JP2022025872A - Long cylindrical ceramic body - Google Patents

Long cylindrical ceramic body Download PDF

Info

Publication number
JP2022025872A
JP2022025872A JP2020129018A JP2020129018A JP2022025872A JP 2022025872 A JP2022025872 A JP 2022025872A JP 2020129018 A JP2020129018 A JP 2020129018A JP 2020129018 A JP2020129018 A JP 2020129018A JP 2022025872 A JP2022025872 A JP 2022025872A
Authority
JP
Japan
Prior art keywords
inner peripheral
ceramic body
peripheral portion
liner tube
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020129018A
Other languages
Japanese (ja)
Inventor
裕貴 川端
Hirotaka Kawabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2020129018A priority Critical patent/JP2022025872A/en
Publication of JP2022025872A publication Critical patent/JP2022025872A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a long cylindrical ceramic body in which even if a metalized layer is formed on an inner peripheral surface, a discontinuous portion is not likely to be generated on the metalized layer.SOLUTION: A long cylindrical ceramic body according to the present disclosure includes a ceramic main body having a cylindrical shape. An inner peripheral surface in the vicinity of one end of the ceramic main body is a first inner peripheral surface; an inner peripheral surface in the vicinity of the other end of the ceramic main body is a second inner peripheral surface; a portion connecting the first inner peripheral surface and the second inner peripheral surface with each other is a connection part. The second inner peripheral surface has a smaller diameter than that of the first inner peripheral surface. The center of the diameter of the first inner peripheral surface and the center of the diameter of the second inner peripheral surface are present on the same axis. At least part of an inner wall surface of the connection part is inclined with respect to the axis.SELECTED DRAWING: Figure 1

Description

本開示は、長尺筒状セラミック体に関する。 The present disclosure relates to a long tubular ceramic body.

従来、電子線露光装置において、光軸を含む周囲を真空に保つために、ライナーチューブが光学鏡筒内に設けられている。ライナーチューブの外周側には電磁レンズ、電磁偏向器などが配置されている。特許文献1には、セラミックス筒体の内面に、チタンメタライズ層と白金めっき層とが順次形成されたライナーチューブが記載されている。 Conventionally, in an electron beam exposure apparatus, a liner tube is provided in an optical lens barrel in order to keep the surroundings including the optical axis in a vacuum. An electromagnetic lens, an electromagnetic deflector, etc. are arranged on the outer peripheral side of the liner tube. Patent Document 1 describes a liner tube in which a titanium metallized layer and a platinum-plated layer are sequentially formed on the inner surface of a ceramic cylinder.

しかし、特許文献1に記載のライナーチューブは、大径内面と小径内面とを接続する接続面の両端部で、メタライズ層が不連続になりやすい。さらに、チタンメタライズ層の厚みを十分に制御することが難しい。そのため、特許文献1に記載のライナーチューブを備える荷電粒子線装置は、電子ビームの偏向を制御することが難しい。 However, in the liner tube described in Patent Document 1, the metallized layer tends to be discontinuous at both ends of the connecting surface connecting the large-diameter inner surface and the small-diameter inner surface. Furthermore, it is difficult to sufficiently control the thickness of the titanium metallized layer. Therefore, it is difficult to control the deflection of the electron beam in the charged particle beam device provided with the liner tube described in Patent Document 1.

特開2001-6594号公報Japanese Unexamined Patent Publication No. 2001-6594

本開示の課題は、内周面にメタライズ層を形成しても、メタライズ層に不連続な部分が発生しにくい長尺筒状セラミック体を提供することである。 An object of the present disclosure is to provide a long cylindrical ceramic body in which a discontinuous portion is unlikely to occur in the metallized layer even if the metallized layer is formed on the inner peripheral surface.

本開示に係る長尺筒状セラミック体は、筒状を有するセラミック本体を含み、セラミック本体の一方の端部近傍の内周面を第1内周部とし、セラミック本体の他方の端部近傍の内周面を第2内周部とし、第1内周部と第2内周部とを接続している部分を接続部とし、第2内周部が第1内周部よりも小さい径を有しており、第1内周部の径の中心と第2内周部の径の中心とが、同じ軸上に存在しており、接続部の内壁面の少なくとも一部が軸に対して傾斜している。 The long tubular ceramic body according to the present disclosure includes a ceramic body having a tubular shape, the inner peripheral surface near one end of the ceramic body is the first inner peripheral portion, and the inner peripheral surface near the other end of the ceramic body is near the other end. The inner peripheral surface is the second inner peripheral portion, the portion connecting the first inner peripheral portion and the second inner peripheral portion is the connecting portion, and the second inner peripheral portion has a diameter smaller than that of the first inner peripheral portion. The center of the diameter of the first inner peripheral portion and the center of the diameter of the second inner peripheral portion are present on the same axis, and at least a part of the inner wall surface of the connecting portion is relative to the axis. It is tilted.

本開示に係るライナーチューブは、上記の長尺筒状セラミック体を含み、第1内周部の少なくとも接続部側の表面、第2内周部の少なくとも接続部側の表面、および接続部の内壁面にメタライズ層が積層されている。 The liner tube according to the present disclosure includes the above-mentioned long cylindrical ceramic body, and has a surface of at least the connection portion side of the first inner peripheral portion, a surface of at least the connection portion side of the second inner peripheral portion, and the inside of the connection portion. A metallized layer is laminated on the wall surface.

