JP7233481B2 - 660 MPa class high corrosion resistant weathering steel and method for producing the same - Google Patents

660 MPa class high corrosion resistant weathering steel and method for producing the same Download PDF

Info

Publication number
JP7233481B2
JP7233481B2 JP2021116872A JP2021116872A JP7233481B2 JP 7233481 B2 JP7233481 B2 JP 7233481B2 JP 2021116872 A JP2021116872 A JP 2021116872A JP 2021116872 A JP2021116872 A JP 2021116872A JP 7233481 B2 JP7233481 B2 JP 7233481B2
Authority
JP
Japan
Prior art keywords
mass
steel
high corrosion
weathering steel
class high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021116872A
Other languages
Japanese (ja)
Other versions
JP2022027525A (en
Inventor
崔▲凱▼禹
李正▲榮▼
▲ジン▼▲陽▼
汪▲創▼▲偉▼
▲張▼▲開▼▲華▼
姚永国
Original Assignee
攀▲鋼▼集▲団▼研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 攀▲鋼▼集▲団▼研究院有限公司 filed Critical 攀▲鋼▼集▲団▼研究院有限公司
Publication of JP2022027525A publication Critical patent/JP2022027525A/en
Application granted granted Critical
Publication of JP7233481B2 publication Critical patent/JP7233481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、鉄冶金の技術分野に属し、特に660MPa級の高耐食性耐候性鋼及びその製造方法に関する。 The present invention belongs to the technical field of ferrous metallurgy, and more particularly relates to a 660 MPa class high corrosion-resistant weathering steel and a method for producing the same.

鋼材腐食が国家経済及び国家防衛建設に及ぼす損害は、一般的かつ深刻な問題である。鋼材腐食による経済的損失は、統計によると、一部の先進国ではGDPの2%~4%を占める。大気腐食は鉄骨構造の腐食の主な形態であり、全腐食損失のおよそ半分を占める。従って、大気腐食は耐候性鋼の研究開発にとって非常に重要である。 The damage of steel corrosion to national economy and national defense construction is a common and serious problem. Economic losses due to steel corrosion account for 2% to 4% of GDP in some developed countries, according to statistics. Atmospheric corrosion is the predominant form of corrosion in steel structures and accounts for approximately half of all corrosion losses. Therefore, atmospheric corrosion is very important for the research and development of weathering steel.

耐大気腐食性鋼としても知られる耐候性鋼は、大気中で良好な耐食性を有する低合金鋼である。国内及び海外での多数の研究に基づいて、大気への長期間の曝露後、高密度で十分に付着した酸化生成物の層が耐候性鋼の表面に生成されて、外部腐食性物質から鋼マトリックスを隔離し、それによって耐候性鋼の耐食性を大幅に改善すると考えられる。 Weathering steel, also known as atmospheric corrosion resistant steel, is a low alloy steel that has good corrosion resistance in the atmosphere. Based on numerous studies at home and abroad, after long-term exposure to the atmosphere, a dense and well-adhered layer of oxidation products is formed on the surface of weathering steel to protect the steel from external corrosive substances. It is believed to isolate the matrix, thereby greatly improving the corrosion resistance of weathering steels.

中国では、耐候性鋼は主に圧延材及び容器に使用されている。米国及び日本などの先進国では、耐候性鋼は、鉄骨構造の建築物及び公共施設でより広く使用されている。米国では、耐候性鋼の大きな用途は橋梁を構築することであり、露出鋼の使用は拡大しており、500を超える建築物が露出耐候性鋼で作られている。日本では、1965年以来、露出耐候性鋼は建物の屋根、ブラインド、鋼製リブ及び外装パネルランプなどの外装部品に使用されてきた。市場の要求を満たすためには、耐食性の良好な耐候性鋼を開発する必要がある。 In China, weathering steel is mainly used for rolling stock and containers. In developed countries such as the United States and Japan, weathering steel is more widely used in steel-framed buildings and public facilities. In the United States, a major use of weathering steel is in building bridges, and the use of exposed steel is expanding, with over 500 buildings made of exposed weathering steel. In Japan, since 1965, exposed weathering steel has been used for exterior components such as building roofs, blinds, steel ribs and exterior panel lamps. In order to meet market demands, it is necessary to develop weathering steel with good corrosion resistance.

本発明が解決しようとする技術的課題は、660MPa級の高耐食性耐候性鋼を提供することである。 A technical problem to be solved by the present invention is to provide a 660 MPa class high corrosion-resistant and weather-resistant steel.

上記の技術的課題を解決するために本発明で使用される技術的解決策は、以下の化学組成:C≦0.12重量%、Si:2.20~3.00重量%、Mn≦1.50重量%、P:0.060~0.150重量%、S≦0.015重量%、Cr:2.90~3.70重量%、Ni:0.10~0.40重量%、Cu:0.20~0.60重量%、Als≧0.010重量%、残部Fe及び不可避不純物を含有する660MPa級の高耐食性耐候性鋼を提供することである。 The technical solution used in the present invention to solve the above technical problems is the following chemical composition: C≤0.12 wt%, Si: 2.20-3.00 wt%, Mn≤1 .50% by weight, P: 0.060-0.150% by weight, S≦0.015% by weight, Cr: 2.90-3.70% by weight, Ni: 0.10-0.40% by weight, Cu : 0.20 to 0.60% by weight, Als≧0.010% by weight, and the balance being Fe and unavoidable impurities.

