrode terminal, in the plastic deformation step, the plastic deformation scheduled portion is located at the positions of the first fixed portion and the second fixed portion. Plastic deformation is performed so as to match the positions of the terminal and the second electrode terminal.
By doing in this way, even if the size of the unit cell and the position of the electrode terminal vary, the plastic deformation planned portion can be plastically deformed to be a plastic deformation portion according to the individual state. The positions of the first fixing portion and the second fixing portion can be adapted to the positions of the first electrode terminal and the second electrode terminal, respectively.
Accordingly, the first fixing portion can be fixed to the first electrode terminal and the second fixing portion can be fixed to the second electrode terminal in an appropriate position.

また、位置がそれぞれ適合しているので、第1固着部を第1電極端子に、第2固着部を第2電極端子に、それぞれ固着した状態で、端子間連結部材に残る塑性変形部の変形による残留応力(弾性力)は発生しないあるいは低くなるから、残留応力が第1,第2電極端子にかかり続け、これによってこれらの変形や破損を生じることはない。
このため、単位電池同士が端子間連結部材により高い信頼性で固着連結された組電池を得ることができる。
In addition, since the positions are adapted to each other, the deformation of the plastic deformation portion remaining in the inter-terminal connecting member in a state where the first fixing portion is fixed to the first electrode terminal and the second fixing portion is fixed to the second electrode terminal. Since the residual stress (elastic force) due to is not generated or becomes low, the residual stress continues to be applied to the first and second electrode terminals, thereby preventing deformation or breakage of these.
Therefore, it is possible to obtain an assembled battery in which unit cells are fixedly connected with high reliability by the inter-terminal connecting member.

なお、単位電池としては、正極端子と負極端子とを各1つ備えた単一の発電要素(セル)からなる電池のほか、複数の発電要素(セル)を連結して一つのモジュールを構成した電池が挙げられる。
また、第1固着部及び第2固着部と、第1電極端子及び第2電極端子との固着としては、例えば、溶着のほか、接着剤を用いた接着、かしめ、ネジによる締結などによる固着が挙げられる。
As a unit battery, in addition to a battery composed of a single power generation element (cell) having one positive terminal and one negative terminal, a plurality of power generation elements (cells) are connected to form one module. A battery is mentioned.
In addition, as the fixing between the first fixing portion and the second fixing portion and the first electrode terminal and the second electrode terminal, for example, in addition to welding, fixing using an adhesive, caulking, fastening by screws, or the like may be used. Can be mentioned.

さらに、上述の組電池の製造方法であって、前記端子間連結部材は、前記塑性変形工程前には、前記第1固着部と前記第2固着部の間隔が、前記第1電極端子と前記第2電極端子の間隔より大きくされてなり、上記第2固着部を上記第2電極端子に近づけた状態で、上記第1固着部を上記第1電極端子に固着する第1固着工程と、前記塑性変形工程であって、上記第2固着部を上記第2電極端子に固着可能な位置に配置する塑性変形工程と、上記塑性変形工程の後、上記第2固着部を上記第2電極端子に固着する第2固着工程と、を備える組電池の製造方法とすると良い。   Furthermore, in the above-described method for manufacturing an assembled battery, the inter-terminal connecting member may be configured such that, before the plastic deformation step, an interval between the first fixing portion and the second fixing portion is set to be different from that of the first electrode terminal. A first adhering step of adhering the first adhering part to the first electrode terminal in a state in which the second adhering part is brought closer to the second electrode terminal; A plastic deformation step in which the second fixing portion is disposed at a position where the second fixing portion can be fixed to the second electrode terminal; and after the plastic deformation step, the second fixing portion is used as the second electrode terminal. It is good to set it as the manufacturing method of an assembled battery provided with the 2nd adhering process to adhere.

本発明の組電池の製造方法では、第1固着工程において、第2固着部を第2単位電池の第2電極端子に近づけた状態で、第1固着部を第1単位電池の第1電極端子に固着する。次いで、塑性変形工程において、第2固着部を第2電極端子と固着可能な位置に配置する。さらに、この塑性変形工程の後、第2固着工程において、第2固着部を第2電極端子に固着する。
このようにすることにより、第1固着部を第1電極端子に固着してから塑性変形予定部を変形させるので、第2固着部の位置を第2電極端子に適合するように変形させるだけで足り、変形の大きさを容易に決められる。変形後、すぐに第2固着部を固着できる利点もある。
In the assembled battery manufacturing method of the present invention, in the first fixing step, the first fixing portion is moved to the first electrode terminal of the first unit battery while the second fixing portion is brought close to the second electrode terminal of the second unit battery. It sticks to. Next, in the plastic deformation step, the second fixing portion is disposed at a position where it can be fixed to the second electrode terminal. Further, after the plastic deformation step, the second fixing portion is fixed to the second electrode terminal in the second fixing step.
By doing so, the first fixed portion is fixed to the first electrode terminal and then the plastic deformation scheduled portion is deformed. Therefore, only the position of the second fixed portion is deformed to fit the second electrode terminal. Sufficient and easy to determine the size of deformation. There is also an advantage that the second fixing portion can be fixed immediately after the deformation.

さらに、上述のいずれかの組電池の製造方法であって、前記塑性予定変形部は、所定厚み及び所定幅を有する平板状の前記連結部の一部を屈曲させてなる屈曲部である組電池の製造方法とすると良い。   Furthermore, in any of the above-described assembled battery manufacturing methods, the planned plastic deformation portion is a bent portion formed by bending a part of the flat plate-like connecting portion having a predetermined thickness and a predetermined width. It is good to use this manufacturing method.

本発明の組電池の製造方法では、塑性変形予定部である屈曲部は、平板状の連結部の一部を屈曲させてなる。
このようにすることで、塑性変形予定部である屈曲部は、変形し易くなっているので、塑性変形工程において、第1固着部と第2固着部の相対位置を変えるように力を加えると、この屈曲部が容易に大きく塑性変形するので、所望の変形量を容易に得られる。
また、残留応力が残ったとしても、屈曲部の弾性変形によりその残留応力の大きさを小さくできる。
In the method for manufacturing an assembled battery of the present invention, the bent portion, which is the plastic deformation scheduled portion, is formed by bending a part of the flat plate-like connecting portion.
By doing so, the bent portion, which is the plastic deformation scheduled portion, is easily deformed. Therefore, in the plastic deformation step, when a force is applied to change the relative positions of the first fixed portion and the second fixed portion. Since the bent portion is easily plastically deformed, a desired amount of deformation can be easily obtained.
Even if residual stress remains, the magnitude of the residual stress can be reduced by elastic deformation of the bent portion.

また、連結部は所定厚み及び所定幅を有する平板状であるので、塑性変形部(塑性変形予定部)を含む連結部の各部での断面積に大きな差異が生じない。
したがって、連結部において、自身の断面積が他の部位と比較して特に小さくなるために、部分的な導通抵抗の上昇による当該部分の発熱を防止することができ、ひいては、組電池における特性低下も防止できる。
Further, since the connecting portion is a flat plate having a predetermined thickness and a predetermined width, there is no significant difference in cross-sectional area at each portion of the connecting portion including the plastic deformation portion (plastic deformation scheduled portion).
Accordingly, since the cross-sectional area of the connecting portion is particularly small compared to other portions, it is possible to prevent the portion from generating heat due to a partial increase in conduction resistance, and thus the deterioration of the characteristics of the assembled battery. Can also be prevented.

他の解決手段は、電極端子を有する複数の単位電池と、上記複数の単位電池のうち、第1単位電池及びこの第1単位電池との相対的な位置が固定された第2単位電池における、上記第1単位電池の第1電極端子と上記第2単位電池の第2電極端子とを電気的に導通する端子間連結部材であって、上記第1電極端子に固着した第1固着部、上記第2電極端子に固着した第2固着部、及び、上記第1固着部と第2固着部とを結ぶ連結部、を有する端子間連結部材と、を備え、上記端子間連結部材の上記連結部の少なくとも一部に、上記端子間連結部材を上記第1電極端子及び上記第2電極端子に固着するにあたり、上記第1固着部及び第2固着部の位置が、上記第1電極端子及び上記第2電極端子の位置に、それぞれ適合するように、塑性変形させられた塑性変形部を有する組電池である。   In another solution, a plurality of unit batteries having electrode terminals, and a second unit battery having a fixed relative position between the first unit battery and the first unit battery among the plurality of unit batteries. An inter-terminal connecting member electrically connecting the first electrode terminal of the first unit cell and the second electrode terminal of the second unit cell, wherein the first fixing part is fixed to the first electrode terminal; An inter-terminal connecting member having a second fixing part fixed to the second electrode terminal and a connecting part connecting the first fixing part and the second fixing part, and the connecting part of the inter-terminal connecting member In fixing at least a part of the inter-terminal connecting member to the first electrode terminal and the second electrode terminal, the positions of the first fixing part and the second fixing part are the first electrode terminal and the second electrode terminal. The plastic deformation is applied to fit the position of 2 electrode terminals. Was a battery assembly having a plastically deformed portion.

本発明の組電池では、端子間連結部材の連結部の少なくとも一部に、端子間連結部材を第1電極端子及び第2電極端子に固着するにあたり、第1固着部及び第2固着部の位置が、第1電極端子及び第2電極端子の位置に、それぞれ適合するように、塑性変形させられた塑性変形部を有する。
したがって、この組電池では、端子間連結部材の塑性変形部の塑性変形によって、第1,第2電極端子にかかる残留応力(弾性力)が発生しないあるいは低くできるから、残留応力が第1,第2電極端子にかかり続け、これによってこれらの変形や破損を生じることが防止される。
このため、単位電池同士が、端子間連結部材により高い信頼性で固着連結された組電池となる。
In the assembled battery of the present invention, the position of the first fixing portion and the second fixing portion is determined when fixing the inter-terminal connecting member to the first electrode terminal and the second electrode terminal on at least a part of the connecting portion of the inter-terminal connecting member. However, it has the plastic deformation part plastically deformed so that it may each fit in the position of the 1st electrode terminal and the 2nd electrode terminal.
Therefore, in this assembled battery, the residual stress (elastic force) applied to the first and second electrode terminals does not occur or can be reduced by plastic deformation of the plastic deformation portion of the inter-terminal connecting member. This keeps on the two-electrode terminals, thereby preventing these deformations and damages.
For this reason, the unit cells are assembled batteries that are firmly connected to each other by the inter-terminal connecting member.