本開示に係る荷電粒子線装置は、上記のライナーチューブと、ライナーチューブの外周側に電磁レンズまたは電磁偏向器とを含む。 The charged particle beam device according to the present disclosure includes the above liner tube and an electromagnetic lens or an electromagnetic deflector on the outer peripheral side of the liner tube.

本開示によれば、内周面にメタライズ層を形成しても、メタライズ層に不連続な部分が発生しにくい長尺筒状セラミック体を提供することができる。 According to the present disclosure, it is possible to provide a long cylindrical ceramic body in which a discontinuous portion is unlikely to occur in the metallized layer even if the metallized layer is formed on the inner peripheral surface.

(A)は、本開示の一実施形態に係る長尺筒状セラミック体を示す説明図であり、(B)は、(A)に示すX-X線で切断した際の断面を示す説明図である。(A) is an explanatory view showing a long cylindrical ceramic body according to an embodiment of the present disclosure, and (B) is an explanatory view showing a cross section when cut by XX rays shown in (A). Is. 本開示の他の実施形態に係る長尺筒状セラミック体の断面を示す説明図である。It is explanatory drawing which shows the cross section of the long cylindrical ceramic body which concerns on other embodiment of this disclosure.

本開示に係る長尺筒状セラミック体は、上記のように、筒状を有するセラミック本体を含み、セラミック本体の一方の端部近傍の内周面を第1内周部とし、セラミック本体の他方の端部近傍の内周面を第2内周部とし、第1内周部と第2内周部とを接続している部分を接続部とする。本開示に係る長尺筒状セラミック体を、図1および2に基づいて説明する。 As described above, the long tubular ceramic body according to the present disclosure includes a ceramic body having a tubular shape, the inner peripheral surface near one end of the ceramic body is the first inner peripheral portion, and the other of the ceramic bodies. The inner peripheral surface in the vicinity of the end portion is referred to as a second inner peripheral portion, and the portion connecting the first inner peripheral portion and the second inner peripheral portion is referred to as a connecting portion. The long cylindrical ceramic body according to the present disclosure will be described with reference to FIGS. 1 and 2.

図1(A)に示すように、一実施形態に係る長尺筒状セラミック体1は、筒状を有するセラミック本体10を含む。本明細書において「長尺」とは、100mm以上の長さを意味する。 As shown in FIG. 1A, the long tubular ceramic body 1 according to the embodiment includes a ceramic body 10 having a tubular shape. As used herein, the term "long" means a length of 100 mm or more.

セラミック本体10は、セラミックスで形成されていれば限定されない。セラミックスとしては、例えば、酸化アルミニウム、炭化珪素、炭窒化珪素、炭化チタン、炭窒化チタンなどを主成分とするセラミックスが挙げられる。本明細書において「主成分」とは、セラミックスを構成する成分の合計100質量%における80質量%以上を占める成分をいう。セラミックスに含まれる各成分の同定は、CuKα線を用いたX線回折装置で行い、各成分の含有量は、例えばICP(InductivelyCoupled Plasma)発光分光分析装置または蛍光X線分析装置により求めればよい。 The ceramic body 10 is not limited as long as it is made of ceramics. Examples of the ceramics include ceramics containing aluminum oxide, silicon carbide, silicon carbide, titanium carbide, titanium carbide and the like as main components. As used herein, the term "main component" refers to a component that accounts for 80% by mass or more in a total of 100% by mass of the components constituting the ceramics. The identification of each component contained in the ceramics is performed by an X-ray diffractometer using CuKα ray, and the content of each component may be determined by, for example, an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer.

主成分が酸化アルミニウムであるセラミックスの場合、例えば、マグネシウム、カルシウムおよび珪素が酸化物としてさらに含まれていてもよい。 In the case of ceramics whose main component is aluminum oxide, for example, magnesium, calcium and silicon may be further contained as oxides.

セラミック本体10の長さは、100mm以上であれば限定されず、得られる長尺筒状セラミック体の用途に応じて適宜設定される。セラミック本体10の長さは、例えば100mm以上250mm以下程度である。セラミック本体10の外径も、限定されず、得られる長尺筒状セラミック体の用途に応じて適宜設定される。セラミック本体10の外径は、例えば18mm以上40mm以下程度である。セラミック本体10のように単一の太さ(外径)を有していない場合は、最も細い部分の外径と最も太い部分の外径とが、上記のような範囲の長さを有していればよい。 The length of the ceramic body 10 is not limited as long as it is 100 mm or more, and is appropriately set according to the use of the obtained long cylindrical ceramic body. The length of the ceramic body 10 is, for example, about 100 mm or more and 250 mm or less. The outer diameter of the ceramic body 10 is also not limited, and is appropriately set according to the use of the obtained long cylindrical ceramic body. The outer diameter of the ceramic body 10 is, for example, about 18 mm or more and 40 mm or less. When the ceramic body 10 does not have a single thickness (outer diameter), the outer diameter of the thinnest part and the outer diameter of the thickest part have a length in the above range. You just have to.

