JP7018839B2 - Ceramic structure and its manufacturing method - Google Patents

Ceramic structure and its manufacturing method Download PDF

Info

Publication number
JP7018839B2
JP7018839B2 JP2018127640A JP2018127640A JP7018839B2 JP 7018839 B2 JP7018839 B2 JP 7018839B2 JP 2018127640 A JP2018127640 A JP 2018127640A JP 2018127640 A JP2018127640 A JP 2018127640A JP 7018839 B2 JP7018839 B2 JP 7018839B2
Authority
JP
Japan
Prior art keywords
region
silicon
shaft portion
substrate
ceramic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018127640A
Other languages
Japanese (ja)
Other versions
JP2020007175A (en
Inventor
浩 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018127640A priority Critical patent/JP7018839B2/en
Publication of JP2020007175A publication Critical patent/JP2020007175A/en
Application granted granted Critical
Publication of JP7018839B2 publication Critical patent/JP7018839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本開示は、セラミック構造体およびその製造方法に関する。 The present disclosure relates to a ceramic structure and a method for manufacturing the same.

比較的安価であり、優れた機械的特性を有するアルミナ質セラミックスは、種々の構造体への展開が図られている。構造体の一つとして、板状体が有する孔に筒状体が嵌め合わされるようなものの場合において接合技術が用いられており、信頼性向上の観点から接合力を高めることが検討されている。 Alumina ceramics, which are relatively inexpensive and have excellent mechanical properties, have been developed into various structures. As one of the structures, a joining technique is used in the case where a cylindrical body is fitted into a hole of a plate-shaped body, and it is considered to increase the joining force from the viewpoint of improving reliability. ..

例えば、特許文献1では、片面に周面を外方へ拡開したテーパー面とする凹部が形成されてなるセラミック円板と、その凹部のテーパー面と係合可能なテーパー面が一端部の外周に形成され、セラミック円板と同様のセラミック円筒体とが、両テーパー面間に無機成分を主成分とする接合層を介して接合されたセラミック構造体が提案されている。 For example, in Patent Document 1, a ceramic disk in which a concave portion having a tapered surface whose peripheral surface is expanded outward is formed on one side, and a tapered surface that can be engaged with the tapered surface of the concave portion is the outer periphery of one end. There has been proposed a ceramic structure in which a ceramic cylinder similar to a ceramic disk is joined between both tapered surfaces via a joining layer containing an inorganic component as a main component.

特開2001-10872号公報Japanese Unexamined Patent Publication No. 2001-10872

筒状体の外径が、例えば1mm以下と小さかったり、筒状体の肉厚が、例えば0.5mm以下と薄かったりすると、加熱および冷却が繰り返される熱サイクルによって、筒状体が板状体から抜けやすくなるという問題があった。 When the outer diameter of the tubular body is as small as 1 mm or less, or when the wall thickness of the tubular body is as thin as 0.5 mm or less, the tubular body becomes a plate-like body due to a thermal cycle in which heating and cooling are repeated. There was a problem that it became easy to get out of.

本開示は、接合されたセラミックスからなる構造体において、加熱および冷却の繰り返しに対する信頼性に優れるセラミック構造体およびその製造方法を提供する。 The present disclosure provides a ceramic structure having excellent reliability against repeated heating and cooling in a structure made of bonded ceramics, and a method for manufacturing the same.

本開示のセラミック構造体は、珪素を含有する酸化アルミニウム質セラミックスからなり、孔を有する基部と、前記孔に嵌め合わされる軸部とを備える。前記基部は、前記軸部との嵌め合せ面を含む前記孔の周囲の第1領域と、該第1領域を除く第2領域とを有し、前記第1領域は、前記第2領域よりも珪素の面積率が小さく、前記軸部は、珪素を含有しており、前記基部との嵌め合せ面を含む部分を第3領域としたとき、前記第3領域は、前記第1領域よりも珪素の面積率が大きいThe ceramic structure of the present disclosure is made of an aluminous ceramic oxide containing silicon, and includes a base having holes and a shaft portion fitted into the holes. The base portion has a first region around the hole including a fitting surface with the shaft portion, and a second region excluding the first region, and the first region is larger than the second region. When the area ratio of silicon is small, the shaft portion contains silicon, and the portion including the fitting surface with the base portion is set as the third region, the third region is larger than the first region. The area ratio of silicon is large .

本開示のセラミック構造体の製造方法は、前記基部が、第1基板と第2基板からなり、該第2基板の嵌め合せ面および前記軸部の嵌め合せ面の少なくともいずれかに水滴を噴霧して吸着させた後に熱処理する。 In the method for manufacturing a ceramic structure of the present disclosure, the base thereof is composed of a first substrate and a second substrate, and water droplets are sprayed on at least one of the fitting surface of the second substrate and the fitting surface of the shaft portion. And then heat-treat.

本開示のセラミック構造体は、加熱および冷却を繰り返しても、軸部が基部から抜けにくく信頼性に優れる。 The ceramic structure of the present disclosure is excellent in reliability because the shaft portion does not easily come off from the base portion even after repeated heating and cooling.

本開示のセラミック構造体の一例を示す、(a)は斜視図であり、(b)は軸部の軸心に沿って切断した状態を示す部分断面図である。An example of the ceramic structure of the present disclosure is shown, (a) is a perspective view, and (b) is a partial cross-sectional view showing a state of being cut along the axial center of the shaft portion. (a)は、図1に示すセラミック構造体のA部を走査型電子顕微鏡で撮影した写真であり、(b)は(a)におけるC部を拡大した写真であり、(c)は電子線マイクロアナライザ(EPMA)を用いた(b)の領域における珪素のカラーマッピング像である。(A) is a photograph of the A part of the ceramic structure shown in FIG. 1 taken with a scanning electron microscope, (b) is an enlarged photograph of the C part in (a), and (c) is an electron beam. It is a color mapping image of silicon in the region (b) using a microanalyzer (EPMA). 本開示のセラミック構造体の他の例を示す、(a)は斜視図であり、(b)は軸部の軸心を含む部分断面図である。(A) is a perspective view, and (b) is a partial cross-sectional view including an axial center of a shaft portion, showing another example of the ceramic structure of the present disclosure. 本開示のセラミック構造体の他の例を示す、(a)は斜視図であり、(b)は軸部の軸心に沿って切断した状態を示す部分断面図である。(A) is a perspective view, and (b) is a partial cross-sectional view showing a state of being cut along the axial center of the shaft portion, showing another example of the ceramic structure of the present disclosure.

