JP2022022722A - Pressure detection device - Google Patents

Pressure detection device Download PDF

Info

Publication number
JP2022022722A
JP2022022722A JP2020115014A JP2020115014A JP2022022722A JP 2022022722 A JP2022022722 A JP 2022022722A JP 2020115014 A JP2020115014 A JP 2020115014A JP 2020115014 A JP2020115014 A JP 2020115014A JP 2022022722 A JP2022022722 A JP 2022022722A
Authority
JP
Japan
Prior art keywords
strain
lever
pressure
displacement
buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020115014A
Other languages
Japanese (ja)
Other versions
JP7452295B2 (en
Inventor
倫央 郷古
Michihisa Goko
敦資 坂井田
Atsusuke Sakaida
敏尚 谷口
Toshihisa Taniguchi
圭司 岡本
Keiji Okamoto
友弘 井村
Tomohiro Imura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020115014A priority Critical patent/JP7452295B2/en
Publication of JP2022022722A publication Critical patent/JP2022022722A/en
Application granted granted Critical
Publication of JP7452295B2 publication Critical patent/JP7452295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Assembly (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

To provide a pressure detection device which detects an applied pressure acting on a workpiece without directly receiving a processing pressure of a pressurizer.SOLUTION: A pressure detection device 30 detects a processing pressure with which a processing head 9 acts on a workpiece 2 placed on a pedestal 3 of a pressurizer 1, along a Y-axis direction perpendicular to a top surface 14 of the pedestal 3. A fixed support member 32 is fixed to a movable plate 5 of the pressurizer 1 and receives a driving force of the pressurizer. A strain transform unit 33 is fixed between the fixed support member 32 and the processing head. A buckling detection unit 40 capable of detecting a strain variation due to buckling of the strain transform unit is placed in a position eccentric from a shaft center line of the strain transform unit 33.SELECTED DRAWING: Figure 1

Description

本発明は、プレス加工、圧入組付けなど加圧によって加工を行う際の加圧状態を検出する圧力検出装置に関するものである。 The present invention relates to a pressure detection device that detects a pressurized state when machining is performed by pressurization such as press working and press-fitting assembly.

プレス加工、圧入組付けなどの加工作業では、加工後の良品、不良品の判定を目視で確認することができなかった。特許文献1に示すように、圧力検出装置は、可動プレートとワーク側のベースプレートとセンサユニットとを備える。センサユニットは、作用軸上方向荷重を受けるように圧入装置側の可動プレートとワーク側のベースプレートとの間に挟み込まれている。 In processing work such as press working and press-fitting assembly, it was not possible to visually confirm the judgment of non-defective products and defective products after processing. As shown in Patent Document 1, the pressure detection device includes a movable plate, a base plate on the work side, and a sensor unit. The sensor unit is sandwiched between the movable plate on the press-fitting device side and the base plate on the work side so as to receive a load in the upward direction of the working axis.

特開2019-181582号公報Japanese Unexamined Patent Publication No. 2019-181582

特許文献1の圧力検出装置は、センサユニットに水晶圧電式のセンサを用いていた。水晶圧電式のセンサが加圧機の荷重を検知していた。センサは耐荷重の範囲内でしか使用ができなく、加圧機がワークに加える荷重よりもセンサの耐荷重が小さい場合、圧力検出装置を使用することが困難であった。 The pressure detection device of Patent Document 1 uses a quartz piezoelectric sensor as a sensor unit. A crystal piezoelectric sensor was detecting the load of the pressurizer. The sensor can be used only within the load capacity range, and it is difficult to use the pressure detection device when the load capacity of the sensor is smaller than the load applied to the work by the pressurizer.

センサユニットにロードセルや荷重センサを付けることも、同様に、加圧機がワークに加える荷重よりもセンサの耐荷重が小さく使用できなかった。耐荷重の大きなセンサを用いると、感度が低くなり、不良判定が難しくなる。 Similarly, attaching a load cell or load sensor to the sensor unit could not be used because the load capacity of the sensor was smaller than the load applied to the work by the pressurizer. If a sensor with a large load capacity is used, the sensitivity becomes low and it becomes difficult to determine a defect.

本発明は、この点に鑑みて創作されたものであり、その目的は、加圧機の加工圧力を直接受けることなしにワークに作用する加工圧力の検出を可能とする圧力検出装置を提供することにある。 The present invention has been created in view of this point, and an object of the present invention is to provide a pressure detecting device capable of detecting a machining pressure acting on a work without directly receiving the machining pressure of a pressurizing machine. It is in.

本発明に係る圧力検出装置(30,70)は、加工機の台座(3)の上面(14)に載置されたワーク(2)に対し、前記上面に垂直な方向に沿って、加圧機(1)の加工ヘッド(9)からワークに作用する加工圧力を検出する圧力検出装置である。 The pressure detecting device (30, 70) according to the present invention is a pressurizing machine along a direction perpendicular to the upper surface of the work (2) placed on the upper surface (14) of the pedestal (3) of the processing machine. It is a pressure detection device that detects the machining pressure acting on the work from the machining head (9) of (1).

加圧機の可動プレート(5)に固定され、加圧機からの加工圧力を受ける固定支持部材(32,73)と、固定支持部材と加工ヘッドとの間に固定され、加工圧力に応じて座屈により歪を生じる歪変換部(33,74,94)と、前記歪変換部の軸心線(15)から偏心した位置で、歪変換部の座屈による歪変動量(ΔX)を検出可能な座屈検出部(40,60,80,100,110)とを備える。 It is fixed to the movable plate (5) of the pressurizer and is fixed between the fixed support member (32,73) that receives the machining pressure from the pressurizer, and the fixed support member and the machining head, and buckles according to the machining pressure. The strain fluctuation amount (ΔX) due to buckling of the strain conversion unit can be detected at a position eccentric from the strain conversion unit (33, 74, 94) that causes distortion due to the strain conversion unit and the axial center line (15) of the strain conversion unit. It is provided with a buckling detection unit (40, 60, 80, 100, 110).

これにより、加圧機から加わる圧力を直接検出するのでなく、歪変換部の座屈による歪変動量(ΔX)を座屈検出部が検出するので、座屈検出部に加圧機の加工圧力が加わることがなくなり、加工圧力に耐える座屈検出部を選定することが不要となる。加圧機の加工圧力を受けずに加工圧力の検出を可能とする。 As a result, the buckling detection unit detects the amount of strain fluctuation (ΔX) due to buckling of the strain conversion unit, instead of directly detecting the pressure applied from the pressurizer, so that the processing pressure of the pressurizer is applied to the buckling detection unit. It is no longer necessary to select a buckling detection unit that can withstand the machining pressure. It enables detection of machining pressure without receiving the machining pressure of the pressurizer.

第1実施形態の圧力検出装置の設置状態を示す正面図。The front view which shows the installation state of the pressure detection apparatus of 1st Embodiment. (a)第1実施形態の圧力検出装置を示す部分拡大正面図、(b)図2(a)を正面としたときの右側から見た側面図。(A) A partially enlarged front view showing the pressure detection device of the first embodiment, (b) a side view seen from the right side when FIG. 2 (a) is a front view. 第1実施形態の圧力検出装置の座屈検出部における変位検出部および与圧部材を示す図。The figure which shows the displacement detection part and the pressurization member in the buckling detection part of the pressure detection device of 1st Embodiment. (a)第1実施形態の圧力検出装置の座屈検出部の初期状態を説明する図、(b)第1実施形態の圧力検出装置の座屈時の歪の検出を説明する図。(A) A diagram illustrating an initial state of a buckling detection unit of the pressure detection device of the first embodiment, and (b) a diagram illustrating distortion detection during buckling of the pressure detection device of the first embodiment. 第1実施形態の圧力検出装置を装着して押圧加工をしたときの状態を説明する図。It is a figure explaining the state when the pressure detection apparatus of 1st Embodiment is attached and the pressure processing is performed. (a)第1実施形態の押圧加工時の歪変換部の状態を説明する図、(b)図5における歪が歪変換部から座屈検出部へ伝わる状態を説明する図。(A) A diagram illustrating a state of a strain conversion unit during pressing according to the first embodiment, and (b) a diagram illustrating a state in which the strain in FIG. 5 is transmitted from the strain conversion unit to the buckling detection unit. (a)第1実施形態の押圧加工時の歪変換部の別の状態を説明する図、(b)図6(a)における歪が歪変換部から座屈検出部へ伝わる状態を説明する図。(A) A diagram illustrating another state of the strain conversion unit during pressing according to the first embodiment, and (b) a diagram illustrating a state in which the strain in FIG. 6 (a) is transmitted from the strain conversion unit to the buckling detection unit. .. 第1実施形態の圧力検出装置を用いたときの加工圧力の検出例を示す図。The figure which shows the detection example of the processing pressure at the time of using the pressure detection apparatus of 1st Embodiment. 第2実施形態の圧力検出装置を示す図。The figure which shows the pressure detection apparatus of 2nd Embodiment. 第2実施形態の圧力検出装置を示す図であり、図9のA-A断面図。It is a figure which shows the pressure detection apparatus of 2nd Embodiment, and is the AA sectional view of FIG. 第3実施形態の圧力検出装置であり、一つの固定支持部材に歪変換部と加工ヘッドとの一式を多数隣接させて備えた形態を示す図。It is a figure which shows the mode which is the pressure detection apparatus of 3rd Embodiment, and is provided with a set of a strain conversion part and a processing head adjacent to each other in one fixed support member. 第3実施形態の圧力検出装置を示す図であり、図11のA-A断面図。It is a figure which shows the pressure detection apparatus of 3rd Embodiment, and is the cross-sectional view of AA of FIG. 第4実施形態の座屈検出部における与圧部材と抑え部材を備えた座屈検出部の構成を示す図。The figure which shows the structure of the buckling detection part which provided the pressurization member and the holding member in the buckling detection part of 4th Embodiment. 第5実施形態の座屈検出部における変位検出部の熱流センサ及び弾性部材一式を2段積層した構成を示す図。The figure which shows the structure which the heat flow sensor and the set of elastic members of the displacement detection part in the buckling detection part of 5th Embodiment are laminated in two stages.