セラミック本体10の内周面について、図1(B)を参照して説明する。図1(B)に示すように、セラミック本体10の一方の端部近傍に第1内周部11が位置し、セラミック本体10の他方の端部近傍に第2内周部12が位置している。第1内周部11は、セラミック本体10の一方の端面からセラミック本体10の全長の45%程度までの長さを有している。第2内周部12は、セラミック本体10の他方の端面からセラミック本体10の全長の35%程度までの長さを有している。 The inner peripheral surface of the ceramic body 10 will be described with reference to FIG. 1 (B). As shown in FIG. 1 (B), the first inner peripheral portion 11 is located near one end of the ceramic main body 10, and the second inner peripheral portion 12 is located near the other end of the ceramic main body 10. There is. The first inner peripheral portion 11 has a length from one end surface of the ceramic main body 10 to about 45% of the total length of the ceramic main body 10. The second inner peripheral portion 12 has a length from the other end surface of the ceramic main body 10 to about 35% of the total length of the ceramic main body 10.

第2内周部12は、第1内周部11よりも小さい径を有している。第2内周部12の径D2は、第1内周部11の径D1よりも小さければ限定されない。例えば、第2内周部12の径D2は、第1内周部11の径D1の50%以上65%以下程度の長さであるのがよい。第1内周部11の径D1の中心と第2内周部12の径D2の中心とは、同じ軸上に存在している。 The second inner peripheral portion 12 has a diameter smaller than that of the first inner peripheral portion 11. The diameter D2 of the second inner peripheral portion 12 is not limited as long as it is smaller than the diameter D1 of the first inner peripheral portion 11. For example, the diameter D2 of the second inner peripheral portion 12 is preferably about 50% or more and 65% or less of the diameter D1 of the first inner peripheral portion 11. The center of the diameter D1 of the first inner peripheral portion 11 and the center of the diameter D2 of the second inner peripheral portion 12 exist on the same axis.

一実施形態に係る長尺筒状セラミック体1において、第1内周部11と第2内周部12とは、接続部13を介して接続されている。第1内周部11の径D1と第2内周部12の径D2との大きさが異なるため、接続部13の一方の端部の径と他方の端部の径との大きさが異なる。したがって、接続部13の内壁面の少なくとも一部が、第1内周部11の径D1の中心と第2内周部12の径D2の中心とを通る上記の軸に対して傾斜している。その結果、第1内周部11、第2内周部12および接続部13の内壁面に、例えばメタライズ層を形成したとしてもメタライズ層に不連続な部分が発生しにくくなる。上記の軸に対する接続部13の内壁面の傾斜角は特に限定されず、例えば4°以上18°以下程度であるのがよい。 In the long cylindrical ceramic body 1 according to the embodiment, the first inner peripheral portion 11 and the second inner peripheral portion 12 are connected via a connecting portion 13. Since the diameter D1 of the first inner peripheral portion 11 and the diameter D2 of the second inner peripheral portion 12 are different, the diameters of one end of the connecting portion 13 and the diameter of the other end are different. .. Therefore, at least a part of the inner wall surface of the connecting portion 13 is inclined with respect to the above-mentioned axis passing through the center of the diameter D1 of the first inner peripheral portion 11 and the center of the diameter D2 of the second inner peripheral portion 12. .. As a result, even if a metallized layer is formed on the inner wall surfaces of the first inner peripheral portion 11, the second inner peripheral portion 12, and the connecting portion 13, for example, a discontinuous portion is less likely to occur in the metallized layer. The inclination angle of the inner wall surface of the connecting portion 13 with respect to the axis is not particularly limited, and may be, for example, about 4 ° or more and 18 ° or less.

図2に示す他の実施形態に係る長尺筒状セラミック体1’のように、接続部13’の内壁面が曲率を有していてもよい。このように、接続部13’の内壁面が曲率を有していると、接続部13’の両端部が第1内周部11’および第2内周部12’に緩やかに接続される。その結果、第1内周部11’、第2内周部12’および接続部13’の内壁面に、例えばメタライズ層を形成したとしてもメタライズ層に不連続な部分がより発生しにくくなる。 The inner wall surface of the connecting portion 13'may have a curvature, as in the long cylindrical ceramic body 1'according to the other embodiment shown in FIG. As described above, when the inner wall surface of the connecting portion 13'has a curvature, both end portions of the connecting portion 13' are loosely connected to the first inner peripheral portion 11'and the second inner peripheral portion 12'. As a result, even if a metallized layer is formed on the inner wall surface of the first inner peripheral portion 11', the second inner peripheral portion 12', and the connecting portion 13', a discontinuous portion is less likely to occur in the metallized layer.

接続部13’の内壁面において、接続部13’の両端部の少なくとも一方の端部は、この両端部に挟まれた接続部13’の中間部よりも大きな曲率を有しているのがよい。このような構成の場合、第1内周部11’、第2内周部12’および接続部13’の内壁面に、例えばメタライズ層が形成されたとしても、接続部13’の両端部に形成されたメタライズ層に応力が集中しにくくなる。その結果、例えば、加熱および冷却が繰り返される環境下であっても、長期間にわたって使用することができる。 On the inner wall surface of the connecting portion 13', at least one end of both ends of the connecting portion 13'should have a greater curvature than the intermediate portion of the connecting portion 13' sandwiched between the both ends. .. In such a configuration, for example, even if a metallized layer is formed on the inner wall surface of the first inner peripheral portion 11', the second inner peripheral portion 12', and the connecting portion 13', both ends of the connecting portion 13'are formed. It becomes difficult for stress to concentrate on the formed metallized layer. As a result, for example, it can be used for a long period of time even in an environment where heating and cooling are repeated.

