JP2022027527A - 630 MPa GRADE HIGH CORROSION-RESISTANT WEATHER-RESISTANT STEEL AND METHOD FOR PRODUCING THE SAME - Google Patents
630 MPa GRADE HIGH CORROSION-RESISTANT WEATHER-RESISTANT STEEL AND METHOD FOR PRODUCING THE SAME Download PDFInfo
- Publication number
- JP2022027527A JP2022027527A JP2021116876A JP2021116876A JP2022027527A JP 2022027527 A JP2022027527 A JP 2022027527A JP 2021116876 A JP2021116876 A JP 2021116876A JP 2021116876 A JP2021116876 A JP 2021116876A JP 2022027527 A JP2022027527 A JP 2022027527A
- Authority
- JP
- Japan
- Prior art keywords
- high corrosion
- weathering steel
- steel
- resistant
- grade high
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
本発明は、鉄冶金の技術分野に属し、特に630MPaグレードの高耐食性耐候性鋼およびその製造方法に関する。 The present invention belongs to the technical field of ferrous metallurgy, and particularly relates to a 630 MPa grade high corrosion resistant weathering steel and a method for producing the same.
鋼の腐食は、国の経済および防衛建設のすべての分野において広く深刻な問題である。統計によれば、いくつかの工業先進国では、腐食によって引き起こされる経済的損失は、そのGDPの2%~4%を占め、大気腐食は、鋼構造の腐食の主な形態であり、すべての腐食損失の約半分を占める。したがって、耐候性鋼の研究開発にとって非常に有意である。大気耐食鋼としても知られる耐候性鋼は、大気中で良好な耐食性を有する低合金鋼である。国内および海外での多数の研究に基づいて、耐候性鋼が長期間大気に露出すると、緻密で十分に接着した酸化生成物の層がその表面上に生成されて、外部腐食性物質から鋼マトリックスを隔離し、それによって耐候性鋼の耐食性を大幅に改善すると一般に考えられている。耐候性鋼は、主に中国では圧延材および容器に使用されるが、米国および日本を含むいくつかの先進国では、露出した様式で鋼鉄構造建物および都市施設においてより広く使用されている。耐候性鋼は、露出鋼が広く使用されている米国において橋梁を構築するために最も一般的に使用されており、500を超える建物が露出耐候性鋼で構築されている。1965年以来、露出耐候性鋼は、日本では建築屋根、ルーバー、鋼リブ、および外装パネルランプなどの外装部品に使用されてきた。 Steel corrosion is a widespread and serious problem in all areas of the country's economy and defense construction. According to statistics, in some industrialized countries, the economic loss caused by corrosion accounts for 2% -4% of its GDP, and atmospheric corrosion is the main form of corrosion of steel structures and all. It accounts for about half of the corrosion loss. Therefore, it is very significant for the research and development of weathering steel. Weathering steel, also known as atmospheric corrosion resistant steel, is a low alloy steel having good corrosion resistance in the atmosphere. Based on numerous domestic and international studies, when weathering steel is exposed to the atmosphere for extended periods of time, a layer of dense, well-adhered oxidation products is formed on its surface, forming a steel matrix from external corrosive substances. Is generally believed to significantly improve the corrosion resistance of weathering steel. Weathering steel is mainly used in rolled materials and vessels in China, but in some developed countries, including the United States and Japan, it is more widely used in steel structural buildings and urban facilities in exposed fashion. Weathering steel is most commonly used to build bridges in the United States, where exposed steel is widely used, with more than 500 buildings built of exposed weathering steel. Since 1965, exposed weathering steel has been used in Japan for exterior components such as building roofs, louvers, steel ribs, and exterior panel lamps.
耐候性鋼の応用分野がますます拡大しているため、市場のニーズを満たすために、より多くの種類の耐候性鋼を開発する必要がある。 As the field of application of weathering steel is expanding more and more, it is necessary to develop more kinds of weathering steel to meet the needs of the market.
本発明が解決しようとする技術的問題は、新規な組成および良好な耐候性効果を有する耐候性鋼を開発することである。 The technical problem to be solved by the present invention is to develop a weathering steel having a novel composition and a good weathering effect.
上記の技術的問題を解決するために、本発明によって提供される技術的解決策は、重量百分率で、以下の化学組成:C≦0.12%、Si:2.20~3.00%、Mn≦1.50%、P:0.005~0.030%、S≦0.015%、Cr:2.90~3.70%、Ni:0.10~0.40%、Cu:0.20~0.60%、Als≧0.010%、残部Feおよび不可避不純物を含む630MPaグレードの高耐食性耐候性鋼を提供することである。 In order to solve the above technical problems, the technical solution provided by the present invention is, by weight percentage, the following chemical composition: C ≦ 0.12%, Si: 2.20 to 3.00%, Mn ≤ 1.50%, P: 0.005 to 0.030%, S ≤ 0.015%, Cr: 2.90 to 3.70%, Ni: 0.10 to 0.40%, Cu: 0 To provide a 630 MPa grade high corrosion and weathering steel containing 20-0.60%, Als ≧ 0.010%, balance Fe and unavoidable impurities.