好ましくは、660MPa級の高耐食性耐候性鋼は、以下の化学組成:C:0.06~0.08重量%、Si:2.60~2.80重量%、Mn:0.85~1.00重量%、P:0.080~0.120重量%、S≦0.007重量%、Cr:3.30~3.50重量%、Ni:0.20~0.30重量%、Cu:0.28~0.38重量%、Als:0.015~0.050重量%、残部Fe及び不可避不純物を含有する。 Preferably, the 660 MPa class high corrosion-resistant weathering steel has the following chemical composition: C: 0.06-0.08 wt%, Si: 2.60-2.80 wt%, Mn: 0.85-1. 00 wt%, P: 0.080 to 0.120 wt%, S ≤ 0.007 wt%, Cr: 3.30 to 3.50 wt%, Ni: 0.20 to 0.30 wt%, Cu: 0.28 to 0.38% by weight, Als: 0.015 to 0.050% by weight, balance Fe and unavoidable impurities.

更に、660MPa級の高耐食性耐候性鋼の耐大気腐食性指標Iは14.10~15.51である。 Furthermore, the atmospheric corrosion resistance index I of the 660 MPa class high corrosion resistance weathering steel is 14.10 to 15.51.

更に、660MPa級の高耐食性耐候性鋼は、660~740MPaの降伏強度、940~1040MPaの引張強度、18%以上の伸びA、及び-40℃で27J以上の衝撃値を有する。 Furthermore, the 660 MPa grade high corrosion resistant weathering steel has a yield strength of 660-740 MPa, a tensile strength of 940-1040 MPa, an elongation A of 18% or more, and an impact value of 27 J or more at -40°C.

本発明はまた、660MPa級の高耐食性耐候性鋼の製造方法であって、
溶銑脱硫→転炉製錬→LF→RH→LF→スラブ連続鋳造→熱間圧延→ラミナー冷却→コイル化の工程を含む方法を提供する。
The present invention also provides a method for producing a 660 MPa class highly corrosion-resistant and weather-resistant steel, comprising:
A method is provided that includes the steps of hot metal desulfurization → converter smelting → LF → RH → LF → slab continuous casting → hot rolling → laminar cooling → coiling.

本発明はまた、建築、橋梁建設又は車両製造の分野における660MPa級の高耐食性耐候性鋼の使用を提供し、高耐食性耐候性鋼は高温多湿領域への曝露が可能である。 The present invention also provides the use of 660 MPa class high corrosion resistant weathering steel in the field of building, bridge construction or vehicle manufacturing, the high corrosion resistant weathering steel can be exposed to hot and humid areas.

本発明の効果は以下の通りである。 The effects of the present invention are as follows.

本発明は、660~740MPaの降伏強度、940~1040MPaの引張強度、18%以上の伸びA、-40℃で27J以上の衝撃値、6.0の2倍である14.10~15.51の耐大気腐食性指標I、及びQ355Bに対して20%以下の腐食速度を有する、660MPa級の高耐食性耐候性鋼の新規な組成を提供する。本発明の660MPa級の高耐食性耐候性鋼は、良好な耐大気腐食性、将来の保守コストの低減、長い製品寿命、サイクル全体にわたるコスト削減、並びに環境汚染及び腐食破壊事故のリスクの低減に加えて、高温多湿領域への曝露が可能であり、従って建築、橋梁建設又は車両製造の分野で広く使用され、広範に応用できる可能性を示している。 The present invention has a yield strength of 660-740 MPa, a tensile strength of 940-1040 MPa, an elongation A of 18% or more, an impact value of 27 J or more at −40° C., 14.10-15.51 which is twice 6.0 and a corrosion rate of 20% or less against Q355B, a new composition of 660 MPa class high corrosion resistant weathering steel. The 660 MPa class high corrosion resistant weathering steel of the present invention provides good atmospheric corrosion resistance, reduced future maintenance costs, long product life, cost savings over the entire cycle, and reduced risk of environmental pollution and corrosion failure accidents. As such, it is capable of exposure to hot and humid areas and is therefore widely used in the fields of architecture, bridge construction or vehicle construction, demonstrating broad applicability.

本発明は、以下の化学組成:C≦0.12重量%、Si:2.20~3.00重量%、Mn≦1.50重量%、P:0.060~0.150重量%、S≦0.015重量%、Cr:2.90~3.70重量%、Ni:0.10~0.40重量%、Cu:0.20~0.60重量%、Als≧0.010重量%、残部Fe及び不可避不純物を含有する、660MPa級の高耐食性耐候性鋼を提供する。 The present invention has the following chemical composition: C ≤ 0.12 wt%, Si: 2.20-3.00 wt%, Mn ≤ 1.50 wt%, P: 0.060-0.150 wt%, S ≦0.015 wt %, Cr: 2.90 to 3.70 wt %, Ni: 0.10 to 0.40 wt %, Cu: 0.20 to 0.60 wt %, Als≧0.010 wt % , balance Fe and unavoidable impurities.