本発明の実施形態について図面を参照して説明する。なお、各実施形態において実質的同一の構成には同一の符号を付して説明を省略する。 An embodiment of the present invention will be described with reference to the drawings. In each embodiment, substantially the same configuration is designated by the same reference numeral, and the description thereof will be omitted.

(第1実施形態)
本実施形態の圧力検出装置30は、図1から図4に示すように、圧入ピン抜き取り装置としての加圧機1に装着される。加圧機1は、台座3の上面14に載置したワーク2に対し、上面14に対し垂直なY軸方向に圧力を加えて加工をする。
加圧機1による加工圧力を検出する圧力検出装置30は、歪変換部33の軸心線15から偏心した位置に設けられ、加圧機1の圧力を受ける歪変換部33の座屈現象が生じるX軸方向の歪変動量を検出する。
(First Embodiment)
As shown in FIGS. 1 to 4, the pressure detection device 30 of the present embodiment is mounted on the pressurizing machine 1 as a press-fitting pin extraction device. The pressurizing machine 1 applies pressure to the work 2 placed on the upper surface 14 of the pedestal 3 in the Y-axis direction perpendicular to the upper surface 14 for processing.
The pressure detecting device 30 for detecting the machining pressure by the pressurizing machine 1 is provided at a position eccentric from the axial core line 15 of the strain converting unit 33, and a buckling phenomenon of the strain converting unit 33 receiving the pressure of the pressurizing machine 1 occurs. Detects the amount of strain fluctuation in the axial direction.

作業開始前の加圧機1は、図1に示すように、ワーク2を載置可能にした台座3の上面14から立ち上がるガイドロッド4と、ガイドロッド4によって案内されY軸方向に上下移動可能な可動プレート5と、可動プレート5を上下移動させるボールナット6及びボールねじ7と、ボールねじ7を回転させるモータ8とからなる。加工ヘッド9を装着した圧力検出装置30は、可動プレート5の下面に固定される。 As shown in FIG. 1, the pressurizing machine 1 before the start of work can move up and down in the Y-axis direction guided by the guide rod 4 rising from the upper surface 14 of the pedestal 3 on which the work 2 can be placed and the guide rod 4. It includes a movable plate 5, a ball nut 6 and a ball screw 7 for moving the movable plate 5 up and down, and a motor 8 for rotating the ball screw 7. The pressure detection device 30 equipped with the processing head 9 is fixed to the lower surface of the movable plate 5.

圧力検出装置30は、図1に示すように、Y軸上で可動プレート5と台座3との中間位置に配置されている。圧力検出装置30は、固定支持部材32及び歪変換部33を有する本体31と、座屈検出部40とを備える。 As shown in FIG. 1, the pressure detection device 30 is arranged at an intermediate position between the movable plate 5 and the pedestal 3 on the Y axis. The pressure detection device 30 includes a main body 31 having a fixed support member 32 and a strain conversion unit 33, and a buckling detection unit 40.

本体31の上部は固定支持部材32を有する。固定支持部材32は可動プレート5の下面に固定されている。本体31の下部は歪変換部33を有する。固定支持部材32は、加圧機1からの加工圧力を受ける板体である。固定支持部材32は、Y軸と直交する位置で可動プレート5にねじ止めされる。固定支持部材32は、歪変換部33の最下端に加工ヘッド9を装着可能である。 The upper part of the main body 31 has a fixed support member 32. The fixed support member 32 is fixed to the lower surface of the movable plate 5. The lower part of the main body 31 has a strain conversion unit 33. The fixed support member 32 is a plate body that receives the processing pressure from the pressurizing machine 1. The fixed support member 32 is screwed to the movable plate 5 at a position orthogonal to the Y axis. The fixed support member 32 can mount the processing head 9 at the lowermost end of the strain conversion unit 33.

歪変換部33は、固定支持部材32の下面に加工ヘッド9との間に固定される板体である。図2(a),(b)に示すように、歪変換部33の上面16が前記Y軸と交差し、厚み方向がY軸に対して垂直なX軸方向となるように固定される。歪変換部33を形成する板体は、超鋼材で形成される。厚み(W)に対して、高さ(H)と奥行き(D)の長さが10倍程度大きい板材である。各部の寸法がH>D>Wの平板である。加工ヘッド9からの反作用を受けたとき、固定支持部材32の取り付け面に対する加工ヘッド9の取り付け面の平行度は、加工に影響が無い程度に収まるようにする。例えば、荷重が10Kgfのときの平行度が0.05以下になるためには、歪変換部33は材質が超鋼でWが8mm、Dが80mm、Hが100mmである。 The strain conversion unit 33 is a plate body fixed to the lower surface of the fixed support member 32 between the processing head 9 and the processing head 9. As shown in FIGS. 2A and 2B, the upper surface 16 of the strain conversion unit 33 intersects the Y-axis and is fixed so that the thickness direction is the X-axis direction perpendicular to the Y-axis. The plate body forming the strain conversion unit 33 is made of a super steel material. It is a plate material whose height (H) and depth (D) are about 10 times larger than the thickness (W). A flat plate having dimensions of H> D> W. When receiving a reaction from the machining head 9, the parallelism of the mounting surface of the machining head 9 with respect to the mounting surface of the fixed support member 32 is set so as to be within a range that does not affect the machining. For example, in order for the parallelism to be 0.05 or less when the load is 10 kgf, the strain conversion unit 33 is made of super steel, W is 8 mm, D is 80 mm, and H is 100 mm.

座屈検出部40は、図2(a),(b)に示すように、歪変換部33の軸心線15から偏心した位置に配置される。加圧機1が可動プレート5に加える圧力が座屈検出部40に加わらないようにするためである。座屈検出部40は、歪変換部33からX軸方向に伝播する歪変動量を検出し電気信号に変換可能である。座屈検出部40は、変位検出部41と、レバー50と、抑え部材56と、与圧部材37とを備える。 As shown in FIGS. 2A and 2B, the buckling detection unit 40 is arranged at a position eccentric from the axial core line 15 of the strain conversion unit 33. This is to prevent the pressure applied by the pressurizing machine 1 to the movable plate 5 from being applied to the buckling detection unit 40. The buckling detection unit 40 can detect the amount of strain fluctuation propagating in the X-axis direction from the strain conversion unit 33 and convert it into an electric signal. The buckling detection unit 40 includes a displacement detection unit 41, a lever 50, a holding member 56, and a pressurization member 37.

変位検出部41は、図3に示すように、歪による変位を熱に変換可能な弾性部材42と弾性部材42の発する熱流を電気信号に変換可能な熱流センサ43との積層体である。弾性部材42は、熱弾性効果により熱を発生することができる超高分子ポリエチレン製の樹脂、ゴム、金属のいずれか、またはこれらを組み合わせたものである。熱流センサ43は、厚み方向に熱流が通過すると、ゼーベック効果によって熱起電力を発生させる電圧型のセンサである。変位検出部41は、熱流センサ43と弾性部材42とを積層した積層体であり、熱流センサ43は弾性部材42が弾性変形により発生する熱流を検知する。 As shown in FIG. 3, the displacement detection unit 41 is a laminate of an elastic member 42 capable of converting displacement due to strain into heat and a heat flow sensor 43 capable of converting the heat flow generated by the elastic member 42 into an electric signal. The elastic member 42 is made of a resin, rubber, or metal made of ultra-high molecular weight polyethylene capable of generating heat by a thermoelastic effect, or a combination thereof. The heat flow sensor 43 is a voltage type sensor that generates a thermoelectromotive force by the Zeebeck effect when the heat flow passes in the thickness direction. The displacement detection unit 41 is a laminated body in which a heat flow sensor 43 and an elastic member 42 are laminated, and the heat flow sensor 43 detects a heat flow generated by elastic deformation of the elastic member 42.