接続部13’の中間部の内壁面の曲率半径は限定されない。接続部13’の中間部の内壁面は、例えば250mm以上の曲率半径を有していてもよく、特に300mm以上350mm以下程度の曲率半径を有しているのがよい。接続部13’の端部の内壁面の曲率半径は、例えば、5mm以上15mm以下程度であるのがよい。 The radius of curvature of the inner wall surface of the intermediate portion of the connecting portion 13'is not limited. The inner wall surface of the intermediate portion of the connecting portion 13'may have, for example, a radius of curvature of 250 mm or more, and particularly preferably a radius of curvature of about 300 mm or more and 350 mm or less. The radius of curvature of the inner wall surface of the end portion of the connecting portion 13'may be, for example, about 5 mm or more and 15 mm or less.

本開示の長尺筒状セラミック体を製造する方法は、限定されず、例えば下記のような手順で製造される。まず、酸化アルミニウム、炭化珪素、炭窒化珪素、炭化チタンまたは炭窒化チタン粉末を準備する。これらの粉末の純度は限定されない。これらの粉末は、例えば、99質量%以上の純度を有しているのがよい。必要に応じて、セラミックスの原料として使用される他の粉末を使用してもよい。 The method for producing the long tubular ceramic body of the present disclosure is not limited, and for example, it is produced by the following procedure. First, aluminum oxide, silicon carbide, silicon carbide, titanium carbide or titanium carbide powder is prepared. The purity of these powders is not limited. These powders are preferably, for example, having a purity of 99% by mass or more. If necessary, other powders used as raw materials for ceramics may be used.

以下、酸化アルミニウムを主成分とする長尺筒状セラミック体を得る場合について説明する。まず、主成分である酸化アルミニウム粉末(純度が99質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを粉砕用ミルに溶媒(イオン交換水)とともに投入して、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と、酸化アルミニウム粉末を分散させる分散剤とを添加、混合してスラリーを得る。 Hereinafter, a case of obtaining a long cylindrical ceramic body containing aluminum oxide as a main component will be described. First, aluminum oxide powder (purity of 99% by mass or more), which is the main component, and magnesium hydroxide, silicon oxide, and calcium carbonate powders are put into a pulverizing mill together with a solvent (ion-exchanged water) to prepare the powder. After pulverizing until the average particle size (D 50 ) becomes 1.5 μm or less, an organic binder and a dispersant for dispersing aluminum oxide powder are added and mixed to obtain a slurry.

ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.3~0.42質量%、酸化珪素粉末の含有量は0.5~0.8質量%、炭酸カルシウム粉末の含有量は0.060~0.1質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。 Here, the content of the magnesium hydroxide powder in the total 100% by mass of the powder is 0.3 to 0.42% by mass, the content of the silicon oxide powder is 0.5 to 0.8% by mass, and the content of the calcium carbonate powder is The content is 0.060 to 0.1% by mass, and the balance is aluminum oxide powder and unavoidable impurities.

有機結合剤としては、例えば、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイドなどが挙げられる。 Examples of the organic binder include acrylic emulsions, polyvinyl alcohols, polyethylene glycols, polyethylene oxides and the like.

次に、スラリーを噴霧造粒して顆粒を得た後、冷間静水圧プレス成形装置を用いて、成形圧を78MPa以上128MPa以下として加圧することにより円柱状の成形体を得る。成形体は、切削加工により軸方向に沿って貫通孔を形成する。 Next, after spray-granulating the slurry to obtain granules, a columnar molded body is obtained by pressurizing the slurry with a molding pressure of 78 MPa or more and 128 MPa or less using a cold hydrostatic pressure press molding apparatus. The molded body forms through holes along the axial direction by cutting.

貫通孔を備えた成形体を、大気雰囲気中、例えば、焼成温度を1500℃以上1700℃以下、保持時間を4時間以上6時間以下として焼成することによって、円筒状の焼結体が得られる。得られた円筒状の焼結体の外周面に円筒研削を、内周面に内面研削をそれぞれ施すことによって、例えば、図1、2に示すような形状の長尺筒状セラミック体1,1’を得ることができる。 A cylindrical sintered body can be obtained by firing a molded body having through holes in an atmospheric atmosphere, for example, with a firing temperature of 1500 ° C. or higher and 1700 ° C. or lower and a holding time of 4 hours or longer and 6 hours or lower. By subjecting the outer peripheral surface of the obtained cylindrical sintered body to cylindrical grinding and the inner peripheral surface to internal grinding, for example, the long tubular ceramic bodies 1 and 1 having the shapes shown in FIGS. 'You can get.

本開示の長尺筒状セラミック体は、例えば、ライナーチューブの部材として使用される。以下、一実施形態に係る長尺筒状セラミック体1を使用した場合を例に、ライナーチューブを説明する。 The long tubular ceramic body of the present disclosure is used, for example, as a member of a liner tube. Hereinafter, the liner tube will be described by taking as an example the case where the long cylindrical ceramic body 1 according to the embodiment is used.

