JP2022029765A - Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound - Google Patents

Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound Download PDF

Info

Publication number
JP2022029765A
JP2022029765A JP2020133244A JP2020133244A JP2022029765A JP 2022029765 A JP2022029765 A JP 2022029765A JP 2020133244 A JP2020133244 A JP 2020133244A JP 2020133244 A JP2020133244 A JP 2020133244A JP 2022029765 A JP2022029765 A JP 2022029765A
Authority
JP
Japan
Prior art keywords
group
ring
layer
substituent
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020133244A
Other languages
Japanese (ja)
Inventor
洋平 小野
Yohei Ono
直樹 松本
Naoki Matsumoto
真太朗 野村
Shintaro Nomura
英夫 永島
Hideo Nagashima
敦嗣 真川
Atsushi Magawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Tosoh Corp
Original Assignee
Kyushu University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Tosoh Corp filed Critical Kyushu University NUC
Priority to JP2020133244A priority Critical patent/JP2022029765A/en
Publication of JP2022029765A publication Critical patent/JP2022029765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide an organic field light-emitting element that exhibits high luminous efficiency and long-life characteristics.SOLUTION: The organic field light-emitting element containing an enamine compound is shown by general formula (1). Ar1 and Ar2 represent a phenyl, naphthyl, or biphenyl group which may have substituents, and Ar1 and Ar2 may form a ring. Ar3 and Ar4 represent an aryl or heteroaryl group which may have substituents, and Ar3 and Ar4 may form a ring. R1 represents an aryl, alkyl, triarylsilyl, trialkylsilyl, alkoxy, or amino group, which may have substituents. R1 is a single bond and may form a ring together with Ar3 or Ar4.SELECTED DRAWING: Figure 1

Description

本発明は、エナミン化合物、そのエナミン化合物を有する有機電界発光素子用材料およびそのエナミン化合物を含有する層を有する有機電界発光素子に関する。 The present invention relates to an enamine compound, a material for an organic electroluminescent element having the enamine compound, and an organic electroluminescent element having a layer containing the enamine compound.

有機電界発光素子は、小型モバイル用途を中心に実用化が始まっている。しかしながら、更なる用途拡大には性能向上が必須であり、低駆動電圧、高い発光効率特性でありながら長寿命特性を有する材料が求められている。 Organic electroluminescent devices have begun to be put into practical use mainly for small mobile applications. However, performance improvement is indispensable for further expansion of applications, and materials having long life characteristics while having low drive voltage and high luminous efficiency characteristics are required.

特許文献1または2、非特許文献1は、高効率で駆動電圧を低減できる有機電界発光素子用の材料であるエナミン化合物を開示している。 Patent Document 1 or 2 and Non-Patent Document 1 disclose an enamine compound which is a material for an organic electroluminescent element capable of reducing a driving voltage with high efficiency.

特開平11-184110号公報Japanese Unexamined Patent Publication No. 11-184110 特開2006-269834号公報Japanese Unexamined Patent Publication No. 2006-269834

Dye and Pigment 168(2019)93-102Dye and Pigment 168 (2019) 93-102

用途の拡大、使用可能な環境の拡大に対する市場からの要求は非常に強く、駆動電圧、発光効率、寿命特性の3つの特性に関して、特許文献1~3にかかるエナミン化合物はこれらを十分にみたしているとはいえず、特に長寿命を達成する耐久性をさらなる高次元で達成したものが求められている。 The market demand for expansion of applications and expansion of usable environment is very strong, and the enamine compounds according to Patent Documents 1 to 3 fully satisfy the three characteristics of drive voltage, luminous efficiency, and life characteristics. However, there is a particular demand for products that have achieved a higher level of durability to achieve long life.

そこで、本発明の一態様は、高い発光効率を発揮し、種々の用途又は様々な環境下で高い耐久性を有する有機電界発光素子、それを形成するエナミン化合物、および該エナミン化合物を含む有機電界発光素子用材料を提供することを目的としている。 Therefore, one aspect of the present invention is an organic electroluminescent element that exhibits high luminous efficiency and has high durability under various uses or environments, an enamine compound that forms the organic electroluminescent element, and an organic electroluminescence containing the enamine compound. It is an object of the present invention to provide a material for a light emitting element.

本発明の各態様にかかる目的は、下記によって達成された。
1) 下記一般式(1)で表される化合物を含有する層を有する有機電界発光素子。
The object according to each aspect of the present invention was achieved by the following.
1) An organic electroluminescent device having a layer containing a compound represented by the following general formula (1).

Figure 2022029765000002
Figure 2022029765000002

Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。
は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基、アミノ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
2) 前記Ar~ArおよびRが有するベンゼン環の総個数が7以上である前記1記載の有機電界発光素子。ただし前記Rが、前記ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。
3) 下記一般式(2)で表される化合物。
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .
R 1 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group, an alkoxy group, and an amino group which may have a substituent. R 1 is a single bond and may form a ring with Ar 3 or Ar 4 .
2) The organic electroluminescent device according to 1 above, wherein the total number of benzene rings contained in Ar 1 to Ar 4 and R 1 is 7 or more. However, when the R 1 forms a ring together with the Ar 3 or Ar 4 and the nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more.
3) A compound represented by the following general formula (2).

Figure 2022029765000003
Figure 2022029765000003

Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。
は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
ただし、Ar~ArおよびRが有するベンゼン環の総個数は7以上である。なお、Rが、ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。
4) 下記一般式(3)で表される化合物。
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .
R 2 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group and an alkoxy group which may have a substituent. R 2 is a single bond and may form a ring with Ar 3 or Ar 4 .
However, the total number of benzene rings contained in Ar 1 to Ar 4 and R 2 is 7 or more. When R 2 forms a ring together with Ar 3 or Ar 4 and a nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more.
4) A compound represented by the following general formula (3).

Figure 2022029765000004
Figure 2022029765000004

Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表す。
は、置換基を有しても良いアミノ基を表す。
5) 前記3または4に記載の化合物を含む、有機電界発光素子用材料。
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group or a heteroaryl group which may have a substituent independently of each other.
R 3 represents an amino group which may have a substituent.
5) A material for an organic electroluminescent device containing the compound according to 3 or 4 above.

本発明の一態様によれば、寿命特性を高次元に発揮する有機電界発光素子を形成する、新規なエナミン化合物、および該エナミン化合物を含む有機電界発光素子用材料を提供することができる。 According to one aspect of the present invention, it is possible to provide a novel enamine compound that forms an organic electroluminescent element exhibiting a high life characteristic, and a material for an organic electroluminescent element containing the enamine compound.

また、本発明の他の態様によれば、高い発光効率を発揮し、耐久性が高く優れた寿命特性を有する有機電界発光素子を提供することができる。 Further, according to another aspect of the present invention, it is possible to provide an organic electroluminescent device that exhibits high luminous efficiency, has high durability, and has excellent life characteristics.

本発明の一態様にかかる有機エレクトロルミネッセンス素子の積層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated structure of the organic electroluminescence element which concerns on one aspect of this invention. 本発明の一態様にかかる有機エレクトロルミネッセンス素子の他の積層構成の例(素子実施例-1の構成)を示す概略断面図である。It is a schematic sectional drawing which shows the example of another laminated structure (the structure of the element Example-1) of the organic electroluminescence element which concerns on one aspect of this invention.

以下、本発明の一態様にかかるエナミン化合物について詳細に説明する。
<エナミン化合物>
Hereinafter, the enamine compound according to one aspect of the present invention will be described in detail.
<Enamine compound>

本発明の一態様にかかる有機電界発光素子が有する層が含有する化合物は、式(1)で表されるエナミン化合物である。 The compound contained in the layer of the organic electroluminescent device according to one aspect of the present invention is an enamine compound represented by the formula (1).

Figure 2022029765000005
Figure 2022029765000005

式中、Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。
は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基、アミノ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
前記Ar~ArおよびRが有するベンゼン環の総個数が7以上であるであることが好ましい。ただし前記Rが、前記ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。
本発明の一態様にかかる有機電界発光素子が有する層が含有する化合物は、下記一般式(2)で表される化合物である。
In the formula, Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .
R 1 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group, an alkoxy group, and an amino group which may have a substituent. R 1 is a single bond and may form a ring with Ar 3 or Ar 4 .
It is preferable that the total number of benzene rings contained in Ar 1 to Ar 4 and R 1 is 7 or more. However, when the R 1 forms a ring together with the Ar 3 or Ar 4 and the nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more.
The compound contained in the layer of the organic electroluminescent device according to one aspect of the present invention is a compound represented by the following general formula (2).

Figure 2022029765000006
Figure 2022029765000006

Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。
は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
ただし、Ar~ArおよびRが有するベンゼン環の総個数は7以上である。なお、Rが、ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .
R 2 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group and an alkoxy group which may have a substituent. R 2 is a single bond and may form a ring with Ar 3 or Ar 4 .
However, the total number of benzene rings contained in Ar 1 to Ar 4 and R 2 is 7 or more. When R 2 forms a ring together with Ar 3 or Ar 4 and a nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more.

本発明の一態様にかかる有機電界発光素子が有する層が含有する化合物は、下記一般式(3)で表される化合物である。 The compound contained in the layer of the organic electroluminescent device according to one aspect of the present invention is a compound represented by the following general formula (3).