好ましくは、630MPaグレードの高耐食性耐候性鋼の化学組成は、重量百分率で、C:0.06~0.08%、Si:2.60~2.80%、Mn:0.85~1.00%、P:0.010~0.025%、S≦0.007%、Cr:3.30~3.50%、Ni:0.20~0.30%、Cu:0.28~0.38%、Als:0.015~0.050%、残部Feおよび不可避不純物である。 Preferably, the chemical composition of the 630 MPa grade high corrosion resistant weather resistant steel is C: 0.06 to 0.08%, Si: 2.60 to 2.80%, Mn: 0.85 to 1. 00%, P: 0.010 to 0.025%, S ≦ 0.007%, Cr: 3.30 to 3.50%, Ni: 0.20 to 0.30%, Cu: 0.28 to 0 .38%, Als: 0.015 to 0.050%, balance Fe and unavoidable impurities.
630MPaグレードの高耐食性耐候性鋼の耐大気腐食性指標Iは、13.02~14.13である。 The atmospheric corrosion resistance index I of the 630 MPa grade high corrosion resistance weathering steel is 13.02 to 14.13.
630MPaグレードの高耐食性耐候性鋼の相対Q355B腐食速度は、25%以下である。 The relative Q355B corrosion rate of 630 MPa grade high corrosion and weathering steel is 25% or less.
630MPaグレードの高耐食性耐候性鋼は、630~690MPaの降伏強度、900~980MPaの引張強度、18%以上の伸びA、および-40℃で60J以上の衝撃値を有する。 The 630 MPa grade high corrosion and weathering steel has a yield strength of 630 to 690 MPa, a tensile strength of 900 to 980 MPa, an elongation A of 18% or more, and an impact value of 60 J or more at −40 ° C.
本発明は、以下のステップを含む、630MPaグレードの高耐食性耐候性鋼の製造方法をさらに提供する:
溶銑脱硫-転炉精錬-LF-RH-LF-スラブ連続鋳造-熱間圧延-ラミナー冷却-コイル化。
The present invention further provides a method for producing a 630 MPa grade high corrosion and weathering steel, comprising the following steps:
Hot metal desulfurization-converter refining-LF-RH-LF-slab continuous casting-hot rolling-laminer cooling-coiling.
本発明は、630MPaグレードの高耐食性耐候性鋼の使用をさらに提供し、これは建築または橋梁建設または車両製造の分野において高温多湿領域で外気に露出される。 The present invention further provides the use of 630 MPa grade high corrosion and weathering steel, which is exposed to the open air in hot and humid regions in the field of construction or bridge construction or vehicle manufacturing.
本発明は、以下の有利な効果を有する:
本発明は、新規な組成を有する高クロム耐候性鋼を提供し、その耐大気腐食性指標Iは、13.02~14.13に達し、これは6.0の約2倍の高さであり、したがって製品の優れた耐大気腐食性を達成する。良好な耐大気腐食性、低い保守コスト、長い製品寿命、ならびにフルサイクルコスト、環境汚染、および腐食破壊事故のリスクの低減に加えて、さらに、本発明の高耐食性耐候性鋼はまた、高温多湿領域で外気に露出され得、建築、橋梁建設、または車両製造の分野で広く使用され得、良好な利用価値を有する。
The present invention has the following advantageous effects:
The present invention provides a high chromium weathering steel with a novel composition, the atmospheric corrosion resistance index I reaching 13.02 to 14.13, which is about twice as high as 6.0. Yes, thus achieving excellent air corrosion resistance of the product. In addition to good air corrosion resistance, low maintenance cost, long product life, and reduced risk of full cycle cost, environmental pollution, and corrosion destruction accidents, the high corrosion resistant weathering steel of the present invention is also hot and humid. It can be exposed to the outside air in the area, can be widely used in the fields of construction, bridge construction, or vehicle manufacturing, and has good utility value.
本発明は、重量百分率で、以下の化学組成:C≦0.12%、Si:2.20~3.00%、Mn≦1.50%、P:0.005~0.030%、S≦0.015%、Cr:2.90~3.70%、Ni:0.10~0.40%、Cu:0.20~0.60%、Als≧0.010%、残部Feおよび不可避不純物を含む630MPaグレードの高耐食性耐候性鋼を提供する。 In the present invention, in terms of weight percentage, the following chemical compositions: C ≤ 0.12%, Si: 2.20 to 3.00%, Mn ≤ 1.50%, P: 0.005 to 0.030%, S. ≦ 0.015%, Cr: 2.90 to 3.70%, Ni: 0.10 to 0.40%, Cu: 0.20 to 0.60%, Als ≧ 0.010%, balance Fe and inevitable A 630 MPa grade high corrosion resistant weathering steel containing impurities is provided.