本開示の一実施形態に係るライナーチューブは、一実施形態に係る長尺筒状セラミック体1の第1内周部11の少なくとも接続部13側の表面、第2内周部12の少なくとも接続部13側の表面、および接続部13の内壁面にメタライズ層が積層された構造を有している。 The liner tube according to an embodiment of the present disclosure is a surface of at least the connection portion 13 side of the first inner peripheral portion 11 of the long tubular ceramic body 1 according to the embodiment, and at least the connection portion of the second inner peripheral portion 12. It has a structure in which a metallized layer is laminated on the surface on the 13 side and the inner wall surface of the connecting portion 13.

メタライズ層に含まれる金属は限定されず、例えば、モリブデン、タングステン、チタン、銀などを主成分とする金属が挙げられる。これらの金属の中でも、モリブデン、タングステンまたはチタンを主成分とする金属であるのがよい。モリブデン、タングステンおよびチタンは非磁性の金属であり、内部空間を電子ビームが通過しても、電子ビームに悪影響を与えにくくなる。さらに、モリブデン、タングステンおよびチタンは、比較的高い体積抵抗率を有しているため、渦電流を発生させる可能性が低くなる。 The metal contained in the metallized layer is not limited, and examples thereof include metals containing molybdenum, tungsten, titanium, silver, and the like as main components. Among these metals, it is preferable that the metal is mainly composed of molybdenum, tungsten or titanium. Molybdenum, tungsten, and titanium are non-magnetic metals, and even if the electron beam passes through the internal space, the electron beam is less likely to be adversely affected. In addition, molybdenum, tungsten and titanium have relatively high resistivity, which makes them less likely to generate eddy currents.

メタライズ層がモリブデンあるいはタングステンを主成分とする場合、メタライズ層を構成する金属元素100質量%のうち、マンガンを15質量%以上25質量%以下、残部が主成分の金属であってもよい。メタライズ層が銀を主成分とする場合、メタライズ層を構成する金属元素100質量%のうち銅を25質量%以上30質量%以下、チタンを0.8質量%以上2質量%以下、残部が銀であってもよい。 When the metallized layer contains molybdenum or tungsten as a main component, manganese may be 15% by mass or more and 25% by mass or less, and the balance may be a metal as a main component, out of 100% by mass of the metal elements constituting the metallized layer. When the metallized layer contains silver as a main component, copper is 25% by mass or more and 30% by mass or less, titanium is 0.8% by mass or more and 2% by mass or less, and the balance is silver out of 100% by mass of metal elements constituting the metallized layer. May be.

メタライズ層の厚みは限定されず、例えば15μm以上45μm以下程度であってもよい。メタライズ層の厚みの変動係数は、例えば0.2以下であるのがよい。メタライズ層の厚みの変動係数が0.2以下であれば、メタライズ層の厚みを薄くしても、厚みのばらつきが小さくなる。その結果、メタライズ層の不連続な部分が発生しにくくなり、導通不良の可能性が低減される。 The thickness of the metallized layer is not limited, and may be, for example, about 15 μm or more and 45 μm or less. The coefficient of variation of the thickness of the metallized layer is preferably 0.2 or less, for example. If the coefficient of variation of the thickness of the metallized layer is 0.2 or less, the variation in thickness is small even if the thickness of the metallized layer is reduced. As a result, discontinuous portions of the metallized layer are less likely to occur, and the possibility of poor continuity is reduced.

一実施形態に係るライナーチューブは、メタライズ層の上に第1めっき層が、さらに積層されていてもよい。第1めっき層は、金、白金または銀を主成分とする金属で形成されている。このような第1めっき層に含まれる金、白金または銀は、高い標準電位を有するのに加えて錆びにくい。その結果、ライナーチューブの信頼性をより向上させることができる。 In the liner tube according to the embodiment, the first plating layer may be further laminated on the metallized layer. The first plating layer is formed of a metal containing gold, platinum or silver as a main component. Gold, platinum or silver contained in such a first plating layer has a high standard potential and is resistant to rust. As a result, the reliability of the liner tube can be further improved.

第1めっき層の厚みは限定されず、例えば、0.01μm以上0.1μm以下程度であってもよい。第1めっき層の算術平均粗さRaは限定されず、例えば、1.1μm以上1.7μm以下程度であってもよい。第1めっき層の表面において、算術平均粗さRaの変動係数は0.2以下(但し0を除く)であるのがよい。第1めっき層の表面がこのような算術平均粗さRaの変動係数を有していると、第1めっき層の表面にガスが吸着しにくくなる。その結果、ライナーチューブの内部空間を真空にするための排気効率が向上する。 The thickness of the first plating layer is not limited, and may be, for example, 0.01 μm or more and 0.1 μm or less. The arithmetic mean roughness Ra of the first plating layer is not limited, and may be, for example, about 1.1 μm or more and 1.7 μm or less. On the surface of the first plating layer, the coefficient of variation of the arithmetic mean roughness Ra is preferably 0.2 or less (excluding 0). When the surface of the first plating layer has such a coefficient of variation of the arithmetic mean roughness Ra, it becomes difficult for gas to be adsorbed on the surface of the first plating layer. As a result, the exhaust efficiency for evacuating the internal space of the liner tube is improved.