好ましくは、660MPa級の高耐食性耐候性鋼は、以下の化学組成:C:0.06~0.08重量%、Si:2.60~2.80重量%、Mn:0.85~1.00重量%、P:0.080~0.120重量%、S≦0.007重量%、Cr:3.30~3.50重量%、Ni:0.20~0.30重量%、Cu:0.28~0.38重量%、Als:0.015~0.050重量%、残部Fe及び不可避不純物を含有する。 Preferably, the 660 MPa class high corrosion-resistant weathering steel has the following chemical composition: C: 0.06-0.08 wt%, Si: 2.60-2.80 wt%, Mn: 0.85-1. 00 wt%, P: 0.080 to 0.120 wt%, S ≤ 0.007 wt%, Cr: 3.30 to 3.50 wt%, Ni: 0.20 to 0.30 wt%, Cu: 0.28 to 0.38% by weight, Als: 0.015 to 0.050% by weight, balance Fe and unavoidable impurities.

Cは鋼中の有効な強化元素であり、炭素含有量を増加させることで鋼の強度を改善することができる。しかしながら、炭素の過剰な含有は、以下の結果をもたらし得る:多くの粗大で脆い炭化物粒子が鋼中に生成されて、鋼の可塑性及び靭性を低下させる;偏析帯が鋼板の中心に生成されて、その曲げ性能及び成形性を低下させる;溶接炭素当量が増加して、溶接加工に悪影響を及ぼす。従って、本発明の設計によれば、Cは0.12%以下であり、好ましくは0.06~0.08%である。 C is an effective strengthening element in steel, and increasing the carbon content can improve the strength of steel. However, the excessive content of carbon can lead to the following consequences: many coarse and brittle carbide particles are produced in the steel, reducing the plasticity and toughness of the steel; , reducing its bending performance and formability; increasing the weld carbon equivalent and adversely affecting the welding process. Therefore, according to the design of the present invention, C is 0.12% or less, preferably 0.06-0.08%.

Mnは、強い固溶強化効果によって鋼の相変態温度を大幅に低下させ、その微細構造を微細化することができる。Mnは重要な強化及び強靱化元素である。しかしながら、過剰なMnの添加は、連続鋳造プロセス中にスラブクラックを引き起こし、鋼の溶接性能の低下をもたらす可能性がある。従って、本発明の設計によれば、Mnは1.50%以下であり、好ましくは0.85~1.00%である。 Mn can significantly lower the phase transformation temperature of steel and refine its microstructure due to its strong solid-solution strengthening effect. Mn is an important strengthening and toughening element. However, excessive Mn addition can cause slab cracks during the continuous casting process, resulting in poor weldability of the steel. Therefore, according to the design of the present invention, Mn is 1.50% or less, preferably 0.85-1.00%.

Sは硫化物介在物を形成し、鋼の性能を低下させる可能性がある;同時に、腐食中に孔食が伝播し、腐食性能に悪影響を及ぼす可能性がある。従って、本発明の設計によれば、Sは0.015%以下であり、好ましくは0.007%以下である。 S can form sulfide inclusions and degrade steel performance; at the same time, it can propagate pitting corrosion during corrosion and adversely affect corrosion performance. Therefore, according to the design of the present invention, S is 0.015% or less, preferably 0.007% or less.

Alは、脱酸素剤として鋼に添加される。しかしながら、Alの含有量が過剰であると、窒素酸化物がオーステナイト粒界に析出しやすく、スラブクラックが発生することがある。従って、本発明の設計によれば、Alsは0.010%以上であり、好ましくは0.015~0.050%である。 Al is added to steel as a deoxidizer. However, when the Al content is excessive, nitrogen oxides tend to precipitate at the austenite grain boundaries, and slab cracks may occur. Therefore, according to the design of the present invention, Als is not less than 0.010%, preferably 0.015-0.050%.

本発明において、鋼中のSi、P、Cu、Cr及びNiの含有量は、耐候性鋼の耐大気腐食性を改善する目的で、元素C、Mn、S及びAlの含有量が決定された後に、耐候性構造用鋼(Weathering Structural Steels)(GB/T4171-2008)に対する付属書D「低合金鋼の耐大気腐食性評価ガイド(Guide to Evaluate the Atmospheric Corrosion Resistance of Low Alloy Steels)」の耐大気腐食性指標I=26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)の計算式に従って決定される。 In the present invention, the contents of Si, P, Cu, Cr and Ni in steel are determined for the purpose of improving the atmospheric corrosion resistance of weathering steel. Later, the resistance of Annex D "Guide to Evaluate the Atmospheric Corrosion Resistance of Low Alloy Steels" to Weathering Structural Steels (GB/T4171-2008) Atmospheric corrosion index I = 26.01 (% Cu) + 3.88 (% Ni) + 1.20 (% Cr) + 1.49 (% Si) + 17.28 (% P) - 7.29 (% Cu) ( %Ni)-9.10(%Ni)(%P)-33.39(%Cu) 2 .

