JP2022018310A - Unevenness detection device and unevenness detection method for linear body - Google Patents

Unevenness detection device and unevenness detection method for linear body Download PDF

Info

Publication number
JP2022018310A
JP2022018310A JP2020121339A JP2020121339A JP2022018310A JP 2022018310 A JP2022018310 A JP 2022018310A JP 2020121339 A JP2020121339 A JP 2020121339A JP 2020121339 A JP2020121339 A JP 2020121339A JP 2022018310 A JP2022018310 A JP 2022018310A
Authority
JP
Japan
Prior art keywords
linear body
guide roller
cover
light
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020121339A
Other languages
Japanese (ja)
Inventor
智哉 鈴木
Tomoya Suzuki
祐介 久保
Yusuke Kubo
茂樹 尾崎
Shigeki Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2020121339A priority Critical patent/JP2022018310A/en
Priority to CN202110800971.4A priority patent/CN113945576A/en
Publication of JP2022018310A publication Critical patent/JP2022018310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N2021/8924Dents; Relief flaws

Abstract

To reduce wrong detection on unevenness of a linear body to be inspected.SOLUTION: An unevenness detection device for linear body has: a light projection part which projects light on a traveling linear body; a light reception part which receives the light projected by the light projection part; a first guide roller which guides the linear body to travel upstream when passing through a detection space between the light projection part and light reception part; a second guide roller which guides the linear body to travel downstream when passing through the detection space; a cover which covers the light projection part, light reception part, the first guide roller, and the second guide roller; and a supply part which supplies clean air into the cover. The cover is provided with an air supply part communicating with the supply part, an entry-side opening part that the linear body enters, and an exit-side opening part that the linear body exits from.SELECTED DRAWING: Figure 1

Description

本開示は、線状体の凹凸検出装置及び凹凸検出方法に関する。 The present disclosure relates to a linear body unevenness detection device and an unevenness detection method.

特許文献1には、走行する線状体に対して光を投光し、該投光した光を受光して線状体表面の凹凸を光学的に検出する線状体の凹凸検出装置及び凹凸検出方法が開示されている。
特許文献2には、ガラスファイバが樹脂で被覆された光ファイバの走行をガイドするガイドローラが開示されている。
Patent Document 1 describes a linear body unevenness detection device and unevenness detecting device for projecting light onto a traveling linear body and receiving the projected light to optically detect unevenness on the surface of the linear body. The detection method is disclosed.
Patent Document 2 discloses a guide roller that guides the traveling of an optical fiber in which a glass fiber is coated with a resin.

特開2004-12414号公報Japanese Unexamined Patent Publication No. 2004-12414 特開2013-28513号公報Japanese Unexamined Patent Publication No. 2013-28513

線状体、例えば光ファイバにおいて、被覆を施した光ファイバ素線や、着色層が被覆された光ファイバ心線等の外周には、局所的に微小の凹凸が発生することがある。このような凹凸があると、着色工程やテープ化工程において、凹凸による異物がダイス穴に詰まってしまうことがある。その場合、塗布不良や線状体の断線等の不具合が発生するため、この凹凸を検出する必要がある。そのため、線状体の凹凸を光学的に検出する線状体の凹凸検出装置が用いられている(例えば特許文献1)。 In a linear body, for example, an optical fiber, minute irregularities may be locally generated on the outer periphery of a coated optical fiber wire or an optical fiber core wire coated with a colored layer. If there is such unevenness, foreign matter due to the unevenness may be clogged in the die hole in the coloring process or the tape forming process. In that case, problems such as poor coating and breakage of the linear body occur, so it is necessary to detect this unevenness. Therefore, a linear body unevenness detection device for optically detecting the unevenness of the linear body is used (for example, Patent Document 1).

上記のような線状体の凹凸検出装置では、浮遊塵によって光が遮られたり散乱したりして、線状体の凹凸が誤検出されるおそれがある。そのため、例えば特許文献1に開示された線状体の凹凸検出装置では、検出空間をカバーで覆い、上記カバー内に清浄気体を供給して、検出空間へ浮遊塵が侵入することを抑制している。 In the above-mentioned linear body unevenness detection device, light may be blocked or scattered by floating dust, and the linear body unevenness detection device may be erroneously detected. Therefore, for example, in the linear unevenness detection device disclosed in Patent Document 1, the detection space is covered with a cover, and clean gas is supplied into the cover to suppress the invasion of suspended dust into the detection space. There is.

また、異物が付着した状態で線状体が検出空間に入るおそれもあり、この場合も線状体の凹凸が誤検出されるおそれがある。そのため、検出空間に入る前の線状体に清浄気体を強く吹き付けて、異物を吹き飛ばすことが考えられる。ところが、異物を除去しようとして清浄気体の流量を増加すると、線状体が清浄気体の流れの影響を受けて、線振れが大きくなる。そして、その線振れを凹凸として誤検出するおそれもある。
線状体製造の効率化のため、製造時の線速を大きくすることが望ましいが、線状体の線速を大きくすると、線振れが大きくなる。また、線状体の線速を大きくすると、線状体と共に異物が検出空間に入る可能性も大きくなってしまう。
Further, there is a possibility that the linear body may enter the detection space with foreign matter attached, and in this case as well, the unevenness of the linear body may be erroneously detected. Therefore, it is conceivable to strongly blow a clean gas onto the linear body before entering the detection space to blow off the foreign matter. However, when the flow rate of the clean gas is increased in an attempt to remove foreign matter, the linear body is affected by the flow of the clean gas, and the linear runout increases. Then, there is a possibility that the line runout is erroneously detected as unevenness.
In order to improve the efficiency of manufacturing the linear body, it is desirable to increase the linear speed at the time of manufacturing, but if the linear speed of the linear body is increased, the linear runout becomes large. Further, if the linear velocity of the linear body is increased, the possibility that foreign matter enters the detection space together with the linear body increases.

本開示は、検査する線状体に対する凹凸の誤検出を少なくすることができる、線状体の凹凸検出装置及び凹凸検出方法を提供することを目的とする。 It is an object of the present disclosure to provide an unevenness detection device and an unevenness detection method for a linear body, which can reduce erroneous detection of unevenness on the linear body to be inspected.