第1めっき層の2条平均平方根傾斜RΔqは限定されず、例えば、0.4以上1.6以下であるとよい。さらに、第1めっき層の表面において、2条平均平方根傾斜RΔqの変動係数は0.25以下(但し0を除く)であるのがよい。第1めっき層の表面がこのような2条平均平方根傾斜RΔqの変動係数を有していると、第1めっき層の表面にガスがより吸着しにくくなる。その結果、ライナーチューブの内部空間を真空にするための排気効率がより向上する。 The root mean square slope RΔq of the first plating layer is not limited, and may be, for example, 0.4 or more and 1.6 or less. Further, on the surface of the first plating layer, the coefficient of variation of the root mean square slope RΔq is preferably 0.25 or less (excluding 0). When the surface of the first plating layer has such a coefficient of variation of the root mean square slope RΔq, it becomes more difficult for gas to be adsorbed on the surface of the first plating layer. As a result, the exhaust efficiency for evacuating the internal space of the liner tube is further improved.

算術平均粗さRaおよび2乗平均平方根傾斜RΔqは、JIS B 0601:2001に準拠し、形状解析レーザ顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1100またはその後継機種))を用いて測定することができる。 Arithmetic mean roughness Ra and root mean square slope RΔq conform to JIS B 0601: 2001, shape analysis laser microscope (manufactured by KEYENCE CORPORATION, ultra-depth color 3D shape measurement microscope (VK-X1100 or its successor model)). ) Can be used for measurement.

測定条件としては、照明方式を同軸照明、倍率を120倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、カットオフ値λfを無し、終端効果の補正を有り、測定対象とする第1めっき層の表面から1か所当たりの測定範囲を、例えば、2792μm×2093μmに設定して、各測定範囲毎に、測定範囲の長手方向に沿って測定対象とする線を1本引いて、線粗さ計測を行えばよい。計測の対象とする線1本当たりの長さは、例えば、2640μmである。測定範囲は、軸方向に沿って略等間隔に8箇所設定し、測定対象とする線は合計8本とする。算術平均粗さRaおよび2乗平均平方根傾斜RΔqのそれぞれの変動係数は、測定対象の線8本から得られる平均値および標準偏差から算出すればよい。 The measurement conditions are coaxial lighting for the illumination method, 120 times the magnification, no cutoff value λs, 0.08 mm for the cutoff value λc, no cutoff value λf, and correction of the termination effect. The measurement range per location from the surface of the first plating layer is set to, for example, 2792 μm × 2093 μm, and one line to be measured is drawn along the longitudinal direction of the measurement range for each measurement range. , Line roughness may be measured. The length per line to be measured is, for example, 2640 μm. The measurement range is set at eight points at substantially equal intervals along the axial direction, and the total number of lines to be measured is eight. The coefficient of variation of the arithmetic mean roughness Ra and the square mean square root slope RΔq may be calculated from the mean value and standard deviation obtained from the eight lines to be measured.

一実施形態に係るライナーチューブは、メタライズ層と第1めっき層との間に、ニッケルを主成分とする第2めっき層が、さらに積層されていてもよい。第2めっき層を積層させることによって、第1めっき層を形成している成分がメタライズ層に拡散するのを抑制することができる。第2めっき層の厚みは限定されず、例えば1μm以上3μm以下程度であってもよい。 In the liner tube according to one embodiment, a second plating layer containing nickel as a main component may be further laminated between the metallized layer and the first plating layer. By laminating the second plating layer, it is possible to prevent the components forming the first plating layer from diffusing into the metallized layer. The thickness of the second plating layer is not limited, and may be, for example, about 1 μm or more and 3 μm or less.

メタライズ層、第1めっき層および第2めっき層の総厚みの変動係数は、例えば0.2以下であるのがよい。メタライズ層、第1めっき層および第2めっき層の総厚みの変動係数が0.2以下であれば、これらの層の厚みを薄くしても、厚みのばらつきが小さくなる。その結果、導通不良の可能性が低減される。 The coefficient of variation of the total thickness of the metallized layer, the first plating layer and the second plating layer is preferably 0.2 or less, for example. If the coefficient of variation of the total thickness of the metallized layer, the first plating layer, and the second plating layer is 0.2 or less, the variation in thickness is small even if the thickness of these layers is reduced. As a result, the possibility of poor continuity is reduced.

メタライズ層、第1めっき層および第2めっき層のそれぞれの厚みを測定する場合、まず、ライナーチューブを半円筒状になるように、切断または研削した後、断面を研磨する。この研磨によって得られるいずれか片側の研磨面を測定の対象として、軸方向に沿って10箇所測定範囲を設定する。 When measuring the thickness of each of the metallized layer, the first plating layer and the second plating layer, first, the liner tube is cut or ground so as to have a semi-cylindrical shape, and then the cross section is polished. A measurement range is set at 10 points along the axial direction, with the polished surface on either side obtained by this polishing as the measurement target.

測定範囲は、第1内周部、第2内周部および接続部の長さに応じて設定すればよい。長尺筒状セラミック体1’の場合、例えば、第1内周部11’から3箇所、第2内周部12’から5箇所、接続部13’から2箇所、合計10箇所測定範囲を設定し、測定範囲は各部分毎に略等間隔になるようにすればよい。そして、走査型電子顕微鏡を用い、倍率を、例えば、500倍として測定の対象とする層の厚みを測定すればよい。メタライズ層の厚みの変動係数およびメタライズ層、第1めっき層および第2めっき層の総厚みの変動係数は、この測定範囲毎に得られる厚みの平均値および標準偏差から算出すればよい。以下、ライナーチューブの製造方法について説明する。 The measurement range may be set according to the lengths of the first inner peripheral portion, the second inner peripheral portion, and the connecting portion. In the case of the long tubular ceramic body 1', for example, the measurement range is set at 3 points from the 1st inner peripheral portion 11', 5 points from the 2nd inner peripheral portion 12', and 2 points from the connecting portion 13', for a total of 10 points. However, the measurement range may be set to be approximately equal intervals for each part. Then, using a scanning electron microscope, the thickness of the layer to be measured may be measured at a magnification of, for example, 500 times. The coefficient of variation of the thickness of the metallized layer and the coefficient of variation of the total thickness of the metallized layer, the first plating layer and the second plating layer may be calculated from the average value and standard deviation of the thickness obtained for each measurement range. Hereinafter, a method for manufacturing a liner tube will be described.