レバー50は、図2(a)に示すように、接触点51、屈曲部52、作用部53、支点54を軸線方向に順番に備える棒体または板体である。レバー50は、てこの原理により、接触点51の微動(歪変動量)を作用部53で増幅して変位とする。 As shown in FIG. 2A, the lever 50 is a rod or plate having a contact point 51, a bent portion 52, an acting portion 53, and a fulcrum 54 in order in the axial direction. According to the principle of the lever, the lever 50 amplifies the fine movement (strain fluctuation amount) of the contact point 51 by the acting unit 53 to obtain a displacement.

レバー50は、屈曲部52で、90度に曲げられる。屈曲部52の外角を形成する面をレバー外側面55とすると、接触点51と支点54とは、レバー外側面55のそれぞれの端部に位置し、レバー50の軸線と交差する陵線を有する。接触点51の稜線は、X軸方向から歪変換部33に接触する。同様に支点54の稜線は、Y軸方向から固定支持部材32の下面に接触する。固定支持部材32の下面とは、固定支持部材32の歪変換部33側の端面である。作用部53は、変位検出部41が接触するレバー50上の部分である。作用部53は、レバー50によって増幅された変位を圧縮の変化量として、弾性部材42に加える部位である。 The lever 50 is bent 90 degrees at the bent portion 52. Assuming that the surface forming the outer angle of the bent portion 52 is the lever outer surface 55, the contact point 51 and the fulcrum 54 are located at the respective ends of the lever outer surface 55 and have a ridge line that intersects the axis of the lever 50. .. The ridgeline of the contact point 51 contacts the strain conversion unit 33 from the X-axis direction. Similarly, the ridgeline of the fulcrum 54 contacts the lower surface of the fixed support member 32 from the Y-axis direction. The lower surface of the fixed support member 32 is an end surface of the fixed support member 32 on the strain conversion portion 33 side. The acting unit 53 is a portion on the lever 50 with which the displacement detecting unit 41 comes into contact. The acting portion 53 is a portion where the displacement amplified by the lever 50 is applied to the elastic member 42 as the amount of change in compression.

抑え部材56は、与圧部材37によって、変位検出部41をレバー50の作用部53に押え付ける板体である。屈曲部52の内角を形成する面をレバー内側面57とすると、抑え部材56は、レバー内側面57に変位検出部41を抑え付ける。 The pressing member 56 is a plate body that presses the displacement detecting portion 41 against the acting portion 53 of the lever 50 by the pressurizing member 37. Assuming that the surface forming the inner angle of the bent portion 52 is the inner side surface 57 of the lever, the restraining member 56 presses the displacement detecting portion 41 against the inner side surface 57 of the lever.

与圧部材37は、図3に示すように、作用部53から変位が弾性部材42に加わるように、また、弾性部材42からの熱流が熱流センサ43に伝わるように押圧するボルトである。作用部53の変位は、弾性部材42の圧縮量を変化させるものである。与圧部材37は、作用部53で抑え部材56と変位検出部41とレバー50とを固定支持部材32に共締めする一本のボルトである。与圧部材37は抑え部材56及び変位検出部41の中央部とレバー50とを貫通して固定支持部材32に締結される。 As shown in FIG. 3, the pressurizing member 37 is a bolt that presses the elastic member 42 so that the displacement is applied to the elastic member 42 from the acting portion 53 and the heat flow from the elastic member 42 is transmitted to the heat flow sensor 43. The displacement of the acting portion 53 changes the amount of compression of the elastic member 42. The pressurization member 37 is a single bolt that fastens the holding member 56, the displacement detection portion 41, and the lever 50 together to the fixed support member 32 at the acting portion 53. The pressurization member 37 penetrates the central portion of the holding member 56 and the displacement detection portion 41 and the lever 50, and is fastened to the fixed support member 32.

与圧部材37を締結すると、座屈検出部40は、図4(a)に示すように、初期状態は次の動作(1)-(3)を生じる。
(1)弾性部材42に与圧部材37の締結方向(Y軸方向、矢印a)の変位が生じる。弾性部材42はレバー50の可動範囲内で圧縮される。
(2)レバー50の接触点51は歪変換部33からX軸方向(矢印b)に斥力を受ける。
(3)レバー50の支点54は固定支持部材32からY軸方向(矢印c)の斥力を受ける。
When the pressurization member 37 is fastened, the buckling detection unit 40 causes the following operations (1)-(3) in the initial state as shown in FIG. 4 (a).
(1) The elastic member 42 is displaced in the fastening direction (Y-axis direction, arrow a) of the pressurizing member 37. The elastic member 42 is compressed within the movable range of the lever 50.
(2) The contact point 51 of the lever 50 receives a repulsive force from the strain conversion unit 33 in the X-axis direction (arrow b).
(3) The fulcrum 54 of the lever 50 receives a repulsive force in the Y-axis direction (arrow c) from the fixed support member 32.

次に、初期状態のもとで接触点51と支点54と弾性部材42の圧縮量の関係を説明する。接触点51における歪変換部33の座屈による歪変動量がΔXのとき、レバー50が支点54を中心に回転する。その際、図4(b)に示すように、レバー50からの変位で弾性部材42の圧縮量が変化する。弾性部材42の圧縮の変化量をΔYとする。なお、レバー50の可動範囲において弾性部材42が少なくとも圧縮されるように、初期状態は、抑え部材56と変位検出部41とレバー50とが固定支持部材32に共締めされているので、歪変動量ΔXに対応して圧縮の変化量ΔYは、増加と減少のどちらにも変位が可能である。
(1)ΔYは、レバー50の水平長さLが長いほど大きくなる。
(2)ΔYは、レバー50の垂直長さVが長いほど小さくなる。
(3)ΔYは、支点54から与圧部材37(ボルトの中心)までの距離Pが大きいほど大きくなる。
Next, the relationship between the contact point 51, the fulcrum 54, and the compression amount of the elastic member 42 under the initial state will be described. When the amount of strain fluctuation due to buckling of the strain conversion unit 33 at the contact point 51 is ΔX, the lever 50 rotates about the fulcrum 54. At that time, as shown in FIG. 4B, the amount of compression of the elastic member 42 changes due to the displacement from the lever 50. Let ΔY be the amount of change in compression of the elastic member 42. In the initial state, the holding member 56, the displacement detection unit 41, and the lever 50 are co-tightened to the fixed support member 32 so that the elastic member 42 is compressed at least in the movable range of the lever 50, so that the strain fluctuates. The amount of change in compression ΔY corresponding to the amount ΔX can be displaced in either an increase or a decrease.
(1) ΔY increases as the horizontal length L of the lever 50 becomes longer.
(2) ΔY becomes smaller as the vertical length V of the lever 50 becomes longer.
(3) ΔY increases as the distance P from the fulcrum 54 to the pressurizing member 37 (center of the bolt) increases.

ただし、ΔYが大きくなると弾性部材42に伝わる力は小さくなり、逆にΔYが小さくなると力は大きくなる。弾性部材42の発熱及び吸熱は、変形速度と力に比例するため、引き抜き工程の速度が遅い場合、弾性部材42に伝わる力が大きくなるように設定される。引き抜き力が小さい場合は、ΔYが大きくなる。言い換えると、変形速度が速くなるようにする。具体的には、工程の条件により、レバー50の寸法や支点54から与圧部材37までの位置を調整する。このような関係のもとで、弾性部材42に加わる圧縮量が減少すると弾性部材42へ吸熱の流れが発生する。弾性部材42に加わる圧縮量が増加すると弾性部材42へ吸熱の流れが発生する。 However, when ΔY becomes large, the force transmitted to the elastic member 42 becomes small, and conversely, when ΔY becomes small, the force becomes large. Since the heat generation and endothermic heat of the elastic member 42 are proportional to the deformation speed and the force, when the speed of the drawing process is slow, the force transmitted to the elastic member 42 is set to be large. When the pulling force is small, ΔY becomes large. In other words, the deformation speed is increased. Specifically, the dimensions of the lever 50 and the position from the fulcrum 54 to the pressurizing member 37 are adjusted according to the conditions of the process. Under such a relationship, when the amount of compression applied to the elastic member 42 decreases, an endothermic flow is generated in the elastic member 42. When the amount of compression applied to the elastic member 42 increases, an endothermic flow is generated in the elastic member 42.

次に圧力検出装置30の作動を説明する。 Next, the operation of the pressure detection device 30 will be described.

図1に示すように、加圧機1はワーク2に挿入された圧入ピン10を抜く工程を行う。初期状態として、台座3の上面14にワーク2が載置されている。ワーク2の中心部には圧入ピン10が圧入されている。 As shown in FIG. 1, the pressurizing machine 1 performs a step of pulling out the press-fitting pin 10 inserted in the work 2. As an initial state, the work 2 is placed on the upper surface 14 of the pedestal 3. A press-fit pin 10 is press-fitted into the center of the work 2.

(1)モータ8が動作すると、図5に示すように、ボールねじ7が回転をする。ボールねじ7の回転によって、ボールナット6側の可動プレート5が下降する。可動プレート5とともに圧力検出装置30は、下降し、加工ヘッド9の先端がワーク2の圧入ピン10に当接し、さらに押し下げる。加圧機1を動作し続けると、圧入ピン10がワーク2から下方へ抜ける。 (1) When the motor 8 operates, the ball screw 7 rotates as shown in FIG. The rotation of the ball screw 7 lowers the movable plate 5 on the ball nut 6 side. The pressure detection device 30 descends together with the movable plate 5, and the tip of the machining head 9 comes into contact with the press-fit pin 10 of the work 2 and further pushes it down. When the pressurizing machine 1 is continuously operated, the press-fitting pin 10 is pulled out from the work 2 downward.