本開示の一態様に係る線状体の凹凸検出装置は、走行する線状体に対して光を投光する投光部と、
該投光部から投光した光を受光する受光部と、
前記投光部と前記受光部との間の検出空間を通過する前記線状体に対して、上流側の走行を案内する第一のガイドローラと、
前記検出空間を通過する前記線状体に対して、下流側の走行を案内する第二のガイドローラと、
前記投光部と前記受光部と前記第一のガイドローラと第二のガイドローラと、を覆うカバーと、
清浄気体を前記カバー内に供給する供給部と、
を有し、
前記カバーには、前記供給部に連通された給気部と、前記線状体が入線する入線側開口部と、前記線状体が出線する出線側開口部とが設けられている。
The unevenness detection device for a linear body according to one aspect of the present disclosure includes a light projecting unit that emits light to a traveling linear body and a light projecting unit.
A light receiving unit that receives the light projected from the light projecting unit and a light receiving unit.
A first guide roller that guides the traveling on the upstream side with respect to the linear body passing through the detection space between the light emitting portion and the light receiving portion.
A second guide roller that guides the traveling on the downstream side with respect to the linear body passing through the detection space, and
A cover that covers the light projecting portion, the light receiving portion, the first guide roller, and the second guide roller.
A supply unit that supplies clean gas into the cover,
Have,
The cover is provided with an air supply portion that communicates with the supply portion, an inlet side opening through which the linear body enters, and an exit side opening through which the linear body exits.

本開示の一態様に係る線状体の凹凸検出方法は、投光部と、受光部と、前記投光部と前記受光部とにより線状体の表面の凹凸を光学的に検出する検出空間と、第一のガイドローラと、第二のガイドローラと、がカバーにより覆われており、
前記カバー内に清浄気体を供給して、
前記カバーに設けられた入線側開口部から前記カバー内に前記線状体を入線させ、
前記カバー内に入線された前記線状体を前記第一のガイドローラで前記検出空間へ案内し、
前記検出空間を走行する前記線状体に対して前記投光部から光を投光し、該投光した光を前記受光部で受光して、前記線状体の表面の凹凸を光学的に検出し、
前記検出空間を通過した前記線状体を前記第二のガイドローラで前記カバーに設けられた出線側開口部へ案内する。
The method for detecting unevenness of a linear body according to one aspect of the present disclosure is a detection space for optically detecting unevenness on the surface of a linear body by a light projecting portion, a light receiving portion, and the light emitting portion and the light receiving portion. And the first guide roller and the second guide roller are covered with a cover,
A clean gas is supplied into the cover,
The linear body is made to enter the cover through the opening on the incoming wire side provided in the cover.
The linear body entered in the cover is guided to the detection space by the first guide roller.
Light is projected from the light projecting portion onto the linear body traveling in the detection space, and the projected light is received by the light receiving unit to optically check the unevenness of the surface of the linear body. Detect and
The linear body that has passed through the detection space is guided by the second guide roller to the wire exit side opening provided in the cover.

本開示によれば、検査する線状体に対する凹凸の誤検出を少なくすることができる。 According to the present disclosure, it is possible to reduce erroneous detection of unevenness on the linear body to be inspected.

本開示の実施形態に係る線状体の凹凸検出装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the unevenness detection apparatus of a linear body which concerns on embodiment of this disclosure. 図1における検出部のA-A線の模式的な断面図である。It is a schematic cross-sectional view of the line AA of the detection part in FIG. 第一のガイドローラまたは第二のガイドローラの断面図である。It is sectional drawing of the 1st guide roller or the 2nd guide roller. 第一のガイドローラまたは第二のガイドローラの周溝の断面図である。It is sectional drawing of the peripheral groove of the 1st guide roller or the 2nd guide roller. 一般的な従来のガイドローラの周溝の断面図である。It is sectional drawing of the peripheral groove of a general conventional guide roller. カバーの入線側開口部における、清浄気体の噴出よる浮遊塵等の異物の挙動を説明する図である。It is a figure explaining the behavior of the foreign matter such as the floating dust by the ejection of the clean gas in the opening on the entrance side of a cover.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
本開示の一態様に係る線状体の凹凸検出装置は、
(1) 走行する線状体に対して光を投光する投光部と、
該投光部から投光した光を受光する受光部と、
前記投光部と前記受光部との間の検出空間を通過する前記線状体に対して、上流側の走行を案内する第一のガイドローラと、
前記検出空間を通過する前記線状体に対して、下流側の走行を案内する第二のガイドローラと、
前記投光部と前記受光部と前記第一のガイドローラと第二のガイドローラと、を覆うカバーと、
清浄気体を前記カバー内に供給する供給部と、
を有し、
前記カバーには、前記供給部に連通された給気部と、前記線状体が入線する入線側開口部と、前記線状体が出線する出線側開口部とが設けられている。
上記の線状体の凹凸検出装置によれば、検出空間は、清浄気体が供給されたカバーの中にあるので、浮遊塵等の異物が入ることを抑制できる。さらに、検出空間を通過する前後でそれぞれ線状体を案内するガイドローラ(第一のガイドローラおよび第二のガイドローラ)も、清浄気体が供給されたカバーの中にある。これにより、供給される清浄気体の風圧による線状体の線振れを抑えて、両ガイドローラによって検出空間における線状体の走行を安定させることができる。よって、検出空間で検査される線状体に対する凹凸の誤検出を少なくすることができる。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
The linear unevenness detection device according to one aspect of the present disclosure is
(1) A light projecting unit that emits light to a traveling linear body,
A light receiving unit that receives the light projected from the light projecting unit and a light receiving unit.
A first guide roller that guides the traveling on the upstream side with respect to the linear body passing through the detection space between the light emitting portion and the light receiving portion.
A second guide roller that guides the traveling on the downstream side with respect to the linear body passing through the detection space, and
A cover that covers the light projecting portion, the light receiving portion, the first guide roller, and the second guide roller.
A supply unit that supplies clean gas into the cover,
Have,
The cover is provided with an air supply portion that communicates with the supply portion, an inlet side opening through which the linear body enters, and an exit side opening through which the linear body exits.
According to the above-mentioned linear body unevenness detection device, since the detection space is inside the cover to which the clean gas is supplied, it is possible to suppress the entry of foreign matter such as floating dust. Further, guide rollers (first guide roller and second guide roller) that guide the linear body before and after passing through the detection space are also in the cover supplied with the clean gas. As a result, the striatum of the linear body due to the wind pressure of the supplied clean gas can be suppressed, and the running of the linear body in the detection space can be stabilized by both guide rollers. Therefore, it is possible to reduce erroneous detection of unevenness on the linear body inspected in the detection space.