まず、長尺筒状セラミック体の第1内周部、第2内周部および接続部の内壁面に、例えば、モリブデンを主成分とし、マンガンを含むペーストを塗布する。ここで、ペーストの常温における粘度は、例えば250p以下、特に、210p以下であるとよい。次いで、水素:窒素の体積比率が70~80:30~20のフォーミングガス雰囲気で、温度を1300℃~1400℃として熱処理する。このよにすることによって、メタライズ層が積層されたライナーチューブを得ることができる。さらに、第1めっき層や第2めっき層を積層する場合は、いずれも無電解メッキによって積層すればよい。 First, for example, a paste containing molybdenum as a main component and manganese is applied to the inner wall surfaces of the first inner peripheral portion, the second inner peripheral portion, and the connecting portion of the long tubular ceramic body. Here, the viscosity of the paste at room temperature is preferably, for example, 250 p or less, particularly 210 p or less. Next, heat treatment is performed in a forming gas atmosphere having a hydrogen: nitrogen volume ratio of 70 to 80:30 to 20 and a temperature of 1300 ° C to 1400 ° C. By doing this, it is possible to obtain a liner tube in which a metallized layer is laminated. Further, when laminating the first plating layer and the second plating layer, both may be laminated by electroless plating.

本開示に係るライナーチューブは、例えば、電子顕微鏡、イオンビーム顕微鏡、電子ビーム露光装置、電子線マイクロアナライザー、イオンビーム装置、サイクロトロン、電子ビーム溶接機等の荷電粒子線装置の部材として採用される。このような荷電粒子線装置は、例えば、本開示の一実施形態に係るライナーチューブと、このライナーチューブの外周側に電磁レンズまたは電磁偏向器を含む。 The liner tube according to the present disclosure is adopted as a member of a charged particle beam device such as an electron microscope, an ion beam microscope, an electron beam exposure device, an electron beam microanalyzer, an ion beam device, a cyclotron, and an electron beam welder. Such a charged particle beam device includes, for example, a liner tube according to an embodiment of the present disclosure, and an electromagnetic lens or an electromagnetic deflector on the outer peripheral side of the liner tube.

1、1’ 長尺筒状セラミック体
10 セラミック本体
11、11’ 第1内周部
12、12’ 第2内周部
13、13’ 接続部
1, 1'Long tubular ceramic body 10 Ceramic body 11, 11'First inner peripheral part 12, 12' Second inner peripheral part 13, 13' Connection part

Claims (13)