好ましくは、630MPaグレードの高耐食性耐候性鋼の化学組成は、重量百分率で、C:0.06~0.08%、Si:2.60~2.80%、Mn:0.85~1.00%、P:0.010~0.025%、S≦0.007%、Cr:3.30~3.50%、Ni:0.20~0.30%、Cu:0.28~0.38%、Als:0.015~0.050%、残部Feおよび不可避不純物である。 Preferably, the chemical composition of the 630 MPa grade high corrosion resistant weather resistant steel is C: 0.06 to 0.08%, Si: 2.60 to 2.80%, Mn: 0.85 to 1. 00%, P: 0.010 to 0.025%, S ≦ 0.007%, Cr: 3.30 to 3.50%, Ni: 0.20 to 0.30%, Cu: 0.28 to 0 .38%, Als: 0.015 to 0.050%, balance Fe and unavoidable impurities.
上記の耐候性鋼の成分の中で、Cは、鋼中の有効な強化元素であり、炭素含有量の増加は、鋼の強度を改善し得る。しかしながら、炭素の含有量が過剰になると、以下の欠陥をもたらし得る:多くの粗大で脆い炭化物粒子が鋼中に生成され、鋼の可塑性および靭性を低下させる;鋼板の中心に偏析帯が発生し、鋼の曲げ性能および成形性が低下し、溶接炭素当量が増加し、溶接加工に悪影響を及ぼす。したがって、本発明の設計によれば、Cは、0.12%以下であり、好ましくは0.06~0.08%である。 Among the components of the weathering steel described above, C is an effective reinforcing element in the steel, and an increase in carbon content may improve the strength of the steel. However, excessive carbon content can result in the following defects: many coarse and brittle carbide particles are formed in the steel, reducing the plasticity and toughness of the steel; segregation zones occur in the center of the steel sheet. , The bending performance and formability of steel are reduced, the weld carbon equivalent is increased, and the welding process is adversely affected. Therefore, according to the design of the present invention, C is 0.12% or less, preferably 0.06 to 0.08%.
上記の耐候性鋼の成分の中で、強い固溶強化効果を有するMnは、鋼の相変態温度を大幅に低下させ、鋼の微細構造を微細化し得る。Mnは、重要な強化および強靭化元素である。しかしながら、過剰なMnの添加は、連続鋳造プロセスにおいてスラブクラックを引き起こし、鋼の溶接性能の低下をもたらす場合がある。したがって、本発明の設計によれば、Mnは、1.50%以下であり、好ましくは0.85~1.00%である。 Among the components of the above weathering steel, Mn having a strong solid solution strengthening effect can significantly lower the phase transformation temperature of the steel and make the fine structure of the steel finer. Mn is an important strengthening and toughening element. However, the addition of excess Mn may cause slab cracks in the continuous casting process, resulting in a decrease in the welding performance of the steel. Therefore, according to the design of the present invention, Mn is 1.50% or less, preferably 0.85 to 1.00%.
上記の耐候性鋼の成分の中で、Sは、硫化物介在物を形成し、鋼の性能を低下させる場合がある。一方、腐食中に孔食が伝播し、腐食性能に悪影響を及ぼす場合がある。したがって、本発明の設計によれば、Sは、0.015%以下であり、好ましくは0.007%以下である。 Among the components of the above weathering steel, S may form sulfide inclusions and reduce the performance of the steel. On the other hand, pitting corrosion may propagate during corrosion, which may adversely affect the corrosion performance. Therefore, according to the design of the present invention, S is 0.015% or less, preferably 0.007% or less.
上記の耐候性鋼の成分の中で、Alは、脱酸素剤として鋼に添加される。しかしながら、Alの含有量が過剰になると、窒素酸化物がオーステナイト粒界に析出しやすく、スラブクラックの生成につながる場合がある。したがって、本発明の設計によれば、Alは、0.010%以上であり、好ましくは0.015~0.050%である。 Among the components of the above weathering steel, Al is added to the steel as a deoxidizing agent. However, if the Al content is excessive, nitrogen oxides are likely to precipitate at the austenite grain boundaries, which may lead to the formation of slab cracks. Therefore, according to the design of the present invention, Al is 0.010% or more, preferably 0.015 to 0.050%.
本発明において、鋼中のSi、P、Cu、CrおよびNiの含有量は、耐候性鋼の耐大気腐食性を改善する目的で、元素C、Mn、S、およびAlの含有量が決定された後、耐候性構造鋼(Weathering Structural Steels)(GB/T4171-2008)に対する付属書D「低合金鋼の耐大気腐食性評価ガイド(Guide to Evaluate the Atmospheric Corrosion Resistance of Low Alloy Steels)」の耐大気腐食性指標I=26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)2の計算式に従って決定される。 In the present invention, the content of Si, P, Cu, Cr and Ni in the steel is determined by the content of the elements C, Mn, S and Al for the purpose of improving the atmospheric corrosion resistance of the weather resistant steel. After that, Annex D for Weathering Structural Steels (GB / T4171-2008) "Guide to Evaluate the Atmospheric Corrosion Steel Resistance of Low Alloy Steel" Air Corrosion Index I = 26.01 (% Cu) +3.88 (% Ni) +1.20 (% Cr) +1.49 (% Si) +17.28 (% P) -7.29 (% Cu) ( % Ni) -9.10 (% Ni) (% P) -33.39 (% Cu) 2 is determined according to the formula.