鋼へのCuの添加は、顕著な耐食性を有する緻密で良好に接着したアモルファス酸化物(ヒドロカルビルオキシド)保護層の鋼表面への形成を促進する。更に、Cu及びSによって生成される不溶性硫化物は、鋼の耐食性に対するSの有害な影響を打ち消す。しかし、Cuの含有量が過剰な場合、Cuの融点がビレットの加熱温度よりも低いため、析出したCuが液相状態のオーステナイト粒界に集合し、析出したCuの一定量が加熱時や熱間圧延時にクラックを生じさせる可能性がある。耐大気腐食性指標Iの計算式によれば、Cu含有量が少なすぎる場合や多すぎる場合には、耐大気腐食性指標Iの計算値が小さくなる。従って、本発明の設計によれば、Cuは0.20~0.60%であり、好ましくは0.28~0.38%である。 The addition of Cu to steel promotes the formation of a dense, well-adhered amorphous oxide (hydrocarbyl oxide) protective layer on the steel surface with outstanding corrosion resistance. Furthermore, the insoluble sulfides produced by Cu and S counteract the detrimental effects of S on the corrosion resistance of steel. However, when the Cu content is excessive, the melting point of Cu is lower than the heating temperature of the billet, so the precipitated Cu gathers at the austenite grain boundaries in the liquid phase state, and a certain amount of the precipitated Cu is lost during heating or heat. It may cause cracks during inter-rolling. According to the calculation formula of the atmospheric corrosion resistance index I, the calculated value of the atmospheric corrosion resistance index I becomes small when the Cu content is too low or too high. Therefore, according to the design of the present invention, Cu is 0.20-0.60%, preferably 0.28-0.38%.

鋼へのNiの添加は、鋼の耐食性を著しく改善する;一方、元素Ni及びCuは、Niを含有するCuリッチ相を形成し、このCuリッチ相は、外側酸化物層内に固体状態で残って、マトリックス中のCuの濃化及び液体Cuリッチ相の形成機会を減少させることで、高温脆性欠陥の発生を回避する。そのため、鋼中のNi/Cu含有量は、一般に1/2以上に制御される。しかしながら、Niの過剰含有は、酸化物スケールの付着を増加させ、鋼にプレスされる際に熱間圧延欠陥が表面に形成される。更に、Niは貴金属であり、Niの過剰含有は鋼合金のコストを著しく増加させる。従って、本発明の設計によれば、Niは0.10~0.40%であり、好ましくは0.20~0.30%である。 The addition of Ni to the steel significantly improves the corrosion resistance of the steel; on the other hand, the elements Ni and Cu form a Cu-rich phase containing Ni, which is solid-state in the outer oxide layer. It remains to avoid the occurrence of hot brittleness defects by reducing the chances of enrichment of Cu in the matrix and formation of liquid Cu-rich phases. Therefore, the Ni/Cu content in steel is generally controlled to 1/2 or more. However, excessive Ni content increases the deposition of oxide scales and hot rolling defects are formed on the surface when pressed into steel. Furthermore, Ni is a noble metal and excessive Ni content significantly increases the cost of the steel alloy. Therefore, according to the design of the present invention, Ni is 0.10-0.40%, preferably 0.20-0.30%.

Pは、鋼の耐大気腐食性を効果的に改善することができる。鋼中のPとCuとの併用は良好な組成効果を示し得るが、Pの過剰含有は鋼の可塑性及び低温靭性を著しく低下させる。従って、本発明の設計によれば、Pは0.060~0.150%であり、好ましくは0.080~0.120%である。 P can effectively improve the atmospheric corrosion resistance of steel. Combined use of P and Cu in steel can exhibit good compositional effects, but an excessive content of P significantly reduces the plasticity and low-temperature toughness of steel. Therefore, according to the design of the present invention, P is 0.060-0.150%, preferably 0.080-0.120%.

Crは、鋼の不動態化能の向上に顕著な効果を有し、鋼の表面に緻密な不動態化膜又は防錆層を形成するのに役立つ。錆層中のCrの濃化は、錆層の腐食媒体に対する選択的伝達特性を効果的に改善することができる。しかしながら、Crの含有量が過剰になると、製造コストが上昇する。従って、本発明の設計によれば、Crは2.90~3.70%であり、好ましくは3.30~3.50%である。 Cr has a significant effect on improving the passivation ability of steel and helps form a dense passivation film or antirust layer on the surface of steel. Enrichment of Cr in the rust layer can effectively improve the selective transmission properties of the rust layer to corrosive media. However, excessive Cr content increases manufacturing costs. Therefore, according to the design of the present invention, Cr is 2.90-3.70%, preferably 3.30-3.50%.

Siは鋼への高い固溶度を有し、これは錆層組織を微細化し、鋼の全体的な腐食速度を低下させるのに役立つ。Siの含有量が多すぎると、圧延時のデスケーリングが困難となり、溶接性能の低下にもつながる。従って、本発明の設計によれば、Siは2.20~3.00%であり、好ましくは2.60~2.80%である。 Si has a high solid solubility in steel, which helps refine the rust layer structure and reduce the overall corrosion rate of steel. If the Si content is too high, descaling during rolling becomes difficult, leading to deterioration in welding performance. Therefore, according to the design of the present invention, Si is 2.20-3.00%, preferably 2.60-2.80%.