さらに、上述の組電池であって、前記塑性変形部は、所定厚み及び所定幅を有する平板状の前記連結部の一部を屈曲させてなり、前記端子間連結部材を前記第1電極端子及び前記第2電極端子に固着するにあたり、さらに塑性変形させられた屈曲部である組電池とすると良い。   Furthermore, in the assembled battery described above, the plastic deformation portion is formed by bending a part of the flat plate-like connecting portion having a predetermined thickness and a predetermined width, and the inter-terminal connecting member is connected to the first electrode terminal and In fixing to the second electrode terminal, an assembled battery which is a bent portion further plastically deformed is preferable.

本発明の組電池では、連結部の一部にあらかじめ形成した屈曲部をさらに塑性変形させている。
このため、残留応力が残ったとしても、屈曲部の弾性変形によりその残留応力の大きさをさらに小さくできる。
In the assembled battery of the present invention, the bent portion formed in advance in a part of the connecting portion is further plastically deformed.
For this reason, even if residual stress remains, the magnitude of the residual stress can be further reduced by elastic deformation of the bent portion.

以下、本発明の実施の形態を、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施例)
本実施例に係る組電池100(図1参照)は、電気自動車やハイブリット自動車用の駆動電源として用いられる、例えば、ニッケル・水素二次蓄電池やリチウムイオン電池などの二次電池である。この組電池100は、複数の密閉型電池120をバスバー160により一列にかつ直列に接続した電池モジュール101が複数列置された構成となっている。この組電池100に含まれる密閉型電池120は、図3に示すように、略直方体形状の角型単電池である。この密閉型電池120は、直方体形状をなす電池容器111及びこれを閉塞する封口蓋112からなる電池ケース110と、電池容器111の内部に収容された発電要素(図示せず)とから構成されている。この密閉型電池120は、電池ケース110の外部にそれぞれ突出した外部正極端子131及び外部負極端子151を有する。密閉型電池120のうち、電池容器111の内部には、電解液が注入されている。
(Example)
The assembled battery 100 (see FIG. 1) according to the present embodiment is a secondary battery such as a nickel-hydrogen secondary storage battery or a lithium ion battery, which is used as a drive power source for an electric vehicle or a hybrid vehicle. The assembled battery 100 has a configuration in which a plurality of battery modules 101 in which a plurality of sealed batteries 120 are connected in series by a bus bar 160 in a line are arranged. As shown in FIG. 3, the sealed battery 120 included in the assembled battery 100 is a rectangular unit battery having a substantially rectangular parallelepiped shape. The sealed battery 120 includes a battery case 111 including a battery container 111 having a rectangular parallelepiped shape and a sealing lid 112 for closing the battery container 111, and a power generation element (not shown) housed in the battery container 111. Yes. The sealed battery 120 includes an external positive terminal 131 and an external negative terminal 151 that protrude to the outside of the battery case 110. In the sealed battery 120, an electrolytic solution is injected into the battery container 111.

電池ケース110のうち電池容器111は、金属のような導電材からなり、図3に示すように、平板状で長方形状の第1容器側面111aと、これと平行に位置し第1容器側面111aと同形状の第2容器側面111bと、第1容器側面111aの短辺(図3(b)における上下方向の辺)と第2容器側面111bの短辺とを結ぶ平板状で長方形状の第3容器側面111c及び第4容器側面111dと、第1容器側面111aの長辺(図3(b)における左右方向の辺)と第2容器側面111bの長辺とを結ぶ平板状で長方形状の容器下面111eとを有する。この電池容器111は、挿入側(図3(b)中、上方側)が開口(図示せず)し、この開口から発電要素を電池容器111の内部に収容できるようになっている。   In the battery case 110, the battery container 111 is made of a conductive material such as metal, and as shown in FIG. 3, the first container side surface 111a having a flat and rectangular shape and the first container side surface 111a positioned in parallel with the first container side surface 111a. The second container side surface 111b having the same shape as the first container side surface, the short side of the first container side surface 111a (the vertical side in FIG. 3 (b)) and the short side of the second container side surface 111b are rectangular and rectangular. A flat and rectangular shape connecting the three container side surfaces 111c and the fourth container side surface 111d, the long side of the first container side surface 111a (the side in the horizontal direction in FIG. 3B) and the long side of the second container side surface 111b. And a container lower surface 111e. The battery container 111 has an opening (not shown) on the insertion side (the upper side in FIG. 3B), and the power generation element can be accommodated inside the battery container 111 from this opening.

封口蓋112は、金属のような導電材からなり、図3に示すように、電池容器111における第1容器側面111a及び第2容器側面111bに沿った長辺と、第3容器側面111c及び第4容器側面111dに沿った短辺(図3(a)の上下方向)とからなる長方形状の平板とされている。この封口蓋112には、第1容器側面111aの長辺に沿った長手方向に所定の間隔で離間し、次述する外部正極端子131及び外部負極端子151がそれぞれ挿通可能な端子挿通孔(図示せず)が2つ穿孔されている。この封口蓋112は、電池容器111内に発電要素を収容した後には、電池容器111の開口を液密に閉塞する。   The sealing lid 112 is made of a conductive material such as metal, and as shown in FIG. 3, the long side along the first container side surface 111 a and the second container side surface 111 b in the battery container 111, the third container side surface 111 c, It is a rectangular flat plate having short sides (vertical direction in FIG. 3A) along the four container side surfaces 111d. The sealing lid 112 is spaced at predetermined intervals in the longitudinal direction along the long side of the first container side surface 111a, and terminal insertion holes (see FIG. 5) through which the external positive terminal 131 and the external negative terminal 151 described below can be respectively inserted. 2) (not shown) are perforated. The sealing lid 112 liquid-tightly closes the opening of the battery container 111 after the power generation element is accommodated in the battery container 111.

次に、密閉型電池120について説明する。
密閉型電池120は、電池容器111の内部で発電要素の正極と接続し、封口蓋112の一方(図3において右側)の端子挿通孔を通じて外部に突出した外部正極端子131と、この発電要素の負極と接続し、封口蓋112の他方(図3において左側)の端子挿通孔を通じて外部に突出した外部負極端子151とを有する。
密閉型電池120のうち、外部正極端子131は、電池容器111の内部で固定され、封口蓋112の端子挿通孔に嵌め込まれた第1シール部材113により、液密でかつ、封口蓋112とは電気的に絶縁された状態で、封口蓋112の外部に向けて突出した形態となっている。この外部正極端子131は、アルミニウムからなり、端子第1溶着面131a及びこれと反対側にある端子第2溶着面131bを有する平板状の電極端子である。この端子第1溶着面131aは、電池容器111の第1容器側面111aと平行であり、端子第2溶着面131bは、第2容器側面111bと平行である。この外部正極端子131は、本実施例では、板幅(図3(a)における左右方向の寸法)W=8mm、板厚(図3(a)おける上下方向の寸法)t=1.5mmとされている。
Next, the sealed battery 120 will be described.
The sealed battery 120 is connected to the positive electrode of the power generation element inside the battery case 111, and has an external positive electrode terminal 131 protruding outside through one terminal insertion hole of the sealing lid 112 (right side in FIG. 3). The external negative electrode terminal 151 is connected to the negative electrode and protrudes to the outside through the terminal insertion hole on the other side (left side in FIG. 3) of the sealing lid 112.
In the sealed battery 120, the external positive electrode terminal 131 is fixed inside the battery container 111 and is liquid-tight by the first seal member 113 fitted in the terminal insertion hole of the sealing lid 112. In a state of being electrically insulated, the shape protrudes toward the outside of the sealing lid 112. The external positive terminal 131 is made of aluminum, and is a flat electrode terminal having a terminal first welding surface 131a and a terminal second welding surface 131b on the opposite side. The terminal first welding surface 131a is parallel to the first container side surface 111a of the battery container 111, and the terminal second welding surface 131b is parallel to the second container side surface 111b. In the present embodiment, the external positive terminal 131 has a plate width (dimension in the left-right direction in FIG. 3A) W = 8 mm and a plate thickness (dimension in the vertical direction in FIG. 3A) t = 1.5 mm. Has been.

一方、外部負極端子151は、電池容器111の内部で固定され、封口蓋112の端子挿通孔に嵌め込まれた第2シール部材114により、液密でかつ、封口蓋112とは電気的に絶縁された状態で、封口蓋112の外部に向けて突出した形態となっている。この外部負極端子151は、銅からなり、端子第1溶着面151a及びこれの反対側の面である端子第2当接面151bを有する平板状の電極端子である。この端子第1溶着面151aは、電池容器111の第1容器側面151aと平行であり、端子第2溶着面151bは、第2容器側面111bと平行である。この外部負極端子151は、本実施例では、板幅(図3(a)における左右方向の寸法)W=8mm、板厚(図3(a)おける上下方向の寸法)t=1.0mmとされている。
なお、密閉型電池120が本発明の単位電池に対応し、外部正極端子131が第1電極端子に対応し、外部負極端子151が第2電極端子に対応する。
On the other hand, the external negative electrode terminal 151 is fixed inside the battery container 111 and is liquid-tight and electrically insulated from the sealing lid 112 by the second sealing member 114 fitted into the terminal insertion hole of the sealing lid 112. In this state, it protrudes toward the outside of the sealing lid 112. The external negative electrode terminal 151 is made of copper, and is a plate-like electrode terminal having a terminal first welding surface 151a and a terminal second contact surface 151b which is a surface opposite to the terminal first welding surface 151a. The terminal first welding surface 151a is parallel to the first container side surface 151a of the battery container 111, and the terminal second welding surface 151b is parallel to the second container side surface 111b. In this embodiment, the external negative electrode terminal 151 has a plate width (dimension in the left-right direction in FIG. 3A) W = 8 mm and a plate thickness (dimension in the vertical direction in FIG. 3A) t = 1.0 mm. Has been.
The sealed battery 120 corresponds to the unit battery of the present invention, the external positive electrode terminal 131 corresponds to the first electrode terminal, and the external negative electrode terminal 151 corresponds to the second electrode terminal.

次に、密閉型電池120によって構成される電池モジュール101について、図1及び図2を用いて説明する。
本実施例では、1つの電池モジュール101(101A,101B)は、10個の密閉型電池120が列置されてなる。この電池モジュール101に含まれる密閉型電池120,120同士は、図1及び図2に示すように、隣り合って配置された密閉型電池120,120の正極(外部正極端子131)と負極(外部負極端子151)とが交互に反対側に位置するように、かつ、互いに平行に列置されている。
Next, the battery module 101 including the sealed battery 120 will be described with reference to FIGS. 1 and 2.
In this embodiment, one battery module 101 (101A, 101B) is formed by arranging ten sealed batteries 120 in a row. As shown in FIGS. 1 and 2, the sealed batteries 120 and 120 included in the battery module 101 include a positive electrode (external positive terminal 131) and a negative electrode (external positive electrode) of the sealed batteries 120 and 120 arranged adjacent to each other. The negative terminals 151) are alternately arranged on the opposite side and arranged in parallel with each other.