本発明の耐大気腐食性指標は、指定された値の約2倍に達し得、SiおよびCr元素の高い含有量によって引き起こされる可能性がある対応する欠陥は、主に、製錬、制御された圧延および制御された冷却プロセスの相互協力によって回避され得る。 The air corrosion resistance index of the present invention can reach about twice the specified value, and the corresponding defects that can be caused by the high content of Si and Cr elements are mainly smelted and controlled. It can be avoided by mutual cooperation of rolling and controlled cooling processes.
鋼へのCuの添加は、明らかな耐食性を有する緻密で良好に接着したアモルファス酸化物(ヒドロカルビルオキシド)保護層の鋼の表面上への形成に有益である。加えて、CuおよびSは、不溶性硫化物を形成し、これは鋼の耐食性に対するSの有害な影響を打ち消す。しかしながら、Cuの融点がスラブの加熱温度よりも低いため、Cu含有量が多すぎると、析出したCuが液体状態のオーステナイト粒界に集合し、析出したCuの一定量が加熱時や熱間圧延時にクラックを生じさせる可能性がある。加えて、耐大気腐食性指標Iの計算式によれば、Cu含有量が多すぎたり少なすぎたりすると、耐大気腐食性指標Iの算出値が小さくなる。したがって、本発明の設計によれば、Cuは、0.20~0.60%であり、好ましくは0.28~0.38%である。 The addition of Cu to the steel is beneficial for the formation of a dense, well-bonded amorphous oxide (hydrocarbyl oxide) protective layer on the surface of the steel with obvious corrosion resistance. In addition, Cu and S form insoluble sulfides, which counteract the harmful effects of S on the corrosion resistance of the steel. However, since the melting point of Cu is lower than the heating temperature of the slab, if the Cu content is too high, the precipitated Cu gathers at the austenite grain boundaries in the liquid state, and a certain amount of the precipitated Cu is heated or hot-rolled. Sometimes it can cause cracks. In addition, according to the calculation formula of the air corrosion resistance index I, if the Cu content is too high or too low, the calculated value of the air corrosion resistance index I becomes small. Therefore, according to the design of the present invention, Cu is 0.20 to 0.60%, preferably 0.28 to 0.38%.
鋼へのNiの添加は、鋼の耐食性を著しく改善する;一方、元素NiおよびCuは、Niを含有するCuリッチ相を形成し、このCuリッチ相は固体状態で外側酸化物層中に残存して、マトリックス中のCuの濃化および液体Cuリッチ相を形成する機会を減少させ、したがって高温脆性欠陥の発生を回避する。そのため、鋼中のNi/Cuの含有量は、一般に1/2以上に制御される。しかしながら、Niの含有量が過剰になると、酸化物スケールの接着が増加し、鋼にプレスされたときに熱間圧延欠陥が表面上に形成される。Niは、貴金属であり、Niの含有量が過剰になると、鋼合金のコストが著しく増加する。したがって、本発明の設計によれば、Niは、0.10~0.40%であり、好ましくは0.20~0.30%である。 The addition of Ni to the steel significantly improves the corrosion resistance of the steel; while the elements Ni and Cu form a Ni-containing Cu-rich phase, which remains in the outer oxide layer in a solid state. Thus, the chances of enriching Cu in the matrix and forming a liquid Cu-rich phase are reduced, thus avoiding the development of high temperature brittle defects. Therefore, the Ni / Cu content in the steel is generally controlled to 1/2 or more. However, when the Ni content is excessive, the adhesion of the oxide scale increases and hot rolling defects are formed on the surface when pressed on the steel. Ni is a noble metal, and if the Ni content is excessive, the cost of the steel alloy will increase significantly. Therefore, according to the design of the present invention, Ni is 0.10 to 0.40%, preferably 0.20 to 0.30%.
耐大気腐食性指標Iの計算式によれば、Si、PおよびCrの含有量が多いと、I値が大きく上昇し、優れた耐大気腐食性を達成し得る。 According to the calculation formula of the air corrosion resistance index I, when the content of Si, P and Cr is large, the I value is greatly increased, and excellent air corrosion resistance can be achieved.
Siは、鋼中への高い固溶度を有し、これは錆層組織を微細化し、鋼の全体的な腐食速度を低下させるのに役立つ。しかしながら、Siの含有量が過剰になると、圧延時のデスケーリングが困難となり、溶接性能の低下にもつながる。したがって、本発明の設計によれば、Siは、2.20~3.00%であり、好ましくは2.60~2.80%である。 Si has a high solid solubility in the steel, which helps to refine the rust layer structure and reduce the overall corrosion rate of the steel. However, if the Si content is excessive, descaling during rolling becomes difficult, leading to deterioration of welding performance. Therefore, according to the design of the present invention, Si is 2.20 to 3.00%, preferably 2.60 to 2.80%.