筒状を有するセラミック本体を含み、
該セラミック本体の一方の端部近傍の内周面を第1内周部とし、該セラミック本体の他方の端部近傍の内周面を第2内周部とし、該第1内周部と該第2内周部とを接続している部分を接続部とし、
前記第2内周部が前記第1内周部よりも小さい径を有しており、
前記第1内周部の径の中心と前記第2内周部の径の中心とが、同じ軸上に存在しており、
前記接続部の内壁面の少なくとも一部が前記軸に対して傾斜している、長尺筒状セラミック体。
Includes a cylindrical ceramic body
The inner peripheral surface near one end of the ceramic body is designated as the first inner peripheral portion, the inner peripheral surface near the other end of the ceramic body is designated as the second inner peripheral portion, and the first inner peripheral portion and the said portion. The part connecting to the second inner peripheral part is used as the connecting part.
The second inner peripheral portion has a diameter smaller than that of the first inner peripheral portion, and the diameter thereof is smaller than that of the first inner peripheral portion.
The center of the diameter of the first inner peripheral portion and the center of the diameter of the second inner peripheral portion are present on the same axis.
A long cylindrical ceramic body in which at least a part of the inner wall surface of the connection portion is inclined with respect to the axis.
前記接続部の内壁面が曲率を有する、請求項1に記載の長尺筒状セラミック体。 The long tubular ceramic body according to claim 1, wherein the inner wall surface of the connecting portion has a curvature. 前記接続部の両端部のうちの少なくとも一方の端部の内壁面が、前記両端部に挟まれた中間部の内壁面よりも大きな曲率を有する、請求項1または2に記載の長尺筒状セラミック体。 The long cylindrical shape according to claim 1 or 2, wherein the inner wall surface of at least one end of both ends of the connection portion has a larger curvature than the inner wall surface of the intermediate portion sandwiched between the both ends. Ceramic body. 前記中間部の内壁面が、250mm以上の曲率半径を有する、請求項3に記載の長尺筒状セラミック体。 The long tubular ceramic body according to claim 3, wherein the inner wall surface of the intermediate portion has a radius of curvature of 250 mm or more. 請求項1~4のいずれかに記載の長尺筒状セラミック体を含み、
前記第1内周部の少なくとも前記接続部側の表面、前記第2内周部の少なくとも前記接続部側の表面、および前記接続部の内壁面にメタライズ層が積層された、ライナーチューブ。
The long tubular ceramic body according to any one of claims 1 to 4 is included.
A liner tube in which a metallized layer is laminated on at least the surface of the first inner peripheral portion on the connecting portion side, at least the surface of the second inner peripheral portion on the connecting portion side, and the inner wall surface of the connecting portion.
前記メタライズ層が、モリブデン、タングステンまたはチタンを主成分として含む、請求項5に記載のライナーチューブ。 The liner tube according to claim 5, wherein the metallized layer contains molybdenum, tungsten or titanium as a main component. 前記メタライズ層が、0.2以下の厚みの変動係数を有する、請求項5または6に記載のライナーチューブ。 The liner tube according to claim 5 or 6, wherein the metallized layer has a coefficient of variation of 0.2 or less. 前記メタライズ層の上に、金、白金または銀を主成分とする第1めっき層が、さらに積層されている、請求項5~7のいずれかに記載のライナーチューブ。 The liner tube according to any one of claims 5 to 7, wherein a first plating layer containing gold, platinum or silver as a main component is further laminated on the metallized layer. 前記メタライズ層と前記第1めっき層との間に、ニッケルを主成分とする第2めっき層が、さらに積層されている、請求項8に記載のライナーチューブ。 The liner tube according to claim 8, wherein a second plating layer containing nickel as a main component is further laminated between the metallized layer and the first plating layer. 前記第1めっき層の表面が、0.2以下(但し0を除く)の算術平均粗さRaの変動係数を有する、請求項8または9に記載のライナーチューブ。 The liner tube according to claim 8 or 9, wherein the surface of the first plating layer has a coefficient of variation of arithmetic mean roughness Ra of 0.2 or less (excluding 0). 前記第1めっき層の表面が、0.25以下(但し0を除く)の2条平均平方根傾斜RΔqの変動係数を有する、請求項8~10のいずれかに記載のライナーチューブ。 The liner tube according to any one of claims 8 to 10, wherein the surface of the first plating layer has a coefficient of variation of a root mean square slope RΔq of 0.25 or less (excluding 0). 前記メタライズ層、前記第1めっき層および前記第2めっき層の総厚みの変動係数が0.2以下である、請求項8~11のいずれかに記載のライナーチューブ。 The liner tube according to any one of claims 8 to 11, wherein the coefficient of variation of the total thickness of the metallized layer, the first plating layer and the second plating layer is 0.2 or less. 請求項5~12のいずれかに記載のライナーチューブと、該ライナーチューブの外周側に電磁レンズまたは電磁偏向器とを含む荷電粒子線装置。 A charged particle beam device comprising the liner tube according to any one of claims 5 to 12 and an electromagnetic lens or an electromagnetic deflector on the outer peripheral side of the liner tube.
JP2020129018A 2020-07-30 2020-07-30 Long cylindrical ceramic body Pending JP2022025872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020129018A JP2022025872A (en) 2020-07-30 2020-07-30 Long cylindrical ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020129018A JP2022025872A (en) 2020-07-30 2020-07-30 Long cylindrical ceramic body

Publications (1)

Publication Number Publication Date
JP2022025872A true JP2022025872A (en) 2022-02-10

Family

ID=80264751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020129018A Pending JP2022025872A (en) 2020-07-30 2020-07-30 Long cylindrical ceramic body

Country Status (1)

Country Link
JP (1) JP2022025872A (en)

Similar Documents

Publication Publication Date Title
JP5911576B2 (en) Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
US9950368B2 (en) Production of a refractory metal component
JP2022025872A (en) Long cylindrical ceramic body
CN111699274A (en) Member for plasma processing apparatus and plasma processing apparatus provided with same
CN107919257B (en) Carbon nanotube microbeam array field emission cathode Microfocus X-ray X-ray tube
EP2801629A1 (en) Tungsten alloy, tungsten alloy part using same, discharge lamp, transmission tube, and magnetron
WO2013094695A1 (en) Tungsten alloy, and tungsten alloy part, discharge lamp, transmitting tube and magnetron using tungsten alloy
EP2857534A1 (en) Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using same
JP7203233B2 (en) Electromagnetic field control parts
WO2015115624A1 (en) Cylinder, plasma device, gas laser device, and method for manufacturing cylinder
WO2022014685A1 (en) Electromagnetic field control member
JP7203234B2 (en) Electromagnetic field control parts
JP7018839B2 (en) Ceramic structure and its manufacturing method
WO2019066033A1 (en) Plasma processing device member and plasma processing device
JP2022150445A (en) Insulation fitting, vacuum vessel, and particle accelerator
US20200305238A1 (en) Structure
EP3852199A1 (en) Hermetic terminal
US11934096B2 (en) Frame member for electron beam lithography device and electron beam lithography device
WO2021015189A1 (en) Hermetic terminal
US20230257307A1 (en) Ceramic structure and electrostatic deflector
JP5084463B2 (en) Method for manufacturing electrode structure
JP2019102274A (en) Structure
CN117836449A (en) Copper-diamond composite, heat dissipation member, and electronic device
TW200903553A (en) Component for charged particle device and manufacturing method thereof
JP6208544B2 (en) Ceramic joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240416