具体的には、この電池モジュール101において、密閉型電池120,120同士は、図1に示すように、電池容器111の第1容器側面111a,111a同士、及び、第2容器側面111b,111b同士が交互に対向するように、配置されている。そして、隣り合って配置された密閉型電池120,120のうち、一の密閉型電池120の外部正極端子131と他の密閉型電池120の外部負極端子151とをバスバー160で接続することにより、10個の密閉型電池120(120Aa〜120Aj,120Ba〜120Bj)が、互いに直列に連結されている。   Specifically, in the battery module 101, the sealed batteries 120 and 120 are, as shown in FIG. 1, the first container side surfaces 111a and 111a of the battery container 111 and the second container side surfaces 111b and 111b. Are arranged so as to face each other alternately. And among the sealed batteries 120, 120 arranged adjacent to each other, by connecting the external positive terminal 131 of one sealed battery 120 and the external negative terminal 151 of another sealed battery 120 by the bus bar 160, Ten sealed batteries 120 (120Aa to 120Aj, 120Ba to 120Bj) are connected to each other in series.

なお、電池モジュール101(101A,101B)では、互いに隣り合って配置された密閉型電池120,120同士において、一の密閉型電池120に有する外部正極端子131の端子第1溶着面131aと他の密閉型電池120に有する外部負極端子151の端子第1溶着面151aとの間隔は、所定の端子溶着面間距離Ltとなっている(図1参照)。また、一の密閉型電池120に有する外部正極端子131の端子第2溶着面131bと他の密閉型電池120に有する外部負極端子151の端子第2溶着面151bとの間隔も、所定の端子溶着面間距離Ltとなっている。   In the battery module 101 (101A, 101B), between the sealed batteries 120, 120 arranged adjacent to each other, the terminal first welding surface 131a of the external positive terminal 131 included in one sealed battery 120 and the other The distance between the external negative electrode terminal 151 of the sealed battery 120 and the terminal first welding surface 151a is a predetermined distance Lt between terminal welding surfaces (see FIG. 1). Further, the distance between the terminal second welding surface 131b of the external positive electrode terminal 131 included in one sealed battery 120 and the terminal second welding surface 151b of the external negative electrode terminal 151 included in the other sealed battery 120 is also a predetermined terminal welding. The distance between surfaces Lt.

バスバー160は、図1及び図2に示すように、電池モジュール101を構成する10個の密閉型電池120のうち、一の密閉型電池120と相対的な位置が固定された他の密閉型電池120(本実施例では隣在する電池)における、一の密閉型電池120の外部正極端子131と、他の密閉型電池120の外部負極端子151とを電気的に導通させる部材である。このバスバー160は、銅からなり、図4に示すように、第1固着部161及びこれに平行な第2固着部162、及び、第1固着部161と第2固着部162とを結ぶ連結部163を有するコ字状で所定厚さを有する部材である。このバスバー160のうち、連結部163の一部は、塑性変形予定部164とされている。なお、バスバー160が本発明の端子間連結部材に対応する。   As shown in FIGS. 1 and 2, the bus bar 160 is another sealed battery in which the position relative to one sealed battery 120 is fixed among the 10 sealed batteries 120 constituting the battery module 101. This is a member that electrically connects the external positive electrode terminal 131 of one sealed battery 120 and the external negative electrode terminal 151 of another sealed battery 120 in 120 (battery adjacent in this embodiment). As shown in FIG. 4, the bus bar 160 is made of copper. As shown in FIG. 4, the first fixing portion 161, the second fixing portion 162 parallel to the first fixing portion 161, and the connecting portion connecting the first fixing portion 161 and the second fixing portion 162. This is a U-shaped member having a predetermined thickness. In the bus bar 160, a part of the connecting portion 163 is a plastic deformation scheduled portion 164. The bus bar 160 corresponds to the inter-terminal connecting member of the present invention.

バスバー160のうち、第1固着部161は、溶接により密閉型電池120の外部正極端子131に固着され、この外部正極端子131と電気的に接続する部位である。この第1固着部161は、図4に示すように、第2固着部162と互いに対向する位置に配置されたバスバー第1溶着面161aと、このバスバー第1溶着面161aと平行で、これの反対側にあるバスバー第1押圧面161bとを有する。
一方、第2固着部162は、溶接により密閉型電池120の外部負極端子151に固着され、この外部負極端子151と電気的に接続する部位である。この第2固着部162は、第1固着部161のバスバー第1溶着面161aと対向するバスバー第2溶着面162aと、このバスバー第1溶着面162aと平行で、これと反対側の面にあるバスバー第2押圧面162bとを有する。
Of the bus bar 160, the first fixing portion 161 is a portion that is fixed to the external positive terminal 131 of the sealed battery 120 by welding and is electrically connected to the external positive terminal 131. As shown in FIG. 4, the first fixing portion 161 is parallel to the bus bar first welding surface 161a and the bus bar first welding surface 161a disposed at a position facing the second fixing portion 162. And a bus bar first pressing surface 161b on the opposite side.
On the other hand, the second fixing portion 162 is a portion that is fixed to the external negative electrode terminal 151 of the sealed battery 120 by welding and is electrically connected to the external negative electrode terminal 151. The second fixing portion 162 is a bus bar second welding surface 162a opposite to the bus bar first welding surface 161a of the first fixing portion 161, and is parallel to the bus bar first welding surface 162a and on the opposite side. And a bus bar second pressing surface 162b.

バスバー160のうち、連結部163は、所定厚み及び所定幅を有する平板状であり、バスバー第1溶着面161aとバスバー第2溶着面162aとの間隔が所定のバスバー溶着面間距離Lbとなるように、第1固着部161と第2固着部162とを結んでいる。また、この連結部163は、後述するように、その一部を屈曲させてなる塑性変形予定部165を有する。なお、バスバー溶着面間距離Lbは、密閉型電池120の各部の寸法公差や密閉型電池120,120同士の配置位置の公差等を考慮した端子溶着面間距離Ltのとりうる最大の値よりも大きくなっている。   Of the bus bar 160, the connecting portion 163 has a flat plate shape having a predetermined thickness and a predetermined width, and the interval between the bus bar first welding surface 161a and the bus bar second welding surface 162a is a predetermined bus bar welding surface distance Lb. In addition, the first fixing portion 161 and the second fixing portion 162 are connected. Moreover, this connection part 163 has the plastic deformation scheduled part 165 formed by bending the part so that it may mention later. The distance Lb between the bus bar welding surfaces is larger than the maximum possible value of the distance Lt between the terminal welding surfaces in consideration of the dimensional tolerance of each part of the sealed battery 120, the tolerance of the arrangement position of the sealed batteries 120, 120, and the like. It is getting bigger.

電池モジュール101(101A,101B)において、隣り合って配置された密閉型電池120,120同士の連結では、バスバー160は、図1及び図2に示すように、その固着部161及び第2固着部162が密閉型電池120,120を跨いだ状態に配置される。バスバー160の第1固着部161を一の密閉型電池120の外部正極端子131に、また第2固着部162を他の密閉型電池120の外部負極端子151に、溶接によりそれぞれ固着する。
具体的には、一の密閉型電池120とこれと隣り合う他の密閉型電池120とが、両者の電池容器111の第2容器側面111b,111b同士が対向して配置されている場合には、第1固着部161のバスバー第1溶着面161aを一の密閉型電池120の外部正極端子131の端子第1溶着面131aに当接させ、第1溶着部位181を外部正極端子131に溶接する。一方、第2固着部162のバスバー第2溶着面162aを他の密閉型電池120の外部負極端子151の端子第1溶着面151aに当接させ、第2溶着部位182を外部負極端子151に溶接する。
In the battery module 101 (101A, 101B), when the sealed batteries 120, 120 arranged adjacent to each other are connected to each other, the bus bar 160 has a fixing portion 161 and a second fixing portion as shown in FIGS. 162 is disposed across the sealed batteries 120, 120. The first fixing part 161 of the bus bar 160 is fixed to the external positive terminal 131 of one sealed battery 120, and the second fixing part 162 is fixed to the external negative terminal 151 of another sealed battery 120 by welding.
Specifically, when one sealed battery 120 and another sealed battery 120 adjacent thereto are arranged so that the second container side surfaces 111b and 111b of both battery containers 111 face each other. The bus bar first welding surface 161a of the first fixing part 161 is brought into contact with the terminal first welding surface 131a of the external positive electrode terminal 131 of the sealed battery 120, and the first welding portion 181 is welded to the external positive electrode terminal 131. . On the other hand, the bus bar second welding surface 162a of the second fixing portion 162 is brought into contact with the terminal first welding surface 151a of the external negative electrode terminal 151 of another sealed battery 120, and the second welding portion 182 is welded to the external negative electrode terminal 151. To do.

また、一の密閉型電池120とこれと隣り合う他の密閉型電池120とが、両者の電池容器111の第1容器側面111a,111a同士が対向して配置されている場合には、第1固着部161のバスバー第1溶着面161aを一の密閉型電池120の外部正極端子131の端子第2溶着面131bに当接させ、第1溶着部位181を外部正極端子131に溶接する。一方、第2固着部162のバスバー第2溶着面162aを他の密閉型電池120の外部負極端子151の端子第2溶着面151bに当接させ、第2溶着部位182を外部負極端子151に溶接する。   In addition, when one sealed battery 120 and another sealed battery 120 adjacent thereto are arranged so that the first container side surfaces 111a and 111a of both battery containers 111 face each other, the first The bus bar first welding surface 161 a of the fixing portion 161 is brought into contact with the terminal second welding surface 131 b of the external positive electrode terminal 131 of one sealed battery 120, and the first welding portion 181 is welded to the external positive electrode terminal 131. On the other hand, the bus bar second welding surface 162a of the second fixing part 162 is brought into contact with the terminal second welding surface 151b of the external negative electrode terminal 151 of another sealed battery 120, and the second welding portion 182 is welded to the external negative electrode terminal 151. To do.

なお、後に詳述するように、バスバー160のうち、塑性変形予定部164は、第1固着部161と外部正極端子131とが当接し、かつ、第2固着部162と外部負極端子151とが当接した状態になったとき、塑性変形された塑性変形部165となる。   As will be described in detail later, in the bus bar 160, the plastic deformation scheduled portion 164 includes the first fixing portion 161 and the external positive electrode terminal 131 in contact with each other, and the second fixing portion 162 and the external negative electrode terminal 151 being in contact with each other. When it comes into contact, the plastic deformation portion 165 is plastically deformed.