Figure 2022029765000007
Figure 2022029765000007

Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表す。
は、置換基を有しても良いアミノ基を表す。
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group or a heteroaryl group which may have a substituent independently of each other.
R 3 represents an amino group which may have a substituent.

以下、式(1)、式(2)および式(3)で示される各エナミン化合物を、それぞれエナミン化合物(1)、エナミン化合物(2)およびエナミン化合物(3)と称することもある。 Hereinafter, each enamine compound represented by the formula (1), the formula (2) and the formula (3) may be referred to as an enamine compound (1), an enamine compound (2) and an enamine compound (3), respectively.

エナミン化合物(1)~(3)における置換基の定義及びその好ましい具体例は、それぞれ以下のとおりである。
[ArおよびArについて]
Definitions of substituents in the enamine compounds (1) to (3) and preferred specific examples thereof are as follows.
[About Ar 1 and Ar 2 ]

ArおよびArは、独立に、フェニル基、ナフチル基またはビフェニル基を表す。ArおよびArは、各々独立に、フッ素原子、メチル基およびフェニル基から選択される1以上の基で置換されていてもよく、ArおよびArで環を形成しても良い。
[ArおよびArについて]
Ar 1 and Ar 2 independently represent a phenyl group, a naphthyl group or a biphenyl group. Ar 1 and Ar 2 may be independently substituted with one or more groups selected from a fluorine atom, a methyl group and a phenyl group, or rings may be formed with Ar 1 and Ar 2 .
[About Ar 3 and Ar 4 ]

Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。 Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .

ArおよびArとしては、フェニル基、ナフチル基、フルオレニル基、アントラニル基、フェナントレニル基、カルバゾール基、であることが好ましい。各々独立に、フッ素原子、メチル基、フェニル基およびカルバゾール基から選択択される1以上の基で置換されていてもよい。
[Rについて]
As Ar 3 and Ar 4 , phenyl group, naphthyl group, fluorenyl group, anthranil group, phenanthrenyl group and carbazole group are preferable. Each may be independently substituted with one or more groups selectively selected from a fluorine atom, a methyl group, a phenyl group and a carbazole group.
[About R 1 ]

は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基、アミノ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
Ar~ArおよびRが有するベンゼン環の総個数が7以上であるであることが好ましい。ただしRが、前記ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上であることが好ましい。
R 1 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group, an alkoxy group, and an amino group which may have a substituent. R 1 is a single bond and may form a ring with Ar 3 or Ar 4 .
It is preferable that the total number of benzene rings contained in Ar 1 to Ar 4 and R 1 is 7 or more. However, when R 1 forms a ring together with Ar 3 or Ar 4 and a nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is preferably 4 or more.

としては、例えば、フェニル基、ビフェニル基、トリメチルシリル基、トリフェニルシリルキ等が挙げられる。Rは、フッ素原子、メチル基、フェニル基およびカルバゾール基から選択択される1以上の基で置換されていてもよい。
[Rについて]
Examples of R 1 include a phenyl group, a biphenyl group, a trimethylsilyl group, a triphenylsilylki and the like. R 1 may be substituted with one or more groups selectively selected from a fluorine atom, a methyl group, a phenyl group and a carbazole group.
[About R 2 ]

は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。 R 2 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group and an alkoxy group which may have a substituent. R 2 is a single bond and may form a ring with Ar 3 or Ar 4 .

としては、例えば、フェニル基、ビフェニル基、トリメチルシリル基、トリフェニルシリルキ等が挙げられる。Rは、フッ素原子、メチル基、フェニル基およびカルバゾール基から選択択される1以上の基で置換されていてもよい。
Ar~ArおよびRが有するベンゼン環の総個数は7以上である。なお、Rが、ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。
[Rについて]
Examples of R 2 include a phenyl group, a biphenyl group, a trimethylsilyl group, a triphenylsilylki and the like. R2 may be substituted with one or more groups selectively selected from a fluorine atom, a methyl group, a phenyl group and a carbazole group.
The total number of benzene rings contained in Ar 1 to Ar 4 and R 2 is 7 or more. When R 2 forms a ring together with Ar 3 or Ar 4 and a nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more.
[About R3 ]

は、置換基を有しても良いアミノ基を表す。 R 3 represents an amino group which may have a substituent.

[エナミン化合物(1)~(3)の具体例]
エナミン化合物(1)~(3)の具体例を以下例示するが、本発明はこれらに限定されるものではない。構造式中、Phはフェニル基を表わし、Meはメチル基を表し、TMSはトリメチルシリル基を表す。
[Specific examples of enamine compounds (1) to (3)]
Specific examples of the enamine compounds (1) to (3) are exemplified below, but the present invention is not limited thereto. In the structural formula, Ph represents a phenyl group, Me represents a methyl group, and TMS represents a trimethylsilyl group.

Figure 2022029765000008
Figure 2022029765000008

Figure 2022029765000009
Figure 2022029765000009

Figure 2022029765000010
Figure 2022029765000010

Figure 2022029765000011
Figure 2022029765000011

Figure 2022029765000012
Figure 2022029765000012

Figure 2022029765000013
Figure 2022029765000013

Figure 2022029765000014
Figure 2022029765000014

Figure 2022029765000015
Figure 2022029765000015

Figure 2022029765000016
Figure 2022029765000016

Figure 2022029765000017
Figure 2022029765000017

本発明の一態様にかかるエナミン化合物(1)~(3)は、既知の反応を適宜組み合わせることによって製造することができる。
<有機電界発光素子用材料>
The enamine compounds (1) to (3) according to one aspect of the present invention can be produced by appropriately combining known reactions.
<Material for organic electroluminescent device>

エナミン化合物(1)~(3)は、有機電界発光素子用材料として有用である。エナミン化合物(1)は、例えば、有機電界発光素子用正孔輸送材料として用いることができる。エナミン化合物(1)を含む有機電界発光素子用材料は、高い発光効率及び長寿命特性を発揮し、種々の用途又は様々な環境下で利用可能な有機電界発光素子を作製することができる。
<有機電界発光素子>
The enamine compounds (1) to (3) are useful as materials for an organic electroluminescent device. The enamine compound (1) can be used, for example, as a hole transport material for an organic electroluminescent device. The material for an organic electroluminescent element containing the enamine compound (1) exhibits high luminous efficiency and long life characteristics, and can produce an organic electroluminescent element that can be used in various applications or in various environments.
<Organic electroluminescent device>

以下、エナミン化合物(1)~(3)を含む層を有する有機電界発光素子(以下、単に有機電界発光素子と称することがある)について説明する。 Hereinafter, an organic electroluminescent device having a layer containing the enamine compounds (1) to (3) (hereinafter, may be simply referred to as an organic electroluminescent device) will be described.

本発明の一態様にかかる有機電界発光素子を形成する層は、エナミン化合物(1)~(3)を含有する。 The layer forming the organic electroluminescent device according to one aspect of the present invention contains the enamine compounds (1) to (3).

有機電界発光素子の構成については特に限定されるものではないが、例えば、以下に示す(i)~(v)の構成が挙げられる。
(i):陽極/発光層/陰極
(ii):陽極/正孔輸送層/発光層/陰極
(iii):陽極/発光層/電子輸送層/陰極
(iv):陽極/正孔輸送層/発光層/電子輸送層/陰極
(v):陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
The configuration of the organic electroluminescent device is not particularly limited, and examples thereof include the configurations (i) to (v) shown below.
(I): Anode / light emitting layer / cathode (ii): anode / hole transport layer / light emitting layer / cathode (iii): anode / light emitting layer / electron transport layer / cathode (iv): anode / hole transport layer / Light emitting layer / electron transport layer / cathode (v): anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode

エナミン化合物(1)は、上記のいずれの層に含まれていてもよいが、有機電界発光素子の発光特性に優れる点で、発光層及び該発光層と陽極との間の層からなる群より選ばれる1層以上に含まれることが好ましい。 The enamine compound (1) may be contained in any of the above layers, but it is superior to the group consisting of the light emitting layer and the layer between the light emitting layer and the anode in that it is excellent in the light emitting characteristics of the organic electroluminescent element. It is preferably contained in one or more selected layers.

したがって、上記(i)~(v)に示された構成の場合、エナミン化合物(1)~(3)が、発光層、正孔輸送層、及び正孔注入層からなる群より選ばれる1層以上に含まれることが好ましい。 Therefore, in the case of the configurations shown in the above (i) to (v), the enamine compounds (1) to (3) are one layer selected from the group consisting of a light emitting layer, a hole transport layer, and a hole injection layer. It is preferable that it is contained in the above.

以下、本発明の一態様にかかる有機電界発光素子を、上記(v)の構成を例に挙げて、図1を参照しながらより詳細に説明する。 Hereinafter, the organic electroluminescent device according to one aspect of the present invention will be described in more detail with reference to FIG. 1 by taking the configuration of the above (v) as an example.

なお、図1に示す有機電界発光素子は、いわゆるボトムエミッション型の素子構成を有するものであるが、本発明の一態様にかかる有機電界発光素子はボトムエミッション型の素子構成に限定されるものではない。すなわち、本発明の一態様にかかる有機電界発光素子は、トップエミッション型など、他の公知の素子構成であってもよい。 The organic electroluminescent device shown in FIG. 1 has a so-called bottom emission type device configuration, but the organic electroluminescent device according to one aspect of the present invention is not limited to the bottom emission type device configuration. do not have. That is, the organic electroluminescent device according to one aspect of the present invention may have another known device configuration such as a top emission type.