(2)圧入ピン10をワーク2から下方へ抜きとる工程で、図6(a)に示すように、歪変換部33は加圧機1からY軸方向の圧力(矢印d)とワーク2からの反作用力(矢印e)とを受ける。歪変換部33に上下両端から力が加わるため、歪変換部33は座屈を起こし、第2軸方向の中央部が一方の側に膨らむ。歪変換部33の座屈に伴う歪が、歪変換部33の平面側である図6(a)のX軸方向(矢印f方向)に発生する。X軸方向の歪は図4(b)に示すように歪変動量(ΔX)となって、接触点51に伝わる。 (2) In the step of pulling out the press-fitting pin 10 downward from the work 2, as shown in FIG. 6A, the strain conversion unit 33 receives the pressure (arrow d) in the Y-axis direction from the pressurizing machine 1 and the work 2 from the work 2. Receives reaction force (arrow e). Since a force is applied to the strain conversion unit 33 from both upper and lower ends, the strain conversion unit 33 buckles, and the central portion in the second axial direction swells to one side. The strain caused by the buckling of the strain conversion unit 33 is generated in the X-axis direction (arrow f direction) of FIG. 6A, which is the plane side of the strain conversion unit 33. As shown in FIG. 4B, the strain in the X-axis direction becomes a strain fluctuation amount (ΔX) and is transmitted to the contact point 51.

(3-1)レバー50の接触点51は歪変換部33に対する接触(図4(a)における矢印b方向)が弱くなり、図6(b)矢印gで示すように、支点54を中心にレバー50が回転する方向に微動する。矢印g方向の微動は、作用部53で増幅され、矢印h方向(Y軸方向)の変位となる。矢印h方向の変位は弾性部材42に加えた初期の変位を減少させる。つまり、矢印f方向の歪変動量によって、レバー50が作用部53で弾性部材42の圧縮量を減少させる。弾性部材42に加わる圧縮量が減少すると、圧縮の変化量(ΔY)に応じて弾性部材42へ吸熱の流れが発生する。 (3-1) The contact point 51 of the lever 50 has weak contact with the strain conversion unit 33 (direction of arrow b in FIG. 4A), and as shown by arrow g in FIG. 6B, the contact point 51 is centered on the fulcrum 54. The lever 50 slightly moves in the direction of rotation. The fine movement in the arrow g direction is amplified by the action unit 53 and becomes a displacement in the arrow h direction (Y-axis direction). The displacement in the direction of arrow h reduces the initial displacement applied to the elastic member 42. That is, the lever 50 reduces the amount of compression of the elastic member 42 at the acting portion 53 by the amount of strain fluctuation in the direction of the arrow f. When the amount of compression applied to the elastic member 42 decreases, an endothermic flow is generated in the elastic member 42 according to the amount of change in compression (ΔY).

(3-2)また、図7(a)に示すように歪変換部33が矢印k方向(矢印f方向とは逆方向)に歪む場合には、レバー50の接触点51は歪変換部33に対する接触(図4(a)における矢印b方向)が強くなり、図7(b)矢印mで示すように、支点54を中心にレバー50が回転する方向に微動する。矢印m方向の微動は、作用部53で増幅され、矢印n方向(Y軸方向)の変位となる。矢印n方向の変位は弾性部材42に加える圧力を増加させる。つまり、矢印k方向の歪変動量によって、レバー50が作用部53で弾性部材42に加える圧縮量を増加させる。弾性部材42に加わる圧縮量が増加すると、圧縮の変化量(ΔY)に応じて弾性部材42から発熱の流れを生じる。 (3-2) Further, when the strain conversion unit 33 is distorted in the arrow k direction (direction opposite to the arrow f direction) as shown in FIG. 7A, the contact point 51 of the lever 50 is the strain conversion unit 33. The contact with the lever 50 (direction of arrow b in FIG. 4A) becomes stronger, and as shown by arrow m in FIG. 7B, the lever 50 slightly moves in the direction of rotation around the fulcrum 54. The fine movement in the direction of the arrow m is amplified by the action unit 53 and becomes a displacement in the direction of the arrow n (Y-axis direction). The displacement in the n direction of the arrow increases the pressure applied to the elastic member 42. That is, the amount of compression applied to the elastic member 42 by the lever 50 at the acting portion 53 is increased by the amount of strain fluctuation in the arrow k direction. When the amount of compression applied to the elastic member 42 increases, heat is generated from the elastic member 42 according to the amount of change in compression (ΔY).

(4)弾性部材42の発熱は、熱流センサ43を通過する熱流を生じさせるので、熱流センサ43から時系列的に変化する電気信号を取り出すことが可能となる。与圧部材37によって、レバー50の可動範囲においてあらかじめ所定の圧縮量を加えておくことで、歪変換部33が、矢印f方向、矢印k方向のどちらの方向に歪を発生しても、弾性部材42に加わる変位に変化が生じる。弾性部材42に加わる変位は、圧縮量を変化させるので熱流を発生させて、熱流センサ43が熱流の変化を電気信号として出力することが可能である。 (4) Since the heat generated by the elastic member 42 generates a heat flow that passes through the heat flow sensor 43, it is possible to extract an electric signal that changes in time series from the heat flow sensor 43. By applying a predetermined amount of compression in advance within the movable range of the lever 50 by the pressurizing member 37, the strain conversion unit 33 is elastic regardless of whether the strain is generated in the arrow f direction or the arrow k direction. A change occurs in the displacement applied to the member 42. Since the displacement applied to the elastic member 42 changes the amount of compression, a heat flow is generated, and the heat flow sensor 43 can output the change in the heat flow as an electric signal.

第1実施形態の圧力検出装置を用いた検出結果の一例を図8に示す。 FIG. 8 shows an example of the detection result using the pressure detection device of the first embodiment.

図8、破線Rで示すように、あらかじめ、正常なピン抜き作業での座屈に伴う歪を時系列的な標準電気信号波形として記録しておく。ピン抜きの作業ごとに電気信号波形を検出する。検出電気信号波形と標準電気信号波形とを比較して、ピン抜き加工後のワークの良否の判定を行う。本実施形態の圧力検出装置30では、電気信号波形を用いて加圧作業時のピークの高さと時間の組み合わせで判定が行える。例えば、ピン抜き作業を行ったとき、実線Sで示すようにピークP1とピークP2が観測されると、破線Rで示す波形で観測されるピークPrと比べることができる。ピークの高さ、観測される時間を組み合わせて比較することで、工程の異常を判定することができる。本実施形態の構成では、ピークP1をスパイク状の波形として検出することもでき、良否判定の精度が向上する。 As shown by the broken line R in FIG. 8, the strain due to buckling in the normal pin pulling operation is recorded in advance as a time-series standard electric signal waveform. The electric signal waveform is detected for each pin removal operation. By comparing the detected electric signal waveform and the standard electric signal waveform, the quality of the work after the pin punching process is judged. In the pressure detection device 30 of the present embodiment, the determination can be made by the combination of the peak height and the time during the pressurization work using the electric signal waveform. For example, when the peak P1 and the peak P2 are observed as shown by the solid line S when the pin removal operation is performed, it can be compared with the peak Pr observed by the waveform shown by the broken line R. By comparing the peak height and the observed time in combination, it is possible to determine the abnormality in the process. In the configuration of the present embodiment, the peak P1 can be detected as a spike-shaped waveform, and the accuracy of the pass / fail judgment is improved.

座屈検出部40は、図2(a)、図2(b)に示すように、歪変換部33の軸心線15の外側に配置されるので、加圧機1の加工圧力を受けることがなく、加工圧力の検出が可能である。加工圧力に耐える座屈検出部40を選定が不要となる。 As shown in FIGS. 2 (a) and 2 (b), the buckling detection unit 40 is arranged outside the axis 15 of the strain conversion unit 33, so that it can receive the processing pressure of the pressurizing machine 1. It is possible to detect the machining pressure. It is not necessary to select the buckling detection unit 40 that can withstand the machining pressure.

レバー50は、屈曲部52で曲げた棒体または板体である。レバー外側面55の一端と他端とに、X軸方向から歪変換部33に接触する接触点51と、屈曲部52を挟んだ他端がY軸方向から固定支持部材32の歪変換部33側の端面に接触する支点54とを備えたので、加圧機1がワーク2へ加える圧力が座屈検出部40に加わることがない。座屈検出部40は、加圧機1の加工圧力を受けることがなく、歪変換部33の座屈を検出可能である。圧力検出装置30は、歪変換部33の座屈の検出により、加圧機1による加工圧力の検出が可能となり、ワーク2の加工の良否判定が容易にできる。 The lever 50 is a rod or plate bent by the bent portion 52. A contact point 51 that contacts the strain conversion unit 33 from the X-axis direction at one end and the other end of the lever outer surface 55, and the other end that sandwiches the bending portion 52 is the strain conversion portion 33 of the fixed support member 32 from the Y-axis direction. Since the fulcrum 54 that comes into contact with the end surface on the side is provided, the pressure applied to the work 2 by the pressurizing machine 1 is not applied to the buckling detection unit 40. The buckling detection unit 40 can detect the buckling of the strain conversion unit 33 without receiving the processing pressure of the pressurizing machine 1. The pressure detection device 30 can detect the machining pressure by the pressurizing machine 1 by detecting the buckling of the strain conversion unit 33, and can easily determine the quality of machining of the work 2.