次に、電池モジュール101によって構成される組電池100について、図1及び図2を用いて説明する。
本実施例の組電池100は、図1に示すように、2つの電池モジュール101A,101B(101)同士が並置されてなる。具体的には、この組電池100において、電池モジュール101Aに属する一の密閉型電池120と、電池モジュール101Bに属する他の密閉型電池120とは、両者の電池容器111の第3容器側面111c,111c同士と第4容器側面111d,111d同士とが交互に対向するように、配置されている。
Next, the assembled battery 100 comprised by the battery module 101 is demonstrated using FIG.1 and FIG.2.
As shown in FIG. 1, the assembled battery 100 according to the present embodiment includes two battery modules 101 </ b> A and 101 </ b> B (101) arranged side by side. Specifically, in this assembled battery 100, one sealed battery 120 belonging to the battery module 101A and the other sealed battery 120 belonging to the battery module 101B include a third container side surface 111c of both battery containers 111, 111c and 4th container side surface 111d and 111d are arrange | positioned so that it may oppose alternately.

そして、組電池100を構成する電池モジュール101(101A,101B)のうち、電池モジュール101Aに属する密閉型電池120(120Aa〜120Aj)の総負極端子151Sa(151)と、電池モジュール101Bに属する密閉型電池120(120Ba〜120Bj)の総正極端子131Sa(131)とが、モジュール間接続部材170によって連結されている。
具体的には、電池モジュール101Aに属する密閉型電池120(120Aa〜120Aj)のうち、最も端(図1において最も手前)に位置する密閉型電池120Aaの総負極端子151Saと、電池モジュール101Bに属する密閉型電池120(120Ba〜120Bj)のうち、最も端(図1において最も手前)に位置する密閉型電池120Baの総正極端子131Saとを、モジュール間接続部材170で接続している。
Among the battery modules 101 (101A, 101B) constituting the assembled battery 100, the total negative terminal 151Sa (151) of the sealed battery 120 (120Aa to 120Aj) belonging to the battery module 101A and the sealed type belonging to the battery module 101B. The total positive terminal 131Sa (131) of the battery 120 (120Ba to 120Bj) is coupled by the inter-module connection member 170.
Specifically, among the sealed batteries 120 (120Aa to 120Aj) belonging to the battery module 101A, the total negative terminal 151Sa of the sealed battery 120Aa located at the end (frontmost in FIG. 1) and the battery module 101B belong. Among the sealed batteries 120 (120Ba to 120Bj), the total positive electrode terminal 131Sa of the sealed battery 120Ba located at the end (frontmost in FIG. 1) is connected by the inter-module connection member 170.

これにより、電池モジュール101Aに属する密閉型電池120(120Aa〜120Aj)のうち、密閉型電池120Aaとは反対側(図1において奥側)の端に位置する密閉型電池120Ajの外部正極端子131Tj(131)が、組電池100の総正極端子となり、組電池外部との接続に利用される。
同様に、密閉型電池120Baとは反対側の端に位置する密閉型電池120Bjの外部負極端子151Tj(151)が、組電池100の総負極端子となり、組電池外部との接続に利用される。
As a result, among the sealed batteries 120 (120Aa to 120Aj) belonging to the battery module 101A, the external positive electrode terminal 131Tj of the sealed battery 120Aj located at the end opposite to the sealed battery 120Aa (the back side in FIG. 1) ( 131) serves as a total positive terminal of the assembled battery 100, and is used for connection to the outside of the assembled battery.
Similarly, the external negative electrode terminal 151Tj (151) of the sealed battery 120Bj located at the end opposite to the sealed battery 120Ba serves as a total negative electrode terminal of the assembled battery 100 and is used for connection to the outside of the assembled battery.

なお、図1及び図2においては省略してあるが、組電池100は、電池モジュール101A,101B(101)同士の間にそれぞれ絶縁シートが配置され、電池モジュール101A,101B(101)同士は絶縁されている。また、組電池100の両側(電池モジュール101の列置方向両側)には、図示しないエンドプレートが配置され、拘束バンドによって組電池全体が拘束されている。   Although not shown in FIGS. 1 and 2, in the assembled battery 100, an insulating sheet is disposed between the battery modules 101 </ b> A and 101 </ b> B (101), and the battery modules 101 </ b> A and 101 </ b> B (101) are insulated from each other. Has been. Further, end plates (not shown) are arranged on both sides of the assembled battery 100 (both sides in the row direction of the battery modules 101), and the entire assembled battery is restrained by a restraining band.

次に、組電池100の製造方法について図2及び図5を用いて説明する。ただし、この組電池100において、バスバー160による密閉型電池120,120同士の連結以外は、公知の手法によれば良いので、バスバー160を、密閉型電池120Aaの外部正極端子131Pa(131)と密閉型電池120Abの外部負極端子151Pb(151)に固着するバスバー接続工程を中心に説明し、その他は簡略に説明する。
なお、以下では、連結する密閉型電池120,120同士として、電池モジュール101Aに属する密閉型電池120Aa及びこれと隣り合う密閉型電池120Abを代表させて説明を行う。
すなわち、バスバー160は、第1固着部161を密閉型電池120Aaの外部正極端子131Pa(131)に固着した後、第2固着部162が密閉型電池120Abの外部負極端子151Pa(151)に当接するように、塑性変形予定部164を塑性変形させる。
Next, the manufacturing method of the assembled battery 100 is demonstrated using FIG.2 and FIG.5. However, in this assembled battery 100, other than the connection of the sealed batteries 120, 120 by the bus bar 160, any known method may be used. Therefore, the bus bar 160 is sealed with the external positive terminal 131Pa (131) of the sealed battery 120Aa. The description will focus on the bus bar connection step of fixing to the external negative electrode terminal 151Pb (151) of the battery 120Ab, and the rest will be described briefly.
Hereinafter, as the sealed batteries 120 and 120 to be connected, the sealed battery 120Aa belonging to the battery module 101A and the sealed battery 120Ab adjacent thereto will be described as a representative.
That is, the bus bar 160 fixes the first fixing portion 161 to the external positive electrode terminal 131Pa (131) of the sealed battery 120Aa, and then the second fixing portion 162 contacts the external negative electrode terminal 151Pa (151) of the sealed battery 120Ab. In this way, the plastic deformation planned portion 164 is plastically deformed.

まず、公知の手法により図3に示した密閉型電池120を製造する。次に、密閉型電池120Aa,120Abを、両者の電池容器111の第2容器側面111b,111b同士が対向した状態に配置する。これにより、外部正極端子131Pa(131)の端子第1溶着面131Paa(131a)と外部負極端子151Pa(151)の端子第2溶着面151Paa(151a)とが互いに対向する。   First, the sealed battery 120 shown in FIG. 3 is manufactured by a known method. Next, the sealed batteries 120Aa and 120Ab are arranged in a state where the second container side surfaces 111b and 111b of the battery containers 111 face each other. Thereby, the terminal first welding surface 131Paa (131a) of the external positive electrode terminal 131Pa (131) and the terminal second welding surface 151Paa (151a) of the external negative electrode terminal 151Pa (151) face each other.

次いで、バスバー160を、密閉型電池120Aaの外部正極端子131Pa(131)と密閉型電池120Abの外部負極端子151Pa(151)に固着するバスバー接続工程について説明する。このバスバー接続工程は、さらに、(1)バスバー配置工程、(2)第1固着工程、(3)塑性変形工程、(4)第2固着工程の4つの工程からなる。   Next, a bus bar connecting step for fixing the bus bar 160 to the external positive electrode terminal 131Pa (131) of the sealed battery 120Aa and the external negative electrode terminal 151Pa (151) of the sealed battery 120Ab will be described. The bus bar connecting step further includes four steps: (1) a bus bar arranging step, (2) a first fixing step, (3) a plastic deformation step, and (4) a second fixing step.

なお、図5(a)〜(d)は、図2における密閉型電池120Aaの外部正極端子131Pa(131)にバスバー160の第1固着部161を、密閉型電池120Abの外部負極端子151Pa(151)にこのバスバー160の第2固着部162を、それぞれ固着するまでのバスバー接続工程を説明するための説明図である。
また、図5においては、左右方向をX軸とし、右方を+X方向、左方を−X方向とする。また、同図における上下方向をY軸とし、上方を+Y方向、下方を−Y方向とする。
5A to 5D show the first fixed portion 161 of the bus bar 160 on the external positive terminal 131Pa (131) of the sealed battery 120Aa in FIG. 2, and the external negative terminal 151Pa (151 of the sealed battery 120Ab. ) Is an explanatory diagram for explaining a bus bar connecting step until the second fixing portions 162 of the bus bar 160 are fixed to each other.
In FIG. 5, the left-right direction is the X axis, the right is the + X direction, and the left is the -X direction. Also, the vertical direction in the figure is the Y axis, the upper direction is the + Y direction, and the lower direction is the -Y direction.

バスバー配置工程では、バスバー160を、その塑性変形予定部164が密閉型電池120Aaの容器第3側面111c及び密閉型電池120Abの容器第4側面111d側に向き、かつ、第1固着部161と第2固着部162との間に外部正極端子131Pa(131)及び外部負極端子151Pa(151)が位置して、密閉型電池120Aa,120Abを跨いだ状態に配置する(図5(a)参照)。
具体的には、バスバー160の第1固着部161を外部正極端子131Pa(131)側に、第2固着部162を外部負極端子151Pa(151)側に配置する。これにより、この第1固着部161のバスバー第1溶着面161aと外部正極端子131Pa(131)の端子第1溶着面131Paa(131a)とが対向し、第2固着部162のバスバー第2溶着面162aと外部負極端子151Pa(151)の端子第1溶着面151Paa(151a)とが対向する。
In the bus bar arrangement step, the bus bar 160 is arranged so that the plastic deformation scheduled portion 164 faces the container third side surface 111c of the sealed battery 120Aa and the container fourth side surface 111d of the sealed battery 120Ab, and the first fixing portion 161 and the first The external positive electrode terminal 131Pa (131) and the external negative electrode terminal 151Pa (151) are positioned between the two fixing portions 162, and are disposed so as to straddle the sealed batteries 120Aa and 120Ab (see FIG. 5A).
Specifically, the first fixing portion 161 of the bus bar 160 is arranged on the external positive electrode terminal 131Pa (131) side, and the second fixing portion 162 is arranged on the external negative electrode terminal 151Pa (151) side. As a result, the bus bar first welding surface 161a of the first fixing portion 161 and the terminal first welding surface 131Paa (131a) of the external positive terminal 131Pa (131) face each other, and the bus bar second welding surface of the second fixing portion 162. 162a and the terminal first welding surface 151Paa (151a) of the external negative electrode terminal 151Pa (151) face each other.