以下、図面を参照して、本開示のセラミック構造体について詳細に説明する。 Hereinafter, the ceramic structure of the present disclosure will be described in detail with reference to the drawings.

図1、3、4は、本開示のセラミック構造体の複数の例を示す、(a)は斜視図であり、(b)は軸部の軸心に沿って切断した状態を示す部分断面図である。 1, 3 and 4 show a plurality of examples of the ceramic structure of the present disclosure, (a) is a perspective view, and (b) is a partial cross-sectional view showing a state of being cut along an axial center of a shaft portion. Is.

図2(a)は、図1に示すセラミック構造体のA部を走査型電子顕微鏡で撮影した写真であり、(b)は(a)におけるC部を拡大した写真であり、(c)は電子線マイクロアナライザ(EPMA)を用いた(b)の領域における珪素のカラーマッピング像である。 2 (a) is a photograph of the A part of the ceramic structure shown in FIG. 1 taken with a scanning electron microscope, (b) is an enlarged photograph of the C part in (a), and (c) is a photograph. It is a color mapping image of silicon in the region (b) using an electron beam microanalyzer (EPMA).

カラーマッピング像では、元素の存在が認められる部分が白色または有色で表示され、元素の存在が認められない部分が黒色で表示される。本図面においては、黒色以外の部分が珪素の存在位置である。 図1に示すセラミック構造体20は、孔8を有する基部1と、孔8に嵌め合わされる軸部2とを備えてなる。そして、基部1および軸部2は、酸化アルミニウム質セラミックスからなる。また、酸化アルミニウム質セラミックスからなる基部1は、珪素を含有する。 In the color mapping image, the part where the presence of the element is recognized is displayed in white or colored, and the part where the presence of the element is not recognized is displayed in black. In this drawing, the portion other than black is the existing position of silicon. The ceramic structure 20 shown in FIG. 1 includes a base portion 1 having a hole 8 and a shaft portion 2 fitted into the hole 8. The base portion 1 and the shaft portion 2 are made of aluminum oxide ceramics. Further, the base 1 made of aluminum oxide ceramics contains silicon.

ここで、酸化アルミニウム質セラミックスとは、セラミックスを構成する成分の含有量の合計100質量%のうち、酸化アルミニウムが70質量%以上を占めるセラミックスのことをいう。また、セラミックスを構成する各成分の含有量は、CuKα線を用いたX線回折装置による測定結果から同定した後、ICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置(XRF)を用いて、元素の含有量を求め、同定された成分の含有量に換算すればよい。 Here, the aluminum oxide ceramics refer to ceramics in which aluminum oxide accounts for 70% by mass or more in the total content of 100% by mass of the components constituting the ceramics. Further, the content of each component constituting the ceramics is identified from the measurement result by the X-ray diffractometer using CuKα ray, and then the ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or the fluorescent X-ray analyzer (XRF) is used. It may be used to determine the content of the element and convert it to the content of the identified component.

また、基部1は、例えば、外径が3mm以上12mm以下、厚みが2mm以上8mm以下の円板であってもよい。軸部2は、例えば、外径が0.5mm以上1.5mm以下、内径が0.2mm0.4mm以下、基部1の内部における、軸部2の端面からの高さが10mm以上50mm以下の円筒体であってもよい。なお、図1に示すセラミック構造体10では、軸部2の端面と基部1の孔8における底面(軸部2の端面との対向面)とが離間している例を示しているが、軸部2の端面と基部1の孔8における底面とが当接していてもよい。 Further, the base 1 may be, for example, a disk having an outer diameter of 3 mm or more and 12 mm or less and a thickness of 2 mm or more and 8 mm or less. The shaft portion 2 is, for example, a cylinder having an outer diameter of 0.5 mm or more and 1.5 mm or less, an inner diameter of 0.2 mm 0.4 mm or less, and a height of 10 mm or more and 50 mm or less from the end face of the shaft portion 2 inside the base portion 1. It may be a body. In the ceramic structure 10 shown in FIG. 1, an example is shown in which the end surface of the shaft portion 2 and the bottom surface of the hole 8 of the base portion 1 (the surface facing the end surface of the shaft portion 2) are separated from each other. The end surface of the portion 2 and the bottom surface of the hole 8 of the base portion 1 may be in contact with each other.

基部1は、図2に示すように、軸部2との嵌め合せ面を含む孔8の周囲の第1領域3と、第1領域3を除く第2領域4とを有する。なお、第1領域3とは、軸部2との嵌め合せ面(基部1における嵌め合せ面)から内部に60μmまでの領域のことである。そして、本開示のセラミック構造体20は、基部1において、第1領域3における珪素の面積率が第2領域4における珪素の面積率よりも小さい。なお、図2(c)においては、第2領域4の珪素を表していないが、第1領域3よりも珪素の面積率が大きいものである。 As shown in FIG. 2, the base portion 1 has a first region 3 around a hole 8 including a fitting surface with the shaft portion 2, and a second region 4 excluding the first region 3. The first region 3 is a region up to 60 μm inward from the fitting surface with the shaft portion 2 (fitting surface at the base portion 1). In the ceramic structure 20 of the present disclosure, in the base 1, the area ratio of silicon in the first region 3 is smaller than the area ratio of silicon in the second region 4. Although the silicon in the second region 4 is not shown in FIG. 2 (c), the area ratio of silicon is larger than that in the first region 3.

このような構成をセラミック構造体20は、基部1が軸部2における嵌め合せ面を含む部分を圧縮する力が強くなるため、加熱および冷却を繰り返しても、軸部2が基部1から抜けにくい。 In the ceramic structure 20 having such a configuration, since the base 1 has a strong force to compress the portion of the shaft 2 including the fitting surface, the shaft 2 is difficult to come off from the base 1 even after repeated heating and cooling. ..