好ましい組成に基づいて、660MPa級の高耐食性耐候性鋼の耐大気腐食性指標Iは、6.0の2倍の14.10~15.51に達することができ、従って製品の優れた耐大気腐食性を達成する。 Based on the preferred composition, the atmospheric corrosion resistance index I of the 660 MPa class high corrosion resistance weathering steel can reach 14.10-15.51, which is twice 6.0, so that the product has excellent atmospheric resistance. achieve corrosiveness;

本発明によれば、Q355Bの腐食速度に対する、660MPa級の高耐食性耐候性鋼の腐食速度は、20%以下である。 According to the present invention, the corrosion rate of 660 MPa class high corrosion resistance and weathering steel is 20% or less with respect to the corrosion rate of Q355B.

本発明によれば、660MPa級の高耐食性耐候性鋼は、660~740MPaの降伏強度、940~1040MPaの引張強度、18%以上の伸びA、及び-40℃で27J以上の衝撃値を有する。 According to the present invention, the 660 MPa class high corrosion resistant weathering steel has a yield strength of 660-740 MPa, a tensile strength of 940-1040 MPa, an elongation A of 18% or more, and an impact value of 27 J or more at -40°C.

本発明はまた、660MPa級の高耐食性耐候性鋼の製造方法であって、
溶銑脱硫→転炉製錬→LF→RH→LF→スラブ連続鋳造→熱間圧延→ラミナー冷却→コイル化の工程を含む方法を提供する。
The present invention also provides a method for producing a 660 MPa class highly corrosion-resistant and weather-resistant steel, comprising:
A method is provided that includes the steps of hot metal desulfurization → converter smelting → LF → RH → LF → slab continuous casting → hot rolling → laminar cooling → coiling.

660MPa級の高耐食性耐候性鋼の上記製造方法では、各工程のパラメータは表1に従って制御される。 In the above method for producing 660 MPa class high corrosion-resistant weathering steel, the parameters of each process are controlled according to Table 1.

Figure 0007233481000001
Figure 0007233481000001

660MPa級の高耐食性耐候性鋼の製造方法では、製錬プロセスにおいて大量の合金が添加されるために、温度が大きく低下し、合金浸炭及び加熱浸炭が生じる;同時に、大きな温度低下は、フェロクロムの不十分な溶融効果及び、RHプロセスにおける挿入管の深刻な接着を引き起こす可能性がある。従って、一般的な方法である「転炉製錬→LF→RH→スラブ連続鋳造」では、この鋼級の生産ニーズを満たすことができない。 In the method of producing 660 MPa class high corrosion resistance and weathering steel, a large amount of alloy is added in the smelting process, so the temperature drops greatly, causing alloy carburization and heat carburization; It can cause poor melting effect and severe adhesion of the insertion tube in the RH process. Therefore, the general method of "converter smelting → LF → RH → slab continuous casting" cannot meet the production needs of this steel grade.

ダブルLFプロセスは、660MPa級の高耐食性耐候性鋼の製錬プロセスとして使用される。LFプロセスの追加は、生産コストの増加が不可避であるにもかかわらず、温度、炭素及び合金を(挿入管の接着による合金損失現象を伴わずに)効果的に使用できる点並びに、硫黄精錬を効率的に制御できる点でより有利であり、生産リスクを大幅に低減する。各プロセスで採用する主な技術的手段及び制御目標を表に示す。LFプロセスに1回目に装入されるフェロクロムは、組成の下限に応じて0.15%減少され、LFに1回目に装入される他の合金元素は、低含有量及び酸化性に起因して、構成されない。これらの合金元素は、RH脱炭及び脱酸素後に最初に構成され、LFに2回目に装入された後に微調整される。 The double LF process is used as a smelting process for 660 MPa class high corrosion resistant weathering steel. The addition of the LF process has the advantage that the temperature, carbon and alloy can be used effectively (without the alloy loss phenomenon due to adhesion of the insertion tube) and sulfur refining, despite the inevitable increase in production costs. It is more advantageous in that it can be controlled efficiently and significantly reduces production risks. The table shows the main technical measures and control targets adopted in each process. The ferrochromium in the first charge in the LF process is reduced by 0.15% depending on the lower composition limit, and the other alloying elements in the first charge in the LF are due to their low content and oxidizing properties. not configured. These alloying elements are first made up after RH decarburization and deoxidization and fine-tuned after the second charge to LF.

660MPa級の高耐食性耐候性鋼の熱間圧延及び層冷却プロセスでは、鋳造ビレットは、熱間供給及び熱間装入されるか、又は直ちに積層されてゆっくりと冷却され、1240~1280℃の排出温度で24時間以内に炉に供給される。粗圧延の全長をデスケーリングする;仕上げ圧延の初期圧延温度は1020℃以下であり、最終圧延温度は810~850℃である。複数のミルスタンド間の冷却水は完全に閉じており、疎冷却はラミナー冷却とされ、巻取り温度は580~620℃である。 In the hot rolling and layer cooling process of 660 MPa grade high corrosion resistant weathering steel, the casting billet is either hot fed and hot charged, or immediately layered and slowly cooled, discharged at 1240-1280 ° C. The furnace is fed within 24 hours at temperature. Descaling the total length of rough rolling; the initial rolling temperature of finish rolling is 1020°C or less, and the final rolling temperature is 810-850°C. The cooling water between multiple mill stands is completely closed, loose cooling is laminar cooling, and the coiling temperature is 580-620°C.