図1は、本発明の一態様にかかるエナミン化合物を含む有機電界発光素子の積層構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescent device containing an enamine compound according to an aspect of the present invention.

有機電界発光素子100は、基板1、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、及び陰極8をこの順で備える。ただし、これらの層のうちの一部の層が省略されていてもよく、また逆に他の層が追加されていてもよい。例えば、発光層5と電子輸送層6との間に正孔阻止層が設けられていてもよく、正孔注入層3が省略され、陽極2上に正孔輸送層4が直接設けられていてもよい。 The organic electroluminescent device 100 includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 in this order. However, some of these layers may be omitted, and conversely, other layers may be added. For example, a hole blocking layer may be provided between the light emitting layer 5 and the electron transport layer 6, the hole injection layer 3 is omitted, and the hole transport layer 4 is directly provided on the anode 2. May be good.

また、例えば電子注入層の機能と電子輸送層の機能とを単一の層で併せ持つ電子注入・輸送層のような、複数の層が有する機能を併せ持った単一の層を、当該複数の層の代わりに備えた構成であってもよい。さらに、例えば単層の正孔輸送層4、単層の電子輸送層6が、それぞれ複数層からなっていてもよい。
≪エナミン化合物(1)~(3)を含有する層≫
Further, a single layer having a function of a plurality of layers, such as an electron injection / transport layer having a function of an electron injection layer and a function of an electron transport layer in a single layer, can be combined with the plurality of layers. It may be a configuration provided in place of. Further, for example, the single-layer hole transport layer 4 and the single-layer electron transport layer 6 may each be composed of a plurality of layers.
<< Layer containing enamine compounds (1) to (3) >>

図1に示される構成例において有機電界発光素子100は、発光層5、正孔輸送層4及び正孔注入層3からなる群より選ばれる1層以上にエナミン化合物(1)~(3)を含む。特に、正孔輸送層4がエナミン化合物(1)~(3)を含むことが好ましい。なお、エナミン化合物(1)~(3)は、有機電界発光素子が備える複数の層に含まれていてもよい。 In the configuration example shown in FIG. 1, the organic electroluminescent device 100 has enamine compounds (1) to (3) in one or more layers selected from the group consisting of a light emitting layer 5, a hole transport layer 4, and a hole injection layer 3. include. In particular, it is preferable that the hole transport layer 4 contains the enamine compounds (1) to (3). The enamine compounds (1) to (3) may be contained in a plurality of layers included in the organic electroluminescent device.

以下、好ましい実施態様の一つとして正孔輸送層4がエナミン化合物(1)~(3)を含有する有機電界発光素子100について説明する。
[基板1]
Hereinafter, as one of the preferred embodiments, the organic electroluminescent device 100 in which the hole transport layer 4 contains the enamine compounds (1) to (3) will be described.
[Board 1]

基板1としては特に限定はなく、例えばガラス板、石英板、プラスチック板などが挙げられる。 The substrate 1 is not particularly limited, and examples thereof include a glass plate, a quartz plate, and a plastic plate.

基板1としては、例えば、ガラス板、石英板、プラスチック板、プラスチックフィルムなどが挙げられる。これらの中でも、ガラス板、石英板、光透過性プラスチックフィルムが好ましい。 Examples of the substrate 1 include a glass plate, a quartz plate, a plastic plate, a plastic film, and the like. Among these, a glass plate, a quartz plate, and a light-transmitting plastic film are preferable.

光透過性プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルムが挙げられる。 Examples of the light-transmitting plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). ), Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.

なお、基板1側から発光が取り出される構成の場合、基板1は光の波長に対して透明である。
[陽極2]
In the case of a configuration in which light emission is taken out from the substrate 1 side, the substrate 1 is transparent with respect to the wavelength of light.
[Anode 2]

基板1上(正孔注入層3側)には陽極2が設けられている。 An anode 2 is provided on the substrate 1 (on the hole injection layer 3 side).

陽極の材料としては、仕事関数の大きい(例えば4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物が挙げられる。陽極の材料の具体例としては、Auなどの金属;CuI、酸化インジウム-スズ(ITO;Indium Tin Oxide)、SnO、ZnOなどの導電性透明材料が挙げられる。 Examples of the material of the anode include metals, alloys, electrically conductive compounds and mixtures thereof having a large work function (for example, 4 eV or more). Specific examples of the anode material include metals such as Au; conductive transparent materials such as CuI, indium tin oxide (ITO; Indium Tin Oxide), SnO 2 , and ZnO.

発光が陽極を通過して取り出される構成の有機電界発光素子の場合、陽極は当該発光を通すか又は実質的に通す導電性透明材料で形成される。
[正孔注入層3、正孔輸送層4]
In the case of an organic electroluminescent device in which light emission is taken out through the anode, the anode is formed of a conductive transparent material that allows or substantially passes the light emission.
[Hole injection layer 3, hole transport layer 4]

陽極2と発光層5との間には、陽極2側から、正孔注入層3、正孔輸送層4がこの順で設けられている。 A hole injection layer 3 and a hole transport layer 4 are provided between the anode 2 and the light emitting layer 5 in this order from the anode 2 side.

正孔注入層、正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在させることによって、より低い電界で多くの正孔が発光層に注入される。 The hole injection layer and the hole transport layer have a function of transmitting holes injected from the anode to the light emitting layer, and the hole injection layer and the hole transport layer are interposed between the anode and the light emitting layer. Injects more holes into the light emitting layer with a lower electric field.

また、正孔注入層、正孔輸送層は、電子障壁性の層としても機能する。すなわち、陰極から注入され、電子注入層及び/又は電子輸送層より発光層に輸送された電子は、発光層と正孔注入層及び/又は正孔輸送層との界面に存在する電子の障壁により、正孔注入層及び/又は正孔輸送層に漏れることが抑制される。その結果、該電子が発光層内の界面に累積され、発光効率が向上する等の効果をもたらし、発光性能の優れた有機電界発光素子が得られる。 The hole injection layer and the hole transport layer also function as electron barrier layers. That is, the electrons injected from the cathode and transported from the electron injection layer and / or the electron transport layer to the light emitting layer are caused by the electron barrier existing at the interface between the light emitting layer and the hole injection layer and / or the hole transport layer. , Leakage to the hole injection layer and / or the hole transport layer is suppressed. As a result, the electrons are accumulated at the interface in the light emitting layer, which has the effect of improving the light emitting efficiency and the like, and an organic electroluminescent element having excellent light emitting performance can be obtained.

正孔注入層、正孔輸送層の材料としては、正孔注入性、正孔輸送性、電子障壁性の少なくともいずれかを有するものである。
正孔輸送層は、前述したとおり、エナミン化合物(1)~(3)を含むことが好ましい。また、正孔輸送層は、エナミン化合物(1)~(3)に加えてさらに従来公知の正孔輸送材料から選ばれる1種以上を含んでいてもよい。
The material of the hole injection layer and the hole transport layer has at least one of hole injection property, hole transport property, and electron barrier property.
As described above, the hole transport layer preferably contains the enamine compounds (1) to (3). Further, the hole transport layer may further contain one or more selected from conventionally known hole transport materials in addition to the enamine compounds (1) to (3).

なお、エナミン化合物(1)~(3)が正孔輸送層に含まれず、他の層に含まれる場合は、従来公知の正孔輸送材料から選ばれる1種以上を、正孔輸送層を構成する正孔輸送材料として用いることができる。 When the enamine compounds (1) to (3) are not contained in the hole transport layer but are contained in another layer, one or more selected from conventionally known hole transport materials constitutes the hole transport layer. It can be used as a hole transporting material.

従来公知の正孔注入層、正孔輸送層の材料の具体例としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物などが挙げられる。 Specific examples of conventionally known materials for the hole injection layer and the hole transport layer include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, and arylamine derivatives. Amino-substituted carcon derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers (particularly thiophene oligomers), porphyrin compounds, aromatic tertiary amines. Examples thereof include compounds and styrylamine compounds.

これらの中でも、有機電界発光素子の性能がよい点で、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物が好ましく、特に芳香族第三級アミン化合物が好ましい。 Among these, a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound are preferable, and an aromatic tertiary amine compound is particularly preferable, because the performance of the organic electric field light emitting element is good.

芳香族第三級アミン化合物及びスチリルアミン化合物の具体例としては、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(m-トリル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、4,4’,4’’-トリス〔N-(m-トリル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。 Specific examples of the aromatic tertiary amine compound and the styrylamine compound include N, N, N', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-. Bis (m-tolyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis ( 4-Di-p-trilaminophenyl) cyclohexane, N, N, N', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) Phenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'- Di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl , N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4'-[4- (di-p-tolylamino) styryl] stilben, 4-N, N-diphenylamino -(2-Diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostillbenzene, N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] Examples thereof include biphenyl (NPD), 4,4', 4''-tris [N- (m-tolyl) -N-phenylamino] triphenylamine (MTDATA) and the like.

また、p型-Si、p型-SiCなどの無機化合物も正孔注入層の材料、正孔輸送層の材料の一例として挙げることができる。 Inorganic compounds such as p-type-Si and p-type-SiC can also be mentioned as examples of the material of the hole injection layer and the material of the hole transport layer.

正孔注入層、正孔輸送層は、一種又は二種以上の材料からなる単構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
[発光層5]
The hole injection layer and the hole transport layer may have a single structure made of one or more kinds of materials, or may have a laminated structure made of a plurality of layers having the same composition or different compositions.
[Light emitting layer 5]

正孔輸送層4と電子輸送層6との間には、発光層5が設けられている。 A light emitting layer 5 is provided between the hole transport layer 4 and the electron transport layer 6.

発光層の材料としては、燐光発光材料、蛍光発光材料、熱活性化遅延蛍光発光材料が挙げられる。発光層では電子・正孔対が再結合し、その結果として発光が生じる。 Examples of the material of the light emitting layer include a phosphorescent light emitting material, a fluorescent light emitting material, and a thermal activated delayed fluorescent light emitting material. In the light emitting layer, electron-hole pairs are recombined, resulting in light emission.

発光層は、単一の低分子材料又は単一のポリマー材料からなっていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料からなっている。発光は主としてドーパントから生じ、任意の色を有することができる。 The light emitting layer may consist of a single small molecule material or a single polymer material, but more generally it is made of a host material doped with a guest compound. The luminescence comes primarily from the dopant and can have any color.

ホスト材料としては、例えば、ビフェニリル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、アントリル基を有する化合物が挙げられる。より具体的には、DPVBi(4,4’-ビス(2,2-ジフェニルビニル)-1,1’-ビフェニル)、BCzVBi(4,4’-ビス(9-エチル-3-カルバゾビニレン)1,1’-ビフェニル)、TBADN(2-ターシャリーブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN(9,10-ジ(2-ナフチル)アントラセン)、CBP(4,4’-ビス(カルバゾール-9-イル)ビフェニル)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、2-(9-フェニルカルバゾール-3-イル)-9-[4-(4-フェニルフェニルキナゾリン-2-イル)カルバゾール、9,10-ビス(ビフェニル)アントラセン等が挙げられる。 Examples of the host material include compounds having a biphenylyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, and an anthryl group. More specifically, DPVBi (4,4'-bis (2,2-diphenylvinyl) -1,1'-biphenyl), BCzVBi (4,4'-bis (9-ethyl-3-carbazovinylene) 1, 1'-biphenyl), TBADN (2-tertiary butyl-9,10-di (2-naphthyl) anthracene), ADN (9,10-di (2-naphthyl) anthracene), CBP (4,4'-bis) (Carbazole-9-yl) biphenyl), CDBP (4,4'-bis (carbazole-9-yl) -2,2'-dimethylbiphenyl), 2- (9-phenylcarbazole-3-yl) -9- [Examples include 4- (4-phenylphenylquinazoline-2-yl) carbazole, 9,10-bis (biphenyl) anthracene and the like.

蛍光ドーパントとしては、例えば、アントラセン、ピレン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン、キナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム、チアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、カルボスチリル化合物、ホウ素化合物、環状アミン化合物等が挙げられる。蛍光ドーパントはこれらから選ばれる2種以上を組み合わせたものであってもよい。 Examples of the fluorescent dopant include anthracene, pyrene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyrine compound, thiopyran compound, polymethine compound, pyrylium, thiapyrylium compound, fluorene derivative, perifrantene derivative and indenoperylene. Examples thereof include derivatives, bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, carbostylyl compounds, boron compounds, cyclic amine compounds and the like. The fluorescent dopant may be a combination of two or more selected from these.

燐光ドーパントとしては、例えば、イリジウム、白金、パラジウム、オスミウム等の遷移金属の有機金属錯体が挙げられる。 Examples of the phosphorescent dopant include organic metal complexes of transition metals such as iridium, platinum, palladium, and osmium.

蛍光ドーパント、燐光ドーパントの具体例としては、Alq3(トリス(8-ヒドロキシキノリン)アルミニウム)、DPAVBi(4,4’-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル)、ペリレン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトナート)イリジウム(III)、Ir(PPy)3(トリス(2-フェニルピリジン)イリジウム(III))、及びFIrPic(ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)))等が挙げられる。 Specific examples of the fluorescent dopant and the phosphorescent dopant include Alq3 (tris (8-hydroxyquinoline) aluminum), DPAVBi (4,4'-bis [4- (di-p-tolylamino) styryl] biphenyl), perylene, and bis [ 2- (4-n-Hexylphenyl) quinoline] (acetylacetonate) iridium (III), Ir (PPy) 3 (tris (2-phenylpyridine) iridium (III)), and FIrPic (bis (3,5-) Difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III))) and the like can be mentioned.

また、発光材料は発光層のみに含有されることに限定されるものではない。例えば、発光材料は、発光層に隣接した層(正孔輸送層4、又は電子輸送層6)が含有していてもよい。これによってさらに有機電界発光素子の発光効率を高めることができる。 Further, the light emitting material is not limited to being contained only in the light emitting layer. For example, the light emitting material may contain a layer adjacent to the light emitting layer (hole transport layer 4 or electron transport layer 6). This makes it possible to further increase the luminous efficiency of the organic electroluminescent device.

発光層は、一種又は二種以上の材料からなる単層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
[電子輸送層6]
The light emitting layer may have a single layer structure made of one or more kinds of materials, or may have a laminated structure made of a plurality of layers having the same composition or different compositions.
[Electron transport layer 6]

発光層5と電子注入層7との間には、電子輸送層6が設けられている。 An electron transport layer 6 is provided between the light emitting layer 5 and the electron injection layer 7.

電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有する。電子輸送層を陰極と発光層との間に介在させることによって、電子がより低い電界で発光層に注入される。 The electron transport layer has a function of transferring electrons injected from the cathode to the light emitting layer. By interposing the electron transport layer between the cathode and the light emitting layer, electrons are injected into the light emitting layer with a lower electric field.

電子注入層、電子輸送層の材料は、有機物、無機物のいずれであってもよい。
従来公知の電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。
The material of the electron injection layer and the electron transport layer may be either an organic substance or an inorganic substance.
Examples of conventionally known electron transporting materials include alkali metal complexes, alkaline earth metal complexes, and earth metal complexes.

アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体としては、例えば、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、ビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム等が挙げられる。 Examples of the alkali metal complex, alkaline earth metal complex, and earth metal complex include 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinate) zinc, and bis (8-hydroxyquinolinate) copper. , Bis (8-hydroxyquinolinate) manganese, Tris (8-hydroxyquinolinate) aluminum, Tris (2-methyl-8-hydroxyquinolinate) aluminum, Tris (8-hydroxyquinolinate) gallium, bis (10-Hydroxybenzo [h] quinolinate) berylium, bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-8-quinolinate) chlorogallium, bis (2-methyl-8-quinolinate) (o) -Crezolate) gallium, bis (2-methyl-8-quinolinate) -1-naphtholate aluminum, bis (2-methyl-8-quinolinate) -2-naphtholate gallium and the like can be mentioned.

電子輸送層は、一種又は二種以上の材料からなる単層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。 The electron transport layer may have a single-layer structure composed of one or more kinds of materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.

本発明の一態様にかかるにかかる有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、低電圧駆動、又は高耐久性)を向上させる目的で、電子注入層を設けてもよい。
[電子注入層7]
In the organic electroluminescent element according to one aspect of the present invention, the electron injection layer is provided for the purpose of improving the electron injection property and the element characteristics (for example, luminous efficiency, low voltage drive, or high durability). It may be provided.
[Electronic injection layer 7]

電子輸送層6と陰極8との間には、電子注入層7が設けられている。電子注入層は、陰極より注入された電子を発光層に伝達する機能を有する。電子注入層を陰極と発光層との間に介在させることによって、電子がより低い電界で発光層に注入される。 An electron injection layer 7 is provided between the electron transport layer 6 and the cathode 8. The electron injection layer has a function of transmitting electrons injected from the cathode to the light emitting layer. By interposing the electron injection layer between the cathode and the light emitting layer, electrons are injected into the light emitting layer with a lower electric field.

電子注入層の材料としては、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等の有機化合物が挙げられる。 Materials for the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fleolenilidenemethane, anthraquinodimethane, antron and the like. Examples include organic compounds.

また、電子注入層の材料としては、SiO、AlO、SiN、SiON、AlON、GeO、LiO、LiON、TiO、TiON、TaO、TaON、TaN、LiF、C、Ybなどの各種酸化物、フッ化物、窒化物、酸化窒化物等の無機化合物も挙げられる。
[陰極8]
The material of the electron injection layer includes various oxides and fluorides such as SiO 2 , AlO, SiN, SiON, AlON, GeO, LiO, LiON, TiO, TiON, TaO, TaON, TaN, LiF, C and Yb. Inorganic compounds such as nitrides and oxide nitrides can also be mentioned.
[Cathode 8]

電子注入層7上には陰極8が設けられている。陽極を通過した発光のみが取り出される構成の有機エレクトロルミネッセンス素子の場合、陰極は任意の導電性材料から形成することができる。 A cathode 8 is provided on the electron injection layer 7. In the case of an organic electroluminescence device having a configuration in which only light emitted through the anode is extracted, the cathode can be formed from any conductive material.

陰極の材料としては、例えば、仕事関数の小さい金属(以下、電子注入性金属とも称する)、合金、電気伝導性化合物、及びこれらの混合物が挙げられる。ここで、仕事関数の小さい金属とは、例えば、4eV以下の金属である。 Examples of the cathode material include metals having a small work function (hereinafter, also referred to as electron-injectable metals), alloys, electrically conductive compounds, and mixtures thereof. Here, the metal having a small work function is, for example, a metal having a work function of 4 eV or less.

陰極の材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。 Specific examples of the cathode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ). Examples include mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.

これらの中で、電子注入性及び酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好ましい。
[各層の形成方法]
Among these, from the viewpoint of electron injectability and durability against oxidation, a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / silver mixture, magnesium. / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture and the like are preferable.
[Formation method of each layer]

以上説明した、電極(陽極、陰極)を除く各層は、例えば、真空蒸着法、スピンコート法、キャスト法、LB(Langmuir-Blodgett method)法などの公知の方法によって薄膜化することにより、形成することができる。各層の材料は、それ単独で用いてもよく、必要に応じて結着樹脂などの材料、溶剤と共に用いてもよい。 Each layer excluding the electrodes (anode, cathode) described above is formed by thinning by a known method such as a vacuum vapor deposition method, a spin coating method, a casting method, or a LB (Langmuir-Blodgett method) method. be able to. The material of each layer may be used alone, or may be used together with a material such as a binder resin and a solvent, if necessary.

このようにして形成された各層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm~5μmの範囲である。 The film thickness of each layer thus formed is not particularly limited and may be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 μm.

陽極及び陰極は、電極材料を蒸着やスパッタリングなどの方法によって薄膜化することにより、形成することができる。蒸着やスパッタリングの際に所望の形状のマスクを介してパターンを形成してもよく、蒸着やスパッタリングなどによって薄膜を形成した後、フォトリソグラフィーで所望の形状のパターンを形成してもよい。 The anode and cathode can be formed by thinning the electrode material by a method such as thin film deposition or sputtering. A pattern may be formed through a mask having a desired shape during vapor deposition or sputtering, or a thin film may be formed by vapor deposition or sputtering, and then a pattern having a desired shape may be formed by photolithography.

陽極及び陰極の膜厚は、1μm以下であることが好ましく、10nm以上200nm以下であることがより好ましい。 The film thickness of the anode and the cathode is preferably 1 μm or less, and more preferably 10 nm or more and 200 nm or less.

有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像をスクリーン等に投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 The organic electroluminescent element may be used as a kind of lamp such as for lighting or an exposure light source, a projection device of a type that projects an image on a screen or the like, or a display of a type that directly visually recognizes a still image or a moving image. It may be used as a device (display).

動画再生用の表示装置として有機電界発光素を使用する場合、駆動方式としては、単純マトリクス(パッシブマトリクス)方式であってもよく、アクティブマトリクス方式であってもよい。また、異なる発光色を有する有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 When an organic electroluminescent element is used as a display device for moving image reproduction, the drive method may be a simple matrix (passive matrix) method or an active matrix method. Further, it is possible to manufacture a full-color display device by using two or more kinds of organic electroluminescent devices having different emission colors.

エナミン化合物(1)~(3)は、正孔輸送層として用いた際に従来公知のエナミン化合物に比べて、長寿命特性が顕著に優れる有機電界発光素子を提供することができる。 The enamine compounds (1) to (3) can provide an organic electroluminescent device having remarkably excellent long-life characteristics as compared with conventionally known enamine compounds when used as a hole transport layer.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例により何ら限定して解釈されるものではない。
H-NMR測定]
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited to these examples.
[ 1 1 H-NMR measurement]

H-NMRの測定には、Gemini200(バリアン社製)を用いた。H-NMRは、重クロロホルム(CDCl)を測定溶媒とし、内部標準物質としてテトラメチルシラン(TMS)を用いて測定した。また、試薬類は市販品を用いた。
[DSC測定(ガラス転移温度、結晶化温度、融点)]
1 Gemini200 (manufactured by Varian) was used for 1 H-NMR measurement. 1 1 H-NMR was measured using deuterated chloroform (CDCl 3 ) as a measuring solvent and tetramethylsilane (TMS) as an internal standard substance. In addition, commercially available reagents were used.
[DSC measurement (glass transition temperature, crystallization temperature, melting point)]

ガラス転移温度、結晶化温度および融点の測定は、DSC7020(日立ハイテクサイエンス社製、製品名)を用いて行った。 The glass transition temperature, crystallization temperature and melting point were measured using DSC7020 (manufactured by Hitachi High-Tech Science Co., Ltd., product name).

DSCの測定条件は以下のとおりである。なお、測定は、窒素雰囲気下(流量50ml/min)にて行った。また、ファーストクーリング、セカンドヒーティングの順に行い、セカンドヒーティングの際のガラス転移温度、結晶化温度および融点を、それぞれ試料のガラス転移温度、結晶化温度および融点とした。
試料量 :5~10mg
測定条件:
<ファーストヒーティング>
昇温速度:15℃/min
測定温度範囲:30℃~360℃
<ファーストクーリング>
ドライアイスによる急冷
<セカンドヒーティング>
昇温速度:5℃/min
測定温度範囲:30℃~360℃
[発光特性測定]
The measurement conditions of DSC are as follows. The measurement was performed under a nitrogen atmosphere (flow rate 50 ml / min). In addition, the first cooling and the second heating were performed in this order, and the glass transition temperature, the crystallization temperature and the melting point at the time of the second heating were taken as the glass transition temperature, the crystallization temperature and the melting point of the sample, respectively.
Sample amount: 5-10 mg
Measurement condition:
<First heating>
Temperature rise rate: 15 ° C / min
Measurement temperature range: 30 ° C to 360 ° C
<First cooling>
Quenching with dry ice <second heating>
Temperature rise rate: 5 ° C / min
Measurement temperature range: 30 ° C to 360 ° C
[Measurement of emission characteristics]

有機電界発光素子の発光特性は、25℃環境下、作製した素子に直流電流を印加し、輝度計BM-9(製品名、トプコンテクノハウス社製)を用いて評価した。 The emission characteristics of the organic electroluminescent element were evaluated using a luminance meter BM-9 (product name, manufactured by Topcon Technohouse Co., Ltd.) by applying a direct current to the manufactured element in an environment of 25 ° C.

合成実施例-1(化合物-1) Synthesis Example-1 (Compound-1)

Figure 2022029765000018
Figure 2022029765000018

還流管を取り付けた100mLの二口反応器をフレームドライ、アルゴン置換し、それにブロモトリフェニルエチレン(5mmol,1.68 g)(東京化成工業社製)、ビス(4-ビフェニル)アミン(5.5mmol,1.77 g)ナトリウムt-ブトキシド(NaOBu)(6.5 mmol,620 mg)(富士フイルム和光純薬製)、酢酸パラジウム(Pd(OAc) )(0.05 mmol,11.2 mg)(富士フイルム和光純薬社製)、トリ-t-ブチルホスフィン(PBu)(0.2 mmol,40.4 mg)(Aldrich社製)、キシレン(脱水)(15ml)を順に加えた後、120℃に加熱し3時間撹拌した。反応溶液を分液漏斗に移し、水50mLを加え、ジエチルエーテル(30mL)で3回抽出した。有機層を飽和食塩水で洗浄し、NaSOで乾燥した後、溶媒を減圧留去した。得られた粘性固体をシリカゲルカラムクロマトグラフィー(hexane/EtO = 100:0~90:10グラジエント)を数回行い精製することで、目的物1.85gを64%の収率で得た。 A 100 mL two-port reactor equipped with a recirculation tube was frame-dried and substituted with argon, and bromotriphenylethylene (5 mmol, 1.68 g) (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and bis (4-biphenyl) amine (5. 5 mmol, 1.77 g) sodium t-butoxide (NaO t Bu) (6.5 mmol, 620 mg) (manufactured by Wako Pure Chemical Industries, Ltd.), palladium acetate (Pd (OAc) 2 ) (0.05 mmol, 11) .2 mg) (Fujifilm Wako Pure Chemical Industries, Ltd.), Tri- t -butylphosphine (Pt Bu 3 ) (0.2 mmol, 40.4 mg) (Aldrich), Xylene (dehydrated) (15 ml) Was added in order, then heated to 120 ° C. and stirred for 3 hours. The reaction solution was transferred to a separatory funnel, 50 mL of water was added, and the mixture was extracted 3 times with diethyl ether (30 mL). The organic layer was washed with saturated brine, dried over NaSO 4 , and then the solvent was evaporated under reduced pressure. The obtained viscous solid was purified by performing silica gel column chromatography (hexane / Et 2 O = 100: 0 to 90:10 gradient) several times to obtain 1.85 g of the target product in a yield of 64%.

H-NMR(400MHz、CDCl)δ:7.50(d,J=7.4,4H),7.38(t,J=7.4,6H),7.22-7.30(m,6H),7.04-7.13(m,12H),6.97(s,5H).
13C-NMR(100MHz、CDCl)δ:146.0,143.2,142.7,142.0,140.9,138.1,137.8,134,2,131.3,129.1,128.7,128.0,127,9,127.9,127.8,127.5,127.2,126.8,126.7,126.6,126.5,122.5.
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 7.50 (d, J = 7.4,4H), 7.38 (t, J = 7.4,6H), 7.22-7.30 ( m, 6H), 7.04-7.13 (m, 12H), 6.97 (s, 5H).
13 C-NMR (100 MHz, CDCl 3 ) δ: 146.0, 143.2, 142.7, 142.0, 140.9, 138.1, 137.8, 134, 2, 131.3, 129. 1,128.7, 128.0, 127, 9, 127.9, 127.8, 127.5, 127.2, 126.8, 126.7, 126.6, 126.5, 122.5.

合成実施例-2(化合物-4) Synthesis Example-2 (Compound-4)

Figure 2022029765000019
Figure 2022029765000019

ジアリールアミンをN-(4-(9H-カルバゾール-9-イル)フェニル)-[1,1’-ビフェニル]-4-アミン(5.5mmol,2.3 g)に変えた以外は実施例1と同様の操作を行うことで、目的物2.1gを64%の収率で得た。 Example 1 except that the diarylamine was changed to N- (4- (9H-carbazole-9-yl) phenyl)-[1,1'-biphenyl] -4-amine (5.5 mmol, 2.3 g). By performing the same operation as above, 2.1 g of the target product was obtained in a yield of 64%.

H-NMR(400MHz、CDCl)δ:8.12(d,J=7.4,2H),7.51(d,
J=7.4,2H),7.03-7.43(m,32H).
13C-NMR(100MHz、CDCl)δ:146.6,145.2,142.5,142.0,141.2,140.6,137.9,137,7,134.4,131.4,131.3,131.1,129.3,128.8,128.1,128.0,127.7,127.5,127.4,126.9,126.8,126.7,126.6,125.8,123.7,123.1,122.2,120.3,119.7,109.9.
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 8.12 (d, J = 7.4, 2H), 7.51 (d,
J = 7.4, 2H), 7.03-7.43 (m, 32H).
13 C-NMR (100 MHz, CDCl 3 ) δ: 146.6, 145.2, 142.5, 142.0, 141.2, 140.6, 137.9, 137, 7, 134.4, 131. 4,131.3, 131.1, 129.3, 128.8, 128.1, 128.0, 127.7, 127.5, 127.4, 126.9, 126.8, 126.7, 126.6, 125.8, 123.7, 123.1, 122.2, 120.3, 119.7, 109.9.

合成実施例-3(化合物-2) Synthesis Example-3 (Compound-2)

Figure 2022029765000020
Figure 2022029765000020

ジアリールアミンをN-([1,1’-ビフェニル]-4-イル)-4’-(9H-カルバゾ-ル-9-yl)-[1,1’-ビフェニル]-4-アミン(5.5mmol,2.7g)に変えた以外は実施例1と同様の操作を行うことで、目的物2.2gを57%の収率で得た。 Diarylamine is N- ([1,1'-biphenyl] -4-yl) -4'-(9H-carbazol-9-yl)-[1,1'-biphenyl] -4-amine (5. By carrying out the same operation as in Example 1 except that the content was changed to 5 mmol, 2.7 g), 2.2 g of the target product was obtained in a yield of 57%.

H-NMR(400MHz、CDCl)δ:8.13(d,J=7.4,2H),7.71(d,J=7.4,2H),7.57(d,J=7.4,2H),7.51(d,J=7.4,2H),7.07-7.44(m,27H),7.01(s,5H).
13C-NMR(100MHz、CDCl)δ:146.3,145.9,143.1,142.6,141.9,140.9,140.9,140,8,139.9,138.0,137.9,136.2,134,4,133.1,131.4,131.3,129.2,128.8,128.0,127.9,127.9,127.8,127.6,127.3,127.3,127.2,126.8,126.7,126.6,126.0,123.4,122.6,122.5,120.4,120.0,109.9.
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 8.13 (d, J = 7.4, 2H), 7.71 (d, J = 7.4, 2H), 7.57 (d, J = 7.4, 2H), 7.51 (d, J = 7.4, 2H), 7.07-7.44 (m, 27H), 7.01 (s, 5H).
13 C-NMR (100 MHz, CDCl 3 ) δ: 146.3, 145.9, 143.1, 142.6, 141.9, 140.9, 140.9, 140, 8, 139.9, 138. 0, 137.9, 136.2, 134, 4, 133.1, 131.4, 131.3, 129.2, 128.8, 128.0, 127.9, 127.9, 127.8, 127.6, 127.3, 127.3, 127.2, 126.8, 126.7, 126.6, 126.0, 123.4, 122.6, 122.5, 120.4, 120. 0,109.9.

合成実施例-4(化合物-44) Synthesis Example-4 (Compound-44)

Figure 2022029765000021
Figure 2022029765000021

反応スケールを2倍とし、ジアリールアミンを4-(9H-カルバゾ-ル-9-yl)-N-フェニルアニリン(11mmol,3.7g)に変えた以外は実施例1と同様の操作を行うことで、目的物4.5gを77%の収率で得た。 The same operation as in Example 1 is carried out except that the reaction scale is doubled and the diarylamine is changed to 4- (9H-carbazol-9-yl) -N-phenylaniline (11 mmol, 3.7 g). Then, 4.5 g of the target product was obtained in a yield of 77%.

H-NMR(400MHz、CDCl)δ:8.13(d,J=7.4,2H),7.37-7.42(m,4H),7.06-7.28(m,25H),6.83(t,1H).
13C-NMR(100MHz、CDCl)δ:146.8,145.9,143.3,142.6,142.1,141.2,138.0,137.4,131.4,131.4,131.0,129.3,128.8,128.0,128.0,127.9,127.6,127.4,126.9,126.6,125.8,123.1,122.2,121.9,120.3,119.7,109.9.
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 8.13 (d, J = 7.4, 2H), 7.37-7.42 (m, 4H), 7.06-7.28 (m, 25H), 6.83 (t, 1H).
13 C-NMR (100 MHz, CDCl 3 ) δ: 146.8, 145.9, 143.3, 142.6, 142.1, 141.2, 138.0, 137.4, 131.4, 131. 4,131.0, 129.3, 128.8, 128.0, 128.0, 127.9, 127.6, 127.4, 126.9, 126.6, 125.8, 123.1, 122.2, 121.9, 120.3, 119.7, 109.9.

合成実施例-5(化合物-3) Synthesis Example-5 (Compound-3)

Figure 2022029765000022
Figure 2022029765000022

反応スケールを2倍とし、ジアリールアミンを4-(9H-カルバゾ-ル-9-yl)-N-フェニル-[1,1’-ビフェニル]-4-アミン(11mmol,4.5g)に変えた以外は実施例1と同様の操作を行うことで、目的物2.4gを36%の収率で得た。 The reaction scale was doubled and the diallylamine was changed to 4- (9H-carbazol-9-yl) -N-phenyl- [1,1'-biphenyl] -4-amine (11 mmol, 4.5 g). By performing the same operation as in Example 1 except for the above, 2.4 g of the target product was obtained in a yield of 36%.

H-NMR(400MHz、CDCl)δ:8.14(d,J=7.4,2H),7.68(d,J=7.4,2H),7.55(d,J=7.4,2H),6.98-7.44(m,29H),6.80(t,J=7.4,1H).
13C-NMR(100MHz、CDCl)δ:146.6,146.5,143.1,142.7,142.1,141.0,140.0,138.1,137.7,136.2,133.0,131.4,129.2,128.7,128.0,127.9,127.8,127.5,127.3,127.2,126.8,126.6,126.0,123.4,122.6,122.4,122.0,109.9.
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 8.14 (d, J = 7.4, 2H), 7.68 (d, J = 7.4, 2H), 7.55 (d, J = 7.4, 2H), 6.98-7.44 (m, 29H), 6.80 (t, J = 7.4,1H).
13 C-NMR (100 MHz, CDCl 3 ) δ: 146.6, 146.5, 143.1, 142.7, 142.1, 141.0, 140.0, 138.1, 137.7, 136. 2,133.0, 131.4, 129.2, 128.7, 128.0, 127.9, 127.8, 127.5, 127.3, 127.3, 127.6, 126.6 126.0, 123.4, 122.6, 122.4, 122.0, 109.9.

合成実施例-6(化合物-75) Synthesis Example-6 (Compound-75)

Figure 2022029765000023
Figure 2022029765000023

ブロミド化合物を2-ブロモ-1,1’-ジフェニルプロペンに変え、スケールを2-ブロモ-1,1’-ジフェニルプロペン(1mmol,0.27g)相当に変えた以外は実施例1と同様の操作を行うことで、目的物0.43gを84%の収率で得た。 The same operation as in Example 1 except that the bromide compound was changed to 2-bromo-1,1'-diphenylpropene and the scale was changed to the equivalent of 2-bromo-1,1'-diphenylpropene (1 mmol, 0.27 g). To obtain 0.43 g of the target product in a yield of 84%.

H-NMR(600MHz、CDCl)δ:7.55(d,J=8.2,4H),7.26-7.44(m,15H),7.08(d,J=8.2,4H),6.95(s,5H),2.16(s,3H).
13C-NMR(150MHz、CDCl)δ:145.5,142.0,141.6,140.9,138.3,134.1,129.9,128.7,128.6,128.1,127.6,127.3,126.8,126.6,126.6,126.4,121.9,18.8.
1 1 H-NMR (600 MHz, CDCl 3 ) δ: 7.55 (d, J = 8.2, 4H), 7.26-7.44 (m, 15H), 7.08 (d, J = 8. 2,4H), 6.95 (s, 5H), 2.16 (s, 3H).
13 C-NMR (150 MHz, CDCl 3 ) δ: 145.5, 142.0, 141.6, 140.9, 138.3, 134.1, 129.9, 128.7, 128.6, 128. 1,127.6, 127.3, 126.8, 126.6, 126.6, 126.4, 121.9, 18.8.

合成実施例-7(化合物-8) Synthesis Example-7 (Compound-8)

Figure 2022029765000024
Figure 2022029765000024

還流管を取り付けた100mLの二口反応器をフレームドライ、アルゴン置換し、それに1,1-ジブロモ-2,2-ジフェニルエチレン(5mmol,1.69 g)、ジフェニルアミン(5.5mmol,0.93 g)、ナトリウムt-ブトキシド(NaOBu)(11.5 mmol,1.10g)(富士フイルム和光純薬社製)、酢酸パラジウム(Pd(OAc) )(0.25 mmol,56.0 mg)(富士フイルム和光純薬社製)、トリ-t-ブチルホスフィン(PBu)(1 mmol,202.0 mg)(Aldrich社製)、キシレン(脱水)(15ml)を順に加えた後、110℃に加熱し2時間撹拌した。反応溶液を分液漏斗に移し、水50mLを加え、ジエチルエーテル(30mL)で3回抽出した。有機層を飽和食塩水で洗浄し、NaSOで乾燥した後、溶媒を減圧留去した。得られた粘性固体をシリカゲルカラムクロマトグラフィー(hexane/EtO = 100:0~90:10グラジエント)で精製した後、メタノールから再結晶させることで、目的物 535mgを31%の収率で得た。 A 100 mL dual-port reactor equipped with a recirculation tube was frame-dried and substituted with argon, and 1,1-dibromo-2,2-diphenylethylene (5 mmol, 1.69 g) and diphenylamine (5.5 mmol, 0.93) were added to it. g), sodium t-butoxide (NaO t Bu) (11.5 mmol, 1.10 g) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), palladium acetate (Pd (OAc) 2 ) (0.25 mmol, 56.0). mg) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), trit- butylphosphine (Pt Bu 3 ) (1 mmol, 202.0 mg) (manufactured by Aldrich), and xylene (dehydrated) (15 ml) were added in this order. After that, it was heated to 110 ° C. and stirred for 2 hours. The reaction solution was transferred to a separatory funnel, 50 mL of water was added, and the mixture was extracted 3 times with diethyl ether (30 mL). The organic layer was washed with saturated brine, dried over NaSO 4 , and then the solvent was evaporated under reduced pressure. The obtained viscous solid was purified by silica gel column chromatography (hexane / Et 2O = 100: 0 to 90:10 gradient) and then recrystallized from methanol to obtain 535 mg of the target product in a yield of 31%. rice field.

H-NMR(400MHz、CDCl)δ:7.47-7.54(m,2H),7.37-7.45(m,3H),7.31-7.36(m,2H),7.15-7.23(m,3H),7.03-7.15(m,3H),6.92(d,J=7.4,1H)、6.83(t,J=7.4,1H),6.73-6.81(m,3H),6.68(d,J=7.4,1H)
13C-NMR(100MHz、CDCl)δ:157.6,143.2,139.4,138.2,132.2,131.2,130.5,128.9,128.4,128.4,128.1,128.0,127,6,124.6,121.8,121.8,119.7,119.0,107.2.
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 7.47-7.54 (m, 2H), 7.37-7.45 (m, 3H), 7.31-7.36 (m, 2H) , 7.15-7.23 (m, 3H), 7.03-7.15 (m, 3H), 6.92 (d, J = 7.4,1H), 6.83 (t, J = 7.4,1H), 6.73-6.81 (m, 3H), 6.68 (d, J = 7.4,1H)
13 C-NMR (100 MHz, CDCl 3 ) δ: 157.6, 143.2, 139.4, 138.2, 132.2, 131.2, 130.5, 128.9, 128.4, 128. 4,128.1, 128.0, 127, 6, 124.6, 121.8, 121.8, 119.7, 119.0, 107.2.

次に素子評価について記載する。
素子評価に用いた化合物の構造式およびその略称を以下に示す。
Next, element evaluation will be described.
The structural formulas and abbreviations of the compounds used for device evaluation are shown below.

Figure 2022029765000025
Figure 2022029765000025

<素子実施例-1>(図2参照)
(基板1、陽極2の用意)
陽極をその表面に備えた基板として、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用意した。ついで、この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。
<Element Example-1> (see FIG. 2)
(Preparation of substrate 1 and anode 2)
As a substrate having an anode on its surface, a glass substrate with an ITO transparent electrode in which a 2 mm wide indium tin oxide (ITO) film (thickness 110 nm) was patterned in a stripe shape was prepared. Then, after washing this substrate with isopropyl alcohol, surface treatment was performed by ozone ultraviolet washing.

(真空蒸着の準備)
洗浄後の表面処理が施された基板上に、真空蒸着法で各層の真空蒸着を行い、各層を積層形成した。
まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。そして、以下の順で、各層の成膜条件に従ってそれぞれ作製した。
(Preparation for vacuum deposition)
Each layer was vacuum-deposited on the surface-treated substrate after cleaning by a vacuum-film deposition method, and each layer was laminated and formed.
First, the glass substrate was introduced into the vacuum vapor deposition tank, and the pressure was reduced to 1.0 × 10 -4 Pa. Then, they were produced in the following order according to the film forming conditions of each layer.

(正孔注入層3の作製)
昇華精製したHILを0.15nm/秒の速度で55nm成膜し、正孔注入層を作製した。
(Preparation of hole injection layer 3)
The sublimated and purified HIL was formed into a 55 nm film at a rate of 0.15 nm / sec to prepare a hole injection layer.

(電荷発生層9の作製)
昇華精製したHATを0.05nm/秒の速度で5nm成膜し、電荷発生層を作製した。
(Preparation of charge generation layer 9)
The sublimated and purified HAT was formed into a 5 nm film at a rate of 0.05 nm / sec to prepare a charge generation layer.

(第一正孔輸送層41の作製)
HTL-1を0.15nm/秒の速度で15nm成膜し、第一正孔輸送層を作製した。
(Preparation of the first hole transport layer 41)
HTL-1 was formed into a film at a rate of 0.15 nm / sec at 15 nm to prepare a first hole transport layer.

(第二正孔輸送層42の作製)
合成実施例-1で合成した化合物-1を0.15nm/秒の速度で50nm成膜し、第二正孔輸送層を作製した。
(Preparation of second hole transport layer 42)
The compound-1 synthesized in Synthesis Example-1 was formed into a 50 nm film at a rate of 0.15 nm / sec to prepare a second hole transport layer.

(発光層5の作製)
EML-1およびEML-2を95:5(質量比)の割合で35nm成膜し、発光層を作製した。成膜速度は0.18nm/秒であった。
(Preparation of light emitting layer 5)
EML-1 and EML-2 were formed into a film at a ratio of 95: 5 (mass ratio) at 35 nm to prepare a light emitting layer. The film forming speed was 0.18 nm / sec.

(電子輸送層6の作製)
ETLおよびLiqを50:50(質量比)の割合で30nm成膜し、電子輸送層を作製した。成膜速度は0.15nm/秒であった。
(Preparation of electron transport layer 6)
ETL and Liq were formed into a film at a ratio of 50:50 (mass ratio) at 30 nm to prepare an electron transport layer. The film forming speed was 0.15 nm / sec.

(陰極8の作製)
最後に、基板上のITOストライプと直行するようにメタルマスクを配し、陰極を成膜した。陰極は、銀/マグネシウム(質量比1/10)と銀とを、この順番で、それぞれ80nmと20nmとで成膜し、2層構造とした。銀/マグネシウムの成膜速度は0.5nm/秒、銀の成膜速度は成膜速度0.2nm/秒であった。
(Preparation of cathode 8)
Finally, a metal mask was placed so as to be orthogonal to the ITO stripe on the substrate, and a cathode was formed. As the cathode, silver / magnesium (mass ratio 1/10) and silver were formed in this order at 80 nm and 20 nm, respectively, to form a two-layer structure. The film formation rate of silver / magnesium was 0.5 nm / sec, and the film formation rate of silver was 0.2 nm / sec.

以上により、図2に示すような発光面積4mm有機電界発光素子100を作製した。なお、それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Bruker社製)で測定した。 As described above, the 2 organic electroluminescent device 100 having a light emitting area of 4 mm as shown in FIG. 2 was manufactured. Each film thickness was measured with a stylus type film thickness measuring meter (DEKTAK, manufactured by Bruker).

さらに、この素子を酸素および水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと成膜基板(素子)とを、ビスフェノールF型エポキシ樹脂(ナガセケムテックス社製)を用いて行った。 Further, this device was sealed in a nitrogen atmosphere glove box having an oxygen and water concentration of 1 ppm or less. The sealing was performed by using a glass sealing cap and a film-forming substrate (element) with a bisphenol F type epoxy resin (manufactured by Nagase ChemteX Corporation).

上記のようにして作製した有機電界発光素子に直流電流を印加し、輝度計(製品名:BM-9、トプコンテクノハウス社製)を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の駆動電圧(V)を測定した。得られた測定結果を表1に示す。 A direct current was applied to the organic electroluminescent device manufactured as described above, and the light emission characteristics were evaluated using a luminance meter (product name: BM-9, manufactured by Topcon Technohouse Co., Ltd.). As a light emission characteristic, the drive voltage (V) when a current density of 10 mA / cm 2 was passed was measured. The obtained measurement results are shown in Table 1.

<素子実施例-2>
素子実施例-1において、合成実施例-1で作製した化合物-1の代わりに合成実施例-2で作製した化合物-4を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
<Element Example-2>
In device example-1, organic electroluminescence is carried out in the same manner as in device example-1 except that compound-4 prepared in synthesis example-2 is used instead of compound-1 prepared in synthesis example-1. The device was made and evaluated. The obtained measurement results are shown in Table 1.

<素子実施例-3>
素子実施例-1において、合成実施例-1で作製した化合物-1の代わりに合成実施例-3で作製した化合物-2を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
<Element Example-3>
In device example-1, organic electroluminescence is carried out in the same manner as in device example-1 except that compound-2 prepared in synthesis example-3 is used instead of compound-1 prepared in synthesis example-1. The device was made and evaluated. The obtained measurement results are shown in Table 1.

<素子実施例-4>
素子実施例-1において、合成実施例-1で作製した化合物-1の代わりに合成実施例-4で作製した化合物-44を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す
<Element Example-4>
In device example-1, organic electroluminescence is carried out in the same manner as in device example-1 except that compound-44 prepared in synthesis example-4 is used instead of compound-1 prepared in synthesis example-1. The device was made and evaluated. The obtained measurement results are shown in Table 1.

<素子参考例-1>
素子実施例-1において、合成実施例-1で作製した化合物-1の代わりに特開2006-269834に記載されている下記化合物X(化合物-16)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
<Element reference example-1>
Device Example-1 except that the following compound X (Compound-16) described in JP-A-2006-269834 was used in place of the compound-1 prepared in Synthesis Example-1. An organic electroluminescent device was produced and evaluated by the same method as above. The obtained measurement results are shown in Table 1.

Figure 2022029765000026
Figure 2022029765000026

Figure 2022029765000027
Figure 2022029765000027

本発明の一態様にかかるエナミン化合物(1)は、該化合物を用いることによって耐久特性に優れる有機電界発光素子を提供することができる。 The enamine compound (1) according to one aspect of the present invention can provide an organic electroluminescent device having excellent durability characteristics by using the compound.

また、本発明の一態様にかかるエナミン化合物(1)は、耐久特性に優れる有機電界発光素子の作製に資する有機電界発光素子用正孔輸送材料に利用できる。さらに、エナミン化合物(1)によれば、低消費電力および高発光効率の有機電界発光素子を提供することができる。 Further, the enamine compound (1) according to one aspect of the present invention can be used as a hole transport material for an organic electroluminescent element that contributes to the production of an organic electroluminescent element having excellent durability characteristics. Further, according to the enamine compound (1), it is possible to provide an organic electroluminescent element having low power consumption and high luminous efficiency.

100 有機電界発光素子
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
41 第一正孔輸送層
42 第二正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極
9 電荷発生層


100 Organic electroluminescent element 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 41 First hole transport layer 42 Second hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode 9 Charge generation layer


Claims (5)

下記一般式(1)で表される化合物を含有する層を有する有機電界発光素子。
Figure 2022029765000028
Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。
は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基、アミノ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
An organic electroluminescent device having a layer containing a compound represented by the following general formula (1).
Figure 2022029765000028
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .
R 1 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group, an alkoxy group, and an amino group which may have a substituent. R 1 is a single bond and may form a ring with Ar 3 or Ar 4 .
前記Ar~ArおよびRが有するベンゼン環の総個数が7以上である請求項1記載の有機電界発光素子。ただし前記Rが、前記ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。 The organic electroluminescent device according to claim 1, wherein the total number of benzene rings contained in Ar 1 to Ar 4 and R 1 is 7 or more. However, when the R 1 forms a ring together with the Ar 3 or Ar 4 and the nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more. 下記一般式(2)で表される化合物。
Figure 2022029765000029
Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表し、ArおよびArで環を形成しても良い。
は、置換基を有しても良いアリール基、アルキル基、トリアリールシリル基、トリアルキルシリル基、アルコキシ基を表す。Rは、単結合であり、ArまたはArと共に環を形成していても良い。
ただし、Ar~ArおよびRが有するベンゼン環の総個数は7以上である。なお、Rが、ArまたはArと共に環を形成し、窒素原子が環の形成原子に含まれる場合、ベンゼン環の総個数は4以上である。
A compound represented by the following general formula (2).
Figure 2022029765000029
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group and a heteroaryl group which may independently have a substituent, respectively, and may form a ring with Ar 3 and Ar 4 .
R 2 represents an aryl group, an alkyl group, a triarylsilyl group, a trialkylsilyl group and an alkoxy group which may have a substituent. R 2 is a single bond and may form a ring with Ar 3 or Ar 4 .
However, the total number of benzene rings contained in Ar 1 to Ar 4 and R 2 is 7 or more. When R 2 forms a ring together with Ar 3 or Ar 4 and a nitrogen atom is contained in the ring-forming atom, the total number of benzene rings is 4 or more.
下記一般式(3)で表される化合物。
Figure 2022029765000030
Ar1、Arは、それぞれ独立して置換基を有してもよいフェニル基、ナフチル基、ビフェニル基を表し、ArおよびArで環を形成しても良い。Ar,Arは、それぞれ独立して置換基を有しても良いアリール基、ヘテロアリール基を表す。
は、置換基を有しても良いアミノ基を表す。
A compound represented by the following general formula (3).
Figure 2022029765000030
Ar 1 and Ar 2 represent a phenyl group, a naphthyl group, and a biphenyl group which may independently have a substituent, and Ar 1 and Ar 2 may form a ring. Ar 3 and Ar 4 represent an aryl group or a heteroaryl group which may have a substituent independently of each other.
R 3 represents an amino group which may have a substituent.
請求項3または4に記載の化合物を含む、有機電界発光素子用材料。

A material for an organic electroluminescent device, which comprises the compound according to claim 3 or 4.

JP2020133244A 2020-08-05 2020-08-05 Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound Pending JP2022029765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020133244A JP2022029765A (en) 2020-08-05 2020-08-05 Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133244A JP2022029765A (en) 2020-08-05 2020-08-05 Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound

Publications (1)

Publication Number Publication Date
JP2022029765A true JP2022029765A (en) 2022-02-18

Family

ID=80325069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133244A Pending JP2022029765A (en) 2020-08-05 2020-08-05 Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound

Country Status (1)

Country Link
JP (1) JP2022029765A (en)

Similar Documents

Publication Publication Date Title
JP7026405B2 (en) Organic compounds and organic electroluminescent devices containing them
TWI654168B (en) Organic electroluminescent element
WO2012117973A1 (en) Organic electroluminescent element
US20140306206A1 (en) Organic Electroluminescent Element, and Light Emitting Device, Display Device and Lighting Device Each Using Organic Electroluminescent Element
JP7243268B2 (en) Cyclic azine compound, material for organic electroluminescence device, electron transport material for organic electroluminescence device, and organic electroluminescence device
JP2003317946A (en) Organic el element and manufacturing method for organic el element
JP2023100735A (en) Amine compound having benzazole ring structure
Jung et al. A new family of bis-DCM based dopants for red OLEDs
JP2004146368A (en) Organic electroluminescent element and display device
TW201840811A (en) Organic electroluminescent device
JP7273159B2 (en) Cyclic azine compound, material for organic electroluminescent device, electron transport material for organic electroluminescent device, and organic electroluminescent device
JP2017109929A (en) Aminocarbazole compound and use therefor
JP6638428B2 (en) Triazine compound having phenanthridinyl group and use thereof
JP2003197374A (en) Organic electroluminescent element and display device
JP2022159065A (en) Cyclic azine compound, material for organic electroluminescent devices, electron transport material for organic electroluminescent devices, and organic electroluminescent device
JP6350191B2 (en) Arylamine compounds and uses thereof
JP2022132782A (en) Novel adamantane compound and organic electroluminescent element containing that compound
CN112310292B (en) Top-emitting organic electroluminescent device and application thereof
JP7215065B2 (en) Aminocarbazole compound and use thereof
JP7143670B2 (en) Triphenylene compound and use thereof
JP2022029765A (en) Enamine compound, material for organic field light-emitting element having the same, and organic field light-emitting element having layer containing the enamine compound
CN113937235B (en) Organic light-emitting diode device comprising light improvement layer and application thereof
JP2018115151A (en) Triazine compound having benzimidazole group
CN114141971B (en) Organic electroluminescent device containing phenanthryl triarylamine compound and application thereof
JP2018127409A (en) Aminocarbazole compound and use therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241003