(第2実施形態)
図9,10に示すように、第2実施形態の圧力検出装置70は、座屈検出部100が備えるレバー72の形状及び配置が第1実施形態のものと異なる。圧力検出装置70は、ワーク2に加工圧力を加えるY軸方向で可動プレート5と台座3との中間位置に配置可能である。
(Second Embodiment)
As shown in FIGS. 9 and 10, the pressure detection device 70 of the second embodiment is different from that of the first embodiment in the shape and arrangement of the lever 72 included in the buckling detection unit 100. The pressure detection device 70 can be arranged at an intermediate position between the movable plate 5 and the pedestal 3 in the Y-axis direction in which the machining pressure is applied to the work 2.

図10に示すように、圧力検出装置70は、固定支持部材73及び歪変換部74を有する本体71と、座屈検出部100とを備える。本体71の上部は、固定支持部材73を有し、可動プレート5の下面に固定可能である。本体71の下部は歪変換部74を有し、Y軸上に加工ヘッド9を装着可能である。固定支持部材73は、加圧機1からの加工圧力を受ける板体である。Y軸と直交する位置で可動プレート5にねじ止めされる。 As shown in FIG. 10, the pressure detection device 70 includes a main body 71 having a fixed support member 73 and a strain conversion unit 74, and a buckling detection unit 100. The upper portion of the main body 71 has a fixed support member 73 and can be fixed to the lower surface of the movable plate 5. The lower part of the main body 71 has a strain conversion unit 74, and the processing head 9 can be mounted on the Y axis. The fixed support member 73 is a plate body that receives the processing pressure from the pressurizing machine 1. It is screwed to the movable plate 5 at a position orthogonal to the Y axis.

座屈検出部100は、変位検出部84と、レバー72と、抑え部材83と、与圧部材82とを備える。 The buckling detection unit 100 includes a displacement detection unit 84, a lever 72, a holding member 83, and a pressurization member 82.

変位検出部84は弾性部材85と熱流センサ86とを有する。
座屈検出部100のレバー72は、図10に示すように、接触点76、屈曲部77、作用部78、支点79を軸線方向に順番に備える棒体または板体である。
The displacement detection unit 84 has an elastic member 85 and a heat flow sensor 86.
As shown in FIG. 10, the lever 72 of the buckling detection unit 100 is a rod or a plate body having a contact point 76, a bending portion 77, an action portion 78, and a fulcrum 79 in order in the axial direction.

レバー72は、屈曲部77で90度に曲げられる。屈曲部77の内角を形成する面をレバー内側面81とすると、接触点76と支点79とは、レバー内側面81のそれぞれの端部でレバー72の軸線と交差する陵線を有する。接触点76の稜線は、加圧機1の圧力が加わらないように、歪変換部74に座屈の生じるX軸方向から接触する。同様に支点79の稜線は固定支持部材73の上面側に前記Y軸方向から接触する。固定支持部材73の上面側とは、固定支持部材73の歪変換部74とは反対側の面である。 The lever 72 is bent 90 degrees at the bent portion 77. Assuming that the surface forming the inner angle of the bent portion 77 is the inner side surface 81 of the lever, the contact point 76 and the fulcrum 79 have a ridge line that intersects the axis of the lever 72 at each end of the inner side surface 81 of the lever. The ridgeline of the contact point 76 contacts the strain conversion unit 74 from the X-axis direction where buckling occurs so that the pressure of the pressurizing machine 1 is not applied. Similarly, the ridge line of the fulcrum 79 contacts the upper surface side of the fixed support member 73 from the Y-axis direction. The upper surface side of the fixed support member 73 is a surface of the fixed support member 73 opposite to the strain conversion portion 74.

さらに、座屈検出部100に加圧機1の圧力が加わらないようにするために、固定支持部材73の上面側に凹部87を設け、凹部87内に、レバー72の支点79及び作用部78と、変位検出部84と、抑え部材83と、与圧部材82とを收容する。作用部78は、変位検出部75が接触するレバー72上の部分である。作用部78は、レバー72によって増幅された変位を圧縮の変化量として、弾性部材85に加える部位である。 Further, in order to prevent the pressure of the pressurizing machine 1 from being applied to the buckling detection unit 100, a recess 87 is provided on the upper surface side of the fixed support member 73, and the fulcrum 79 of the lever 72 and the action portion 78 are provided in the recess 87. , The displacement detection unit 84, the holding member 83, and the pressurizing member 82 are accommodated. The acting portion 78 is a portion on the lever 72 with which the displacement detecting portion 75 comes into contact. The acting portion 78 is a portion where the displacement amplified by the lever 72 is applied to the elastic member 85 as the amount of change in compression.

抑え部材83は、与圧部材82によって、変位検出部84をレバー72の作用部78に押え付ける板体である。屈曲部77の外角を形成する面をレバー外側面88とすると、抑え部材83は、レバー外側面88で変位検出部84の抑え付けをする。 The pressing member 83 is a plate body that presses the displacement detecting portion 84 against the acting portion 78 of the lever 72 by the pressurizing member 82. Assuming that the surface forming the outer angle of the bent portion 77 is the lever outer surface 88, the holding member 83 holds the displacement detection portion 84 on the lever outer surface 88.

与圧部材82は、レバー72の変位が弾性部材85に加わるように、また、弾性部材85からの熱流が熱流センサ86に伝わるように押圧するボルトである。作用部78で抑え部材83と変位検出部84とレバー72とを固定支持部材73に共締めする一本のボルトである。与圧部材82は、抑え部材83及び変位検出部84の中央部とレバー72を貫通して固定支持部材73に締結する。 The pressurizing member 82 is a bolt that presses the lever 72 so that the displacement of the lever 72 is applied to the elastic member 85 and the heat flow from the elastic member 85 is transmitted to the heat flow sensor 86. It is a single bolt that fastens the holding member 83, the displacement detection unit 84, and the lever 72 together to the fixed support member 73 at the working portion 78. The pressurization member 82 penetrates the central portion of the holding member 83 and the displacement detection portion 84 and the lever 72, and is fastened to the fixed support member 73.

与圧部材82を締結すると、座屈検出部80の初期状態は次の動作(1)-(3)を生じる。
(1)レバー72の接触点76に歪変換部74からX軸方向に斥力を受ける。
(2)レバー72の支点79に固定支持部材73からY軸方向の斥力を受ける。
(3)弾性部材85に与圧部材82の締結方向の変位が生じる。弾性部材85はレバー72の可動範囲内で圧縮される。
When the pressurization member 82 is fastened, the initial state of the buckling detection unit 80 causes the following operations (1)-(3).
(1) The contact point 76 of the lever 72 receives a repulsive force from the strain conversion unit 74 in the X-axis direction.
(2) The fulcrum 79 of the lever 72 receives a repulsive force in the Y-axis direction from the fixed support member 73.
(3) The elastic member 85 is displaced in the fastening direction of the pressurizing member 82. The elastic member 85 is compressed within the movable range of the lever 72.

第1実施形態と同様に、加圧機1がワーク2に挿入されたピンを抜く工程を行うと、歪変換部74に座屈に伴う歪が発生する。歪変換部74は板体であって、歪変換部74の上面17がY軸と交差し、厚み方向がX軸方向となるように固定されるので、歪変換部74の平面側であるX軸方向に歪が発生する。歪は、歪変動量(ΔX)として接触点76に伝播する。 Similar to the first embodiment, when the pressurizing machine 1 performs the step of pulling out the pin inserted into the work 2, strain due to buckling occurs in the strain conversion unit 74. Since the strain conversion unit 74 is a plate body and the upper surface 17 of the strain conversion unit 74 intersects the Y axis and is fixed so that the thickness direction is the X-axis direction, X is the plane side of the strain conversion unit 74. Axial distortion occurs. The strain propagates to the contact point 76 as a strain fluctuation amount (ΔX).