合金含有量が高い鋼の場合、ビレットは、長期間の積層後及び低い炉温度でエッジクラック欠陥を生じやすいため、ビレットは熱間供給及び熱間装入されるか、又は直ちに積層されてゆっくりと冷却され、24時間以内に炉に装入される。 For steels with high alloy content, billets are prone to edge crack defects after long-term lamination and at low furnace temperatures, so the billets are either hot-fed and hot-charged, or immediately laminated and slow-rolled. and cooled and charged into the furnace within 24 hours.

ケイ素含有量が高い鋼は、炉内での長時間の加熱中に、酸化鉄スキン層とマトリックスとの間で融点1173℃を有するファヤライト(FeSiO)に変わる可能性がある。ケイ素を含有する鋼のスケーリングの困難さを解消又は緩和する効果的な方法は、粗デスケーリング中のスラブの表面温度がFeSiOの融点よりも高くなるように排出温度を上昇させ、FeO/FeSiOのアンカーが液相状態で形成されないようにして、その排除を容易にすることである。複数のミルスタンド間の冷却水を完全に閉じて圧延速度を低下させ、冷却速度を低下させる;同時に、疎冷却はラミナー冷却とされ、冷却速度を低下させる。高Cr鋼の高い焼入性のために、冷却速度が高い場合は、製品の靭性及び可塑性に悪影響を及ぼすマルテンサイト組織が現れやすい。 Steels with high silicon content can transform into fayalite (Fe 2 SiO 4 ) with a melting point of 1173° C. between the iron oxide skin layer and the matrix during prolonged heating in the furnace. An effective way to eliminate or mitigate the scaling difficulties of silicon- containing steels is to increase the discharge temperature so that the surface temperature of the slab during rough descaling is above the melting point of Fe2SiO4 , FeO /Fe 2 SiO 4 anchors are prevented from being formed in a liquid phase state, so that they can be easily removed. The cooling water between multiple mill stands is completely closed to reduce the rolling speed and reduce the cooling speed; Due to the high hardenability of high Cr steels, when the cooling rate is high, a martensitic structure is likely to appear, which adversely affects the toughness and plasticity of the product.

本発明の具体的な実施形態を、実施例及び比較例を参照して更に説明する。 Specific embodiments of the present invention are further described with reference to examples and comparative examples.

実施例及び比較例
660MPa級の高耐食性耐候性鋼を、それぞれ従来の製錬プロセス並びに制御された圧延及び冷却プロセスによって製造し、鉄道耐候性鋼のサイクル浸透及び腐食試験方法(Test Method for Cycle Infiltration and Corrosion of Railway Weather-resistance Steel)(TB/T2375)に従って、Q355Bに対する腐食速度を試験した。本発明の660MPa級の高耐食性耐候性鋼及び比較例1の通常耐候性鋼Q450NQR1及び比較例2の低合金高強度鋼Q355Bの具体的な組成及び耐大気腐食性を表2に示す。
EXAMPLES AND COMPARATIVE EXAMPLES 660 MPa grade high corrosion resistant weathering steels were produced by conventional smelting process and controlled rolling and cooling process, respectively, and subjected to the Test Method for Cycle Infiltration of railway weathering steel. and Corrosion of Railway Weather-resistance Steel (TB/T2375) for Q355B. Table 2 shows the specific composition and atmospheric corrosion resistance of the 660 MPa class high corrosion resistant weathering steel of the present invention, the normal weathering steel Q450NQR1 of Comparative Example 1, and the low alloy high strength steel Q355B of Comparative Example 2.

Figure 0007233481000002
Figure 0007233481000002

実施例及び比較例から、660MPa級の高耐食性耐候性鋼の耐大気腐食性指標Iは、6.0の2倍であり、通常の耐候性鋼及び低合金高強度鋼の耐大気腐食性指標Iよりもはるかに大きく、優れた耐大気腐食性を示すことが分かる。高耐食性耐候性鋼は、高温多湿領域への曝露が可能であり、これにより、コーティング及び錆除去コスト、腐食破壊事故及び環境汚染が低減され、建物、橋梁、車両及び他の分野に適用することができ、応用の良好な見通しが示される。 From the examples and comparative examples, the atmospheric corrosion resistance index I of the 660 MPa class high corrosion resistance weathering steel is twice 6.0, and the atmospheric corrosion resistance index I of the normal weathering steel and the low alloy high strength steel It can be seen that it is much larger than I and exhibits excellent atmospheric corrosion resistance. High corrosion resistance weathering steel can be exposed to hot and humid areas, which reduces coating and rust removal costs, corrosion failure accidents and environmental pollution, and can be applied to buildings, bridges, vehicles and other fields. , showing good prospects for applications.