(2) 前記第一のガイドローラおよび前記第二のガイドローラは、それぞれV字状の周溝を有し、
前記周溝は、V字を形成する第一側面と第二側面とを備え、
前記第一側面と前記第二側面とが、走行する前記線状体に接触するように形成されていてもよい。
上記の線状体の凹凸検出装置によれば、両ガイドローラ(第一のガイドローラおよび第二のガイドローラ)は、周溝で走行する線状体を挟み込むようにすることができるので、線状体の線振れを抑制することができる。
(2) The first guide roller and the second guide roller each have a V-shaped peripheral groove.
The circumferential groove comprises a first side surface and a second side surface forming a V shape.
The first side surface and the second side surface may be formed so as to be in contact with the traveling linear body.
According to the above-mentioned unevenness detection device for the linear body, both guide rollers (the first guide roller and the second guide roller) can sandwich the linear body traveling in the peripheral groove, so that the wire can be sandwiched. It is possible to suppress the striatum of the shape.

本開示の一態様に係る線状体の凹凸検出方法は、
(3) 投光部と、受光部と、前記投光部と前記受光部とにより線状体の表面の凹凸を光学的に検出する検出空間と、第一のガイドローラと、第二のガイドローラと、がカバーにより覆われており、
前記カバー内に清浄気体を供給して、
前記カバーに設けられた入線側開口部から前記カバー内に前記線状体を入線させ、
前記カバー内に入線された前記線状体を前記第一のガイドローラで前記検出空間へ案内し、
前記検出空間を走行する前記線状体に対して前記投光部から光を投光し、該投光した光を前記受光部で受光して、前記線状体の表面の凹凸を光学的に検出し、
前記検出空間を通過した前記線状体を前記第二のガイドローラで前記カバーに設けられた出線側開口部へ案内する。
上記の線状体の凹凸検出方法によれば、清浄気体が供給されたカバーの中にある検出空間で、線状体の表面の凹凸を検出するので、浮遊塵等の異物が検出空間に入ることを抑制できる。また、検出空間の前後のガイドローラ(第一のガイドローラおよび第二のガイドローラ)もカバーにより覆われている。これにより、供給される清浄気体の風圧による線状体の線振れを抑えて、両ガイドローラによって検出空間における線状体の走行を安定させることができる。よって、検出空間で検査される線状体に対する凹凸の誤検出を少なくすることができる。
The method for detecting unevenness of a linear body according to one aspect of the present disclosure is as follows.
(3) A detection space for optically detecting unevenness on the surface of the linear body by the light projecting portion, the light receiving portion, the light emitting portion and the light receiving portion, a first guide roller, and a second guide. The rollers and are covered with a cover,
A clean gas is supplied into the cover,
The linear body is made to enter the cover through the opening on the incoming wire side provided in the cover.
The linear body entered in the cover is guided to the detection space by the first guide roller.
Light is projected from the light projecting portion onto the linear body traveling in the detection space, and the projected light is received by the light receiving unit to optically check the unevenness of the surface of the linear body. Detect and
The linear body that has passed through the detection space is guided by the second guide roller to the wire exit side opening provided in the cover.
According to the above-mentioned method for detecting unevenness of the linear body, the unevenness of the surface of the linear body is detected in the detection space inside the cover to which the clean gas is supplied, so that foreign matter such as floating dust enters the detection space. Can be suppressed. The guide rollers (first guide roller and second guide roller) before and after the detection space are also covered with a cover. As a result, the striatum of the linear body due to the wind pressure of the supplied clean gas can be suppressed, and the running of the linear body in the detection space can be stabilized by both guide rollers. Therefore, it is possible to reduce erroneous detection of unevenness on the linear body inspected in the detection space.

(4) 前記入線側開口部から、前記カバーの外に前記清浄気体を噴出させてもよい。
上記の線状体の凹凸検出方法によれば、カバーにおける線状体の入線側開口部から、カバーの外に清浄気体を噴出させながら、線状体の表面の凹凸を検出する。これにより、浮遊塵等の異物が入線側開口部から線状体の牽引流によってカバーの中に入ることを抑制することができる。
(4) The clean gas may be ejected from the inlet side opening to the outside of the cover.
According to the above-mentioned method for detecting unevenness of the linear body, the unevenness of the surface of the linear body is detected while the clean gas is ejected to the outside of the cover from the opening on the incoming line side of the linear body in the cover. As a result, it is possible to prevent foreign matter such as floating dust from entering the cover by the traction flow of the linear body from the opening on the incoming line side.

(5) 前記入線側開口部から噴出する前記清浄気体の流速が、前記入線側開口部から入線する前記線状体の線速よりも大きくてもよい。
上記の線状体の凹凸検出方法によれば、入線側開口部から噴出する清浄気体の流速が、入線側開口部から入線する線状体の線速よりも大きいので、浮遊塵等の異物が入線側開口部から線状体の牽引流によってカバーの中に入ることをより確実に抑制することができる。
(5) The flow velocity of the clean gas ejected from the entry-side opening may be larger than the linear velocity of the linear body entering from the entry-side opening.
According to the above-mentioned method for detecting unevenness of a linear body, the flow velocity of the clean gas ejected from the opening on the incoming line side is larger than the linear velocity of the linear body entering from the opening on the incoming line side, so that foreign matter such as floating dust is present. It is possible to more reliably suppress the entry into the cover by the traction flow of the linear body from the opening on the entry side.

[本開示の実施形態の詳細]
本開示の実施形態に係る線状体の凹凸検出装置及び凹凸検出方法の具体例を、以下に図面を参照しつつ説明する。
なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of Embodiments of the present disclosure]
Specific examples of the linear body unevenness detection device and the unevenness detection method according to the embodiment of the present disclosure will be described below with reference to the drawings.
It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

図1は、本開示の実施形態に係る線状体の凹凸検出装置の一例を示す概略構成図である。図2は、検出部10のA-A線の模式的な断面図である。
図1に示すように、本例の線状体の凹凸検出装置1は、検出部10と、第一のガイドローラ20と、第二のガイドローラ30と、カバー40と、供給部50とを備えている。
FIG. 1 is a schematic configuration diagram showing an example of a linear unevenness detection device according to an embodiment of the present disclosure. FIG. 2 is a schematic cross-sectional view taken along the line AA of the detection unit 10.
As shown in FIG. 1, the linear body unevenness detection device 1 of this example includes a detection unit 10, a first guide roller 20, a second guide roller 30, a cover 40, and a supply unit 50. I have.