接触点76が受けた歪変動量(ΔX)は、検知レバー72本体を通じて増幅され作用部78へ伝播させる。これにより作用部78は、弾性部材85に変位を加える。弾性部材85に加わる変位が小さくなると、弾性部材85の圧縮量が減少し、弾性部材85への吸熱の流れが生じる。また、弾性部材85加わる変位が大きくなると、弾性部材85の圧縮量が増加し、弾性部材85から発熱の流が生じる。つまり、圧縮の変化量(ΔY)は、熱流センサ86が受ける熱流に変化を生じさせ、変位検出部84で時系列的に変化する電気信号を取り出すことが可能となる。 The strain fluctuation amount (ΔX) received by the contact point 76 is amplified through the detection lever 72 main body and propagated to the acting unit 78. As a result, the acting portion 78 applies a displacement to the elastic member 85. When the displacement applied to the elastic member 85 becomes smaller, the amount of compression of the elastic member 85 decreases, and an endothermic flow to the elastic member 85 occurs. Further, when the displacement applied to the elastic member 85 becomes large, the amount of compression of the elastic member 85 increases, and a flow of heat is generated from the elastic member 85. That is, the amount of change in compression (ΔY) causes a change in the heat flow received by the heat flow sensor 86, and the displacement detection unit 84 can take out an electric signal that changes in time series.

図9,12に示すように、固定支持部材73の上面側に凹部87を設ける。座屈検出部100は、凹部87内にレバー72の支点79及び作用部78と、変位検出部84と、抑え部材83と、与圧部材82とを収容するので、変位検出部84が加圧機1の加工圧力を受けずに加工圧力の検出が可能となる。 As shown in FIGS. 9 and 12, a recess 87 is provided on the upper surface side of the fixed support member 73. Since the buckling detection unit 100 accommodates the fulcrum 79 and the action unit 78 of the lever 72, the displacement detection unit 84, the holding member 83, and the pressurization member 82 in the recess 87, the displacement detection unit 84 is a pressurizing machine. It is possible to detect the machining pressure without receiving the machining pressure of 1.

レバー72は、屈曲部77で曲げた棒体または板体である。レバー内側面81の一端がX軸方向から歪変換部74に接触可能である接触点76と、屈曲部77を挟んだ他端がワーク2に加工圧力を加えるY軸方向から固定支持部材73の前記歪変換部とは反対側の面に接触する支点79と、固定支持部材73の歪変換部74とは反対側に支点79及び変位検出部84を埋設可能な凹部87とを備えたので、加圧機1がワーク2へ加える圧力は、圧力検出装置70に備えた座屈検出部100に加わることがない。座屈検出部100は、加圧機1の加工圧力を受けることがなく、歪変換部74の座屈を検出できる。 The lever 72 is a rod or plate bent by the bent portion 77. A contact point 76 where one end of the inner side surface 81 of the lever can contact the strain conversion portion 74 from the X-axis direction, and the other end of the bent portion 77 sandwiching the bent portion 77 of the fixed support member 73 from the Y-axis direction where machining pressure is applied to the work 2. Since the fulcrum 79 in contact with the surface opposite to the strain conversion portion and the recess 87 in which the fulcrum 79 and the displacement detection portion 84 can be embedded on the side opposite to the strain conversion portion 74 of the fixed support member 73 are provided. The pressure applied to the work 2 by the pressurizing machine 1 is not applied to the buckling detection unit 100 provided in the pressure detecting device 70. The buckling detection unit 100 can detect the buckling of the strain conversion unit 74 without receiving the processing pressure of the pressurizing machine 1.

(第3実施形態)
第3実施形態について図11及び図12に基づいて説明する。一つの材料から同一多数のワークの加工をする場合、図11,12に示すように、一つの固定支持部材73に歪変換部74と加工ヘッド9の一式を多数隣接させて備えることが想定される。第2実施形態の圧力検出装置70に加えて、同じ構成の圧力検出装置90を備える。歪変換部94は、歪変換部74と同じものである。また、座屈検出部110は、座屈検出部100と同じ構成のものである。その他、圧力検出装置90が備える構成は、圧力検出装置70と同じである。
(Third Embodiment)
The third embodiment will be described with reference to FIGS. 11 and 12. When processing the same large number of workpieces from one material, as shown in FIGS. 11 and 12, it is assumed that one fixed support member 73 is provided with a large number of strain conversion units 74 and a set of processing heads 9 adjacent to each other. To. In addition to the pressure detection device 70 of the second embodiment, the pressure detection device 90 having the same configuration is provided. The strain conversion unit 94 is the same as the strain conversion unit 74. Further, the buckling detection unit 110 has the same configuration as the buckling detection unit 100. In addition, the configuration of the pressure detection device 90 is the same as that of the pressure detection device 70.

座屈検出部100、座屈検出部110を固定支持部材73の上面側からそれぞれ固定するので、図10、13のように、くし形に配置された歪変換部74,94に対して、圧力検出装置70と圧力検出装置90とを固定支持部材73の上面側から固定することが可能である。 Since the buckling detection unit 100 and the buckling detection unit 110 are fixed from the upper surface side of the fixed support member 73, respectively, pressure is applied to the strain conversion units 74 and 94 arranged in a comb shape as shown in FIGS. 10 and 13. The detection device 70 and the pressure detection device 90 can be fixed from the upper surface side of the fixed support member 73.

以上、第1実施形態及び第2実施形態及び第3実施形態の座屈検出部40,60,80,100,110は、変位検出部41,45,63,84と、レバー50,61,72と、抑え部材56,62,67,83と、与圧部材37,38,39,82を備える。変位検出部41,63,84は、歪変換部33,74の歪変動量に応じて発生する変位を検出する。レバー50,61,72は、歪変換部33,74に座屈の生じるX軸方向から接触する接触点51,76及び、固定支持部材32,73にワーク2に加工圧力を加えるY軸方向から接触する支点54,79及び、前記歪変動量を変位検出部41,45,63,84の一方の面へ伝播可能な作用部53,78を有する。レバー50,61,72は、歪変換部33,74の歪変動量を増幅して作用部53,78の変位に変換するように支点54,79を中心に可動可能である。抑え部材56,62,67,83は、変位検出部41,45,63,84の他方の面に接する。与圧部材37,38,39,82は、レバー50,61,72の可動範囲において変位検出部41,63,84が少なくとも圧縮されるように、抑え部材56,62,67,83と変位検出部41,63,84とレバー50,72とを固定支持部材32,73に共締めする。これにより、加圧機1がワーク2へ加える圧力が、圧力検出装置30,70,90に備えた座屈検出部40,60,80,100,110に加わることない。また、座屈検出部40,60,80,100,110は、接触点51,76で歪変換部33,74,96の座屈を検出し、レバー50,72が作用部53,78で増幅することができる。変位検出部41,63,84、94で座屈にともなう歪を検出して加圧機1によるワーク2の加工の良否判定が容易にできる。 As described above, the buckling detection units 40, 60, 80, 100, 110 of the first embodiment, the second embodiment, and the third embodiment are the displacement detection units 41, 45, 63, 84 and the levers 50, 61, 72. The holding members 56, 62, 67, 83 and the pressurizing members 37, 38, 39, 82 are provided. The displacement detection units 41, 63, 84 detect the displacement generated according to the strain fluctuation amount of the strain conversion units 33, 74. The levers 50, 61, 72 come into contact with the strain conversion portions 33, 74 from the X-axis direction where buckling occurs, and from the Y-axis direction in which the machining pressure is applied to the work 2 to the fixed support members 32, 73. It has fulcrums 54, 79 that come into contact with each other, and action units 53, 78 that can propagate the strain fluctuation amount to one surface of the displacement detection units 41, 45, 63, 84. The levers 50, 61, 72 are movable around the fulcrum 54, 79 so as to amplify the strain fluctuation amount of the strain conversion units 33, 74 and convert it into the displacement of the action units 53, 78. The holding members 56, 62, 67, 83 are in contact with the other surface of the displacement detection units 41, 45, 63, 84. The pressurizing members 37, 38, 39, 82 are displaced with the restraining members 56, 62, 67, 83 so that the displacement detecting portions 41, 63, 84 are at least compressed in the movable range of the levers 50, 61, 72. The portions 41, 63, 84 and the levers 50, 72 are fastened together to the fixed support members 32, 73. As a result, the pressure applied to the work 2 by the pressurizing machine 1 is not applied to the buckling detection units 40, 60, 80, 100, 110 provided in the pressure detection devices 30, 70, 90. Further, the buckling detection units 40, 60, 80, 100, 110 detect the buckling of the strain conversion units 33, 74, 96 at the contact points 51, 76, and the levers 50, 72 are amplified by the action units 53, 78. can do. Displacement detection units 41, 63, 84, 94 can detect strain due to buckling and easily determine whether the work 2 is machined by the pressurizing machine 1.

また、変位検出部41,45,63,84は、作用部53,78の変位を圧縮の変化量(ΔY)として熱流に変換可能な弾性部材42,46,85、及び弾性部材42,46,85の発する熱流を電気信号に変換可能な熱流センサ43,47,86の積層体である。これにより、座屈検出部40,60,80,100,110は、歪変換部33,74,96の座屈を、弾性部材42,46,85の圧縮の変化量にして、熱流センサ43,47,86で圧縮の変化量に伴う熱流によって検出することができる。歪変換部33,74,94の座屈により、加圧機1によるワーク2の加工の良否判定が容易にできる。 Further, the displacement detecting units 41, 45, 63, 84 are the elastic members 42, 46, 85, and the elastic members 42, 46, which can convert the displacement of the acting units 53, 78 into a heat flow as the amount of change in compression (ΔY). It is a laminated body of heat flow sensors 43, 47, 86 capable of converting the heat flow generated by 85 into an electric signal. As a result, the buckling detection units 40, 60, 80, 100, 110 use the buckling of the strain conversion units 33, 74, 96 as the amount of change in compression of the elastic members 42, 46, 85, and the heat flow sensor 43, At 47 and 86, it can be detected by the heat flow accompanying the amount of change in compression. The buckling of the strain conversion units 33, 74, 94 makes it easy to determine whether the work 2 is processed by the pressurizing machine 1.