次いで、図5(b)に示す第1固着工程において、バスバー160の第1固着部161を外部正極端子131Pa(131)に固着させる。
具体的には、溶着支持部材230の第1支持面230aを、外部正極端子131Pa(131)の端子第2溶着面131Pab(131b)に当接させる。一方、第1溶着押圧部材210の押圧面210aをバスバー160の第1固着部161のバスバー第1当接面161bに当接させる。この状態で、第1固着部161のバスバー第1溶着面161aと外部正極端子131Pa(131)の端子第1溶着面131Paa(131a)とが当接するまで、第1溶着押圧部材210を+Y方向に移動させる。これにより、外部正極端子131Pa(131)及び第1固着部161は、第1溶着押圧部材210及び溶着支持部材230によって挟まれた状態となる。次いで、この状態で、バスバー第1溶着面161aと端子第1溶着面131Paa(131a)との界面を、超音波溶接により接合して第1溶着部位181を形成する。これにより、バスバー160の第1固着部161と外部正極端子131Pa(131)とは互いに固着される。
Next, in the first fixing step shown in FIG. 5B, the first fixing portion 161 of the bus bar 160 is fixed to the external positive electrode terminal 131Pa (131).
Specifically, the first support surface 230a of the welding support member 230 is brought into contact with the terminal second welding surface 131Pab (131b) of the external positive electrode terminal 131Pa (131). On the other hand, the pressing surface 210 a of the first welding pressing member 210 is brought into contact with the bus bar first contact surface 161 b of the first fixing portion 161 of the bus bar 160. In this state, the first welding pressing member 210 is moved in the + Y direction until the bus bar first welding surface 161a of the first fixing portion 161 and the terminal first welding surface 131Paa (131a) of the external positive electrode terminal 131Pa (131) contact each other. Move. As a result, the external positive electrode terminal 131Pa (131) and the first fixing portion 161 are sandwiched between the first welding pressing member 210 and the welding support member 230. Next, in this state, the interface between the bus bar first welding surface 161a and the terminal first welding surface 131Paa (131a) is joined by ultrasonic welding to form the first welding portion 181. As a result, the first fixing portion 161 of the bus bar 160 and the external positive terminal 131Pa (131) are fixed to each other.

次いで、図5(c)に示す塑性変形工程で、第2固着部162の位置が外部負極端子151Pa(151)の位置に適合するように、バスバー160の塑性変形予定部164を塑性変形させる。
具体的には、溶着支持部材230の第2支持面230bを、外部負極端子151Pa(151)の端子第2溶着面151Pab(151b)に当接させる。第1押圧部材240を、バスバー160の連結部163がこの第1押圧部材240のほぼX軸方向中央に位置するように配置し、この第1押圧部材240の押圧面240aを第1固着部161のバスバー第1溶着面161aに当接させる。別途、第2押圧部材250を、連結部163がこの第2押圧部材250のX軸方向中央に位置するように配置し、この第2押圧部材250の押圧面250aを第2固着部162のバスバー第2当接面162bに当接させる。これにより、バスバー160の連結部163は、第1押圧部材240,第2押圧部材250によって挟まれた状態となる。
Next, in the plastic deformation step shown in FIG. 5C, the plastic deformation planned portion 164 of the bus bar 160 is plastically deformed so that the position of the second fixing portion 162 matches the position of the external negative electrode terminal 151Pa (151).
Specifically, the second support surface 230b of the welding support member 230 is brought into contact with the terminal second welding surface 151Pab (151b) of the external negative electrode terminal 151Pa (151). The first pressing member 240 is arranged so that the connecting portion 163 of the bus bar 160 is positioned substantially in the center in the X-axis direction of the first pressing member 240, and the pressing surface 240 a of the first pressing member 240 is the first fixing portion 161. The bus bar is brought into contact with the first welding surface 161a. Separately, the second pressing member 250 is arranged so that the connecting portion 163 is positioned at the center in the X-axis direction of the second pressing member 250, and the pressing surface 250 a of the second pressing member 250 is a bus bar of the second fixing portion 162. It abuts on the second abutment surface 162b. Thereby, the connection part 163 of the bus bar 160 is sandwiched between the first pressing member 240 and the second pressing member 250.

次いで、第1押圧部材240でバスバー160の第1固着部161を、溶着支持部材230で外部負極端子151Paをそれぞれ支持した状態で、第2固着部162のバスバー第2溶着面162aが外部負極端子151Paの端子第1溶着面151Paa(151a)に当接して、次述する第2固着工程で溶接により固着となる可能となる位置まで、第2押圧部材250を−Y方向に移動させて、バスバー160の第2固着部162を押圧する。
具体的には、第2押圧部材250を、バスバー第1溶着面161aとバスバー第2溶着面162aとの間隔がバスバー溶着面間距離Lbからほぼバスバー溶着面間距離Lbに縮められるまで押圧して、バスバー第2溶着面162aと端子第1溶着面151Paa(151a)とを当接させる。これにより、バスバー160の連結部163のうち、塑性変形予定部164が主に塑性変形して、塑性変形部165となる(図5(c)参照)。
Next, in a state where the first pressing member 240 supports the first fixing portion 161 of the bus bar 160 and the welding support member 230 supports the external negative electrode terminal 151Pa, the bus bar second welding surface 162a of the second fixing portion 162 is the external negative electrode terminal. The second pressing member 250 is moved in the -Y direction to a position where it comes into contact with the first welding surface 151Paa (151a) of 151 Pa and can be fixed by welding in the second fixing step described below. The second fixing portion 162 of 160 is pressed.
Specifically, the second pressing member 250 is pressed until the distance between the bus bar first welding surface 161a and the bus bar second welding surface 162a is reduced from the bus bar welding surface distance Lb to the bus bar welding surface distance Lb. The bus bar second welding surface 162a and the terminal first welding surface 151Paa (151a) are brought into contact with each other. As a result, the plastic deformation planned portion 164 of the connecting portion 163 of the bus bar 160 mainly undergoes plastic deformation to become a plastic deformation portion 165 (see FIG. 5C).

なお、本実施例では、塑性変形予定部164を連結部163に設けているので、この塑性変形予定部164が容易にかつ大きく塑性変形する。このため、第1押圧部材240及び第2押圧部材250を外した場合でも、スプリングバックは少なく、バスバー第2溶着面162aが端子第1溶着面151Paa(151a)に近づいた状態を保つことができる。
また、第1固着部161を外部正極端子131Pa(131)に固着してから塑性変形予定部164を変形させるので、第2固着部162の位置を外部負極端子151Pa(151)に適合するように変形させるだけで足り、変形の大きさを容易に決められる。変形後、すぐに第2固着部162を固着できる利点もある。
In this embodiment, since the plastic deformation planned portion 164 is provided in the connecting portion 163, the plastic deformation planned portion 164 is easily and greatly plastically deformed. For this reason, even when the first pressing member 240 and the second pressing member 250 are removed, the spring back is small and the bus bar second welding surface 162a can be kept close to the terminal first welding surface 151Paa (151a). .
Further, since the plastic deformation scheduled portion 164 is deformed after the first fixing portion 161 is fixed to the external positive electrode terminal 131Pa (131), the position of the second fixing portion 162 is adapted to the external negative electrode terminal 151Pa (151). It is sufficient to make the deformation, and the size of the deformation can be easily determined. There is also an advantage that the second fixing portion 162 can be fixed immediately after the deformation.

次いで、図5(d)に示すように、バスバー160の第2固着部162と外部負極端子151Pa(151)とを、第2固着工程で固着する。
具体的には、第2固着部162を、バスバー第2溶着面162a及び第1溶着面151Paa(151a)が第2溶着押圧部材220及び溶着支持部材230によって挟まれた状態とする。次いで、この状態で、バスバー第2溶着面162aと端子第1溶着面151Paa(151a)との界面を超音波溶接により接合して、第2溶着部位182を形成する。これにより、バスバー160の第2固着部162と外部負極端子151Pa(151)とは互いに固着される。
Next, as shown in FIG. 5 (d), the second fixing portion 162 of the bus bar 160 and the external negative terminal 151Pa (151) are fixed in the second fixing step.
Specifically, the second fixing portion 162 is in a state where the bus bar second welding surface 162a and the first welding surface 151Paa (151a) are sandwiched between the second welding pressing member 220 and the welding support member 230. Next, in this state, the interface between the bus bar second welding surface 162a and the terminal first welding surface 151Paa (151a) is joined by ultrasonic welding to form the second welding portion 182. As a result, the second fixing portion 162 of the bus bar 160 and the external negative terminal 151Pa (151) are fixed to each other.

かくして、電池モジュール101Aに属する密閉型電池120Aa及びこれと隣り合う密閉型電池120Abとは、バスバー160で密閉型電池120Aaの外部正極端子131Paと密閉型電池120Abの外部負極端子151Paとを接続することにより、直列に連結される。
なお、密閉型電池120Aaが本発明の第1単位電池に対応し、密閉型電池120Abが第2単位電池に対応する。
Thus, the sealed battery 120Aa belonging to the battery module 101A and the adjacent sealed battery 120Ab are connected to the external positive terminal 131Pa of the sealed battery 120Aa and the external negative terminal 151Pa of the sealed battery 120Ab by the bus bar 160. Are connected in series.
The sealed battery 120Aa corresponds to the first unit battery of the present invention, and the sealed battery 120Ab corresponds to the second unit battery.

また、組電池100を構成する電池モジュール101(101A,101B)において、密閉型電池120Aa,120Ab以外の、密閉型電池120,120同士も、密閉型電池120Aa,120Ab同士の連結と同様に、上述したバスバー接続工程を経てバスバー160を塑性変形させて連結する。かくして、図1に示した電池モジュール101(101A,101B)を形成する。   Further, in the battery module 101 (101A, 101B) constituting the assembled battery 100, the sealed batteries 120, 120 other than the sealed batteries 120Aa, 120Ab are also similar to the above-described connection between the sealed batteries 120Aa, 120Ab. The bus bar 160 is plastically deformed and connected through the bus bar connecting step. Thus, the battery module 101 (101A, 101B) shown in FIG. 1 is formed.