Pは、鋼の耐大気腐食性を効果的に改善し得る。鋼中のPおよびCuの併用は、より良い組成効果を示し得るが、Pの含有量が過剰になると、鋼の可塑性および低温靭性が著しく低下する。したがって、本発明の設計によれば、Pは、0.005~0.030%であり、好ましくは0.010~0.025%である。 P can effectively improve the atmospheric corrosion resistance of steel. The combined use of P and Cu in steel may exhibit better compositional effects, but excessive P content significantly reduces the plasticity and low temperature toughness of the steel. Therefore, according to the design of the present invention, P is 0.005 to 0.030%, preferably 0.010 to 0.025%.
Crは、鋼の不動態化能の改善に顕著な効果を有し、鋼の表面上に緻密な不動態化膜または防錆層を形成するのに役立つ。錆層中のCrの濃化は、腐食媒体に対する錆層の選択的伝達特性を効果的に改善し得る。しかしながら、Crの含有量が過剰になると、製造コストが高くなる。したがって、本発明の設計によれば、Crは、2.90~3.70%であり、好ましくは3.30~3.50%である。 Cr has a significant effect on improving the passivation ability of steel and helps to form a dense passivation film or rust preventive layer on the surface of the steel. Concentration of Cr in the rust layer can effectively improve the selective transfer characteristics of the rust layer to the corrosive medium. However, if the Cr content is excessive, the manufacturing cost becomes high. Therefore, according to the design of the present invention, Cr is 2.90 to 3.70%, preferably 3.30 to 3.50%.
好ましい組成に基づいて、高耐食性耐候性鋼の耐大気腐食性指標Iは、13.02~14.13に達し、これは6.0の約2倍の高さであり、したがって製品の優れた耐大気腐食性を達成し得る。 Based on the preferred composition, the air corrosion resistance index I of the highly corrosion resistant weathering steel reaches 13.02 to 14.13, which is about twice as high as 6.0, and thus the product is excellent. Atmospheric corrosion resistance can be achieved.
630MPaグレードの高耐食性耐候性鋼は、630~690MPaの降伏強度、900~980MPaの引張強度、18%以上の伸びA、および-40℃で60J以上の衝撃値を有する。 The 630 MPa grade high corrosion and weathering steel has a yield strength of 630 to 690 MPa, a tensile strength of 900 to 980 MPa, an elongation A of 18% or more, and an impact value of 60 J or more at −40 ° C.
本発明の高耐食性耐候性鋼の製錬プロセスでは、大量の合金が添加され、製錬プロセスにおける温度低下が大きく、大きな合金浸炭および加熱浸炭が生じる;同時に、大きな温度低下は、フェロクロムの不十分な溶融効果およびRHプロセスにおける挿入管の深刻な接着を引き起こす場合がある。したがって、一般的なモードである「転炉製錬→LF→RH→スラブ連続鋳造」は、この鋼グレードの生産ニーズを満たすことができない。 In the smelting process of high corrosion and weathering steel of the present invention, a large amount of alloy is added, the temperature drop in the smelting process is large, and large alloy carburizing and heat carburizing occur; at the same time, the large temperature drop is insufficient for ferrochrome. May cause a smelting effect and severe adhesion of the insert tube in the RH process. Therefore, the general mode "converter smelting-> LF-> RH-> slab continuous casting" cannot meet the production needs of this steel grade.
したがって、本発明は、以下のステップを含む、高耐食性耐候性鋼の製造方法をさらに提供する:
溶銑脱硫-転炉精錬-LF-RH-LF-スラブ連続鋳造-熱間圧延-ラミナー冷却-コイル化。
Therefore, the present invention further provides a method for producing a highly corrosion-resistant weathering steel, which comprises the following steps:
Hot metal desulfurization-converter refining-LF-RH-LF-slab continuous casting-hot rolling-laminer cooling-coiling.
ダブルLFプロセスは、本発明の高耐食性耐候性鋼の上述の製錬プロセスで使用される。生産コストの必然的な増加にもかかわらず、LFプロセスの追加は、温度、炭素、および合金の効果的な使用(挿入管の接着による合金損失の現象なし)ならびに硫黄精錬を効率的に制御できる点でより有利であり、生産リスクを大幅に低減する。各プロセスで採用した主な技術的手段および制御目標を表1に示す。特に、1回目のLFプロセスに装入されるフェロクロムは、成分の下限に従って0.15%減少され、1回目のLFに装入される他の合金元素は、低含有量および酸化性に起因して構成されない;代わりに、これらの合金元素は、RH脱炭および脱酸素後に最初に構成され、2回目のLFに装入された後に微調整される。 The double LF process is used in the above-mentioned smelting process of the highly corrosion-resistant weathering steel of the present invention. Despite the inevitable increase in production costs, the addition of the LF process can efficiently control temperature, carbon, and effective use of alloys (no phenomenon of alloy loss due to adhesion of insert tubes) and sulfur refining. It is more advantageous in that it significantly reduces production risk. Table 1 shows the main technical means and control goals adopted in each process. In particular, the ferrochrome charged into the first LF process is reduced by 0.15% according to the lower limit of the composition, and the other alloying elements charged into the first LF are due to the low content and oxidizability. Instead, these alloying elements are first constructed after RH decarburization and deoxidation and fine-tuned after being charged into the second LF.