(第4実施形態)
第4実施形態について図13にもとづいて説明する。
(Fourth Embodiment)
The fourth embodiment will be described with reference to FIG.

与圧部材38,39を備えた構成について説明する。第1実施形態の圧力検出装置30では与圧部材37として、一本のボルトを用いたが、与圧部材38、39として二本のボルトを用いてもよい。 A configuration including the pressurizing members 38 and 39 will be described. In the pressure detection device 30 of the first embodiment, one bolt is used as the pressurization member 37, but two bolts may be used as the pressurization members 38 and 39.

座屈検出部60は、レバー61を横断する位置で与圧部材38,39として二本のボルトを用いて、抑え部材62及びレバー61で変位検出部63を挟みこむことができる。変位検出部63は、歪による変位を熱流に変換可能な弾性部材65と弾性部材65の発する熱流を電気信号に変換可能な熱流センサ66との積層体である。与圧部材38,39を用いると、変位検出部63はボルトを通す穴をあける必要がなくなり、穴のない矩形形状にできる。形状及び取付けの自由度が増加する。 The buckling detection unit 60 can sandwich the displacement detection unit 63 between the restraining member 62 and the lever 61 by using two bolts as the pressurizing members 38 and 39 at positions crossing the lever 61. The displacement detection unit 63 is a laminate of an elastic member 65 capable of converting displacement due to strain into a heat flow and a heat flow sensor 66 capable of converting the heat flow generated by the elastic member 65 into an electric signal. When the pressurizing members 38 and 39 are used, the displacement detection unit 63 does not need to make a hole for passing a bolt, and can be formed into a rectangular shape without a hole. The degree of freedom in shape and mounting is increased.

(第5実施形態)
第5実施形態について図14にもとづいて説明する。
(Fifth Embodiment)
The fifth embodiment will be described with reference to FIG.

変位検出部45を備えた構成について説明する。第1実施形態の圧力検出装置30では、変位検出部41は、図3に示すように、弾性部材42と熱流センサ43との積層体で構成した。これに対して、図14に示すように、本例の変位検出部45は、座屈検出部80において、抑え部材67から弾性部材46と熱流センサ47、熱流センサ43と弾性部材42の順に2段になるように積層した構成を有する。弾性部材46は、弾性部材42と同じものである。また、熱流センサ47は、熱流センサ43と同じものである。このようにすると変位検出部45の両面からの熱流の出入りを検出することができ、1段で積層した場合に比べて、座屈による歪の特徴をより詳細に検出できる。 A configuration including the displacement detection unit 45 will be described. In the pressure detection device 30 of the first embodiment, the displacement detection unit 41 is composed of a laminated body of the elastic member 42 and the heat flow sensor 43, as shown in FIG. On the other hand, as shown in FIG. 14, in the buckling detection unit 80, the displacement detection unit 45 has the elastic member 46 and the heat flow sensor 47, and the heat flow sensor 43 and the elastic member 42 in this order from the holding member 67. It has a structure in which it is laminated so as to form a step. The elastic member 46 is the same as the elastic member 42. Further, the heat flow sensor 47 is the same as the heat flow sensor 43. In this way, the inflow and outflow of heat flow from both sides of the displacement detection unit 45 can be detected, and the characteristics of strain due to buckling can be detected in more detail as compared with the case of stacking in one stage.

(その他の実施形態)
(a)実施形態では、接触点の稜線が歪変換部に接触し、支点の稜線が固定支持部材に接触する構成を説明したが、それぞれ稜線による接触でなく点接触とする構成にしてもよい。感度を高くする場合、点接触がよく、計測の安定を重視する場合、陵線による接触がよい。また、どちらか一方を点接触とする構成にしてもよい。
(Other embodiments)
In the embodiment (a), the configuration in which the ridgeline of the contact point is in contact with the strain conversion portion and the ridgeline of the fulcrum is in contact with the fixed support member has been described. .. When the sensitivity is high, the point contact is good, and when the stability of measurement is important, the contact by the ridge line is good. Further, one of them may be configured as a point contact.

(b)一つの固定支持部材に歪変換部と加工ヘッドとの一式を多数隣接させて備える場合、実施形態では、2セットを備えた例を説明したが、これに限定されるものではない。必要に応じて、セット数を増やすことができる。 (B) In the case where a large number of sets of strain conversion portions and processing heads are provided adjacent to one fixed support member, an example in which two sets are provided has been described in the embodiment, but the present invention is not limited thereto. The number of sets can be increased as needed.

(c)本発明の圧力検出装置において、変位検出部は、歪による変位を熱に変換可能な弾性部材と弾性部材の発する熱量を電気信号に変換可能な熱流センサとを積層した構成を有するが、これに限定するものではない。変位検出部は、ロードセルまたはマグネスケール(登録商標)を有するものでもよい。 (C) In the pressure detection device of the present invention, the displacement detection unit has a configuration in which an elastic member capable of converting displacement due to strain into heat and a heat flow sensor capable of converting the amount of heat generated by the elastic member into an electric signal are laminated. , Not limited to this. The displacement detection unit may have a load cell or a magnet scale (registered trademark).

(d)圧力検出装置の使用範囲は、加圧機による圧入ピンを抜き取る工程に限定されない。カーボン材を打ち抜く工程等適宜、加圧工程で使用できる。 (D) The range of use of the pressure detection device is not limited to the process of extracting the press-fitting pin by the pressurizing machine. It can be used in a pressurizing process as appropriate, such as in a process of punching out carbon material.

(e)第1実施形態では、歪変換部33を形成する板体は、超鋼材で形成される。本発明の歪変換部の材料は超鋼材に限られない。歪変換部の形状は、板体でなくともよく、棒体でもよく、形状は実施形態に限定されない。 (E) In the first embodiment, the plate body forming the strain conversion unit 33 is made of a super steel material. The material of the strain conversion unit of the present invention is not limited to the super steel material. The shape of the strain conversion unit may be not a plate body or a rod body, and the shape is not limited to the embodiment.

(f)第1実施形態における歪変換部は、厚み(W)に対して、高さ(H)と奥行き(D)の長さが10倍程度大きい板材としたが、本発明では、厚み(W)に対する高さ(H)と奥行き(D)の長さはこの倍率に限られない。 (F) The strain conversion portion in the first embodiment is a plate material having a height (H) and a depth (D) about 10 times larger than the thickness (W). The lengths of the height (H) and the depth (D) with respect to W) are not limited to this magnification.

(g)また、厚み(W)、高さ(H)、奥行き(D)の具体的な寸法を提示して説明をしたが、これらの寸法に限定されない。座屈を起こさせる点で、厚み(W)は、高さ(H)及び奥行き(D)を含む平面に変位を生じさせるように設定すればよい。 (G) Further, although specific dimensions of the thickness (W), the height (H), and the depth (D) have been presented and described, the present invention is not limited to these dimensions. The thickness (W) may be set so as to cause displacement in the plane including the height (H) and the depth (D) at the point of causing buckling.

(h)固定支持部材の取り付け面に対する加工ヘッドの取り付け面の平行度を数値で示したが加工精度が確保できればこれに限定されない。 (H) The parallelism of the mounting surface of the machining head to the mounting surface of the fixed support member is shown numerically, but the parallelism is not limited to this as long as the machining accuracy can be ensured.

(i)第1実施形態では、弾性部材42は、熱弾性効果により熱を発生することができる超高分子ポリエチレン製の材料を用いたが、本発明の弾性部材は、熱弾性効果により熱を発生することができる材質であればよい。 (I) In the first embodiment, the elastic member 42 uses a material made of ultrapolymer polyethylene capable of generating heat by the thermoelastic effect, but the elastic member of the present invention generates heat by the thermoelastic effect. Any material that can be generated may be used.

本発明は実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。 The present invention is not limited to the embodiments, and can be implemented in various embodiments without departing from the spirit of the invention.

1・・・加圧機、 2・・・ワーク、
3・・・台座、 5・・・可動プレート、
9・・・加工ヘッド、 15・・・軸心線、
30,70,90・・・圧力検出装置、
31,71・・・本体、
32,73・・・固定支持部材、 33,74,94・・・歪変換部、
40,60,80,100,110・・・座屈検出部。
1 ... Pressurizer, 2 ... Work,
3 ... pedestal, 5 ... movable plate,
9 ... Processing head, 15 ... Axis core line,
30, 70, 90 ... Pressure detector,
31,71 ... Main body,
32,73 ... Fixed support member, 33,74,94 ... Strain conversion unit,
40, 60, 80, 100, 110 ... Buckling detection unit.