続いて、組電池100の製造方法について説明する。
各電池モジュール101A,101B(101)をそれぞれ製造した後、電池モジュール101A,101B同士を図示しない絶縁シートを介在させて互いに列置し、接続部材170で連結する。
具体的には、電池モジュール101Aに属する密閉型電池120(120Aa〜120Aj)のうち、密閉型電池120Aaの外部負極端子151Sa(151)と、電池モジュール101Bに属する密閉型電池120(120Ba〜120Bj)のうち、外部正極端子131Sa(131)とを接続部材170で連結する。その後、図示しないエンドプレートと拘束バンドにより、列置された電池モジュール101A,101B同士を拘束する。かくして、組電池100が完成する。
Then, the manufacturing method of the assembled battery 100 is demonstrated.
After the battery modules 101A and 101B (101) are manufactured, the battery modules 101A and 101B are arranged in a row with an insulating sheet (not shown) interposed therebetween, and are connected by a connecting member 170.
Specifically, among the sealed batteries 120 (120Aa to 120Aj) belonging to the battery module 101A, the external negative electrode terminal 151Sa (151) of the sealed battery 120Aa and the sealed batteries 120 (120Ba to 120Bj) belonging to the battery module 101B. Of these, the external positive terminal 131Sa (131) is coupled by the connecting member 170. Thereafter, the battery modules 101A and 101B arranged in a row are restrained by an end plate and a restraining band (not shown). Thus, the assembled battery 100 is completed.

本実施例に係る組電池100では、1つの電池モジュール101に属する密閉型電池120のうち、隣り合って配置された密閉型電池120,120同士の連結には、塑性変形予定部165を含むバスバー160を用いた。このバスバー160を、一の密閉型電池120の外部正極端子131とこの密閉型電池120と隣り合う他の密閉型電池120の外部負極端子151とに固着するにあたり、第1固着部161及び第2固着部162の位置が外部正極端子131及び外部負極端子151の位置に、それぞれ適合するように、バスバー160の塑性変形予定部164を塑性変形させている。
しかも、バスバー160のうち、バスバー第1溶着面161aとバスバー第2溶着面162aとの間隔であるバスバー溶着面間距離Lbが、密閉型電池120の各部の寸法公差や密閉型電池120,120同士の配置位置の公差等を考慮した端子溶着面間距離Ltのとりうる最大の値よりも大きくなっている。
In the assembled battery 100 according to the present embodiment, among the sealed batteries 120 belonging to one battery module 101, the sealed batteries 120 and 120 arranged adjacent to each other are connected to each other by a bus bar including a plastic deformation scheduled portion 165. 160 was used. In fixing the bus bar 160 to the external positive terminal 131 of one sealed battery 120 and the external negative terminal 151 of another sealed battery 120 adjacent to the sealed battery 120, the first fixing portion 161 and the second fixing portion 161 The plastic deformation planned portion 164 of the bus bar 160 is plastically deformed so that the position of the fixing portion 162 matches the position of the external positive electrode terminal 131 and the external negative electrode terminal 151, respectively.
Moreover, in the bus bar 160, the distance Lb between the bus bar weld surfaces, which is the distance between the bus bar first weld surface 161a and the bus bar second weld surface 162a, is the dimensional tolerance of each part of the sealed battery 120 or between the sealed batteries 120, 120. This is larger than the maximum possible value of the distance Lt between the terminal welding surfaces in consideration of the tolerance of the arrangement position of the terminal.

これにより、密閉型電池120の大きさや外部正極端子131及び外部負極端子151の位置にバラツキが生じていても、必ず第1固着部161及び第2固着部162の位置を、外部正極端子131及び外部負極端子151の位置に、それぞれ適合させることができる。
したがって、第1固着部161を外部正極端子131に、第2固着部162を外部負極端子151に、それぞれ、適切な位置に配置した状態で、バスバー160を外部正極端子131及び外部負極端子151に固着することができるようになる。
Thereby, even if the size of the sealed battery 120 and the positions of the external positive electrode terminal 131 and the external negative electrode terminal 151 vary, the positions of the first fixed portion 161 and the second fixed portion 162 are always changed to the external positive terminal 131 and It can be adapted to the position of the external negative terminal 151, respectively.
Accordingly, the bus bar 160 is connected to the external positive terminal 131 and the external negative terminal 151 in a state where the first fixed part 161 is disposed at the external positive terminal 131 and the second fixed part 162 is disposed at the appropriate position. It becomes possible to fix.

また、塑性変形工程において、バスバー160の塑性変形予定部164を塑性変形させている。
これにより、実施例では、組電池100あるいは電池モジュール101を完成した以降において、第1固着部162と外部正極端子131とを、あるいは、第2固着部162と外部負極端子151とを、互いに引き離す方向の応力(弾性力)がバスバー160に残留するのを抑制できる。
また、残留応力が残ったとしても、塑性変形予定部の弾性変形によりその残留応力の大きさを小さくできる。
したがって、バスバー160と、外部正極端子131や外部負極端子151とを引き離す応力がバスバー160に発生することが防止されており、残留応力が外部正極端子131や外部負極端子151にかかり続け、これによってこれらの変形や破損を生じることはない。このため、密閉型電池120,120がバスバー160により高い信頼性で固着連結された組電池100を得ることができる。
In the plastic deformation step, the plastic deformation planned portion 164 of the bus bar 160 is plastically deformed.
Accordingly, in the embodiment, after the assembled battery 100 or the battery module 101 is completed, the first fixing portion 162 and the external positive terminal 131 are separated from each other, or the second fixing portion 162 and the external negative terminal 151 are separated from each other. It is possible to suppress the directional stress (elastic force) from remaining on the bus bar 160.
Even if residual stress remains, the magnitude of the residual stress can be reduced by elastic deformation of the plastic deformation scheduled portion.
Accordingly, the stress that separates the bus bar 160 from the external positive terminal 131 and the external negative terminal 151 is prevented from being generated in the bus bar 160, and the residual stress continues to be applied to the external positive terminal 131 and the external negative terminal 151. These deformations and damages do not occur. Therefore, it is possible to obtain the assembled battery 100 in which the sealed batteries 120 and 120 are fixedly connected to the bus bar 160 with high reliability.

また、バスバー160の連結部163は所定厚み及び所定幅の平板状とされているので、塑性変形部165を含む連結部163全体において、バスバー160自身の断面積に大きな差異が生じない。
したがって、連結部163において、自身の断面積が他の部位と比較して特に小さくなるところが存在することに起因した導通抵抗の上昇及び局所的な発熱を防止することができ、ひいては、組電池100における特性低下も防止できる。
In addition, since the connecting portion 163 of the bus bar 160 is a flat plate having a predetermined thickness and a predetermined width, there is no significant difference in the cross-sectional area of the bus bar 160 itself in the entire connecting portion 163 including the plastic deformation portion 165.
Accordingly, the connection portion 163 can prevent an increase in conduction resistance and local heat generation due to the fact that the cross-sectional area of the connection portion 163 is particularly small as compared with other portions. It is also possible to prevent the deterioration of characteristics at.

(変形例)
次いで、変形例について、図6を用いて説明する。
本変形例に係る組電池300は、前述の実施例に係る組電池100とは、これに用いる端子間連結部材の形状のみが異なり、それ以外の部分は同様である。したがって、実施例と同様な部分の説明は、省略あるいは簡素化し、異なる部分を中心に説明することとする。
(Modification)
Next, a modification will be described with reference to FIG.
The assembled battery 300 according to this modification is different from the assembled battery 100 according to the above-described embodiment only in the shape of the inter-terminal connection member used for this, and the other parts are the same. Therefore, description of the same part as an Example is abbreviate | omitted or simplified, and will explain centering on a different part.

本変形例に係る組電池300のうち、バスバー360は、銅からなり、図6に示すように、S字形状の平板からなる。このバスバー360は、両端部に位置する第1固着部361及びこれに平行な第2固着部362、及び、第1固着部361と第2固着部362とを結ぶ連結部363を有する。このバスバー160のうち、連結部363は、第1固着部361を繋ぐ第1連結部363A、第2固着部362を繋ぐ第2連結部363B、及び、第1固着部361及び第2固着部362にそれぞれ平行で、第1連結部363Aと第2連結部363Bとを繋ぐ中間連結部363Cからなる。第1連結部363Aと第2連結部363Bとは、外部正極端子131及び外部負極端子151の板幅(図6における左上右下)方向において、互いに反対側に位置し、平行となっている。   In the assembled battery 300 according to this modification, the bus bar 360 is made of copper, and is made of an S-shaped flat plate as shown in FIG. The bus bar 360 includes a first fixing portion 361 located at both ends, a second fixing portion 362 parallel to the first fixing portion 361, and a connecting portion 363 that connects the first fixing portion 361 and the second fixing portion 362. Of the bus bar 160, the connecting portion 363 includes a first connecting portion 363A that connects the first fixing portion 361, a second connecting portion 363B that connects the second fixing portion 362, and the first fixing portion 361 and the second fixing portion 362. And an intermediate connecting portion 363C that connects the first connecting portion 363A and the second connecting portion 363B. The first connecting portion 363A and the second connecting portion 363B are located on the opposite sides in the plate width (upper left and lower right in FIG. 6) direction of the external positive electrode terminal 131 and the external negative electrode terminal 151, and are parallel to each other.

バスバー160のうち、第1連結部363Aと中間連結部363Cとを結ぶ第1塑性変形予定部364Aは、前述した実施例と同様、塑性変形工程において、塑性変形されて第1塑性変形部365Aとなる。また、第2連結部363Bと中間連結部363Cとを結ぶ第2塑性変形予定部364Bは、塑性変形工程において、塑性変形されて第2塑性変形部365Bとなる。   In the bus bar 160, the first plastic deformation planned portion 364A that connects the first connecting portion 363A and the intermediate connecting portion 363C is plastically deformed in the plastic deformation step as in the above-described embodiment, and the first plastic deforming portion 365A. Become. In addition, the second plastic deformation planned portion 364B connecting the second connection portion 363B and the intermediate connection portion 363C is plastically deformed to become the second plastic deformation portion 365B in the plastic deformation step.

このバスバー360のうち第1固着部361は、中間連結部363C側にあるバスバー第1溶着面361a、及び、その反対側の面であるバスバー第1押圧面361bを有する。このバスバー第1溶着面361aは、外部正極端子131の端子第1溶着面131aまたは端子第2溶着面131bと当接するようになっている。
一方、第2固着部362は、中間連結部363C側にあるバスバー第1溶着面362a、及び、その反対側の面であるバスバー第2押圧面362bを有する。このバスバー第2溶着面362aは、外部負極端子151の端子第1溶着面151aまたは端子第2溶着面151bと当接するようになっている。
Of the bus bar 360, the first fixing portion 361 includes a bus bar first welding surface 361a on the intermediate coupling portion 363C side, and a bus bar first pressing surface 361b on the opposite side. The bus bar first welding surface 361 a is in contact with the terminal first welding surface 131 a or the terminal second welding surface 131 b of the external positive electrode terminal 131.
On the other hand, the 2nd adhering part 362 has the bus-bar 1st welding surface 362a in the intermediate | middle connection part 363C side, and the bus-bar 2nd press surface 362b which is the surface of the other side. The bus bar second welding surface 362a is in contact with the terminal first welding surface 151a or the terminal second welding surface 151b of the external negative electrode terminal 151.