検出部10は、走行する光ファイバ心線2(線状体の一例)が、検出部本体11によって囲まれるように形成された検出空間12の中央に位置するように設けられている。光ファイバ心線2は、線引き工程によって作製された光ファイバに複数の樹脂層が被覆されており、さらにその外周に着色層が被覆された構成である。 The detection unit 10 is provided so that the traveling optical fiber core wire 2 (an example of a linear body) is located at the center of the detection space 12 formed so as to be surrounded by the detection unit main body 11. The optical fiber core wire 2 has a configuration in which a plurality of resin layers are coated on an optical fiber produced by a wire drawing step, and a colored layer is further coated on the outer periphery thereof.

検出部10は、投光部13および受光部14を2対備えている。これらは、1つの投光部13に対してそれぞれ1つの受光部14が対向するように配置されている。検出部本体11の内部には、受光部14に接続された判別部(図示せず)が設けられている。この判別部は、受光部14に受光された受光量のデータを継続して読み取るとともに、その直前までの一定時間に蓄積された受光量の平均値を算出し、読み取り値との差分を演算する。そして、差分量が予め設定された一定量を超えた時に、凹凸検出の信号を出力する。 The detection unit 10 includes two pairs of a light projecting unit 13 and a light receiving unit 14. These are arranged so that one light receiving unit 14 faces each of one light emitting unit 13. Inside the detection unit main body 11, a discrimination unit (not shown) connected to the light receiving unit 14 is provided. This discriminating unit continuously reads the data of the amount of received light received by the light receiving unit 14, calculates the average value of the amount of received light accumulated in a certain period of time immediately before that, and calculates the difference from the read value. .. Then, when the difference amount exceeds a preset fixed amount, a signal for detecting unevenness is output.

第一のガイドローラ20は、検出空間12を通過する光ファイバ心線2に対して、光ファイバ心線2が走行する方向の上流側(以下、単に上流側と称する)の走行を案内するように設けられている。第二のガイドローラ30は、検出空間12を通過する光ファイバ心線2に対して、光ファイバ心線2が走行する方向の下流側(以下、単に下流側と称する)の走行を案内するように設けられている。 The first guide roller 20 guides the optical fiber core wire 2 passing through the detection space 12 to travel on the upstream side (hereinafter, simply referred to as the upstream side) in the direction in which the optical fiber core wire 2 travels. It is provided in. The second guide roller 30 guides the optical fiber core wire 2 passing through the detection space 12 to travel on the downstream side (hereinafter, simply referred to as the downstream side) in the direction in which the optical fiber core wire 2 travels. It is provided in.

カバー40は、検出部10と、第一のガイドローラ20と、第二のガイドローラ30と、を覆うように設けられている。供給部50は、カバー40の外部に設けられており、清浄気体3を矢印で示すようにカバー40内に供給している。 The cover 40 is provided so as to cover the detection unit 10, the first guide roller 20, and the second guide roller 30. The supply unit 50 is provided outside the cover 40, and supplies the clean gas 3 into the cover 40 as shown by an arrow.

カバー40には、上流側の側面40aに、光ファイバ心線2が入線する入線側開口部41が設けられている。下流側の側面40bには、光ファイバ心線2が出線する出線側開口部42が設けられている。また、側面40bには、供給部50に連通された給気部43が設けられている。 The cover 40 is provided with an inlet side opening 41 on the upstream side surface 40a into which the optical fiber core wire 2 enters. The side surface 40b on the downstream side is provided with an exit side opening 42 through which the optical fiber core wire 2 exits. Further, the side surface 40b is provided with an air supply unit 43 that communicates with the supply unit 50.

図3は、第一のガイドローラ20(第二のガイドローラ30)の断面図である。図4は、光ファイバ心線2が走行している状態における第一のガイドローラ20(第二のガイドローラ30)の周溝の断面図である。 FIG. 3 is a cross-sectional view of the first guide roller 20 (second guide roller 30). FIG. 4 is a cross-sectional view of a peripheral groove of the first guide roller 20 (second guide roller 30) in a state where the optical fiber core wire 2 is running.

図3に示すように、第一のガイドローラ20および第二のガイドローラ30は、それぞれV字状の周溝21(31)を有している。周溝21(31)は、V字を形成する第一側面22(32)と第二側面23(33)とを備えている。図4に示すように、第一のガイドローラ20(第二のガイドローラ30)は、第一側面22(32)と第二側面23(33)とからなる挟角が鋭角になるように形成されており、底面24(34)の幅W1は、光ファイバ心線2の外径Rより小さくなっている。なお、光ファイバ心線2の外径は0.2mm程度である。したがって、第一側面22(32)と第二側面23(33)とは、走行する光ファイバ心線2に接触するように形成されている。 As shown in FIG. 3, the first guide roller 20 and the second guide roller 30 each have a V-shaped peripheral groove 21 (31). The peripheral groove 21 (31) includes a first side surface 22 (32) and a second side surface 23 (33) forming a V shape. As shown in FIG. 4, the first guide roller 20 (second guide roller 30) is formed so that the sandwiching angle composed of the first side surface 22 (32) and the second side surface 23 (33) is an acute angle. The width W1 of the bottom surface 24 (34) is smaller than the outer diameter R of the optical fiber core wire 2. The outer diameter of the optical fiber core wire 2 is about 0.2 mm. Therefore, the first side surface 22 (32) and the second side surface 23 (33) are formed so as to be in contact with the traveling optical fiber core wire 2.

本実施形態に係る線状体の凹凸検出装置1で使用されるガイドローラ(第一のガイドローラ20、第二のガイドローラ30)と従来のガイドローラとの周溝の構造を比較するため、一般的な従来のガイドローラ120の周溝121の断面を図5に示す。 In order to compare the structure of the peripheral groove between the guide roller (first guide roller 20, second guide roller 30) and the conventional guide roller used in the linear body unevenness detection device 1 according to the present embodiment. FIG. 5 shows a cross section of the peripheral groove 121 of a general conventional guide roller 120.