高耐食性耐候性鋼の熱間圧延およびラミナー冷却プロセスでは、スラブは、熱間供給および熱間装入されるか、または直ちに積層されてゆっくりと冷却され、1240~1280℃の排出温度で、24時間以内に炉に供給される。粗圧延の全長を完全にデスケーリングし;仕上げ圧延の初期圧延温度は、1020℃以下であり、最終圧延温度は、810~850℃である。複数のミルスタンド間の冷却水は、完全に閉じており、疎冷却は、ラミナー冷却とされ、コイル化温度は、580~620℃である。 In the hot rolling and laminar cooling process of high corrosion and weathering steel, the slabs are hot-fed and hot-loaded, or immediately laminated and slowly cooled, at an emission temperature of 1240-1280 ° C. 24. It will be supplied to the furnace within an hour. The total length of rough rolling is completely descaled; the initial rolling temperature of finish rolling is 1020 ° C or lower, and the final rolling temperature is 810 to 850 ° C. The cooling water between the plurality of mill stands is completely closed, the sparse cooling is laminar cooling, and the coiling temperature is 580 to 620 ° C.
合金含有量が高い鋼の場合、スラブは、長期間の積層後および低い炉温度でエッジクラック欠陥を生じやすい;したがって、スラブは、熱間供給および熱間装入されるか、または直ちに積層され、ゆっくりと冷却され、24時間以内に炉に装入される。 For steels with high alloy content, slabs are prone to edge crack defects after long-term stacking and at low furnace temperatures; therefore, slabs are hot-fed and hot-loaded or laminated immediately. , Slowly cooled and charged into the furnace within 24 hours.
ケイ素の含有量が高い鋼は、炉内での長時間の加熱中に、酸化鉄スキン層とマトリックスとの間で1173℃の融点を有するファヤライト(Fe2SiO4)に変わる場合がある。ケイ素を含有する鋼のスケーリングの困難さを排除または緩和するための効果的な方法は、スラブの表面温度が、粗デスケーリング中にFe2SiO4の融点よりも高くなるように排出温度を上昇させることであり、FeO/Fe2SiO4のアンカーは、それが液体状態の場合に形成されず、したがってスケーリングが容易になる。 Steels with a high silicon content may turn into firelite (Fe 2 SiO 4 ) having a melting point of 1173 ° C. between the iron oxide skin layer and the matrix during prolonged heating in the furnace. An effective way to eliminate or alleviate the scaling difficulties of silicon-containing steels is to raise the discharge temperature so that the surface temperature of the slab is higher than the melting point of Fe 2 SiO 4 during coarse descaling. The FeO / Fe 2 SiO 4 anchor is not formed when it is in the liquid state, thus facilitating scaling.
ミルスタンド間の冷却水は、圧延速度を低下させるために完全に閉じられており、したがって冷却速度が低下される;同時に、冷却速度を低下させるために、疎冷却はラミナー冷却とされる。高Cr鋼の高い焼入れ性のために、製品の靭性および可塑性に悪影響を及ぼすマルテンサイト構造が高い冷却速度で現れやすい。 The cooling water between the mill stands is completely closed to reduce the rolling speed, thus reducing the cooling rate; at the same time, to reduce the cooling rate, sparse cooling is referred to as laminar cooling. Due to the high hardenability of high Cr steel, martensite structures that adversely affect the toughness and plasticity of the product are likely to appear at high cooling rates.
本発明において、高耐食性耐候性鋼の製造方法は、上記方法に限定されず、耐大気腐食性指標Iが6を超える耐候性鋼は、他の合理的な方法によって製錬され得る。 In the present invention, the method for producing a highly corrosion-resistant weathering steel is not limited to the above method, and a weathering steel having an air corrosion resistance index I of more than 6 can be smelted by another rational method.
本発明は、高耐食性耐候性鋼の使用をさらに提供し、これは建築または橋梁建設または車両製造の分野において高温多湿領域で外気に露出される。 The present invention further provides the use of highly corrosion and weathering steel, which is exposed to the open air in hot and humid areas in the field of construction or bridge construction or vehicle manufacturing.
以下、実施例および比較例を挙げて本発明の具体的な実施形態をさらに説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, specific embodiments of the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to these embodiments.