また、酸化アルミニウム質セラミックスからなる軸部2も、珪素を含有するものであっ
てもよい。そして、軸部2における嵌め合せ面(基部1との嵌め合せ面)を含む部分を第3領域5としたとき(図2(b)参照)、第1領域3における珪素の面積率が第2領域4における珪素の面積率よりも小さいことに加えて、第3領域5が第1領域3よりも珪素の面積率が大きくてもよい。なお、第3領域5とは、軸部2における嵌め合せ面から内部に60μmまでの領域のことである。
Further, the shaft portion 2 made of aluminum oxide ceramics may also contain silicon. When the portion of the shaft portion 2 including the fitting surface (fitting surface with the base portion 1) is set as the third region 5 (see FIG. 2B), the area ratio of silicon in the first region 3 is the second. In addition to being smaller than the area ratio of silicon in the region 4, the third region 5 may have a larger area ratio of silicon than the first region 3. The third region 5 is a region up to 60 μm inward from the fitting surface of the shaft portion 2.

このような構成を満たすときには、室温~400℃における温度範囲では、第1領域3は第2領域4よりも線膨張係数が高く、第3領域は第1領域3よりも線膨張係数が低い。そのため、第1領域3では圧縮応力が、第3領域5では引張応力がそれぞれ生じ、第3領域5は第1領域3からの圧縮する力を受け入れやすくなることから、加熱および冷却が繰り返されても、軸部2が基部1からさらに抜けにくくなる。 When such a configuration is satisfied, in the temperature range from room temperature to 400 ° C., the first region 3 has a higher linear expansion coefficient than the second region 4, and the third region has a lower linear expansion coefficient than the first region 3. Therefore, compressive stress is generated in the first region 3 and tensile stress is generated in the third region 5, and the third region 5 can easily accept the compressive force from the first region 3, so that heating and cooling are repeated. However, the shaft portion 2 is more difficult to come off from the base portion 1.

図2(c)に示す例では、第1領域3の珪素6の面積率Sが4.9%であり、第3領域5の面積率Sが6.5%である。このように、第1領域3の珪素6の面積率Sと、第3領域5の珪素7の面積率Sとの差ΔSは、1%以上であってもよい。このような構成を満たすときには、差ΔSが1%未満の場合よりも圧縮応力と引張応力との差がより高くなるため、軸部2はさらに基部1から抜けにくくなる。 In the example shown in FIG. 2 (c), the area ratio S 1 of the silicon 6 in the first region 3 is 4.9%, and the area ratio S 2 of the third region 5 is 6.5%. As described above, the difference ΔS between the area ratio S1 of the silicon 6 in the first region 3 and the area ratio S2 of the silicon 7 in the third region 5 may be 1% or more. When such a configuration is satisfied, the difference between the compressive stress and the tensile stress becomes higher than when the difference ΔS is less than 1%, so that the shaft portion 2 is more difficult to come off from the base portion 1.

各領域における珪素6、7の面積率S、Sは、以下の方法で求めることができる。まず、ダイヤモンド砥粒を用いて軸部2の軸心に沿って切断した断面を研磨して、研磨面を得る。この研磨面に、電子線マイクロアナライザ(EPMA)の電子線を照射して得られる珪素のカラーマッピング像(例えば、図2(c))を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製、なお、以降に画像解析ソフト「A像くん」と記した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示すものとする。)を用いて粒子解析という手法で求めればよい。この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を15、明度を明、小図形除去面積を0.1μm、雑音除去フィルタを有とすればよい。 The area ratios S1 and S2 of silicon 6 and 7 in each region can be obtained by the following method. First, a cross section cut along the axis of the shaft portion 2 is polished using diamond abrasive grains to obtain a polished surface. The image analysis software "A image-kun (ver2.52)" is used for the silicon color mapping image (for example, FIG. 2C) obtained by irradiating the polished surface with an electron beam of an electron probe microanalyzer (EPMA). ) ”(Registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd. In addition, when the image analysis software“ A image kun ”is described below, it means the image analysis software manufactured by Asahi Kasei Engineering Co., Ltd.). It can be obtained by a method called particle analysis. As the setting conditions of this method, for example, a threshold value indicating the brightness of the image may be 15, the brightness may be bright, the small figure removal area may be 0.1 μm 2 , and a noise removal filter may be provided.

なお、上述の測定に際し、しきい値を15としたが、珪素6、7の明るさに応じて、しきい値を調整すればよい。具体的には、明度を明、2値化の方法を手動とし、小図形除去面積を0.1μmおよび雑音除去フィルタを有とした上で、観察像においてしきい値によって大きさが変化するマーカーが珪素6、7の形状と一致するようにしきい値を調整すればよい。図2(b)、(c)に示す例では、第1領域3の面積は5540μmであり、第3領域5の面積は、3100μmである。 In the above measurement, the threshold value is set to 15, but the threshold value may be adjusted according to the brightness of the silicons 6 and 7. Specifically, the brightness is changed to bright and the binarization method is manual, the small figure removal area is 0.1 μm 2 , and the noise removal filter is provided, and the size changes depending on the threshold value in the observation image. The threshold value may be adjusted so that the marker matches the shape of silicon 6 and 7. In the examples shown in FIGS. 2 (b) and 2 (c), the area of the first region 3 is 5540 μm 2 , and the area of the third region 5 is 3100 μm 2 .

また、嵌め合せ面において、基部1における結晶粒子9の一部が軸部2にわたって位置していてもよい。このような構成を満たすときには、結晶粒子9が抜け防止の役割を担うとともに、圧縮する力を加える部分がより軸部2に近くなることから、軸部2はさらに基部1から抜けにくくなり、セラミック構造体20の信頼性が増す。 Further, a part of the crystal particles 9 in the base portion 1 may be located over the shaft portion 2 on the fitting surface. When satisfying such a configuration, the crystal particles 9 play a role of preventing falling out, and the portion to which the compressing force is applied becomes closer to the shaft portion 2, so that the shaft portion 2 is more difficult to be pulled out from the base portion 1 and is made of ceramic. The reliability of the structure 20 is increased.

また、第3領域5の珪素6の重心間距離の平均値から珪素6の円相当径の平均値を引いた値が、第1領域3の珪素7の重心間距離の平均値から珪素7の円相当径の平均値を引いた値よりも小さくてもよい。 Further, the value obtained by subtracting the average value of the circle-equivalent diameter of the silicon 6 from the average value of the distance between the centers of gravity of the silicon 6 in the third region 5 is the average value of the distance between the centers of gravity of the silicon 7 in the first region 3 of the silicon 7. It may be smaller than the value obtained by subtracting the average value of the circle equivalent diameter.