図5に示すように、従来のガイドローラ120は、周溝121の底部124の幅W2が、光ファイバ心線2の外径Rよりも大きくなっている。これは、周溝121の側面122,123を鋭角に形成するには、高精度の機械加工が要求されるため、周溝121の底部124を狭く形成することが難しいためである。このため、従来のガイドローラ120を用いて光ファイバ心線2を走行させた場合、周溝121の側面122,123の間で走行位置が動いて、ふらつくように走行するおそれがある。このため、光ファイバ心線2の走行時に、線振れが生じるおそれがある。 As shown in FIG. 5, in the conventional guide roller 120, the width W2 of the bottom portion 124 of the peripheral groove 121 is larger than the outer diameter R of the optical fiber core wire 2. This is because it is difficult to form the bottom portion 124 of the peripheral groove 121 narrowly because high-precision machining is required to form the side surfaces 122 and 123 of the peripheral groove 121 at an acute angle. Therefore, when the optical fiber core wire 2 is traveled by using the conventional guide roller 120, the traveling position may move between the side surfaces 122 and 123 of the peripheral groove 121, and the optical fiber core wire 2 may travel in a wobbling manner. Therefore, there is a possibility that line runout may occur when the optical fiber core wire 2 travels.

上記の従来のガイドローラ120に対して、第一のガイドローラ20(第二のガイドローラ30)は、第一側面22(32)と第二側面23(33)とは、走行する光ファイバ心線2に接触するように形成されている。これにより、周溝21(31)で走行する光ファイバ心線2を挟み込むようにすることができる。したがって、光ファイバ心線2の走行時の線振れを抑制することができる。 In contrast to the conventional guide roller 120 described above, the first guide roller 20 (second guide roller 30) has an optical fiber core on which the first side surface 22 (32) and the second side surface 23 (33) travel. It is formed so as to come into contact with the wire 2. As a result, the optical fiber core wire 2 traveling in the peripheral groove 21 (31) can be sandwiched. Therefore, it is possible to suppress line runout during traveling of the optical fiber core wire 2.

次に、図1~図4を参照して、光ファイバ心線(線状体の一例)2の凹凸検出方法について説明する。
本例では、着色工程で着色層が被覆された光ファイバ心線2に対して、着色層の凹凸を検出する。まず、図1の矢印で示すように清浄気体3をカバー40内に供給する。カバー40内が清浄気体3で満たされた後に、入線側開口部41からカバー40内に光ファイバ心線2を入線させる。カバー40内に入線された光ファイバ心線2を第一のガイドローラ20で検出空間12へ案内する。検出空間12を走行する光ファイバ心線2に対して投光部13から光を投光し、投光した光を受光部14で受光して、光ファイバ心線2の表面の凹凸を光学的に検出する。
Next, with reference to FIGS. 1 to 4, a method for detecting unevenness of the optical fiber core wire (an example of a linear body) 2 will be described.
In this example, the unevenness of the colored layer is detected with respect to the optical fiber core wire 2 coated with the colored layer in the coloring step. First, as shown by the arrow in FIG. 1, the clean gas 3 is supplied into the cover 40. After the inside of the cover 40 is filled with the clean gas 3, the optical fiber core wire 2 is inserted into the cover 40 from the entrance side opening 41. The optical fiber core wire 2 entered in the cover 40 is guided to the detection space 12 by the first guide roller 20. Light is projected from the light projecting unit 13 onto the optical fiber core wire 2 traveling in the detection space 12, and the projected light is received by the light receiving unit 14, and the unevenness of the surface of the optical fiber core wire 2 is optically measured. To detect.

具体的には、2つの投光部13から光ファイバ心線2に対して帯状にレーザ光(投光する光の一例)を投光する。また、1つの投光部13に対してそれぞれ1つの受光部14が対向するように配置され、受光部14は光ファイバ心線2の周囲を通過したレーザ光を受光する。したがって、受光部14は、投光部13から投光した光のうち、光ファイバ心線2によって遮られた光の分だけ少ない光量を受光する。 Specifically, laser light (an example of the light to be projected) is projected from the two light projecting units 13 onto the optical fiber core wire 2 in a band shape. Further, one light receiving unit 14 is arranged so as to face one light projecting unit 13, and the light receiving unit 14 receives the laser light that has passed around the optical fiber core wire 2. Therefore, the light receiving unit 14 receives a small amount of light among the light projected from the light projecting unit 13 by the amount of light blocked by the optical fiber core wire 2.

判別部(図示せず)は、受光部14に受光された受光量のデータを継続して読み取るとともに、その直前までの一定時間に蓄積された受光量の平均値を算出し、読み取り値との差分を演算する。この差分量が予め設定された一定量を超えた時に、凹凸検出の信号を出力する。 The discriminating unit (not shown) continuously reads the data of the amount of received light received by the light receiving unit 14, calculates the average value of the amount of received light accumulated in a certain period of time immediately before that, and uses the reading value as the reading value. Calculate the difference. When this difference amount exceeds a preset fixed amount, a signal for detecting unevenness is output.

投光された光ファイバ心線2の表面に凹凸が無いときには、受光部14によって受光されるレーザ光が一定量であるが、表面に凹凸のある部分が検出空間12に進入して投光されると、光ファイバ心線2によって遮蔽される光量が変化する。これにより、受光部14に受光されるレーザ光の光量が変化して、凹凸の存在を検出する。 When there is no unevenness on the surface of the projected optical fiber core wire 2, the amount of laser light received by the light receiving unit 14 is a certain amount, but the uneven portion on the surface enters the detection space 12 and is projected. Then, the amount of light shielded by the optical fiber core wire 2 changes. As a result, the amount of laser light received by the light receiving unit 14 changes, and the presence of unevenness is detected.

検出空間12を通過した光ファイバ心線2を、第二のガイドローラ30で出線側開口部42へ案内する。これにより、光ファイバ心線2は出線側開口部42から、カバー40の外部に出線し、例えば図示しない巻き取り用のドラムに巻き取られる。 The optical fiber core wire 2 that has passed through the detection space 12 is guided to the wire exit side opening 42 by the second guide roller 30. As a result, the optical fiber core wire 2 is drawn out from the wire exit side opening 42 to the outside of the cover 40, and is wound up by, for example, a winding drum (not shown).