Claims (6)

以下の化学組成:C:0.06~0.12質量%、Si:2.20~3.00質量%、Mn:0.85~1.50質量%、P:0.060~0.150質量%、S≦0.015質量%、Cr:2.90~3.70質量%、Ni:0.10~0.40質量%、Cu:0.20~0.60質量%、Al:0.010~0.050質量%、残部Fe及び不可避不純物から成ることを特徴とする、660MPa級の高耐食性耐候性鋼。 The following chemical composition: C : 0.06-0.12 % by mass , Si: 2.20-3.00% by mass , Mn : 0.85-1.50 % by mass , P: 0.060-0.150 % by mass , S≦0.015% by mass , Cr: 2.90 to 3.70% by mass , Ni: 0.10 to 0.40% by mass , Cu: 0.20 to 0.60% by mass , Al: 0 A 660 MPa class high corrosion resistant weathering steel characterized by comprising 0.010 to 0.050 % by mass, the balance being Fe and unavoidable impurities. 以下の化学組成:C:0.06~0.08質量%、Si:2.60~2.80質量%、Mn:0.85~1.00質量%、P:0.080~0.120質量%、S≦0.007質量%、Cr:3.30~3.50質量%、Ni:0.20~0.30質量%、Cu:0.28~0.38質量%、Al:0.015~0.050質量%、残部Fe及び不可避不純物から成ることを特徴とする、請求項1に記載の660MPa級の高耐食性耐候性鋼。 The following chemical composition: C: 0.06-0.08% by mass , Si: 2.60-2.80% by mass , Mn: 0.85-1.00% by mass , P: 0.080-0.120 % by mass , S≦0.007% by mass , Cr: 3.30 to 3.50% by mass , Ni: 0.20 to 0.30% by mass , Cu: 0.28 to 0.38% by mass , Al : 0 015-0.050% by mass , the balance being Fe and unavoidable impurities. 前記660MPa級の高耐食性耐候性鋼の耐大気腐食性指標Iが14.10~15.51であることを特徴とする、請求項1又は2に記載の660MPa級の高耐食性耐候性鋼。 3. The 660 MPa class high corrosion resistant weathering steel according to claim 1 or 2, wherein the atmospheric corrosion resistance index I of the 660 MPa class high corrosion resistant weathering steel is 14.10 to 15.51. 前記660MPa級の高耐食性耐候性鋼は、660~740MPaの降伏強度、940~1040MPaの引張強度、18%以上の伸びA、及び-40℃で27J以上の衝撃値を有することを特徴とする、請求項1から3のいずれか一項に記載の660MPa級の高耐食性耐候性鋼。 The 660 MPa class high corrosion resistant weathering steel has a yield strength of 660 to 740 MPa, a tensile strength of 940 to 1040 MPa, an elongation A of 18% or more, and an impact value of 27 J or more at -40 ° C. The 660 MPa class high corrosion-resistant weathering steel according to any one of claims 1 to 3. 溶銑脱硫→転炉製錬→LF→RH→LF→スラブ連続鋳造→熱間圧延→ラミナー冷却→コイル化の工程を含むことを特徴とする、請求項1から4のいずれか一項に記載の660MPa級の高耐食性耐候性鋼の製造方法。 5. The method according to any one of claims 1 to 4, characterized by including the steps of hot metal desulfurization → converter smelting → LF → RH → LF → slab continuous casting → hot rolling → laminar cooling → coiling. A method for producing 660 MPa class high corrosion-resistant and weather-resistant steel. 前記660MPa級の高耐食性耐候性鋼は、建築、橋梁建設又は車両製造の分野で使用され、高温多湿領域への曝露が可能であることを特徴とする、請求項1から4のいずれか一項に記載の660MPa級の高耐食性耐候性鋼の使用。 5. The 660 MPa class high corrosion-resistant weathering steel is used in the fields of architecture, bridge construction or vehicle manufacturing, and can be exposed to hot and humid regions. Use of 660 MPa class high corrosion resistance weathering steel described in .
JP2021116872A 2020-07-29 2021-07-15 660 MPa class high corrosion resistant weathering steel and method for producing the same Active JP7233481B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010743976.3 2020-07-29
CN202010743976.3A CN111690882A (en) 2020-07-29 2020-07-29 660 MPa-grade high-corrosion-resistance weathering steel and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2022027525A JP2022027525A (en) 2022-02-10
JP7233481B2 true JP7233481B2 (en) 2023-03-06

Family

ID=72487033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021116872A Active JP7233481B2 (en) 2020-07-29 2021-07-15 660 MPa class high corrosion resistant weathering steel and method for producing the same

Country Status (2)

Country Link
JP (1) JP7233481B2 (en)
CN (1) CN111690882A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686779A (en) * 2022-04-06 2022-07-01 攀钢集团攀枝花钢铁研究院有限公司 High-corrosion-resistance weather-resistant steel and preparation method and application thereof
CN115976396B (en) * 2022-12-30 2024-04-30 包头钢铁(集团)有限责任公司 High-strength corrosion-resistant hot rolled steel strip Q550NQR1 for container and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017383A (en) 1998-07-03 2000-01-18 Nippon Steel Corp High atmosphere corrosion resisting steel
WO2006022009A1 (en) 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
JP2008013808A (en) 2006-07-05 2008-01-24 Jfe Steel Kk High-tensile-strength welded steel pipe for automotive structural member, and manufacturing method therefor
CN101994063A (en) 2009-08-18 2011-03-30 宝山钢铁股份有限公司 Weathering steel with yield strength of more than 700MPa and manufacturing method thereof
JP2015052132A (en) 2013-09-05 2015-03-19 株式会社神戸製鋼所 High strength steel sheet having high yield ratio and formability and production method thereof
CN104532146A (en) 2014-12-23 2015-04-22 攀钢集团西昌钢钒有限公司 High-strength weathering steel and method for smelting same from semisteel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017383A (en) 1998-07-03 2000-01-18 Nippon Steel Corp High atmosphere corrosion resisting steel
WO2006022009A1 (en) 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
CN101001969A (en) 2004-08-26 2007-07-18 大同特殊钢株式会社 Steel for high strength spring, and high strength spring and method for manufacture thereof
US20070256765A1 (en) 2004-08-26 2007-11-08 Kazuyoshi Kimura High Strength Spring Steel, High Strength Springs and Manufacturing Method Thereof
JP2008013808A (en) 2006-07-05 2008-01-24 Jfe Steel Kk High-tensile-strength welded steel pipe for automotive structural member, and manufacturing method therefor
CN101484602A (en) 2006-07-05 2009-07-15 杰富意钢铁株式会社 High-tensile strength welded steel tube for structural partsof automobiles and method of producing the same
US20090277544A1 (en) 2006-07-05 2009-11-12 Jfe Steel Corporation, A Corporation Of Japan High-tensile strength welded steel tube for structural parts of automobiles and method of producing the same
CN101994063A (en) 2009-08-18 2011-03-30 宝山钢铁股份有限公司 Weathering steel with yield strength of more than 700MPa and manufacturing method thereof
JP2015052132A (en) 2013-09-05 2015-03-19 株式会社神戸製鋼所 High strength steel sheet having high yield ratio and formability and production method thereof
CN104532146A (en) 2014-12-23 2015-04-22 攀钢集团西昌钢钒有限公司 High-strength weathering steel and method for smelting same from semisteel

Also Published As

Publication number Publication date
CN111690882A (en) 2020-09-22
JP2022027525A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP7233483B2 (en) 630 MPa grade high corrosion resistant weathering steel and method for producing the same
CN103361569B (en) A kind of Ultralow temperature weather-proof structural steel plate and production method thereof
WO2023212972A1 (en) Low-yield-ratio, easy-to-weld and weather-proof bridge steel and manufacturing method therefor
JP7233481B2 (en) 660 MPa class high corrosion resistant weathering steel and method for producing the same
CN104419867A (en) 1250MPa Grade ultrahigh-strength zinc-aluminum-magnesium coated steel plate and production method thereof
CN111676427A (en) 590MPa grade high-corrosion-resistance weathering steel and preparation method thereof
CN109023048B (en) 460 MPa-grade high-strength anti-seismic fire-resistant weathering steel hot-rolled coil and production method thereof
CN111690879A (en) 600MPa grade high-corrosion-resistance weathering steel and preparation method thereof
CN111850416A (en) 570MPa grade high-corrosion-resistance weathering steel and preparation method thereof
CN111926254A (en) 440MPa grade high-phosphorus high-chromium weathering steel and preparation method and application thereof
CN112251674A (en) Hot-rolled low-yield-ratio high-weather-resistant steel for railway passenger car and manufacturing method thereof
CN113528962B (en) Corrosion-resistant steel bar and production method thereof
JP7233482B2 (en) 540 MPa grade high silicon high chromium weathering steel and its manufacturing method
CN111945065A (en) 500 MPa-grade high-chromium weathering steel and preparation method and application thereof
CN111850411A (en) 400 MPa-grade high-chromium weathering steel and preparation method thereof
CN111850406A (en) 380MPa grade high-phosphorus weathering steel and preparation method thereof
CN115161551B (en) High-strength high-formability super-atmospheric corrosion-resistant steel and manufacturing method thereof
CN110565024A (en) Niobium-titanium-containing 550 MPa-grade thick weathering resistant steel and production method thereof
CN111996450A (en) 570MPa grade high-corrosion-resistance weathering steel and preparation method and application thereof
CN111996464A (en) 570MPa grade high-corrosion-resistance weathering steel and preparation method and application thereof
CN111647819A (en) 620MPa grade high corrosion resistant weathering steel and preparation method thereof
CN111850417A (en) 530 MPa-grade high-silicon high-chromium weathering steel and preparation method thereof
CN111979500A (en) 500MPa grade high-silicon high-phosphorus weathering steel and preparation method and application thereof
CN111961971A (en) 500MPa grade high-phosphorus high-chromium weathering steel and preparation method and application thereof
CN111647824A (en) 510MPa grade high-silicon high-phosphorus high-chromium weathering steel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7233481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150