上記は、珪素の大きさ、分布状態を領域毎に比較したものであり、このような構成を満たすときには、軸部2には基部1から強い圧縮する力が加わるため、軸部2はさらに基部1から抜けにくくなり、セラミック構造体20の信頼性がさらに増す。 The above is a comparison of the size and distribution state of silicon for each region. When such a configuration is satisfied, a strong compressive force is applied to the shaft portion 2 from the base portion 1, so that the shaft portion 2 is further divided into base portions. It becomes difficult to come off from 1, and the reliability of the ceramic structure 20 is further increased.

珪素6、7のそれぞれの円相当径および重心間距離は、以下の方法で求めることができる。まず、図2(c)に示す珪素のカラーマッピング像を対象として画像解析ソフト「A
像くん」を用いて粒子解析という手法を用いて、珪素6、7のそれぞれの円相当径を求めればよい。同様に、図2(c)に示す珪素のカラーマッピング像を対象として画像解析ソフト「A像くん」を用いて重心間距離法という手法を用いて、重心間距離を求めればよい。いずれの場合も、設定条件は、面積率S(S)を求めた設定条件と同じにすればよい。
The corresponding circle diameter and the distance between the centers of gravity of silicon 6 and 7 can be obtained by the following methods. First, the image analysis software "A" targets the silicon color mapping image shown in FIG. 2 (c).
Using a technique called particle analysis using "Image-kun", the equivalent circle diameters of silicon 6 and 7 may be obtained. Similarly, the distance between the centers of gravity may be obtained by using the image analysis software "A image-kun" for the color mapping image of silicon shown in FIG. 2C and using a method called the distance between the centers of gravity. In either case, the setting conditions may be the same as the setting conditions for obtaining the area ratio S 1 (S 2 ).

また、第3領域5の珪素6の円相当径の変動係数は、第1領域3の珪素7の円相当径の変動係数よりも小さくてもよい。このような構成を満たすときには、基部1から軸部2に加わる圧縮する力にばらつきが少ないため、セラミック構造体20の信頼性がさらに増す。なお、円相当径の変動係数とは、円相当径の算術平均および標準偏差を算出し、標準偏差を算術平均で除すことで求められる。 Further, the coefficient of variation of the equivalent circle diameter of the silicon 6 in the third region 5 may be smaller than the coefficient of variation of the equivalent circle diameter of the silicon 7 in the first region 3. When such a configuration is satisfied, the compressive force applied from the base portion 1 to the shaft portion 2 has little variation, so that the reliability of the ceramic structure 20 is further increased. The coefficient of variation of the circle equivalent diameter is obtained by calculating the arithmetic mean and standard deviation of the circle equivalent diameter and dividing the standard deviation by the arithmetic mean.

図3は、本開示のセラミック構造体の他の例を示す斜視図である。 FIG. 3 is a perspective view showing another example of the ceramic structure of the present disclosure.

図3に示すセラミック構造体30は、基部1が、第1基板1aと第2基板1bとを有する。具体的に基部1は、第1基板1aと、第1基板1a上に載置され、孔8を有する第2基板1bとからなる。そして、軸部2は、孔8内に挿入されるものであって、第1基板1aと第2基板1bとが接合されてなる。図3においては、第1基板1aの上面と、第2基板1bの下面が接合されている。そして、軸部2と第2基板1bとの嵌め合せ面とが直接接合されていてもよい。軸部2と第2基板1bとの嵌め合せ面とは、図3に示す構成において、軸部2の外周面、第2基板1bの孔8の内周面のことである。なお、本開示における直接接合とは、接合層を介さない、すなわち接合剤を用いない接合のことをいう。 In the ceramic structure 30 shown in FIG. 3, the base 1 has a first substrate 1a and a second substrate 1b. Specifically, the base 1 is composed of a first substrate 1a and a second substrate 1b mounted on the first substrate 1a and having holes 8. The shaft portion 2 is inserted into the hole 8 and is formed by joining the first substrate 1a and the second substrate 1b. In FIG. 3, the upper surface of the first substrate 1a and the lower surface of the second substrate 1b are joined. Then, the fitting surface of the shaft portion 2 and the second substrate 1b may be directly joined. The fitting surface between the shaft portion 2 and the second substrate 1b is the outer peripheral surface of the shaft portion 2 and the inner peripheral surface of the hole 8 of the second substrate 1b in the configuration shown in FIG. In addition, the direct bonding in the present disclosure means a bonding that does not go through a bonding layer, that is, does not use a bonding agent.

このような構成を満たすときには、優れた信頼性に加えて、第1基板1aに対する軸部2の位置精度(直角度)を高くすることができる。 When satisfying such a configuration, in addition to excellent reliability, the position accuracy (squareness) of the shaft portion 2 with respect to the first substrate 1a can be increased.

なお、図3において、孔8は、第2基板1bを厚み方向に貫通している例を示しているが、貫通していないものであってもよい。また、図3において、軸部2は、第1基板1aの図示における上面に接するものとなっていないが、接するものであってもよい。また、図1および図3においては、軸部2を筒状体のものを示したが柱状であってもよい。 Although the hole 8 shows an example of penetrating the second substrate 1b in the thickness direction in FIG. 3, it may not penetrate. Further, in FIG. 3, the shaft portion 2 is not in contact with the upper surface of the first substrate 1a in the drawing, but may be in contact with the upper surface. Further, in FIGS. 1 and 3, although the shaft portion 2 is shown as a cylindrical body, it may be a columnar shape.

また、本開示のセラミック構造体では、軸部2の相対密度が第2基板1bの相対密度よりも高くてもよい。軸部2の相対密度が第2基板1bの相対密度よりも高いときには、軸部2の熱伝導性が高いため、第2基板1bにおいて生じた熱、若しくは外部等から与えられた熱を軸部2へと逃がすことができる。すなわち、第2基板1bを速やかに冷却することができる。 Further, in the ceramic structure of the present disclosure, the relative density of the shaft portion 2 may be higher than the relative density of the second substrate 1b. When the relative density of the shaft portion 2 is higher than the relative density of the second substrate 1b, the thermal conductivity of the shaft portion 2 is high, so that the heat generated in the second substrate 1b or the heat given from the outside is used as the shaft portion. You can escape to 2. That is, the second substrate 1b can be cooled quickly.

相対密度は、同定された主成分のセラミックスの理論密度に対する、JIS R 1634-1998に準拠して求めたセラミックスの見掛密度の百分率(割合)として表される。 The relative density is expressed as a percentage (ratio) of the apparent density of the ceramics determined according to JIS R 1634-1998 with respect to the theoretical density of the identified main component ceramics.