また、図6に示すように、上記の光ファイバ心線2の凹凸検出の実行中に、カバー40の側面40aに設けられた入線側開口部41から、カバー40の外に清浄気体3を噴出させている。このとき、入線側開口部41から噴出させる清浄気体3の流速は、入線側開口部41から矢印Bで示す方向に牽引されて入線する光ファイバ心線2の線速よりも大きい。すなわち、供給部50からの清浄気体3の供給量が大きいので、カバー40内が加圧された状態になっている。 Further, as shown in FIG. 6, during the execution of the unevenness detection of the optical fiber core wire 2, the clean gas 3 is ejected to the outside of the cover 40 from the wire entry side opening 41 provided on the side surface 40a of the cover 40. I'm letting you. At this time, the flow velocity of the clean gas 3 ejected from the entry-side opening 41 is higher than the linear velocity of the optical fiber core wire 2 pulled from the entry-side opening 41 in the direction indicated by the arrow B. That is, since the amount of the clean gas 3 supplied from the supply unit 50 is large, the inside of the cover 40 is in a pressurized state.

入線側開口部41から噴出する清浄気体3の流速が、入線側開口部41から入線する光ファイバ心線2の線速よりも大きい。そのため、図6の矢印Cで示すように、浮遊塵等の異物4が入線側開口部41から、光ファイバ心線2の牽引流によってカバー40の中に入ることを抑制することができる。 The flow velocity of the clean gas 3 ejected from the inlet side opening 41 is larger than the linear velocity of the optical fiber core wire 2 entering from the inlet side opening 41. Therefore, as shown by the arrow C in FIG. 6, it is possible to prevent foreign matter 4 such as floating dust from entering the cover 40 from the entrance side opening 41 by the traction flow of the optical fiber core wire 2.

以上のように、本実施形態に係る線状体の凹凸検出装置1および凹凸検出方法によれば、検出空間12は、清浄気体3が供給されたカバー40の中にあるので、浮遊塵等の異物4が入ることを抑制できる。さらに、検出空間12を通過する前後でそれぞれ光ファイバ心線2を案内するガイドローラ(第一のガイドローラ20および第二のガイドローラ30)も、清浄気体3が供給されたカバー40の中にある。これにより、供給される清浄気体3の風圧による光ファイバ心線2の線振れを抑えて、両ガイドローラ20,30によって検出空間12における光ファイバ心線2の走行を安定させることができる。よって、検出空間12で検査される光ファイバ心線2に対する凹凸の誤検出を少なくすることができる。 As described above, according to the linear body unevenness detection device 1 and the unevenness detection method according to the present embodiment, the detection space 12 is in the cover 40 to which the clean gas 3 is supplied, so that floating dust and the like can be prevented. It is possible to prevent foreign matter 4 from entering. Further, the guide rollers (first guide roller 20 and second guide roller 30) that guide the optical fiber core wire 2 before and after passing through the detection space 12 are also contained in the cover 40 to which the clean gas 3 is supplied. be. As a result, the line runout of the optical fiber core wire 2 due to the wind pressure of the supplied clean gas 3 can be suppressed, and the running of the optical fiber core wire 2 in the detection space 12 can be stabilized by the guide rollers 20 and 30. Therefore, it is possible to reduce erroneous detection of unevenness on the optical fiber core wire 2 inspected in the detection space 12.

(実施例)
実施例では、本実施形態に係る線状体の凹凸検出装置1を用いて、上記の本実施形態に係る線状体の凹凸検出方法によって、光ファイバ心線2の凹凸を検出した。
比較例では、従来の線状体の凹凸検出装置を用いて、光ファイバ心線2の凹凸を検出した。この比較例における線状体の凹凸検出装置は、本実施形態に係る線状体の凹凸検出装置1の第一のガイドローラ20および第二のガイドローラ30を、図5で示した周溝121を備えた従来のガイドローラ120に替え、カバー40を取り外し、検出部10のみをカバーで覆った構造に相当するものである。
(Example)
In the embodiment, the unevenness detection device 1 of the linear body according to the present embodiment was used to detect the unevenness of the optical fiber core wire 2 by the above-mentioned method for detecting the unevenness of the linear body according to the present embodiment.
In the comparative example, the unevenness of the optical fiber core wire 2 was detected by using a conventional linear body unevenness detection device. In the linear body unevenness detecting device in this comparative example, the first guide roller 20 and the second guide roller 30 of the linear body unevenness detecting device 1 according to the present embodiment are provided with the peripheral groove 121 shown in FIG. This corresponds to a structure in which the cover 40 is removed and only the detection unit 10 is covered with a cover instead of the conventional guide roller 120 provided with the above.

上記実施例および比較例において、光ファイバ心線2の線振れ量と誤検出発生頻度を測定した。測定時は、供給部50からの清浄気体3の供給量を0.5m/分とした。そして、入線側開口部41および出線側開口部42を、φ10mmの円形の開口とした。これにより、入線側開口部41および出線側開口部42から噴出する清浄気体3の流速は、3183m/分となった。 In the above Examples and Comparative Examples, the amount of line runout of the optical fiber core wire 2 and the frequency of erroneous detection occurred were measured. At the time of measurement, the amount of clean gas 3 supplied from the supply unit 50 was set to 0.5 m 3 / min. Then, the incoming line side opening 41 and the outgoing line side opening 42 are made into circular openings having a diameter of 10 mm. As a result, the flow velocity of the clean gas 3 ejected from the incoming line side opening 41 and the outgoing line side opening 42 became 3183 m / min.

測定は次のようにして実施した。着色層が被覆されている光ファイバ心線2を、上記実施例および比較例の線状体の凹凸検出装置でそれぞれ1000km走行させた。そして、光ファイバ心線2の表面(着色層)の凹凸が、検出部10で検出された時点で光ファイバ心線2を切断し、当該箇所に凹凸が有るか否かを触診によって確認した。この確認の際に、凹凸が無かった場合は誤検出とし、この誤検出の回数をカウントした。また、検出部10によって、走行する線振れの量を測定した。 The measurement was carried out as follows. The optical fiber core wire 2 coated with the colored layer was run for 1000 km by the linear concavo-convexity detection devices of the above-mentioned Example and Comparative Example, respectively. Then, when the unevenness of the surface (colored layer) of the optical fiber core wire 2 was detected by the detection unit 10, the optical fiber core wire 2 was cut, and it was confirmed by palpation whether or not the portion had irregularities. At the time of this confirmation, if there was no unevenness, it was regarded as an erroneous detection, and the number of times of this erroneous detection was counted. In addition, the amount of running line runout was measured by the detection unit 10.

比較例は、光ファイバ心線2の線速を、1000m/分とした場合と、1500m/分とした場合の2通りの線速でそれぞれ測定を行った。
実施例は、光ファイバ心線2の線速を、1500m/分として測定を行った。
下記の表1では、比較例における、光ファイバ心線2の線速が1000m/分の場合での測定結果を1.0(基準)として、この基準に対して線振れ量と誤検出発生頻度(光ファイバ心線2を1000km走行させた際の誤検出の回数)を表した。
In the comparative example, the measurement was performed at two different linear speeds, one when the optical fiber core wire 2 was set to 1000 m / min and the other when the optical fiber core wire 2 was set to 1500 m / min.
In the examples, the linear speed of the optical fiber core wire 2 was set to 1500 m / min for measurement.
In Table 1 below, the measurement result when the linear speed of the optical fiber core wire 2 is 1000 m / min in the comparative example is 1.0 (reference), and the amount of line runout and the frequency of false detection occur with respect to this reference. (The number of erroneous detections when the optical fiber core wire 2 is run for 1000 km) is shown.

Figure 2022018310000002
Figure 2022018310000002

表1の結果に示すように、実施例は、光ファイバ心線2の線速が比較例と同じ場合と比べて、線振れ量および誤検出発生頻度が小さくなった。そして、表1の比較例の結果からわかるように、同じ装置であれば、光ファイバ心線2の線速が速くなると線振れ量および誤検出発生頻度は大きくなる。実施例は、比較例の光ファイバ心線2の線速が実施例よりも遅い場合と比べても、線振れ量および誤検出発生頻度が小さくなった。 As shown in the results of Table 1, in the examples, the amount of line runout and the frequency of erroneous detection were smaller than in the case where the linear velocity of the optical fiber core wire 2 was the same as that in the comparative example. As can be seen from the results of the comparative examples in Table 1, if the same device is used, the amount of line runout and the frequency of erroneous detection increase as the line speed of the optical fiber core wire 2 increases. In the examples, the amount of line runout and the frequency of false detections were smaller than in the case where the line speed of the optical fiber core wire 2 of the comparative example was slower than that of the examples.

上記のように、実施例は比較例よりも線振れ量が小さいので、検出空間12における光ファイバ心線2の走行が安定している。また、実施例は比較例よりも誤検出発生頻度が小さいので、検出空間12で検査される光ファイバ心線2に対する凹凸の誤検出を少なくすることができる。さらに、実施例は光ファイバ心線2の線速が遅い場合よりも、線振れ量および誤検出発生頻度が小さいので、光ファイバ心線2の凹凸検査を高速に行うことが可能である。 As described above, since the amount of line runout in the examples is smaller than that in the comparative example, the running of the optical fiber core wire 2 in the detection space 12 is stable. Further, since the erroneous detection occurrence frequency is lower in the examples than in the comparative example, it is possible to reduce the erroneous detection of the unevenness of the optical fiber core wire 2 inspected in the detection space 12. Further, in the embodiment, the amount of line runout and the frequency of erroneous detection are smaller than in the case where the linear velocity of the optical fiber core wire 2 is slow, so that the unevenness inspection of the optical fiber core wire 2 can be performed at high speed.

上記実施形態では、着色層が被覆された光ファイバ心線を線状体としたが、本開示はこれに限定されない。本開示に係る線状体の凹凸検出装置及び凹凸検出方法における線状体は、例えば、被覆が施された光ファイバ素線、光ファイバ心線がテープ樹脂で連結された光ファイバテープ心線、被覆が施された金属線等の線状体であってもよい。すなわち、これらの被覆やテープ樹脂の凹凸の検出にも適用できる。 In the above embodiment, the optical fiber core wire coated with the colored layer is a linear body, but the present disclosure is not limited to this. The linear body in the unevenness detection device and the unevenness detection method of the linear body according to the present disclosure includes, for example, a coated optical fiber wire, an optical fiber tape core wire in which optical fiber core wires are connected by a tape resin, and the like. It may be a linear body such as a coated metal wire. That is, it can also be applied to detect the unevenness of these coatings and tape resins.

以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Further, the number, position, shape and the like of the constituent members described above are not limited to the above-described embodiment, and can be changed to a number, position, shape and the like suitable for carrying out the present invention.

1:凹凸検出装置
2:光ファイバ心線(線状体の一例)
3:清浄気体
4:異物
10:検出部
11:検出部本体
12:検出空間
13:投光部
14:受光部
20:第一のガイドローラ
30:第二のガイドローラ
21、31:周溝
22、32:第一側面
23、33:第二側面
24、34:底面
40:カバー
40a、40b:カバーの側面
41:入線側開口部
42:出線側開口部
43:給気部
50:供給部
1: Concavo-convexity detection device 2: Optical fiber core wire (an example of a linear body)
3: Clean gas 4: Foreign matter 10: Detection unit 11: Detection unit body 12: Detection space 13: Floodlight unit 14: Light receiving unit 20: First guide roller 30: Second guide roller 21, 31: Circumferential groove 22 , 32: First side surface 23, 33: Second side surface 24, 34: Bottom surface 40: Cover 40a, 40b: Cover side surface 41: Ingress side opening 42: Out line side opening 43: Air supply part 50: Supply part

Claims (5)