Claims (5)

台座(3)に載置されたワーク(2)に対し加圧機(1)の加工ヘッド(9)が押圧し、ワークに加わる加工圧力を検出する圧力検出装置(30,70,90)であって、
前記加圧機の可動プレート(5)に固定され、前記加圧機の駆動力を受ける固定支持部材(32,73)と、
ワークに当接可能で加工圧力を加える加工ヘッドと、
前記固定支持部材と加工ヘッドとの間に固定され、前記加工圧力に応じて座屈により歪を生じる歪変換部(33,74,94)と、
前記歪変換部の軸心線(15)から偏心した位置で、前記歪変換部の座屈による歪変動量(ΔX)を検出可能な座屈検出部(40,60,80,100,110)と、
を備える圧力検出装置。
It is a pressure detection device (30, 70, 90) that detects the processing pressure applied to the work by pressing the processing head (9) of the pressurizing machine (1) against the work (2) placed on the pedestal (3). hand,
A fixed support member (32, 73) fixed to the movable plate (5) of the pressurizing machine and receiving the driving force of the pressurizing machine, and
A processing head that can contact the work and apply processing pressure,
A strain conversion unit (33,74,94) fixed between the fixed support member and the machining head and causing strain due to buckling in response to the machining pressure.
A buckling detection unit (40, 60, 80, 100, 110) capable of detecting the strain fluctuation amount (ΔX) due to buckling of the strain conversion unit at a position eccentric from the axial center line (15) of the strain conversion unit. When,
A pressure detector equipped with.
前記座屈検出部は、
前記歪変動量に応じて発生する変位を検出する変位検出部(41,45,63,84)と、
前記歪変換部に座屈の生じるX軸方向から接触する接触点(51,76)及び、前記固定支持部材に前記ワークに加工圧力を加えるY軸方向から接触する支点(54,79)及び、前記歪を変位検出部の一方の面へ伝播可能な作用部(53,78)を有し、前記歪変動量を増幅して前記作用部の変位に変換するように前記支点を中心に可動可能なレバー(50,61,72)と、
前記変位検出部の他方の面に接する抑え部材(56,62,67,83)と、
前記レバーの可動範囲において前記変位検出部が少なくとも圧縮されるように、前記抑え部材と前記変位検出部と前記レバーとを前記固定支持部材に共締めする与圧部材(37,38,39,82)と、
を備えた請求項1に記載の圧力検出装置。
The buckling detection unit is
A displacement detection unit (41, 45, 63, 84) that detects the displacement generated according to the strain fluctuation amount, and
A contact point (51,76) that contacts the strain conversion portion from the X-axis direction where buckling occurs, a fulcrum (54,79) that contacts the fixed support member from the Y-axis direction that applies machining pressure to the work, and It has an action unit (53,78) capable of propagating the strain to one surface of the displacement detection unit, and is movable around the fulcrum so as to amplify the strain fluctuation amount and convert it into the displacement of the action unit. Lever (50, 61, 72) and
A holding member (56, 62, 67, 83) in contact with the other surface of the displacement detection unit, and
Pressurized members (37, 38, 39, 82) that fasten the holding member, the displacement detecting portion, and the lever together to the fixed support member so that the displacement detecting portion is at least compressed in the movable range of the lever. )When,
The pressure detection device according to claim 1.
前記変位検出部(41,45,63,84)は、
前記作用部の変位を圧縮の変化量(ΔY)として熱流に変換可能な弾性部材(42,46,85)、及び前記弾性部材の発する熱流を電気信号に変換可能な熱流センサ(43,47,86)の積層体である請求項2に記載の圧力検出装置。
The displacement detection unit (41, 45, 63, 84) is
An elastic member (42, 46, 85) capable of converting the displacement of the acting portion into a heat flow as a change in compression (ΔY), and a heat flow sensor (43, 47,) capable of converting the heat flow generated by the elastic member into an electric signal. The pressure detection device according to claim 2, which is a laminated body of 86).
前記レバー(50,61)は、
屈曲部(52)で曲げた棒体または板体であり、
前記接触点(51)は、前記レバーのレバー外側面(55)の一端が前記X軸方向から前記歪変換部(33)に接触し、
前記支点(54)は、前記屈曲部を挟んだ他端が前記Y軸方向から前記固定支持部材(32)の前記歪変換部側の端面に接触する請求項2または3に記載の圧力検出装置。
The levers (50, 61) are
A rod or plate bent at the bent portion (52).
At the contact point (51), one end of the lever outer surface (55) of the lever comes into contact with the strain conversion unit (33) from the X-axis direction.
The pressure detection device according to claim 2 or 3, wherein the fulcrum (54) has the other end of the bent portion in contact with the end surface of the fixed support member (32) on the strain conversion portion side from the Y-axis direction. ..
前記レバー(72)は、
屈曲部(77)で曲げた棒体または板体であり、
前記接触点(76)は、前記レバーのレバー内側面(81)の一端が前記X軸方向から前記歪変換部(74,94)に接触し、
前記支点(79)は、前記屈曲部を挟んだ他端が前記Y軸方向から前記固定支持部材(73)の前記歪変換部とは反対側の面に接触し、
前記固定支持部材の前記歪変換部とは反対側に前記支点及び変位検出部を收容可能な凹部(87)が形成されている請求項2または3に記載の圧力検出装置。
The lever (72) is
A rod or plate bent at the bent portion (77).
At the contact point (76), one end of the lever inner surface (81) of the lever comes into contact with the strain conversion unit (74,94) from the X-axis direction.
At the fulcrum (79), the other end of the bent portion is in contact with the surface of the fixed support member (73) opposite to the strain conversion portion from the Y-axis direction.
The pressure detection device according to claim 2 or 3, wherein a recess (87) capable of accommodating the fulcrum and the displacement detection portion is formed on the side of the fixed support member opposite to the strain conversion portion.
JP2020115014A 2020-07-02 2020-07-02 pressure detection device Active JP7452295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115014A JP7452295B2 (en) 2020-07-02 2020-07-02 pressure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115014A JP7452295B2 (en) 2020-07-02 2020-07-02 pressure detection device

Publications (2)

Publication Number Publication Date
JP2022022722A true JP2022022722A (en) 2022-02-07
JP7452295B2 JP7452295B2 (en) 2024-03-19

Family

ID=80225164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115014A Active JP7452295B2 (en) 2020-07-02 2020-07-02 pressure detection device

Country Status (1)

Country Link
JP (1) JP7452295B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716688A (en) * 1993-07-05 1995-01-20 Japan Small Corp Instrument for measuring forging condition of forging machine
JPH0949702A (en) * 1995-08-07 1997-02-18 Toshiba Corp Parallelism management device in pressuring apparatus
JP2019181582A (en) * 2018-04-03 2019-10-24 株式会社デンソー Press-in device and press-in system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153498A (en) 2014-06-17 2017-09-07 日本電産コパル電子株式会社 Pressure-sensitive sensor and pressure-sensitive catheter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716688A (en) * 1993-07-05 1995-01-20 Japan Small Corp Instrument for measuring forging condition of forging machine
JPH0949702A (en) * 1995-08-07 1997-02-18 Toshiba Corp Parallelism management device in pressuring apparatus
JP2019181582A (en) * 2018-04-03 2019-10-24 株式会社デンソー Press-in device and press-in system

Also Published As

Publication number Publication date
JP7452295B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
CN203405370U (en) Material micromechanics performance testing platform under stretching, bending and twisting loads
CN103389243A (en) Micro material mechanical performance testing platform under stretching-bending-twisting multi-loads
JP6011486B2 (en) Material testing machine
WO2020102778A1 (en) Strain sensor with contoured deflection surface
JP5428951B2 (en) Breaking strength measuring device and breaking strength measuring method
JP6296860B2 (en) Fretting fatigue test method and fretting fatigue test apparatus
JP5076589B2 (en) Plate material dividing apparatus and plate material dividing method
US11073456B2 (en) Hardness tester
JP2022022722A (en) Pressure detection device
JP2013515250A (en) Method and apparatus for measuring cylinders
JP2019219235A (en) Biaxial compression tensile test tool and biaxial compression tensile test method
TWI469833B (en) Stamping machinery
TW202023780A (en) Pressure measurement mechanism and breaking device provided with said pressure measurement mechanism
WO2023181791A1 (en) Testing device and testing method
JP4870018B2 (en) Thin plate press die apparatus and press molding method
JP4096184B2 (en) Method and apparatus for measuring displacement of each part of mold during press molding
JP4801033B2 (en) Ultra high pressure generator
JPH06344187A (en) Motor press device
CN112730215B (en) Material friction abnormal sound test stand with strain gauge sensor
JP2009257963A (en) Device and method for destructively testing jig clamper
CN219551419U (en) Testing device for radial deflection of automobile steering gear
CN218601066U (en) Shearing strength testing tool for powder metallurgy material
CN103364287B (en) A kind of anti-H 2 S stress corrosion test loading method
CN112033585B (en) Stress sensing device capable of being welded and installed
CN112098202B (en) Single-arm mechanical testing mechanism and single-arm mechanical testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R151 Written notification of patent or utility model registration

Ref document number: 7452295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151