また相対密度の関係に加えて、軸部2における酸化アルミニウムの平均結晶粒径が、第2基板1bにおける酸化アルミニウムの平均結晶粒径よりも小さくてもよい。このような構成を満たすときには、軸部2は、破壊靭性および機械的強度が高いため、長期使用に耐え、さらに優れた信頼性を有する。 Further, in addition to the relationship of relative density, the average crystal grain size of aluminum oxide in the shaft portion 2 may be smaller than the average crystal grain size of aluminum oxide in the second substrate 1b. When satisfying such a configuration, the shaft portion 2 has high fracture toughness and mechanical strength, so that it can withstand long-term use and has excellent reliability.

酸化アルミニウムの平均結晶粒径の測定については、まず、測定の対象とする面を、焼成温度から50~100℃低い温度で熱処理する。そして、熱処理した面を光学顕微鏡を用いて、倍率を400倍とし、測定対象の範囲を、例えば、横方向の長さを200μm、縦方向の長さを140μmとして撮影する。次に、撮影した画像のうち、中央部(面積が
1.05×10μm)を計測範囲とし、画像解析ソフト(例えば、三谷商事(株)製、Win ROOF)を用いて解析することによって、酸化アルミニウムの平均結晶粒径の値を得ることができる。解析するに当たり、粒径のしきい値は、0.21μmとし、0.21μm未満の粒径は平均結晶粒径の算出の対象とはしない。このしきい値は、簡易的に酸化アルミニウムの結晶粒子を選定するためのものともいえる。
Regarding the measurement of the average crystal grain size of aluminum oxide, first, the surface to be measured is heat-treated at a temperature 50 to 100 ° C. lower than the firing temperature. Then, the heat-treated surface is photographed using an optical microscope with a magnification of 400 times and a measurement target range of, for example, a horizontal length of 200 μm and a vertical length of 140 μm. Next, by using image analysis software (for example, Win ROOF manufactured by Mitani Shoji Co., Ltd.) with the central part (area of 1.05 x 105 μm) as the measurement range of the captured images. , The value of the average crystal grain size of aluminum oxide can be obtained. In the analysis, the threshold value of the particle size is 0.21 μm, and the particle size less than 0.21 μm is not included in the calculation of the average crystal particle size. It can be said that this threshold value is for simply selecting aluminum oxide crystal particles.

また、第2基板1bおよび軸部2は、珪素と、マグネシウムおよびカルシウムの少なくともいずれかとを含み、酸化物に換算した珪素、マグネシウムおよびカルシウムの含有量の合計が第2基板1bよりも軸部2の方が少なくてもよい。 Further, the second substrate 1b and the shaft portion 2 contain silicon and at least one of magnesium and calcium, and the total content of silicon, magnesium and calcium converted into oxides is higher than that of the second substrate 1b in the shaft portion 2. May be less.

このような構成を満たすときには、軸部2の熱伝導性が高く、加熱および冷却を繰り返しても第2基板1bより軸部2に生じる残留応力を少なくすることができるため、長期間に亘って用いることができる。さらに、軸部2のみがプラズマに晒される環境で用いられる場合、その劣化を抑制することができる。 When such a configuration is satisfied, the thermal conductivity of the shaft portion 2 is high, and the residual stress generated in the shaft portion 2 can be reduced from that of the second substrate 1b even if heating and cooling are repeated, so that the residual stress generated in the shaft portion 2 can be reduced over a long period of time. Can be used. Further, when only the shaft portion 2 is used in an environment exposed to plasma, its deterioration can be suppressed.

珪素、マグネシウムおよびカルシウムのそれぞれの含有量は、ICPまたはXRFによりこれら各元素の含有量を求め、それぞれ酸化物(SiO、MgO、CaO)に換算することにより、これら元素の酸化物の含有量の合計を求めることができる。 For the content of each of silicon, magnesium and calcium, the content of each of these elements is determined by ICP or XRF, and the content of each of these elements is converted into oxides (SiO 2 , MgO, CaO), respectively. Can be calculated.

また、軸部2が筒状体であり、筒状体の内周面から第1基板1aにおける軸部2に対する対向面に亘って被覆層9を有していてもよい。この構成を示すのが図4のセラミック構造体40である。ここで、第1基板1aにおける軸部2に対する対向面とは、図4において第1基板1aの上面にあたる。このような構成を満たすときには、軸部2はより抜けにくいことから、さらに優れた信頼性を有する。 Further, the shaft portion 2 may be a tubular body and may have a covering layer 9 extending from the inner peripheral surface of the tubular body to the facing surface of the first substrate 1a with respect to the shaft portion 2. The ceramic structure 40 of FIG. 4 shows this configuration. Here, the surface of the first substrate 1a facing the shaft portion 2 corresponds to the upper surface of the first substrate 1a in FIG. When satisfying such a configuration, the shaft portion 2 is more difficult to come off, and therefore has further excellent reliability.

次に、本開示のセラミック構造体の製造方法の一例について説明する。 Next, an example of the method for manufacturing the ceramic structure of the present disclosure will be described.

まず、基部(第1基板および第2基板)の製造方法の一例について説明する。 First, an example of a method for manufacturing a base (first substrate and second substrate) will be described.

主成分である酸化アルミニウム粉末(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを粉砕用ミルに溶媒(イオン交換水)とともに投入して、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と、酸化アルミニウム粉末を分散させる分散剤とを添加、混合してスラリーを得る。 Aluminum oxide powder (purity of 99.9% by mass or more), which is the main component, and magnesium hydroxide, silicon oxide, and calcium carbonate powders are put into a pulverizing mill together with a solvent (ion-exchanged water) to prepare the powder. After pulverizing until the average particle size (D 50 ) becomes 1.5 μm or less, an organic binder and a dispersant for dispersing aluminum oxide powder are added and mixed to obtain a slurry.

ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.3~0.42質量%、酸化珪素粉末の含有量は0.5~0.8質量%、炭酸カルシウム粉末の含有量は0.060~0.1質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。 Here, the content of the magnesium hydroxide powder in the total 100% by mass of the powder is 0.3 to 0.42% by mass, the content of the silicon oxide powder is 0.5 to 0.8% by mass, and the content of the calcium carbonate powder is The content is 0.060 to 0.1% by mass, and the balance is aluminum oxide powder and unavoidable impurities.

有機結合剤は、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイド等である。 Examples of the organic binder are acrylic emulsions, polyvinyl alcohols, polyethylene glycols, polyethylene oxides and the like.

次に、スラリーを噴霧造粒して顆粒を得た後、1軸プレス成形装置あるいは冷間静水圧プレス成形装置を用いて、成形圧を78Mpa以上128MPa以下として加圧することにより基板状の成形体を得る。 Next, after the slurry is spray-granulated to obtain granules, a substrate-like molded body is formed by pressurizing the molding pressure to 78 MPa or more and 128 MPa or less using a uniaxial press molding device or a cold hydrostatic press molding device. To get.

成形体の一部は、切削加工により孔を形成する。 A part of the molded body forms a hole by cutting.

次に、焼成温度を1500℃以上1700℃以下、保持時間を4時間以上6時間以下と
して、孔のない成形体および孔を有する成形体を焼成することによってそれぞれ第1基板、第2基板を得る。
Next, the first substrate and the second substrate are obtained by firing the molded body without holes and the molded body having holes, respectively, with the firing temperature set to 1500 ° C. or higher and 1700 ° C. or lower and the holding time set to 4 hours or longer and 6 hours or lower. ..

次に、軸部の製造方法の一例について説明する。 Next, an example of a method for manufacturing the shaft portion will be described.

主成分である酸化アルミニウム粉末(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末に、有機結合剤、可塑剤、潤滑剤およびイオン交換水とを添加し、万能撹拌機、回転ミルまたはV型撹拌機等を使って撹拌した後、さらに三本ロールミルや混練機等を用いて混練することにより可塑化した坏土を得る。 An organic binder, a plasticizer, a lubricant and ion-exchanged water are added to each of the main components, aluminum oxide powder (purity of 99.9% by mass or more) and magnesium hydroxide, silicon oxide and calcium carbonate powders. After stirring using a universal stirrer, a rotary mill, a V-type stirrer, or the like, further kneading is performed using a three-roll mill, a kneader, or the like to obtain plasticized clay.

ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.43~0.53質量%、酸化珪素粉末の含有量は0.02~0.04質量%、炭酸カルシウム粉末の含有量は0.020~0.071質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。 Here, the content of the magnesium hydroxide powder in the total 100% by mass of the powder is 0.43 to 0.53% by mass, the content of the silicon oxide powder is 0.02 to 0.04% by mass, and the content of the calcium carbonate powder is The content is 0.020 to 0.071% by mass, and the balance is aluminum oxide powder and unavoidable impurities.

また、有機結合剤は、メチルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性バインダである。 The organic binder is a water-soluble binder such as methyl cellulose and hydroxypropyl methyl cellulose.

ここで、軸部における酸化アルミニウムの結晶粒子の平均結晶粒径が第2基板における酸化アルミニウムの結晶粒子の平均結晶粒径よりも小さくするには、例えば、軸部を得るために用いる酸化アルミニウム粉末の平均粒径を、第2基板を得るために用いる酸化アルミニウム粉末の平均粒径よりも小さくするとともに、軸部を得るための焼成温度を、第2基板を得るための焼成温度よりも低くすればよい。 Here, in order to make the average crystal grain size of the aluminum oxide crystal particles in the shaft portion smaller than the average crystal grain size of the aluminum oxide crystal particles in the second substrate, for example, the aluminum oxide powder used to obtain the shaft portion. The average particle size of the aluminum oxide powder used to obtain the second substrate should be smaller than the average particle size of the aluminum oxide powder, and the firing temperature for obtaining the shaft portion should be lower than the firing temperature for obtaining the second substrate. Just do it.

また、酸化物に換算した珪素、マグネシウムおよびカルシウムの含有量の合計を第2基板よりも軸部の方を少なくするには、水酸化マグネシウム粉末、酸化珪素粉末および炭酸カルシウム粉末の各含有量の合計を第2基板よりも軸部の方で少なくすればよい。 In addition, in order to reduce the total content of silicon, magnesium and calcium converted to oxides in the shaft portion compared to the second substrate, the contents of magnesium hydroxide powder, silicon oxide powder and calcium carbonate powder should be reduced. The total may be smaller in the shaft portion than in the second substrate.

また、第3領域の珪素の重心間距離の平均値から珪素の円相当径の平均値を引いた値が、第1領域の珪素の重心間距離の平均値から珪素の円相当径の平均値を引いた値よりも小さくするには、軸部を得るために用いる酸化珪素粉末の含有量を、基部を得るために用いる酸化珪素粉末の含有量よりも少なくすればよい。 Further, the value obtained by subtracting the average value of the equivalent diameter of the circle of silicon from the average value of the distance between the centers of gravity of silicon in the third region is the average value of the equivalent diameter of the circle of silicon from the average value of the distance between the centers of gravity of silicon in the first region. In order to make it smaller than the value obtained by subtracting, the content of the silicon oxide powder used to obtain the shaft portion may be smaller than the content of the silicon oxide powder used to obtain the base portion.

また、第3領域の珪素の円相当径の変動係数が、第1領域の珪素の円相当径の変動係数よりも小さくするには、軸部を得るために用いる酸化珪素粉末の平均粒径を、基部を得るために用いる酸化珪素粉末の平均粒径よりも小さくして分散性を高めればよい。 Further, in order to make the coefficient of variation of the equivalent circle diameter of silicon in the third region smaller than the coefficient of variation of the equivalent circle diameter of silicon in the first region, the average particle size of the silicon oxide powder used to obtain the shaft portion should be adjusted. , The dispersibility may be improved by making the particle size smaller than the average particle size of the silicon oxide powder used to obtain the base.

次に、坏土を押出成形機で成形し、筒状または柱状の成形体を得る。 Next, the clay is molded by an extrusion molding machine to obtain a tubular or columnar molded body.

ここで、軸部の相対密度が第2基板の相対密度よりも高くするには、軸部となる成形体形成時における坏土の押出速度を極力遅くし、例えば、20m/分以下にすればよい。 Here, in order to make the relative density of the shaft portion higher than the relative density of the second substrate, the extrusion speed of the clay during the formation of the molded body to be the shaft portion should be made as slow as possible, for example, 20 m / min or less. good.

そして、成形体を、焼成温度を1500℃以上1700℃以下、保持時間を4時間以上6時間以下として焼成することによって筒状または柱状の焼結体を得ることができる。 Then, a tubular or columnar sintered body can be obtained by firing the molded product at a firing temperature of 1500 ° C. or higher and 1700 ° C. or lower and a holding time of 4 hours or longer and 6 hours or lower.

そして、第2基板の嵌め合せ面および軸部の嵌め合せ面の少なくともいずれかに水滴を噴霧して吸着させた後、熱処理することで本開示のセラミック構造体を得ることができる。ここで、第1基板の上面および第2基板の下面の少なくともいずれかに水滴を噴霧して吸着させてもよい。 Then, the ceramic structure of the present disclosure can be obtained by spraying and adsorbing water droplets on at least one of the fitting surface of the second substrate and the fitting surface of the shaft portion and then heat-treating. Here, water droplets may be sprayed and adsorbed on at least one of the upper surface of the first substrate and the lower surface of the second substrate.

噴霧された水滴が互いに対向する表面を表面張力により密着させることができ、かつ、水和反応(不純物が少ないHOによる局所的なOH基の加水分解反応で誘発されたAl以外の元素(Si、Mg、Ca)が電気陰性度の違いで、酸化アルミニウムと再結晶化され、強固な結合を得ることができる。 Elements other than Al induced by the hydration reaction (local OH group hydrolysis reaction by H2O with few impurities), in which the surfaces on which the sprayed water droplets face each other can be brought into close contact with each other by surface tension ( Si, Mg, Ca) are recrystallized from aluminum oxide due to the difference in electronegativity, and a strong bond can be obtained.

ここで、第2基板の嵌め合せ面および軸部の嵌め合せ面の少なくともいずれかが研磨されていてもよく、平均粒径D50が、例えば、2μm以下のダイヤモンド砥粒を用いて研磨してもよい。研磨により、研磨された表面の加水分解の反応が活性化されるので、より強固な結合を得ることができる。研磨された表面の算術平均粗さRaは、0.4μm以下であってもよい。 Here, at least one of the fitting surface of the second substrate and the fitting surface of the shaft portion may be polished, and the average particle size D 50 is polished using, for example, diamond abrasive grains of 2 μm or less. May be good. Polishing activates the reaction of hydrolysis of the polished surface, so that a stronger bond can be obtained. The arithmetic mean roughness Ra of the polished surface may be 0.4 μm or less.

次に、水滴を噴霧して吸着させて嵌め合せた後に、1000℃以上1800℃以下の温度で熱処理することにより、フィックの第2法則により、珪素を多く含有する基部の第1領域から軸部に向って珪素が拡散移動する。これにより、基部においては、第1領域が第2領域よりも珪素の面積率が小さくなる。また、熱処理温度を1100℃以上1800℃以下にすることで、第1領域よりも第3領域の珪素の面積率を大きくすることができる。また、第1領域の珪素の面積率と、第3領域の珪素の面積率との差を1%以上にするには、温度を1200℃以上1800℃以下とすればよい。 Next, water droplets are sprayed, adsorbed and fitted, and then heat-treated at a temperature of 1000 ° C. or higher and 1800 ° C. or lower. Silicon diffuses and moves toward. As a result, in the base portion, the area ratio of silicon in the first region is smaller than that in the second region. Further, by setting the heat treatment temperature to 1100 ° C. or higher and 1800 ° C. or lower, the area ratio of silicon in the third region can be increased as compared with the first region. Further, in order to make the difference between the area ratio of silicon in the first region and the area ratio of silicon in the third region 1% or more, the temperature may be 1200 ° C. or higher and 1800 ° C. or lower.

上述した製造方法によって得られたセラミック構造体は、加熱および冷却を繰り返しても、基部から軸部が抜けにくいため、信頼性に優れる。そのため、優れた信頼性が求められる用途、例えば、半導体製造装置用部材、液晶製造装置用部材として好適に用いることができる。 The ceramic structure obtained by the above-mentioned manufacturing method is excellent in reliability because the shaft portion does not easily come off from the base portion even after repeated heating and cooling. Therefore, it can be suitably used for applications that require excellent reliability, for example, a member for a semiconductor manufacturing device and a member for a liquid crystal manufacturing device.

1 :基部
1a:第1基板
1b:第2基板
2 :軸部
3 :第1領域
4 :第2領域
5 :第3領域
6 :珪素
7 :珪素
8 :孔
9 :結晶粒子
10:被覆部
20、30、40:セラミック構造体
1: Base 1a: 1st substrate 1b: 2nd substrate 2: Shaft 3: 1st region 4: 2nd region 5: 3rd region 6: Silicon 7: Silicon 8: Hole 9: Crystal particles 10: Coating portion 20 , 30, 40: Ceramic structure

Claims (10)

孔を有する基部と、
前記孔に嵌め合わされる軸部とを備え、
前記基部および前記軸部は、酸化アルミニウム質セラミックスからなり、
少なくとも前記基部は、珪素を含有しており、
前記基部は、前記軸部との嵌め合せ面を含む前記孔の周囲の第1領域と、該第1領域を除く第2領域とを有し、
前記第1領域は、前記第2領域よりも珪素の面積率が小さく、
前記軸部は、珪素を含有しており、前記基部との嵌め合せ面を含む部分を第3領域としたとき、
前記第3領域は、前記第1領域よりも珪素の面積率が大きい、セラミック構造体。
The base with holes and
A shaft portion fitted into the hole is provided, and the shaft portion is provided.
The base and the shaft are made of aluminum oxide ceramics.
At least the base contains silicon and
The base portion has a first region around the hole including a fitting surface with the shaft portion, and a second region excluding the first region.
The area ratio of silicon in the first region is smaller than that in the second region.
When the shaft portion contains silicon and the portion including the fitting surface with the base portion is set as the third region,
The third region is a ceramic structure having a larger area ratio of silicon than the first region .
前記第1領域の珪素の面積率と、前記第3領域の珪素の面積率との差は、1%以上である、請求項に記載のセラミック構造体。 The ceramic structure according to claim 1 , wherein the difference between the area ratio of silicon in the first region and the area ratio of silicon in the third region is 1% or more. 前記嵌め合せ面において、前記基部における結晶粒子の一部が前記軸部にわたって位置する、請求項1または2にセラミック構造体。 The ceramic structure according to claim 1 or 2 , wherein a part of the crystal particles in the base portion is located over the shaft portion on the fitting surface. 前記第3領域の珪素の重心間距離の平均値から前記珪素の円相当径の平均値を引いた値は、前記第1領域の珪素の重心間距離の平均値から前記珪素の円相当径の平均値を引いた値よりも小さい、請求項乃至請求項のいずれかに記載のセラミック構造体。 The value obtained by subtracting the average value of the circle-equivalent diameter of the silicon from the average value of the center-of-gravity distance of the silicon in the third region is the value of the circle-equivalent diameter of the silicon from the average value of the center-of-gravity distance of the silicon in the first region. The ceramic structure according to any one of claims 1 to 3 , which is smaller than the value obtained by subtracting the average value. 前記第3領域の珪素の円相当径の変動係数は、前記第1領域の珪素の円相当径の変動係数よりも小さい、請求項乃至請求項のいずれかに記載のセラミック構造体。 The ceramic structure according to any one of claims 1 to 4 , wherein the coefficient of variation of the equivalent circle diameter of silicon in the third region is smaller than the coefficient of variation of the equivalent circle diameter of silicon in the first region. 前記基部は、第1基板と、該第1基板上に載置され、前記孔を有する第2基板とからなるとともに、前記軸部は、前記第1基板と前記第2基板とが接合されてなるとともに、前記軸部の嵌め合せ面と前記第2基板の嵌め合せ面とが直接接合されてなる、請求項1乃至請求項のいずれかに記載のセラミック構造体。 The base portion is composed of a first substrate and a second substrate mounted on the first substrate and having the holes, and the shaft portion is joined to the first substrate and the second substrate. The ceramic structure according to any one of claims 1 to 5 , wherein the fitting surface of the shaft portion and the fitting surface of the second substrate are directly joined to each other. 前記軸部の相対密度は、前記第2基板の相対密度よりも高い、請求項に記載のセラミック構造体。 The ceramic structure according to claim 6 , wherein the relative density of the shaft portion is higher than the relative density of the second substrate. 前記軸部は筒状体であり、該筒状体の内周面から前記第1基板における前記軸部に対す
る対向面に亘って被覆層を有する、請求項または請求項に記載のセラミック構造体。
The ceramic structure according to claim 6 or 7 , wherein the shaft portion is a tubular body and has a coating layer extending from an inner peripheral surface of the tubular body to a surface facing the shaft portion in the first substrate. body.
請求項乃至請求項のいずれかに記載のセラミック構造体の製造方法であって、嵌め合せ工程において、前記第2基板の嵌め合せ面および前記軸部の嵌め合せ面の少なくともいずれかに水滴を噴霧して吸着させた後に嵌め合せ、その後熱処理工程を行う、セラミック構造体の製造方法。 The method for manufacturing a ceramic structure according to any one of claims 6 to 8 , wherein in the fitting step, water droplets are formed on at least one of the fitting surface of the second substrate and the fitting surface of the shaft portion. A method for manufacturing a ceramic structure, in which a ceramic structure is sprayed and adsorbed, then fitted, and then a heat treatment step is performed. 前記嵌め合せ工程の前に、前記第2基板の嵌め合せ面および前記軸の嵌め合せ面の少なくともいずれかを研磨する研磨工程を行う、請求項に記載のセラミック構造体の製造方法。 The method for manufacturing a ceramic structure according to claim 9 , wherein a polishing step of polishing at least one of the fitting surface of the second substrate and the fitting surface of the shaft portion is performed before the fitting step.
JP2018127640A 2018-07-04 2018-07-04 Ceramic structure and its manufacturing method Active JP7018839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018127640A JP7018839B2 (en) 2018-07-04 2018-07-04 Ceramic structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127640A JP7018839B2 (en) 2018-07-04 2018-07-04 Ceramic structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020007175A JP2020007175A (en) 2020-01-16
JP7018839B2 true JP7018839B2 (en) 2022-02-14

Family

ID=69150417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127640A Active JP7018839B2 (en) 2018-07-04 2018-07-04 Ceramic structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7018839B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057408A1 (en) 2004-11-29 2006-06-01 Kyocera Corporation Composite ceramic body, method for producing same, microchemical chip, and reformer
JP2009179517A (en) 2008-01-30 2009-08-13 Taiheiyo Cement Corp Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569287A (en) * 1979-06-28 1981-01-30 Ngk Spark Plug Co Ceramic oneebody manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057408A1 (en) 2004-11-29 2006-06-01 Kyocera Corporation Composite ceramic body, method for producing same, microchemical chip, and reformer
JP2009179517A (en) 2008-01-30 2009-08-13 Taiheiyo Cement Corp Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2020007175A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI564266B (en) A laminated structure, a member for a semiconductor manufacturing apparatus, and a method for manufacturing the laminated structure
KR102124380B1 (en) Ceramics laminate, ceramics insulating substrate, and method for manufacturing ceramics laminate
JP6473830B2 (en) Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
US20220212943A1 (en) Boehmite structure and method for producing same
TW202035150A (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
JP6952120B2 (en) Ceramic joint and its manufacturing method
JP7018839B2 (en) Ceramic structure and its manufacturing method
JPWO2019188752A1 (en) Ceramic structure
JP5550030B2 (en) Method for manufacturing torque transmission member for universal joint
JPH09255408A (en) Radio wave absorbing material
JP6927915B2 (en) Insulation member for ceramic composites and carbon fiber manufacturing equipment
TWI845877B (en) Sintered body
TWI706930B (en) Ceramic article
TWI760156B (en) Ceramic structure and member for liquid crystal penal manufacturing device or member for semiconductor manufacturing device
JP7315486B2 (en) Ceramic bonded body, manufacturing method thereof, and charged particle beam accelerator
JP7053673B2 (en) Ceramic composites, their manufacturing methods, and components for semiconductor manufacturing equipment
WO2021241193A1 (en) Inorganic structure and method for producing same
EP4375470A1 (en) Spacer and multi-layered glass
EP4375471A1 (en) Spacer and multi-layered glass
WO2022004582A1 (en) Heat-resistant container
JP7610660B1 (en) Silicon nitride sintered body, insulated circuit board, and semiconductor device
JP5219019B2 (en) Universal joint, universal joint torque transmission member and method of manufacturing the same
JP2018203548A (en) Joined body
KR101742063B1 (en) Silicon Carbide Heatsink and Manufacturing Method Thereof
WO2020179917A1 (en) Ceramic sintered compact having embossed surface, method for manufacturing same, and heat treatment member comprising said ceramic sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R150 Certificate of patent or registration of utility model

Ref document number: 7018839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150