走行する線状体に対して光を投光する投光部と、
該投光部から投光した光を受光する受光部と、
前記投光部と前記受光部との間の検出空間を通過する前記線状体に対して、上流側の走行を案内する第一のガイドローラと、
前記検出空間を通過する前記線状体に対して、下流側の走行を案内する第二のガイドローラと、
前記投光部と前記受光部と前記第一のガイドローラと第二のガイドローラと、を覆うカバーと、
清浄気体を前記カバー内に供給する供給部と、
を有し、
前記カバーには、前記供給部に連通された給気部と、前記線状体が入線する入線側開口部と、前記線状体が出線する出線側開口部とが設けられている、
線状体の凹凸検出装置。
A light projecting unit that emits light to a traveling linear body,
A light receiving unit that receives the light projected from the light projecting unit and a light receiving unit.
A first guide roller that guides the traveling on the upstream side with respect to the linear body passing through the detection space between the light emitting portion and the light receiving portion.
A second guide roller that guides the traveling on the downstream side with respect to the linear body passing through the detection space, and
A cover that covers the light projecting portion, the light receiving portion, the first guide roller, and the second guide roller.
A supply unit that supplies clean gas into the cover,
Have,
The cover is provided with an air supply portion that communicates with the supply portion, an inlet side opening through which the linear body enters, and an exit side opening through which the linear body exits.
A device for detecting unevenness of a linear body.
前記第一のガイドローラおよび前記第二のガイドローラは、それぞれV字状の周溝を有し、
前記周溝は、V字を形成する第一側面と第二側面とを備え、
前記第一側面と前記第二側面とが、走行する前記線状体に接触するように形成されている、
請求項1記載の線状体の凹凸検出装置。
The first guide roller and the second guide roller each have a V-shaped peripheral groove.
The circumferential groove comprises a first side surface and a second side surface forming a V shape.
The first side surface and the second side surface are formed so as to be in contact with the traveling linear body.
The unevenness detection device for a linear body according to claim 1.
投光部と、受光部と、前記投光部と前記受光部とにより線状体の表面の凹凸を光学的に検出する検出空間と、第一のガイドローラと、第二のガイドローラと、がカバーにより覆われており、
前記カバー内に清浄気体を供給して、
前記カバーに設けられた入線側開口部から前記カバー内に前記線状体を入線させ、
前記カバー内に入線された前記線状体を前記第一のガイドローラで前記検出空間へ案内し、
前記検出空間を走行する前記線状体に対して前記投光部から光を投光し、該投光した光を前記受光部で受光して、前記線状体の表面の凹凸を光学的に検出し、
前記検出空間を通過した前記線状体を前記第二のガイドローラで前記カバーに設けられた出線側開口部へ案内する、
線状体の凹凸検出方法。
A detection space for optically detecting the unevenness of the surface of the linear body by the light projecting portion, the light receiving portion, the light emitting portion and the light receiving portion, a first guide roller, a second guide roller, and the like. Is covered with a cover,
A clean gas is supplied into the cover,
The linear body is made to enter the cover through the opening on the incoming wire side provided in the cover.
The linear body entered in the cover is guided to the detection space by the first guide roller.
Light is projected from the light projecting portion onto the linear body traveling in the detection space, and the projected light is received by the light receiving unit to optically check the unevenness of the surface of the linear body. Detect and
The linear body that has passed through the detection space is guided by the second guide roller to the wire exit side opening provided in the cover.
Method for detecting unevenness of a linear body.
前記入線側開口部から、前記カバーの外に前記清浄気体を噴出させる、
請求項3に記載の線状体の凹凸検出方法。
The clean gas is ejected from the inlet side opening to the outside of the cover.
The method for detecting unevenness of a linear body according to claim 3.
前記入線側開口部から噴出する前記清浄気体の流速が、前記入線側開口部から入線する前記線状体の線速よりも大きい、
請求項4に記載の線状体の凹凸検出方法。
The flow velocity of the clean gas ejected from the entry-side opening is larger than the linear velocity of the linear body entering from the entry-side opening.
The method for detecting unevenness of a linear body according to claim 4.
JP2020121339A 2020-07-15 2020-07-15 Unevenness detection device and unevenness detection method for linear body Pending JP2022018310A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020121339A JP2022018310A (en) 2020-07-15 2020-07-15 Unevenness detection device and unevenness detection method for linear body
CN202110800971.4A CN113945576A (en) 2020-07-15 2021-07-15 Device and method for detecting unevenness of linear body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121339A JP2022018310A (en) 2020-07-15 2020-07-15 Unevenness detection device and unevenness detection method for linear body

Publications (1)

Publication Number Publication Date
JP2022018310A true JP2022018310A (en) 2022-01-27

Family

ID=79327448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121339A Pending JP2022018310A (en) 2020-07-15 2020-07-15 Unevenness detection device and unevenness detection method for linear body

Country Status (2)

Country Link
JP (1) JP2022018310A (en)
CN (1) CN113945576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172939A1 (en) 2021-02-09 2022-08-18 パウダーテック株式会社 Magnetic composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172939A1 (en) 2021-02-09 2022-08-18 パウダーテック株式会社 Magnetic composite

Also Published As

Publication number Publication date
CN113945576A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
EP2354069B1 (en) Yarn winding machine
AU651687B2 (en) Method for screening optical fiber and apparatus for carrying out method
JP2022018310A (en) Unevenness detection device and unevenness detection method for linear body
JP2012042354A (en) Inspection apparatus for optical fiber tape core, manufacturing apparatus, and inspection method for optical fiber tape core
JP5636831B2 (en) Fiber strip measuring device and yarn winding machine
CN106030364A (en) Method of manufacturing optical fiber tape, abnormality detection method and manufacturing system
EP3044561A1 (en) Systems and methods for inspecting wound optical fiber
JP2016531291A (en) Apparatus and method for detecting defects in strip material
US10816534B2 (en) Yarn sensor for optically sensing a yarn moved in the longitudinal direction of the yarn
CN105800962B (en) The manufacturing method of guide reel and optical fiber
EP2657382A2 (en) Yarn monitoring device and yarn winding machine including the same
WO1995021800A1 (en) Covered optical fiber and process for producing the same
EP2905248B1 (en) Yarn catching device and yarn winding machine
US6309567B1 (en) Collectively coating die device for manufacturing separable optical fiber ribbon and manufacturing method thereof
CN104860114A (en) Yarn Coiling Device
JP2004012414A (en) Method and apparatus for detecting unevenness of wire-shaped article
NL1028647C2 (en) Inspection device for metal rings of a continuously variable transmission belt.
JP5904195B2 (en) Inspection device and inspection method for optical fiber ribbon
CN113767056B (en) Apparatus and method for detecting whip tail during fiber winding
JP2023091254A (en) Filament-unevenness detection apparatus
KR950005390B1 (en) Multiple ring guide for payout
JP4760254B2 (en) Linear body appearance detection method and appearance detection apparatus
KR940008676B1 (en) Optical fiber guide
JPH09145304A (en) Inspection method for tube or tube cable
EP4019940B1 (en) Yarn monitoring device and yarn winding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319