実施例および比較例
高耐食性耐候性鋼を、従来の製錬、制御された圧延および制御された冷却プロセスによって製造し、鉄道耐候性鋼のサイクル圧入腐食試験方法(Test Method for Cycle Infiltration and Corrosion of Railway Weather-resistance Steel)(TB/T2375)に従って耐食性について試験した。比較例1(通常の耐候性鋼Q450NQR1)および比較例2(低合金高強度鋼Q355B)における高耐食性耐候性鋼の具体的な成分および耐大気腐食性指標Iを表2に示す。
Examples and Comparative Examples High corrosion-resistant weathering steel is manufactured by conventional smelting, controlled rolling and controlled cooling processes, and a cycle press-fit corrosion test method for railway weathering steel (Test Method for Cycle Inspection and Corrosion of). Corrosion resistance was tested according to Rollway Weather-restance Steel (TB / T2375). Table 2 shows specific components of the highly corrosion-resistant weathering steel and the atmospheric corrosion resistance index I in Comparative Example 1 (ordinary weathering steel Q450NQR1) and Comparative Example 2 (low alloy high-strength steel Q355B).
実施例および比較例から、本発明の高耐食性耐候性鋼の耐大気腐食性指標Iは、6.0の2倍を超え、通常の耐候性鋼および低合金高強度鋼よりもはるかに大きく、高耐食性耐候性鋼は、優れた耐大気腐食性を達成し得ることが分かる。鋼製品は、高温多湿領域で外気に露出され得、これにより、コーティングおよび錆除去コスト、腐食による破壊事故、および環境汚染が低減され、良好な応用見込みがある。 From Examples and Comparative Examples, the atmospheric corrosion resistance index I of the high corrosion resistance weathering steel of the present invention is more than twice that of 6.0, which is much larger than that of ordinary weathering steel and low alloy high strength steel. It can be seen that high corrosion and weathering steel can achieve excellent air corrosion resistance. Steel products can be exposed to the open air in hot and humid areas, which reduces coating and rust removal costs, corrosion damage and environmental pollution, and has good potential applications.
Claims (7)
溶銑脱硫-転炉精錬-LF-RH-LF-スラブ連続鋳造-熱間圧延-ラミナー冷却-コイル化を含むことを特徴とする、製造方法。 The method for producing a 630 MPa grade high corrosion-resistant weathering steel according to any one of claims 1 to 5.
A manufacturing method comprising: hot metal desulfurization-converter refining-LF-RH-LF-slab continuous casting-hot rolling-laminar cooling-coiling.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010749787.7A CN111850418A (en) | 2020-07-30 | 2020-07-30 | 630MPa grade high-corrosion-resistance weathering steel and preparation method thereof |
CN202010749787.7 | 2020-07-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022027527A true JP2022027527A (en) | 2022-02-10 |
JP7233483B2 JP7233483B2 (en) | 2023-03-06 |
Family
ID=72946761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021116876A Active JP7233483B2 (en) | 2020-07-30 | 2021-07-15 | 630 MPa grade high corrosion resistant weathering steel and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7233483B2 (en) |
CN (1) | CN111850418A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686779A (en) * | 2022-04-06 | 2022-07-01 | 攀钢集团攀枝花钢铁研究院有限公司 | High-corrosion-resistance weather-resistant steel and preparation method and application thereof |
CN115852234A (en) * | 2022-12-07 | 2023-03-28 | 日照钢铁控股集团有限公司 | Low-cost control method for conventional plate blank weathering steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115896613B (en) * | 2022-10-28 | 2024-03-01 | 武汉钢铁有限公司 | High-strength low-cost weather-resistant steel for photovoltaic brackets and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252591A (en) * | 1994-03-14 | 1995-10-03 | Nippon Steel Corp | High strength hot rolled thin steel sheet excellent in workability, corrosion resistance and low temperature toughness and its production |
JPH08158012A (en) * | 1994-09-29 | 1996-06-18 | Nippon Steel Corp | High damping alloy with high strength and high corrosion resistance |
JP2012214832A (en) * | 2011-03-31 | 2012-11-08 | Jfe Steel Corp | Steel for machine structure and method for producing the same |
WO2015156303A1 (en) * | 2014-04-11 | 2015-10-15 | 新日鐵住金株式会社 | Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank |
JP2018204113A (en) * | 2018-08-03 | 2018-12-27 | 株式会社神戸製鋼所 | Steel material excellent in corrosion resistance and magnetic properties and method of producing the same |
CN111850416A (en) * | 2020-07-29 | 2020-10-30 | 攀钢集团研究院有限公司 | 570MPa grade high-corrosion-resistance weathering steel and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101994063A (en) * | 2009-08-18 | 2011-03-30 | 宝山钢铁股份有限公司 | Weathering steel with yield strength of more than 700MPa and manufacturing method thereof |
CN103343295B (en) * | 2013-05-21 | 2016-08-10 | 马钢(集团)控股有限公司 | The high intensity high-corrosion resistance steel board of a kind of yield strength 700MPa and production method thereof |
CN104532146B (en) * | 2014-12-23 | 2016-08-31 | 攀钢集团西昌钢钒有限公司 | A kind of high-strength weathering steel and the method for semisteel smelting high-strength weathering steel |
-
2020
- 2020-07-30 CN CN202010749787.7A patent/CN111850418A/en active Pending
-
2021