本変形例では、塑性変形工程において、バスバー360は、その第1塑性変形予定部365A及び第2塑性変形予定部365Bを、それぞれ塑性変形させている。
これにより、組電池300あるいは電池モジュール101を完成した以降において、第1固着部362と外部正極端子131とを、あるいは、第2固着部362と外部負極端子151とを、互いに引き離す方向の応力(弾性力)がバスバー360に残留するのを抑制できる。
したがって、バスバー360と、外部正極端子131や外部負極端子151とを引き離す応力がバスバー360に発生することが防止されており、残留応力が外部正極端子131や外部負極端子151にかかり続け、これによってこれらの変形や破損を生じることはない。このため、密閉型電池120,120がバスバー360により高い信頼性で固着連結された組電池100を得ることができる。
In this modification, in the plastic deformation step, the bus bar 360 plastically deforms the first plastic deformation planned portion 365A and the second plastic deformation planned portion 365B, respectively.
Thus, after the assembled battery 300 or the battery module 101 is completed, the stress (in the direction in which the first fixing portion 362 and the external positive electrode terminal 131 are separated from each other, or the second fixing portion 362 and the external negative electrode terminal 151 are separated from each other ( (Elastic force) can be suppressed from remaining on the bus bar 360.
Therefore, the stress that separates the bus bar 360 from the external positive terminal 131 and the external negative terminal 151 is prevented from being generated in the bus bar 360, and the residual stress continues to be applied to the external positive terminal 131 and the external negative terminal 151, thereby These deformations and damages do not occur. Therefore, it is possible to obtain the assembled battery 100 in which the sealed batteries 120 and 120 are fixedly connected to the bus bar 360 with high reliability.

以上において、本発明を実施例及び変形例に即して説明したが、本発明は上記実施例等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例及び変形例では、10個の密閉型電池120を直列に列置した。しかしながら、端子間連結部材により密閉型電池を連結する数量、密閉型電池同士の連結形態は適宜変更可能である。
また、実施例では、電池モジュール101A,101Bそれぞれに属する密閉型電池120,120同士を平板状の接続部材170で連結した。しかしながら、電池モジュール間同士における第1電極端子と第2電極端子との連結形態は、例示した接続部材170に限定されるものではなく、適宜変更可能である。
In the above, the present invention has been described with reference to the embodiments and the modified examples. However, the present invention is not limited to the above-described embodiments and the like, and it can be applied as appropriate without departing from the gist thereof. Not too long.
For example, in the example and the modification, ten sealed batteries 120 are arranged in series. However, the number of the sealed batteries connected by the inter-terminal connecting member and the connection form of the sealed batteries can be appropriately changed.
In the embodiment, the sealed batteries 120 and 120 belonging to the battery modules 101 </ b> A and 101 </ b> B are connected by the flat connection member 170. However, the connection form of the first electrode terminal and the second electrode terminal between the battery modules is not limited to the illustrated connection member 170 and can be changed as appropriate.

また、実施例では、バスバー160の第1固着部161を外部正極端子131に固着した後、塑性変形工程において、塑性変形予定部164を塑性変形させて第2固着部162を外部負極端子151に固着した。しかしながら、負極側の電極端子を端子間連結部材と固着した後、塑性変形工程において、塑性変形予定部を塑性変形させて正極側の電極端子を固着しても良い。
また、外部正極端子131と外部負極端子151の間の寸法を個々に測定し、バスバー160の連結部163をその寸法に合わせて変形させてから、バスバー160を外部正極端子131と外部負極端子151とに固着しても良い。
また、実施例では、超音波溶接によりバスバー160を外部正極端子131及び外部負極端子151に固着した。しかしながら、端子間連結部材と電極端子とが、例えば、レーザー溶接、抵抗溶接等の溶接手段で互いに固着可能であれば、超音波溶接以外で端子間連結部材と電極端子を固着しても良い。
Further, in the embodiment, after the first fixing portion 161 of the bus bar 160 is fixed to the external positive electrode terminal 131, the plastic deformation scheduled portion 164 is plastically deformed in the plastic deformation step so that the second fixing portion 162 becomes the external negative electrode terminal 151. Stuck. However, after the electrode terminal on the negative electrode side is fixed to the inter-terminal connecting member, in the plastic deformation step, the plastic deformation scheduled portion may be plastically deformed to fix the positive electrode terminal.
Further, the dimensions between the external positive terminal 131 and the external negative terminal 151 are individually measured, and the connecting portion 163 of the bus bar 160 is deformed according to the dimensions, and then the bus bar 160 is connected to the external positive terminal 131 and the external negative terminal 151. It may be fixed to.
In the example, the bus bar 160 was fixed to the external positive terminal 131 and the external negative terminal 151 by ultrasonic welding. However, if the inter-terminal connecting member and the electrode terminal can be fixed to each other by welding means such as laser welding or resistance welding, the inter-terminal connecting member and the electrode terminal may be fixed other than by ultrasonic welding.

実施例に係る組電池の一部を示す斜視図である。It is a perspective view which shows a part of assembled battery which concerns on an Example. 実施例に係る組電池を構成する電池モジュールの一部を示す斜視図である。It is a perspective view which shows a part of battery module which comprises the assembled battery which concerns on an Example. 実施例に係る密閉型単電池を示す図であり、(a)は平面図、(b)は正面図である。It is a figure which shows the sealed type cell which concerns on an Example, (a) is a top view, (b) is a front view. 実施例に係る電池モジュールに用いたバスバーを示す斜視図である。It is a perspective view which shows the bus bar used for the battery module which concerns on an Example. 実施例に係る電池モジュールについて、密閉型単電池同士をバスバーで連結するまでの各工程を示す図であり、(a)はバスバー配置工程、(b)は第1固着工程、(c)は塑性変形工程、(d)は第2固着工程である。It is a figure which shows each process until it connects a sealed cell with a bus bar about the battery module which concerns on an Example, (a) is a bus-bar arrangement | positioning process, (b) is a 1st adhering process, (c) is plasticity. Deformation step (d) is the second fixing step. 変形例に係るバスバーにより、密閉型単電池同士の外部正極端子と外部負極端子とを連結した状態を示す斜視図である。It is a perspective view which shows the state which connected the external positive electrode terminal and external negative electrode terminal of sealed type cells with the bus-bar which concerns on a modification.

符号の説明Explanation of symbols

100,300 組電池
120 密閉型単電池(単位電池)
120Aa 密閉型電池(第1単位電池)
120Ab 密閉型電池(第2単位電池)
131 外部正極端子(第1電極端子)
131Pa (第1単位電池の)外部正極端子
151 外部負極端子(第2電極端子)
160,360 バスバー(端子間連結部材)
161,361 (正極端子側の)第1固着部
162,362 (負極端子側の)第2固着部
163,363 連結部
164 塑性変形予定部
165 塑性変形部
Lb (バスバー第1溶着面とバスバー第2溶着面との)バスバー溶着面間距離
Lt (端子第1溶着面と端子第2溶着面との)端子溶着面間距離
100,300 battery pack 120 sealed cell (unit battery)
120Aa sealed battery (first unit battery)
120Ab sealed battery (second unit battery)
131 External positive terminal (first electrode terminal)
131 Pa External positive terminal (first unit cell) 151 External negative terminal (second electrode terminal)
160, 360 Bus bar (inter-terminal connecting member)
161, 361 First fixing portion (on the positive terminal side) 162, 362 Second fixing portion (on the negative terminal side) 163, 363 Connection portion 164 Plastic deformation planned portion 165 Plastic deformation portion Lb (Bus bar first welding surface and bus bar first Distance between bus bar welding surfaces (with 2 welding surfaces) Lt Distance between terminal welding surfaces (with terminal first welding surface and terminal second welding surface)

Claims (5)

電極端子を有する複数の単位電池と、
上記複数の単位電池のうち、第1単位電池及びこの第1単位電池との相対的な位置が固定された第2単位電池における、上記第1単位電池の第1電極端子と上記第2単位電池の第2電極端子とを電気的に導通する端子間連結部材であって、
上記第1電極端子に固着した第1固着部、
上記第2電極端子に固着した第2固着部、及び、
上記第1固着部と第2固着部とを結ぶ連結部、を有する
端子間連結部材と、を備える
組電池の製造方法であって、
上記端子間連結部材の上記連結部の少なくとも一部である塑性変形予定部を塑性変形させて塑性変形部とし、上記端子間連結部材を、上記第1固着部及び第2固着部の位置が上記第1電極端子及び上記第2電極端子の位置にそれぞれ適合する形態とする塑性変形工程を備える
組電池の製造方法。
A plurality of unit cells having electrode terminals;
Among the plurality of unit cells, a first electrode terminal of the first unit cell and the second unit cell in a first unit cell and a second unit cell in which a relative position to the first unit cell is fixed. An inter-terminal connecting member that is electrically connected to the second electrode terminal,
A first fixing portion fixed to the first electrode terminal;
A second fixing portion fixed to the second electrode terminal; and
An inter-terminal connecting member having a connecting portion connecting the first fixing portion and the second fixing portion, and a manufacturing method of an assembled battery comprising:
The plastic deformation planned portion that is at least a part of the connection portion of the inter-terminal connection member is plastically deformed to form a plastic deformation portion, and the inter-terminal connection member is positioned at the positions of the first fixing portion and the second fixing portion. A method for manufacturing an assembled battery, comprising a plastic deformation step in which each of the first electrode terminal and the second electrode terminal is adapted to the position.
請求項1に記載の組電池の製造方法であって、
前記端子間連結部材は、
前記塑性変形工程前には、前記第1固着部と前記第2固着部の間隔が、前記第1電極端子と前記第2電極端子の間隔より大きくされてなり、
上記第2固着部を上記第2電極端子に近づけた状態で、上記第1固着部を上記第1電極端子に固着する第1固着工程と、
前記塑性変形工程であって、上記第2固着部を上記第2電極端子に固着可能な位置に配置する塑性変形工程と、
上記塑性変形工程の後、上記第2固着部を上記第2電極端子に固着する第2固着工程と、を備える
組電池の製造方法。
It is a manufacturing method of the assembled battery according to claim 1,
The inter-terminal connecting member is
Before the plastic deformation step, an interval between the first fixing portion and the second fixing portion is made larger than an interval between the first electrode terminal and the second electrode terminal,
A first fixing step of fixing the first fixing portion to the first electrode terminal in a state where the second fixing portion is brought close to the second electrode terminal;
A plastic deformation step in which the second fixing portion is disposed at a position where the second fixing portion can be fixed to the second electrode terminal;
A method for manufacturing an assembled battery, comprising: a second fixing step of fixing the second fixing portion to the second electrode terminal after the plastic deformation step.
請求項1または請求項2のいずれかに記載の組電池の製造方法であって、
前記塑性予定変形部は、
所定厚み及び所定幅を有する平板状の前記連結部の一部を屈曲させてなる屈曲部である
組電池の製造方法。
A method for producing an assembled battery according to any one of claims 1 and 2,
The plastic deformation portion is
A method for producing an assembled battery, which is a bent portion formed by bending a part of the flat plate-like connecting portion having a predetermined thickness and a predetermined width.
電極端子を有する複数の単位電池と、
上記複数の単位電池のうち、第1単位電池及びこの第1単位電池との相対的な位置が固定された第2単位電池における、上記第1単位電池の第1電極端子と上記第2単位電池の第2電極端子とを電気的に導通する端子間連結部材であって、
上記第1電極端子に固着した第1固着部、
上記第2電極端子に固着した第2固着部、及び、
上記第1固着部と第2固着部とを結ぶ連結部、を有する
端子間連結部材と、を備え、
上記端子間連結部材の上記連結部の少なくとも一部に、上記端子間連結部材を上記第1電極端子及び上記第2電極端子に固着するにあたり、上記第1固着部及び第2固着部の位置が、上記第1電極端子及び上記第2電極端子の位置に、それぞれ適合するように、塑性変形させられた塑性変形部を有する
組電池。
A plurality of unit cells having electrode terminals;
Among the plurality of unit cells, a first electrode terminal of the first unit cell and the second unit cell in a first unit cell and a second unit cell in which a relative position to the first unit cell is fixed. An inter-terminal connecting member that is electrically connected to the second electrode terminal,
A first fixing portion fixed to the first electrode terminal;
A second fixing portion fixed to the second electrode terminal; and
An inter-terminal connecting member having a connecting portion connecting the first fixing portion and the second fixing portion,
In fixing the inter-terminal connecting member to the first electrode terminal and the second electrode terminal, at least a part of the connecting portion of the inter-terminal connecting member, the positions of the first fixing portion and the second fixing portion are An assembled battery having a plastically deformed portion that is plastically deformed so as to conform to the positions of the first electrode terminal and the second electrode terminal, respectively.
請求項4に記載の組電池であって、
前記塑性変形部は、
所定厚み及び所定幅を有する平板状の前記連結部の一部を屈曲させてなり、前記端子間連結部材を前記第1電極端子及び前記第2電極端子に固着するにあたり、さらに塑性変形させられた屈曲部である
組電池。
The assembled battery according to claim 4,
The plastic deformation portion is
A part of the flat plate-like connecting portion having a predetermined thickness and a predetermined width is bent, and is further plastically deformed when the inter-terminal connecting member is fixed to the first electrode terminal and the second electrode terminal. An assembled battery that is a bent portion.
JP2006154052A 2006-06-01 2006-06-01 Battery pack and manufacturing method of battery pack Withdrawn JP2007324004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154052A JP2007324004A (en) 2006-06-01 2006-06-01 Battery pack and manufacturing method of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154052A JP2007324004A (en) 2006-06-01 2006-06-01 Battery pack and manufacturing method of battery pack

Publications (1)

Publication Number Publication Date
JP2007324004A true JP2007324004A (en) 2007-12-13

Family

ID=38856620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154052A Withdrawn JP2007324004A (en) 2006-06-01 2006-06-01 Battery pack and manufacturing method of battery pack

Country Status (1)

Country Link
JP (1) JP2007324004A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946834B1 (en) 2007-12-13 2010-03-09 현대자동차일본기술연구소 Battery pack and producing method thereof
WO2010052788A1 (en) 2008-11-07 2010-05-14 三菱重工業株式会社 Secondary battery busbar and secondary battery module
KR101050318B1 (en) * 2009-04-16 2011-07-19 에스비리모티브 주식회사 Secondary battery module
JP2011233491A (en) * 2010-04-08 2011-11-17 Denso Corp Battery pack and connection method between electrode terminals
US8329333B2 (en) 2008-12-11 2012-12-11 Samsung Sdi Co., Ltd. Battery module with plurality of batteries having bent terminal portions connected with fixing plate
EP2600438A1 (en) * 2011-12-02 2013-06-05 Suzhou Golden Crown New Energy Co., Ltd. Battery module and bracket assembly thereof for positioning batteries
KR101301348B1 (en) * 2011-12-28 2013-08-29 에이치엘그린파워 주식회사 Busbar assembly and battery module including the same
JP2013254739A (en) * 2007-12-25 2013-12-19 Byd Co Ltd Battery system
JP2014502013A (en) * 2010-11-23 2014-01-23 エルジー・ケム・リミテッド Bus bar assembly with new structure
WO2014076817A1 (en) * 2012-11-16 2014-05-22 日立ビークルエナジー株式会社 Unit cell and battery
WO2015012333A1 (en) * 2013-07-26 2015-01-29 株式会社Gsユアサ Electricity storage apparatus and method for manufacturing electricity storage apparatus
US9178206B2 (en) 2010-11-05 2015-11-03 Samsung Sdi Co., Ltd. Battery module
US9484566B2 (en) 2014-01-28 2016-11-01 Samsung Sdi Co., Ltd. Battery pack
KR20170039449A (en) * 2015-10-01 2017-04-11 주식회사 엘지화학 Battery system
KR20170039448A (en) * 2015-10-01 2017-04-11 주식회사 엘지화학 Battery system
TWI707619B (en) * 2018-12-20 2020-10-11 大陸商太普動力新能源(常熟)股份有限公司 Battery module having conductive sheets with a plurality of sections
EP4207473A1 (en) * 2021-12-29 2023-07-05 Automotive Cells Company SE Assembly for interconnection of electrochemical cells and method for installing same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946834B1 (en) 2007-12-13 2010-03-09 현대자동차일본기술연구소 Battery pack and producing method thereof
JP2013254739A (en) * 2007-12-25 2013-12-19 Byd Co Ltd Battery system
WO2010052788A1 (en) 2008-11-07 2010-05-14 三菱重工業株式会社 Secondary battery busbar and secondary battery module
CN102171858A (en) * 2008-11-07 2011-08-31 三菱重工业株式会社 Secondary battery busbar and secondary battery module
US8822061B2 (en) 2008-12-11 2014-09-02 Samsung Sdi Co., Ltd. Battery module with plurality of batteries having bent terminal portions connected with fixing plate
US8329333B2 (en) 2008-12-11 2012-12-11 Samsung Sdi Co., Ltd. Battery module with plurality of batteries having bent terminal portions connected with fixing plate
KR101050318B1 (en) * 2009-04-16 2011-07-19 에스비리모티브 주식회사 Secondary battery module
US9209447B2 (en) 2009-04-16 2015-12-08 Samsung Sdi Co., Ltd. Secondary battery module
JP2011233491A (en) * 2010-04-08 2011-11-17 Denso Corp Battery pack and connection method between electrode terminals
US9178206B2 (en) 2010-11-05 2015-11-03 Samsung Sdi Co., Ltd. Battery module
JP2014502013A (en) * 2010-11-23 2014-01-23 エルジー・ケム・リミテッド Bus bar assembly with new structure
EP2600438A1 (en) * 2011-12-02 2013-06-05 Suzhou Golden Crown New Energy Co., Ltd. Battery module and bracket assembly thereof for positioning batteries
KR101301348B1 (en) * 2011-12-28 2013-08-29 에이치엘그린파워 주식회사 Busbar assembly and battery module including the same
WO2014076817A1 (en) * 2012-11-16 2014-05-22 日立ビークルエナジー株式会社 Unit cell and battery
WO2015012333A1 (en) * 2013-07-26 2015-01-29 株式会社Gsユアサ Electricity storage apparatus and method for manufacturing electricity storage apparatus
JPWO2015012333A1 (en) * 2013-07-26 2017-03-02 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
US9484566B2 (en) 2014-01-28 2016-11-01 Samsung Sdi Co., Ltd. Battery pack
KR20170039449A (en) * 2015-10-01 2017-04-11 주식회사 엘지화학 Battery system
KR20170039448A (en) * 2015-10-01 2017-04-11 주식회사 엘지화학 Battery system
KR102087747B1 (en) 2015-10-01 2020-03-12 주식회사 엘지화학 Battery system
KR102087746B1 (en) 2015-10-01 2020-03-12 주식회사 엘지화학 Battery system
TWI707619B (en) * 2018-12-20 2020-10-11 大陸商太普動力新能源(常熟)股份有限公司 Battery module having conductive sheets with a plurality of sections
EP4207473A1 (en) * 2021-12-29 2023-07-05 Automotive Cells Company SE Assembly for interconnection of electrochemical cells and method for installing same
WO2023126398A1 (en) * 2021-12-29 2023-07-06 Automotive Cells Company Se Assembly for interconnecting electrochemical cells and associated installation method

Similar Documents

Publication Publication Date Title
JP2007324004A (en) Battery pack and manufacturing method of battery pack
CN111247665B (en) Unit module, battery pack, and vehicle
JP7045590B2 (en) Battery module with busbar assembly
CN111279513B (en) Battery pack including battery pack frame capable of preventing welding defect and pressing jig for preparing the same
CN108780861B (en) Power supply device
JP5528746B2 (en) Assembled battery
KR100891079B1 (en) Battery Cartridge-connecting System For Battery Module
US9350088B2 (en) Swaging structure for metallic members and bus bar using the same
CN108140791B (en) Wiring module, detection terminal, and method for manufacturing detection terminal
JP6467211B2 (en) Power storage module
US7976980B2 (en) Secondary battery module, a battery system including the secondary battery module and method of manufacture of the battery system
US20160233476A1 (en) Electricity storage module
KR102177694B1 (en) Battery Module Having Bus Bar Assembly
US20060127754A1 (en) Battery pack
US9692023B2 (en) Electricity storage module
US20220037750A1 (en) Secondary battery
CN110892552A (en) Battery module with bus bar assembly
US11362402B2 (en) Battery module, battery pack including the same, and method for producing battery module
KR20180115077A (en) Electrode Tab Coupling Member and Electrode Tab Coupling Assembly comprising the same
US20220384888A1 (en) Fixing of busbars in a welding process
KR20220012037A (en) Battery module having a simple connection structure between cell lead and voltage sensing member and battery pack including the same
JP5991044B2 (en) Battery module
KR20130068971A (en) A battery module manufacturing apparatus
CN114256544A (en) Battery module and battery pack including the same
EP3920267A1 (en) Battery module and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804