- 2021-07-15 JP JP2021116876A patent/JP7233483B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252591A (en) * | 1994-03-14 | 1995-10-03 | Nippon Steel Corp | High strength hot rolled thin steel sheet excellent in workability, corrosion resistance and low temperature toughness and its production |
JPH08158012A (en) * | 1994-09-29 | 1996-06-18 | Nippon Steel Corp | High damping alloy with high strength and high corrosion resistance |
JP2012214832A (en) * | 2011-03-31 | 2012-11-08 | Jfe Steel Corp | Steel for machine structure and method for producing the same |
WO2015156303A1 (en) * | 2014-04-11 | 2015-10-15 | 新日鐵住金株式会社 | Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank |
JP2018204113A (en) * | 2018-08-03 | 2018-12-27 | 株式会社神戸製鋼所 | Steel material excellent in corrosion resistance and magnetic properties and method of producing the same |
CN111850416A (en) * | 2020-07-29 | 2020-10-30 | 攀钢集团研究院有限公司 | 570MPa grade high-corrosion-resistance weathering steel and preparation method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686779A (en) * | 2022-04-06 | 2022-07-01 | 攀钢集团攀枝花钢铁研究院有限公司 | High-corrosion-resistance weather-resistant steel and preparation method and application thereof |
CN115852234A (en) * | 2022-12-07 | 2023-03-28 | 日照钢铁控股集团有限公司 | Low-cost control method for conventional plate blank weathering steel |
CN115852234B (en) * | 2022-12-07 | 2024-06-25 | 日照钢铁控股集团有限公司 | Low-cost control method for conventional slab weathering steel |
Also Published As
Publication number | Publication date |
---|---|
CN111850418A (en) | 2020-10-30 |
JP7233483B2 (en) | 2023-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110318006B (en) | Cold-rolled weathering steel and preparation method thereof | |
WO2023212972A1 (en) | Low-yield-ratio, easy-to-weld and weather-proof bridge steel and manufacturing method therefor | |
JP7233483B2 (en) | 630 MPa grade high corrosion resistant weathering steel and method for producing the same | |
WO2023241666A1 (en) | High-strength hot-rolled strip steel with high weather resistance, and manufacturing method therefor | |
JP7233481B2 (en) | 660 MPa class high corrosion resistant weathering steel and method for producing the same | |
CN115161551B (en) | High-strength high-formability super-atmospheric corrosion-resistant steel and manufacturing method thereof | |
CN112251674A (en) | Hot-rolled low-yield-ratio high-weather-resistant steel for railway passenger car and manufacturing method thereof | |
CN111676427A (en) | 590MPa grade high-corrosion-resistance weathering steel and preparation method thereof | |
CN111690879A (en) | 600MPa grade high-corrosion-resistance weathering steel and preparation method thereof | |
CN111850416A (en) | 570MPa grade high-corrosion-resistance weathering steel and preparation method thereof | |
CN111926254A (en) | 440MPa grade high-phosphorus high-chromium weathering steel and preparation method and application thereof | |
CN115572904A (en) | Manufacturing method of high-weather-resistance cold-rolled steel strip with yield strength of 340MPa | |
JP7233482B2 (en) | 540 MPa grade high silicon high chromium weathering steel and its manufacturing method | |
CN111945065A (en) | 500 MPa-grade high-chromium weathering steel and preparation method and application thereof | |
CN111850411A (en) | 400 MPa-grade high-chromium weathering steel and preparation method thereof | |
CN110616375A (en) | Niobium-vanadium-containing 550 MPa-grade thick weathering steel and production method thereof | |
CN111411305B (en) | High-toughness high-Ti low-alloy steel with thick glass lining and good glass lining performance and manufacturing method thereof | |
CN111996464A (en) | 570MPa grade high-corrosion-resistance weathering steel and preparation method and application thereof | |
CN111996450A (en) | 570MPa grade high-corrosion-resistance weathering steel and preparation method and application thereof | |
CN111647824A (en) | 510MPa grade high-silicon high-phosphorus high-chromium weathering steel and preparation method thereof | |
CN111850417A (en) | 530 MPa-grade high-silicon high-chromium weathering steel and preparation method thereof | |
CN111647819A (en) | 620MPa grade high corrosion resistant weathering steel and preparation method thereof | |
CN111961971A (en) | 500MPa grade high-phosphorus high-chromium weathering steel and preparation method and application thereof | |
CN111979500A (en) | 500MPa grade high-silicon high-phosphorus weathering steel and preparation method and application thereof | |
CN116162855B (en) | 600 MPa-level thick-specification phosphorus-containing hot-rolled weather-resistant steel plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221018 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7233483 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |