JP2022017924A - Manufacturing device of lithium-ion battery electrode and manufacturing method of lithium-ion battery electrode - Google Patents

Manufacturing device of lithium-ion battery electrode and manufacturing method of lithium-ion battery electrode Download PDF

Info

Publication number
JP2022017924A
JP2022017924A JP2020120773A JP2020120773A JP2022017924A JP 2022017924 A JP2022017924 A JP 2022017924A JP 2020120773 A JP2020120773 A JP 2020120773A JP 2020120773 A JP2020120773 A JP 2020120773A JP 2022017924 A JP2022017924 A JP 2022017924A
Authority
JP
Japan
Prior art keywords
electrode
ion battery
lithium ion
manufacturing
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020120773A
Other languages
Japanese (ja)
Other versions
JP7148572B2 (en
JP2022017924A5 (en
Inventor
祐一郎 横山
Yuichiro Yokoyama
高寛 今石
Takahiro IMAISHI
仁晃 森實
Tomoaki Morizane
英明 堀江
Hideaki Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
APB Corp
Original Assignee
Sanyo Chemical Industries Ltd
APB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, APB Corp filed Critical Sanyo Chemical Industries Ltd
Priority to JP2020120773A priority Critical patent/JP7148572B2/en
Priority to US18/015,796 priority patent/US20230299260A1/en
Priority to PCT/JP2021/026517 priority patent/WO2022014649A1/en
Publication of JP2022017924A publication Critical patent/JP2022017924A/en
Publication of JP2022017924A5 publication Critical patent/JP2022017924A5/ja
Application granted granted Critical
Publication of JP7148572B2 publication Critical patent/JP7148572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a manufacturing method and a manufacturing device of an electrode for a lithium ion battery that suppress the occurrence of a crack and a chip in an electrode layer and is less likely to cause a molding defect even when the rotation speed of a roll is increased.SOLUTION: A manufacturing device of an electrode for a lithium ion battery includes an electrode composition including an electrode active material particle, an arrangement portion for arranging an electrode material for a lithium ion battery composed of a frame-shaped member arranged in an annular shape so as to surround the periphery of the electrode composition on a substrate, a vacuum packaging portion that vacuum-packs the electrode material for a lithium-ion battery together with the substrate to obtain a vacuum package, and a pressure molding portion including a pair of rollers that roll-press the vacuum package.SELECTED DRAWING: Figure 4

Description

本発明は、リチウムイオン電池用電極の製造装置及びリチウムイオン電池用電極の製造方法に関する。 The present invention relates to an apparatus for manufacturing an electrode for a lithium ion battery and a method for manufacturing an electrode for a lithium ion battery.

近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池(リチウムイオン二次電池ともいう)に注目が集まっている。 In recent years, there has been an urgent need to reduce carbon dioxide emissions in order to protect the environment. In the automobile industry, expectations are high for the reduction of carbon dioxide emissions through the introduction of electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of secondary batteries for driving motors, which hold the key to their practical application, is earnest. It is done. As a secondary battery, a lithium ion battery (also called a lithium ion secondary battery) that can achieve high energy density and high output density is attracting attention.

このようなリチウムイオン電池を製造する方法として、一般的には、電極活物質をバインダ及び溶媒と混合したスラリーを基材上に塗布し、脱溶媒した後に圧縮する方法が挙げられる。しかしながら、このような方法では脱溶媒に多くの時間とエネルギーを要してしまうという課題があった。また、溶媒は一般的に非水電解液であるため、大気汚染を防止する観点から溶媒回収機構が必要になるなど、製造コストの抑制が困難であった。 As a method for producing such a lithium ion battery, generally, a method of applying a slurry in which an electrode active material is mixed with a binder and a solvent onto a substrate, desolving the solvent, and then compressing the battery can be mentioned. However, such a method has a problem that it takes a lot of time and energy to remove the solvent. Further, since the solvent is generally a non-aqueous electrolytic solution, it is difficult to control the manufacturing cost because a solvent recovery mechanism is required from the viewpoint of preventing air pollution.

一方、リチウムイオン電池を製造する方法として、ロールプレスを用いて電極活物質を圧縮成形する方法も検討されている(例えば、特許文献1及び2)。ロールプレスを用いて電極活物質を圧縮成形することで、脱溶媒に係る時間及びエネルギーを抑制することができる。 On the other hand, as a method for manufacturing a lithium ion battery, a method of compression-molding an electrode active material using a roll press has also been studied (for example, Patent Documents 1 and 2). By compression molding the electrode active material using a roll press, the time and energy involved in desolvation can be suppressed.

また、特許文献1には、一対のロールと端部整流部材とで囲まれた領域に電極活物質及び結着剤を含んでなる電極材料粉末を供給し、一対のロールと端部整流部材とで囲まれた領域において供給された電極材料粉末を加圧成形することで電極層を製造する方法が開示されている。 Further, in Patent Document 1, an electrode material powder containing an electrode active material and a binder is supplied to a region surrounded by a pair of rolls and an end rectifying member, and the pair of rolls and the end rectifying member are provided. A method for producing an electrode layer by pressure molding a supplied electrode material powder in a region surrounded by is disclosed.

例えば、特許文献2には、電極活物質、バインダ及び水を含む造粒体を一対のロール間に供給し、造粒体を一対のロールで圧縮成形することにより、電極合材層を形成する工程と、電極合材層を電極集電体上に配置する工程と、を備える電極の製造方法が開示されている。 For example, in Patent Document 2, a granulated body containing an electrode active material, a binder and water is supplied between a pair of rolls, and the granulated body is compression-molded by the pair of rolls to form an electrode mixture layer. A method for manufacturing an electrode including a step and a step of arranging an electrode mixture layer on an electrode current collector is disclosed.

特許第5772429号Patent No. 5772429 特開2018-85182号公報Japanese Unexamined Patent Publication No. 2018-85182

しかしながら、特許文献1に記載された方法では、MD方向に連続した電極層しか作製できないため、リチウムイオン電池用の電極として用いるためには、電極層をさらに加工する必要があり、この加工の際に電極層に割れや欠けが発生するなどの不良がおこりやすかった。 However, since the method described in Patent Document 1 can produce only an electrode layer continuous in the MD direction, it is necessary to further process the electrode layer in order to use it as an electrode for a lithium ion battery. In addition, defects such as cracks and chips in the electrode layer were likely to occur.

さらに、特許文献1及び2に記載の方法はいずれも、電極活物質を粉体のままロールプレスにかけるため、電極活物質粉末と共に空気がロールに巻き込まれて圧縮されてしまい、圧縮された空気が噴出することによって電極形状が崩れてしまうという問題があった。
この問題は、ロールの回転速度を上げた際に特に顕著であり、生産速度の向上が難しいという課題もあった。
Further, in both of the methods described in Patent Documents 1 and 2, since the electrode active material is applied to the roll press as powder, air is caught in the roll together with the electrode active material powder and compressed, and the compressed air. There was a problem that the shape of the electrode collapsed due to the ejection of the powder.
This problem is particularly remarkable when the rotation speed of the roll is increased, and there is also a problem that it is difficult to improve the production speed.

本発明は、上記課題を鑑みてなされたものであり、電極層の割れや欠けの発生を抑えると共に、ロールの回転速度を上げた場合であっても成形不良を起こしにくいリチウムイオン電池用電極の製造方法及びその製造装置を提供することを目的とする。 The present invention has been made in view of the above problems, and is an electrode for a lithium ion battery that suppresses the occurrence of cracks and chips in the electrode layer and is less likely to cause molding defects even when the rotation speed of the roll is increased. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus thereof.

本発明は、電極活物質粒子を含む電極組成物と、上記電極組成物の周囲を囲むように環状に配置される枠状部材とからなるリチウムイオン電池用電極材を基板上に配置する配置部と、上記リチウムイオン電池用電極材を上記基板ごと真空包装して真空パッケージを得る真空包装部と、上記真空パッケージをロールプレスする一対のローラを含む加圧成形部と、を備えることを特徴とするリチウムイオン電池用電極の製造装置、及び、電極活物質粒子を含む電極組成物と、上記電極組成物の周囲を囲むように環状に配置される枠状部材とからなるリチウムイオン電池用電極材を基板上に配置する配置工程と、上記リチウムイオン電池用電極材を上記基板ごと真空包装して真空パッケージを得る真空包装工程と、上記真空パッケージを加圧することで、上記電極組成物を加圧成形する加圧成形工程と、を備えることを特徴とするリチウムイオン電池用電極の製造方法に関する。 In the present invention, an arrangement portion for arranging an electrode material for a lithium ion battery, which comprises an electrode composition containing electrode active material particles and a frame-shaped member arranged in a ring shape so as to surround the periphery of the electrode composition, is arranged on a substrate. It is characterized by comprising a vacuum packaging unit for obtaining a vacuum package by vacuum-packing the electrode material for a lithium ion battery together with the substrate, and a pressure forming unit including a pair of rollers for roll-pressing the vacuum package. An electrode material for a lithium ion battery, which comprises an electrode manufacturing apparatus for an electrode for a lithium ion battery, an electrode composition containing electrode active material particles, and a frame-shaped member arranged in an annular shape so as to surround the periphery of the electrode composition. The electrode composition is pressurized by pressurizing the vacuum package, the placement step of arranging the electrode material on the substrate, the vacuum packaging step of vacuum-packing the electrode material for the lithium ion battery together with the substrate to obtain a vacuum package, and the pressurization of the vacuum package. The present invention relates to a method for manufacturing an electrode for a lithium ion battery, which comprises a pressure molding step for molding.

本発明によると、電極層の割れや欠けの発生を抑えると共に、ロールの回転速度を上げた場合であっても成形不良を起こしにくいリチウムイオン電池用電極の製造方法及びその製造装置を提供することができる。 According to the present invention, there is provided a method for manufacturing an electrode for a lithium ion battery and a manufacturing apparatus thereof, which suppresses the occurrence of cracks and chips in the electrode layer and is less likely to cause molding defects even when the rotation speed of the roll is increased. Can be done.

図1は、配置工程の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of an arrangement process. 図2は、配置工程の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of the arrangement process. 図3は、真空包装工程の一例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an example of a vacuum packaging process. 図4は、真空包装工程の一例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an example of the vacuum packaging process. 図5は、加圧成形工程の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of a pressure molding process. 図6は、リチウムイオン電池用電極の一例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of an electrode for a lithium ion battery. 図7は、リチウムイオン電池用電極材の別の一例の層構成を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing the layer structure of another example of the electrode material for a lithium ion battery. 図8は、リチウムイオン電池用電極材のさらに別の一例の層構成を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing the layer structure of still another example of the electrode material for a lithium ion battery. 図9は、実施例1に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 9 is a photograph of the electrode material for a lithium ion battery according to Example 1 after the pressure molding step. 図10は、実施例2に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 10 is a photograph of the electrode material for a lithium ion battery according to Example 2 after the pressure molding step. 図11は、比較例1に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 11 is a photograph of the electrode material for a lithium ion battery according to Comparative Example 1 after the pressure molding step. 図12は、比較例2に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 12 is a photograph of the electrode material for a lithium ion battery according to Comparative Example 2 after the pressure molding step. 図13は、比較例3に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 13 is a photograph of the electrode material for a lithium ion battery according to Comparative Example 3 after the pressure molding step. 図14は、比較例4に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 14 is a photograph of the electrode material for a lithium ion battery according to Comparative Example 4 after the pressure molding step. 図15は、比較例5に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 15 is a photograph of the electrode material for a lithium ion battery according to Comparative Example 5 after the pressure molding step. 図16は、比較例6に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。FIG. 16 is a photograph of the electrode material for a lithium ion battery according to Comparative Example 6 after the pressure molding step.

以下、本発明を詳細に説明する。
なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。
Hereinafter, the present invention will be described in detail.
In the present specification, when the term lithium ion battery is used, the concept includes a lithium ion secondary battery.

[リチウムイオン電池用電極の製造装置]
リチウムイオン電池用電極の製造装置は、電極活物質粒子を含む電極組成物と、上記電極組成物の周囲を囲むように環状に配置される枠状部材とからなるリチウムイオン電池用電極材を基板上に配置する配置部と、上記リチウムイオン電池用電極材を上記基板ごと真空包装して真空パッケージを得る真空包装部と、上記真空パッケージをロールプレスする一対のローラを含む加圧成形部と、を備える。
[Manufacturing equipment for electrodes for lithium-ion batteries]
The apparatus for manufacturing an electrode for a lithium ion battery uses an electrode material for a lithium ion battery as a substrate, which is composed of an electrode composition containing electrode active material particles and a frame-shaped member arranged in a ring shape so as to surround the periphery of the electrode composition. An arrangement portion to be arranged above, a vacuum packaging portion in which the electrode material for a lithium ion battery is vacuum-packaged together with the substrate to obtain a vacuum package, and a pressure forming portion including a pair of rollers for roll-pressing the vacuum package. To prepare for.

上記リチウムイオン電池用電極の製造装置を用いると、以下に示すリチウムイオン電池用電極の製造方法を容易に実施することができる。 By using the above-mentioned lithium-ion battery electrode manufacturing apparatus, the following method for manufacturing lithium-ion battery electrodes can be easily carried out.

[リチウムイオン電池用電極の製造方法]
リチウムイオン電池用電極の製造方法は、電極活物質粒子を含む電極組成物と、上記電極組成物の周囲を囲むように環状に配置される枠状部材とからなるリチウムイオン電池用電極材を基板上に配置する配置工程と、上記リチウムイオン電池用電極材を上記基板ごと真空包装して真空パッケージを得る真空包装工程と、上記真空パッケージを加圧することで、上記電極組成物を加圧成形する加圧成形工程と、を備える。
[Manufacturing method of electrodes for lithium-ion batteries]
The method for manufacturing an electrode for a lithium ion battery is to use an electrode material for a lithium ion battery as a substrate, which is composed of an electrode composition containing electrode active material particles and a frame-shaped member arranged in a ring shape so as to surround the periphery of the electrode composition. The electrode composition is pressure-molded by an arrangement step of arranging the above, a vacuum packaging step of vacuum-packing the electrode material for a lithium ion battery together with the substrate to obtain a vacuum package, and pressurizing the vacuum package. It is equipped with a pressure forming process.

上記リチウムイオン電池用電極の製造方法では、電極活物質粒子を含む電極組成物を、基板及び枠状部材とともに真空包装して真空パッケージを得て、この真空パッケージを加圧する。枠状部材が電極組成物を囲むように配置されているため、加圧成形工程後の電極組成物の形状は枠状部材の内形に対応する。そのため、枠状部材の形状を調整することによって、加圧成形後の電極組成物の加工が不要になり、割れや欠けを防止することができる。
さらに、包装材内は真空となるため、圧縮された空気が開放されることによる電極組成物の崩れも生じにくい。そのため、ロールの回転速度を上げた場合であっても成形不良を起こしにくい。
In the method for manufacturing an electrode for a lithium ion battery, an electrode composition containing electrode active material particles is vacuum-packed together with a substrate and a frame-shaped member to obtain a vacuum package, and the vacuum package is pressurized. Since the frame-shaped member is arranged so as to surround the electrode composition, the shape of the electrode composition after the pressure molding step corresponds to the internal shape of the frame-shaped member. Therefore, by adjusting the shape of the frame-shaped member, it becomes unnecessary to process the electrode composition after pressure molding, and it is possible to prevent cracking and chipping.
Further, since the inside of the packaging material is evacuated, the electrode composition is less likely to collapse due to the release of the compressed air. Therefore, even when the rotation speed of the roll is increased, molding defects are unlikely to occur.

続いて、上記リチウムイオン電池用電極の製造装置を用いて上記リチウムイオン電池用電極の製造方法を実施する例を説明する。ただし、上記リチウムイオン電池用電極の製造方法は、上記リチウムイオン電池用電極の製造装置を用いなくても実施することができる。 Subsequently, an example of implementing the method for manufacturing the electrode for a lithium ion battery by using the device for manufacturing the electrode for a lithium ion battery will be described. However, the method for manufacturing an electrode for a lithium ion battery can be carried out without using the device for manufacturing an electrode for a lithium ion battery.

まず、リチウムイオン電池用電極材の製造方法を構成する各工程を説明する。 First, each step constituting the manufacturing method of the electrode material for a lithium ion battery will be described.

[配置工程]
配置工程では、リチウムイオン電池用電極材を基板上に配置する。
リチウムイオン電池用電極の製造装置を用いる場合、配置部によって配置工程が実施される。
[Placement process]
In the arranging step, the electrode material for the lithium ion battery is arranged on the substrate.
When a device for manufacturing electrodes for lithium-ion batteries is used, the placement step is carried out by the placement unit.

図1及び図2は、配置工程の一例を模式的に示す斜視図である。
まず、図1に示すように、基板10上に枠状部材20を配置する。
続いて、図2に示すように、基板10上の、枠状部材20の内側の空間に電極活物質粒子を含む電極組成物30を配置する。上記手順により、枠状部材20と電極組成物30からなるリチウムイオン電池用電極材1’を基板10上に配置することができる。
基板10上に枠状部材20を配置するための手段、及び、枠状部材20の内側の空間に電極組成物30を配置する手段が、リチウムイオン電池用電極の製造装置における配置部である。
1 and 2 are perspective views schematically showing an example of an arrangement process.
First, as shown in FIG. 1, the frame-shaped member 20 is arranged on the substrate 10.
Subsequently, as shown in FIG. 2, the electrode composition 30 containing the electrode active material particles is arranged in the space inside the frame-shaped member 20 on the substrate 10. By the above procedure, the electrode material 1'for a lithium ion battery composed of the frame-shaped member 20 and the electrode composition 30 can be arranged on the substrate 10.
The means for arranging the frame-shaped member 20 on the substrate 10 and the means for arranging the electrode composition 30 in the space inside the frame-shaped member 20 are the arranging portions in the lithium ion battery electrode manufacturing apparatus.

配置部の例としては、予め所定形状に成形した枠状部材を基板上に載置する載置機構と、基板上に載置された枠状部材の内側に電極組成物を供給する電極組成物供給機構の組み合わせが挙げられる。 Examples of the arrangement portion include a mounting mechanism for mounting a frame-shaped member previously molded into a predetermined shape on a substrate, and an electrode composition for supplying an electrode composition to the inside of the frame-shaped member mounted on the substrate. A combination of supply mechanisms can be mentioned.

配置工程において、電極組成物及び枠状部材を基板上に配置する順序は特に限定されないが、基板上にまず枠状部材を配置し、続いて、枠状部材の内側に電極組成物を配置することが好ましい。 In the arrangement step, the order in which the electrode composition and the frame-shaped member are arranged on the substrate is not particularly limited, but the frame-shaped member is first arranged on the substrate, and then the electrode composition is arranged inside the frame-shaped member. Is preferable.

枠状部材を基板上に配置する方法は特に限定されず、予め所定形状に成形した枠状部材を基板上に載置する方法や、所定の操作によって枠状部材となる枠状部材前駆体を基板上に付与し、基板上で枠状部材を形成する方法等が挙げられる。所定の操作とは、例えば、加熱や光照射等が挙げられる。 The method of arranging the frame-shaped member on the substrate is not particularly limited, and a method of placing the frame-shaped member previously molded into a predetermined shape on the substrate or a frame-shaped member precursor that becomes a frame-shaped member by a predetermined operation can be obtained. Examples thereof include a method of applying it on a substrate and forming a frame-shaped member on the substrate. Predetermined operations include, for example, heating, light irradiation, and the like.

[真空包装工程]
真空包装工程では、配置工程において基板上に配置されたリチウムイオン電池用電極材を、基板ごと真空包装して真空パッケージを得る。
なお、本明細書における真空とは、大気圧を基準としたゲージ圧が-50kPa以下の真空度を指す。
リチウムイオン電池用電極の製造装置を用いる場合、真空包装部によって真空包装工程が実施される。
[Vacuum packaging process]
In the vacuum packaging step, the electrode material for a lithium ion battery arranged on the substrate in the arranging step is vacuum-packed together with the substrate to obtain a vacuum package.
The vacuum in the present specification refers to a degree of vacuum in which the gauge pressure with respect to the atmospheric pressure is -50 kPa or less.
When a device for manufacturing electrodes for lithium-ion batteries is used, the vacuum packaging process is performed by the vacuum packaging unit.

図3及び図4は、真空包装工程の一例を模式的に示す斜視図である。
図3に示すように、基板10上に配置されたリチウムイオン電池用電極材1’を基板ごと、開口部41を有する袋状の包装材40に収容した後、開口部41を通じて包装材40内を減圧しながらヒートシールすることで、リチウムイオン電池用電極材1’を基板10ごと真空包装して、図4に示す真空パッケージ5を得る。
3 and 4 are perspective views schematically showing an example of a vacuum packaging process.
As shown in FIG. 3, the electrode material 1'for a lithium ion battery arranged on the substrate 10 is housed in a bag-shaped packaging material 40 having an opening 41 together with the substrate, and then inside the packaging material 40 through the opening 41. By heat-sealing while reducing the pressure, the electrode material 1'for a lithium ion battery is vacuum-packed together with the substrate 10 to obtain the vacuum package 5 shown in FIG.

リチウムイオン電池用電極の製造装置を用いて図3及び図4に示す工程を実施する場合、リチウムイオン電池用電極材を基板ごと、開口部を有する袋状の包装材に収容する収容機構と、開口部を通じて包装材を減圧する減圧機構と、包装材をヒートシールする熱封止機構との組み合わせが、真空包装部となる。 When the steps shown in FIGS. 3 and 4 are carried out using the lithium-ion battery electrode manufacturing apparatus, a storage mechanism for accommodating the lithium-ion battery electrode material together with the substrate in a bag-shaped packaging material having an opening is used. The vacuum packaging unit is a combination of a decompression mechanism that depressurizes the packaging material through the opening and a heat sealing mechanism that heat-seals the packaging material.

包装材の形状及び材質は、リチウムイオン電池用電極材の形状及び減圧方法などに応じて適宜設定すればよい。
例えば、2枚のフィルム状の包装材でリチウムイオン電池用電極材及び基板を挟んだ状態で、3辺をヒートシールし、残った1辺から包装材内の空気を除去し、最後にヒートシールする方法であっても、真空パッケージを製造することができる。
The shape and material of the packaging material may be appropriately set according to the shape and decompression method of the electrode material for the lithium ion battery.
For example, with the electrode material for lithium-ion batteries and the substrate sandwiched between two film-shaped packaging materials, three sides are heat-sealed, the air inside the packaging material is removed from the remaining one side, and finally the heat sealing is performed. Vacuum packages can also be manufactured by this method.

包装材を構成する材料は特に限定されないが、ポリプロピレン等が挙げられる。 The material constituting the packaging material is not particularly limited, and examples thereof include polypropylene and the like.

真空包装工程において得られる真空パッケージの真空度は、-70kPa以下であることが好ましく、-80kPa以下であることがより好ましい。
真空パッケージの真空度が-70kPaを超える場合には、真空パッケージに外部から加わる力(大気圧)が充分ではなく、後述する加圧成形工程において、電極組成物が枠状部材の外側に流れ出てしまう場合がある。すなわち、真空包装部の到達可能真空度は、-70kPa以下であることが好ましい。
The degree of vacuum of the vacuum package obtained in the vacuum packaging step is preferably −70 kPa or less, and more preferably −80 kPa or less.
When the degree of vacuum of the vacuum package exceeds -70 kPa, the force (atmospheric pressure) applied to the vacuum package from the outside is not sufficient, and the electrode composition flows out to the outside of the frame-shaped member in the pressure molding step described later. It may end up. That is, the reachable vacuum degree of the vacuum packaging portion is preferably −70 kPa or less.

真空包装工程において真空が必要とされる部分は、包装材内部の僅かな空間である。従って、加圧成形装置全体を減圧するのに要する時間よりも短い時間で真空パッケージを作製することができる。 The part where vacuum is required in the vacuum packaging process is a small space inside the packaging material. Therefore, the vacuum package can be manufactured in a time shorter than the time required to reduce the pressure of the entire pressure molding apparatus.

[加圧成形工程]
加圧成形工程では、真空包装工程によって得られた真空パッケージを一対のローラによりロールプレスする。
リチウムイオン電池用電極の製造装置を用いた場合、加圧成形部である一対のローラによって加圧成形工程が実施される。
[Pressure molding process]
In the pressure forming step, the vacuum package obtained by the vacuum packaging step is roll-pressed by a pair of rollers.
When a lithium ion battery electrode manufacturing apparatus is used, the pressure molding step is carried out by a pair of rollers which are pressure molding portions.

真空パッケージにおいて、電極組成物は、枠状部材と包装材によって固定されている。そのため、電極組成物に圧力が加わっても電極組成物が流れ出すことがない。枠状部材が電極組成物を囲むように配置されているため、加圧成形工程後の電極組成物の形状は枠状部材の内形に対応する。そのため、枠状部材の形状を調整することによって、加圧成形後の電極組成物の加工が不要になり、割れや欠けを防止することができる。さらに、包装材内は真空となるため、圧縮された空気が開放されることによる電極組成物の崩れも生じにくい。そのため、ロールの回転速度を上げた場合であっても成形不良を起こしにくい。 In the vacuum package, the electrode composition is fixed by a frame-shaped member and a packaging material. Therefore, even if pressure is applied to the electrode composition, the electrode composition does not flow out. Since the frame-shaped member is arranged so as to surround the electrode composition, the shape of the electrode composition after the pressure molding step corresponds to the internal shape of the frame-shaped member. Therefore, by adjusting the shape of the frame-shaped member, it becomes unnecessary to process the electrode composition after pressure molding, and it is possible to prevent cracking and chipping. Further, since the inside of the packaging material is evacuated, the electrode composition is less likely to collapse due to the release of the compressed air. Therefore, even when the rotation speed of the roll is increased, molding defects are unlikely to occur.

図5は、加圧成形工程の一例を模式的に示す断面図であり、図6は、リチウムイオン電池用電極の一例を模式的に示す斜視図である。
図5に示すように、プレスロール50の間に真空パッケージ5を通過させることによって真空パッケージ5を加圧し、電極組成物30を加圧成形する。加圧された真空パッケージ5から包装材40を除去することにより、図6に示すような、成形された電極組成物35と枠状部材20からなるリチウムイオン電池用電極1を基板10上に得ることができる。
FIG. 5 is a cross-sectional view schematically showing an example of a pressure forming process, and FIG. 6 is a perspective view schematically showing an example of an electrode for a lithium ion battery.
As shown in FIG. 5, the vacuum package 5 is pressurized by passing the vacuum package 5 between the press rolls 50, and the electrode composition 30 is pressure-molded. By removing the packaging material 40 from the pressurized vacuum package 5, a lithium ion battery electrode 1 composed of a molded electrode composition 35 and a frame-shaped member 20 as shown in FIG. 6 is obtained on the substrate 10. be able to.

なお、配置工程において用いられる基板が電極集電体である場合には、電極組成物が電極集電体と接続されたリチウムイオン電池用電極を得ることができる。 When the substrate used in the arrangement step is an electrode current collector, an electrode for a lithium ion battery in which the electrode composition is connected to the electrode current collector can be obtained.

真空パッケージを加圧成形する方法は特に限定されず、平面プレスであってもロールプレスであってもよいが、一対のローラによりロールプレスすることが好ましい。
一対のローラの間隔は、ローラが枠状部材の始端に乗り上げる際に瞬間的に発生する強烈なプレス力の立ち上がりを緩和する観点から、電極活物質粒子の体積平均粒子径の3倍以上であることが好ましい。また、一対のローラの間隔は、20mm以下であることが好ましい。
The method for pressure molding the vacuum package is not particularly limited, and it may be a flat press or a roll press, but it is preferable to roll press with a pair of rollers.
The distance between the pair of rollers is three times or more the volume average particle diameter of the electrode active material particles from the viewpoint of mitigating the rise of the intense pressing force that is instantaneously generated when the rollers ride on the starting end of the frame-shaped member. Is preferable. The distance between the pair of rollers is preferably 20 mm or less.

加圧成形工程において、リチウムイオン電池用電極材を加熱してもよい。
基板が電極集電体である場合、リチウムイオン電池用電極から基板を分離する必要がない。従って、加圧成形工程においてリチウムイオン電池用電極材を加熱することによって、枠状部材と電極集電体となる基板とを接着することができる。
In the pressure molding step, the electrode material for a lithium ion battery may be heated.
When the substrate is an electrode current collector, it is not necessary to separate the substrate from the electrode for the lithium ion battery. Therefore, by heating the electrode material for the lithium ion battery in the pressure molding step, the frame-shaped member and the substrate serving as the electrode current collector can be adhered to each other.

加熱温度は、枠状部材を構成する樹脂の融点以上、真空パッケージを構成する包装材に悪影響となる温度未満であることが好ましい。 The heating temperature is preferably equal to or higher than the melting point of the resin constituting the frame-shaped member and lower than the temperature that adversely affects the packaging material constituting the vacuum package.

加圧成形工程は連続的に行ってもよく、間欠的に行ってもよい。
加圧成形工程を間欠的に行う場合には、基板の搬送を一旦止めて、真空パッケージが搬送されていない状態で真空パッケージを加圧し、圧力を開放した後に、真空パッケージの搬送を再開してもよい。
なお、真空パッケージを経由せず、加圧成形部自体を減圧する方法は、本発明のリチウムイオン電池用電極の製造方法における真空包装工程及び加圧成形工程に該当しない。
The pressure molding step may be performed continuously or intermittently.
When the pressure forming process is performed intermittently, the transfer of the substrate is temporarily stopped, the vacuum package is pressurized while the vacuum package is not conveyed, the pressure is released, and then the transfer of the vacuum package is restarted. May be good.
The method of reducing the pressure of the pressure forming portion itself without passing through the vacuum package does not correspond to the vacuum packaging step and the pressure forming step in the method for manufacturing the electrode for a lithium ion battery of the present invention.

上述の工程により、リチウムイオン電池用電極が製造される。
得られたリチウムイオン電池用電極は包装材内に収容されており、包装材内の空間が真空となっているため、電極組成物が水分と接触して劣化することを抑制することができる。また、包装材内の空間が真空となっているため、大気圧により電極組成物が固定されており、振動によって電極組成物が流動することを抑制することができる。
以上のことから、本発明のリチウムイオン電池用電極の製造方法は、保存性、運搬性に優れたリチウムイオン電池用電極を製造することができる。
By the above steps, electrodes for lithium ion batteries are manufactured.
Since the obtained electrode for a lithium ion battery is housed in the packaging material and the space inside the packaging material is evacuated, it is possible to prevent the electrode composition from deteriorating due to contact with moisture. Further, since the space inside the packaging material is evacuated, the electrode composition is fixed by atmospheric pressure, and it is possible to suppress the flow of the electrode composition due to vibration.
From the above, the method for manufacturing an electrode for a lithium ion battery of the present invention can manufacture an electrode for a lithium ion battery having excellent storage stability and transportability.

上記リチウムイオン電池用電極の製造方法により製造されたリチウムイオン電池用電極を用いてリチウムイオン電池を製造する場合、例えば、真空パッケージから包装材及び基材を除去した後、セパレータを介して対極となる電極と組み合わせて、電極組成物に電極集電体を接続し、電極組成物及びセパレータに必要に応じて電解液を添加し、電池外装体に収容することで、リチウムイオン電池を製造することができる。
なお、リチウムイオン電池用電極材を製造する際に用いられる基板が電極集電体である場合、該基材を除去しないことにより、電極組成物に電極集電体を接続する工程を省略することができる。
When a lithium ion battery is manufactured using the electrode for a lithium ion battery manufactured by the above method for manufacturing an electrode for a lithium ion battery, for example, after removing the packaging material and the base material from the vacuum package, the electrode is used as a counter electrode via a separator. A lithium ion battery is manufactured by connecting an electrode current collector to the electrode composition in combination with the electrode, adding an electrolytic solution to the electrode composition and the separator as necessary, and accommodating the battery in the battery exterior. Can be done.
When the substrate used for manufacturing the electrode material for a lithium ion battery is an electrode current collector, the step of connecting the electrode current collector to the electrode composition is omitted by not removing the base material. Can be done.

続いて、配置工程において用いられる電極組成物、枠状部材、基板について説明する。 Next, the electrode composition, the frame-shaped member, and the substrate used in the arrangement step will be described.

電極組成物の厚さは特に限定されないが、枠状部材の厚さ以上であることが好ましい。
枠状部材の厚さに対する電極組成物の厚さの割合は、100%~200%であることが好ましく、100~150%であることが好ましく、110~130%であることがより好ましい。
枠状部材が変形しにくい場合に、枠状部材の厚さに対する電極組成物の厚さの割合が100%未満であると、後述する加圧成形工程において、電極組成物を充分に加圧成形できない場合がある。
The thickness of the electrode composition is not particularly limited, but is preferably equal to or greater than the thickness of the frame-shaped member.
The ratio of the thickness of the electrode composition to the thickness of the frame-shaped member is preferably 100% to 200%, preferably 100 to 150%, and more preferably 110 to 130%.
When the frame-shaped member is not easily deformed and the ratio of the thickness of the electrode composition to the thickness of the frame-shaped member is less than 100%, the electrode composition is sufficiently pressure-molded in the pressure molding step described later. It may not be possible.

枠状部材の厚さに対する電極組成物の割合が100%を超える場合、枠状部材から電極組成物がはみ出すこととなる。電極組成物は真空包装工程において包装材内に固定されるため、枠状部材からの電極組成物のはみだしは、加圧成形工程において問題とはならない。 If the ratio of the electrode composition to the thickness of the frame-shaped member exceeds 100%, the electrode composition will protrude from the frame-shaped member. Since the electrode composition is fixed in the packaging material in the vacuum packaging process, the protrusion of the electrode composition from the frame-shaped member does not pose a problem in the pressure forming process.

枠状部材は、融点が75~90℃のポリオレフィンを含むことが好ましい。 The frame-shaped member preferably contains a polyolefin having a melting point of 75 to 90 ° C.

融点が75~90℃のポリオレフィンは、分子内に極性基を有するものであってもよく、極性基を有しないものであってもよい。
極性基としては、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、ホルミル基(-CHO)、カルボニル基(=CO)、アミノ基(-NH)、チオール基(-SH)、1,3-ジオキソ-3-オキシプロピレン基等が挙げられる。
ポリオレフィンが極性基を有しているかどうかは、ポリオレフィンをフーリエ変換赤外分光法(FT-IR)や核磁気共鳴分光法(NMR)で分析することにより確認することができる。
The polyolefin having a melting point of 75 to 90 ° C. may have a polar group in the molecule or may not have a polar group.
As the polar group, a hydroxy group (-OH), a carboxyl group (-COOH), a formyl group (-CHO), a carbonyl group (= CO), an amino group (-NH 2 ), a thiol group (-SH), 1, Examples thereof include a 3-dioxo-3-oxypropylene group.
Whether or not the polyolefin has a polar group can be confirmed by analyzing the polyolefin by Fourier transform infrared spectroscopy (FT-IR) or nuclear magnetic resonance spectroscopy (NMR).

融点が75~90℃のポリオレフィンとしては、東ソー(株)製 メルセン(登録商標)G(融点:77℃)や三井化学(株)製 アドマーXE070(融点:84℃)等が挙げられる。
東ソー(株)製 メルセン(登録商標)Gは極性基を有する樹脂の例であり、三井化学(株)製 アドマーXE070は極性基を有しない樹脂の例である。
Examples of the polyolefin having a melting point of 75 to 90 ° C. include Melsen (registered trademark) G (melting point: 77 ° C.) manufactured by Tosoh Corporation and Admer XE070 (melting point: 84 ° C.) manufactured by Mitsui Chemicals, Inc.
Melsen (registered trademark) G manufactured by Tosoh Corporation is an example of a resin having a polar group, and Admer XE070 manufactured by Mitsui Chemicals Co., Ltd. is an example of a resin having no polar group.

枠状部材は、融点が75~90℃のポリオレフィンに加えて、非導電性フィラーを含有していてもよい。
非導電性フィラーとしては、ガラス繊維等の無機繊維及びシリカ粒子等の無機粒子が挙げられる。
The frame-shaped member may contain a non-conductive filler in addition to the polyolefin having a melting point of 75 to 90 ° C.
Examples of the non-conductive filler include inorganic fibers such as glass fibers and inorganic particles such as silica particles.

枠状部材の一部は、耐熱性環状支持部材で構成されていてもよい。
枠状部材の一部が耐熱性環状支持部材で構成されていると、枠状部材の機械的強度及び耐熱性を向上させることができる。
A part of the frame-shaped member may be composed of a heat-resistant annular support member.
When a part of the frame-shaped member is composed of a heat-resistant annular support member, the mechanical strength and heat resistance of the frame-shaped member can be improved.

耐熱性環状支持部材は電極集電体及びセパレータとの接着性が低いため、耐熱性環状支持部材は、枠状部材の厚さ方向の中央部に配置されることが好ましい。
この場合、平面視形状が互いに同一の、融点が75~90℃のポリオレフィンを含む層、耐熱性環状支持部材、融点が75~90℃のポリオレフィンを含む層が、基板側からこの順で配置されることが好ましい。上記構成であると、枠状部材に機械的強度及び耐熱性を付与しつつ、電極集電体及びセパレータとの接着性を高めることができる。
Since the heat-resistant annular support member has low adhesiveness to the electrode current collector and the separator, the heat-resistant annular support member is preferably arranged at the center of the frame-shaped member in the thickness direction.
In this case, a layer containing a polyolefin having a melting point of 75 to 90 ° C., a heat-resistant annular support member, and a layer containing a polyolefin having a melting point of 75 to 90 ° C. having the same plan view shape are arranged in this order from the substrate side. Is preferable. With the above configuration, it is possible to improve the adhesiveness to the electrode current collector and the separator while imparting mechanical strength and heat resistance to the frame-shaped member.

耐熱性環状支持部材は、溶融温度が150℃以上である耐熱性樹脂組成物を含んでいることが望ましく、溶融温度が200℃以上である耐熱性樹脂組成物を含んでいることがより望ましい。
耐熱性環状支持部材が、溶融温度が150℃以上である耐熱性樹脂組成物を含むことで、枠状部材が熱に対してより変形しにくくなる。
耐熱性樹脂組成物の溶融温度(単に融点ともいう)は、JIS K7121-1987に準拠して示差走査熱量測定によって測定される。
The heat-resistant annular support member preferably contains a heat-resistant resin composition having a melting temperature of 150 ° C. or higher, and more preferably contains a heat-resistant resin composition having a melting temperature of 200 ° C. or higher.
When the heat-resistant annular support member contains a heat-resistant resin composition having a melting temperature of 150 ° C. or higher, the frame-shaped member is less likely to be deformed by heat.
The melting temperature (also simply referred to as the melting point) of the heat-resistant resin composition is measured by differential scanning calorimetry according to JIS K7121-1987.

耐熱性樹脂組成物を構成する樹脂としては、熱硬化性樹脂(エポキシ樹脂及びポリイミド等)、エンジニアリング樹脂[ポリアミド(ナイロン6 溶融温度:約230℃、ナイロン66 溶融温度:約270℃等)、ポリカーボネート(PCともいう 溶融温度:約150℃)及びポリエーテルエーテルケトン(PEEKともいう 溶融温度:約330℃)等]及び高融点熱可塑性樹脂{ポリエチレンテレフタレート(PETともいう 溶融温度:約250℃)、ポリエチレンナフタレート(PENともいう 溶融温度:約260℃)及び高融点ポリプロピレン(溶融温度:約160~170℃)等}等が挙げられる。
なお、高融点熱可塑性樹脂とは、JIS K7121-1987に準拠して示差走査熱量測定によって測定される溶融温度が150℃以上の熱可塑性樹脂を指す。
The resins constituting the heat-resistant resin composition include thermoplastic resins (epoxy resin, polyimide, etc.), engineering resins [polyamide (nylon 6 melting temperature: about 230 ° C, nylon 66 melting temperature: about 270 ° C, etc.), polycarbonate. (Melting temperature also called PC: about 150 ° C) and polyetheretherketone (melting temperature also called PEEK: about 330 ° C), etc.] and refractory thermoplastic resin {polyethylene terephthalate (melting temperature also called PET: about 250 ° C), Examples thereof include polyethylene naphthalate (melting temperature also referred to as PEN: about 260 ° C.) and refractory polypropylene (melting temperature: about 160 to 170 ° C.)}.
The high melting point thermoplastic resin refers to a thermoplastic resin having a melting temperature of 150 ° C. or higher as measured by differential scanning calorimetry according to JIS K7121-1987.

耐熱性樹脂組成物は、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、高融点ポリプロピレン、ポリカーボネート及びポリエーテルエーテルケトンからなる群から選択される少なくとも1種の樹脂を含むことが望ましい。 The heat-resistant resin composition preferably contains at least one resin selected from the group consisting of polyamide, polyethylene terephthalate, polyethylene naphthalate, refractory polypropylene, polycarbonate and polyetheretherketone.

耐熱性樹脂組成物はフィラーを含んでいてもよい。
耐熱性樹脂組成物がフィラーを含むことで、溶融温度を向上させることができる。
上記フィラーとしては、ガラス繊維等の無機フィラー及び炭素繊維等が挙げられる。
フィラーを含む耐熱性樹脂組成物としては、ガラス繊維に硬化前のエポキシ樹脂を含浸させて硬化させたもの(ガラスエポキシともいう)及び炭素繊維強化樹脂などが挙げられる。
The heat-resistant resin composition may contain a filler.
When the heat-resistant resin composition contains a filler, the melting temperature can be improved.
Examples of the filler include inorganic fillers such as glass fibers and carbon fibers.
Examples of the heat-resistant resin composition containing a filler include a glass fiber impregnated with an epoxy resin before curing and cured (also referred to as glass epoxy), a carbon fiber reinforced resin, and the like.

枠状部材を上面視した際の、外形形状と内形形状との間の距離を枠状部材の幅ともいう。
枠状部材の幅は特に限定されないが、3~20mmであることが好ましい。
枠状部材の幅が3mm未満であると、枠状部材の機械的強度が不足して、電極組成物が枠状部材の外へ漏れてしまう場合がある。一方、枠状部材の幅が20mmを超えると、電極組成物の占める割合が減少してしまい、エネルギー密度が低下してしまう場合がある。
The distance between the outer shape and the inner shape when the frame-shaped member is viewed from above is also referred to as the width of the frame-shaped member.
The width of the frame-shaped member is not particularly limited, but is preferably 3 to 20 mm.
If the width of the frame-shaped member is less than 3 mm, the mechanical strength of the frame-shaped member may be insufficient and the electrode composition may leak out of the frame-shaped member. On the other hand, if the width of the frame-shaped member exceeds 20 mm, the proportion of the electrode composition may decrease, and the energy density may decrease.

枠状部材の厚さは特に限定されないが、0.1~10mmであることが望ましい。 The thickness of the frame-shaped member is not particularly limited, but is preferably 0.1 to 10 mm.

電極活物質粒子は、正極活物質粒子又は負極活物質粒子が挙げられる。
電極活物質粒子として正極活物質粒子を用いた電極組成物を正極組成物ともいい、電極活物質粒子として負極活物質粒子を用いた電極組成物を負極組成物ともいう。
また、正極組成物の周囲を環状に囲む枠状部材を正極枠状部材ともいい、負極組成物の周囲を環状に囲む枠状部材を負極枠状部材ともいう。
Examples of the electrode active material particles include positive electrode active material particles and negative electrode active material particles.
An electrode composition using positive electrode active material particles as electrode active material particles is also referred to as a positive electrode composition, and an electrode composition using negative electrode active material particles as electrode active material particles is also referred to as a negative electrode composition.
Further, the frame-shaped member that surrounds the periphery of the positive electrode composition in an annular shape is also referred to as a positive electrode frame-shaped member, and the frame-shaped member that surrounds the periphery of the negative electrode composition in a ring shape is also referred to as a negative electrode frame-shaped member.

正極活物質粒子としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等の粒子が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
The positive electrode active material particles include a composite oxide of lithium and a transition metal {composite oxide having one kind of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn2O 4 , etc.), a transition metal element. (For example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Coy O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and composite oxides containing three or more kinds of metal elements [for example, LiM a M'b M''c O 2 (M, M'and M'' are different transition metals. It is an element and satisfies a + b + c = 1. For example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) etc.], etc.}, lithium-containing transition metal phosphates (for example, LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO). 4 ), transition metal oxides (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene). And polyvinylcarbazole) and the like, and two or more kinds may be used in combination.
The lithium-containing transition metal phosphate may be obtained by substituting a part of the transition metal site with another transition metal.

負極活物質粒子としては、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等の粒子が挙げられる。
上記負極活物質粒子のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質粒子の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。
Examples of the negative electrode active material particles include carbon-based materials [graphite, refractory carbon, amorphous carbon, fired resin (for example, phenol resin, furan resin, etc. baked and carbonized), cokes (for example, pitch coke, etc.). Needle coke and petroleum coke etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composite (carbon particles whose surface is coated with silicon and / or silicon carbide, silicon particles or Silicon oxide particles whose surface is coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, etc. Silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (eg, polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metal oxides (titanium oxides, etc.) And lithium-titanium oxides, etc.), metal alloys (for example, lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.) and particles such as mixtures of these with carbon-based materials.
Among the negative electrode active material particles, those containing no lithium or lithium ion inside may be pre-doped with a part or all of the negative electrode active material particles containing lithium or lithium ion in advance.

これらの中でも、電池容量等の観点から、炭素系材料、珪素系材料及びこれらの混合物が好ましく、炭素系材料としては、黒鉛、難黒鉛化性炭素及びアモルファス炭素がさらに好ましく、珪素系材料としては、酸化珪素及び珪素-炭素複合体がさらに好ましい。 Among these, carbon-based materials, silicon-based materials and mixtures thereof are preferable from the viewpoint of battery capacity and the like, graphite, non-graphitizable carbon and amorphous carbon are more preferable as carbon-based materials, and silicon-based materials are more preferable. , Silicon oxide and silicon-carbon composites are more preferred.

電極活物質粒子の平均粒子径は、5~200μmであることが好ましい。
電極活物質粒子の平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、レーザー回折・散乱式の粒子径分布測定装置[マイクロトラック・ベル(株)製のマイクロトラック等]を用いることができる。
The average particle size of the electrode active material particles is preferably 5 to 200 μm.
The average particle size of the electrode active material particles means the particle size (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. A laser diffraction / scattering type particle size distribution measuring device [Microtrac manufactured by Microtrac Bell Co., Ltd.] can be used for measuring the volume average particle size.

電極活物質粒子は、その表面の少なくとも一部が高分子化合物を含む被覆層により被覆された被覆活物質粒子であってもよい。
電極活物質粒子の周囲が被覆層で被覆されていると、電極の体積変化が緩和され、電極の膨張を抑制することができる。
なお、電極活物質粒子として正極活物質粒子を使用した場合の被覆活物質粒子を被覆正極活物質粒子といい、電極活物質粒子として負極活物質粒子を使用した場合の被覆活物質粒子を被覆負極活物質粒子という。
The electrode active material particles may be coated active material particles in which at least a part of the surface thereof is coated with a coating layer containing a polymer compound.
When the periphery of the electrode active material particles is covered with a coating layer, the volume change of the electrode is alleviated and the expansion of the electrode can be suppressed.
The coated active material particles when the positive electrode active material particles are used are referred to as coated positive electrode active material particles, and the coated active material particles when the negative electrode active material particles are used as the electrode active material particles are coated negative electrode. It is called an active material particle.

被覆層を構成する高分子化合物(被覆用高分子化合物ともいう)としては、特開2017-054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the polymer compound (also referred to as a polymer compound for coating) constituting the coating layer, those described as a resin for coating a non-aqueous secondary battery active material in JP-A-2017-054703 can be preferably used. ..

被覆層は、必要に応じて、後述する導電助剤を含んでいてもよい。 The coating layer may contain a conductive auxiliary agent described later, if necessary.

電極組成物に含まれる被覆用高分子化合物の重量割合は、電極組成物の重量を基準として、0.1~10重量%であることが好ましい。
電極組成物に含まれる被覆用高分子化合物の含有量が、電極組成物の重量を基準として0.1重量%未満であると、電極組成物に含まれる被覆用高分子化合物の含有量が少なすぎて、電極割れが生じたり、成形性が低下してしまうことがある。
一方、電極組成物に含まれる被覆用高分子化合物の含有量が、電極組成物の重量を基準として10重量%を超える場合には、電極組成物に含まれる被覆用高分子化合物の含有量が多すぎて、電気抵抗を増加させてしまうことがある。
The weight ratio of the coating polymer compound contained in the electrode composition is preferably 0.1 to 10% by weight based on the weight of the electrode composition.
When the content of the coating polymer compound contained in the electrode composition is less than 0.1% by weight based on the weight of the electrode composition, the content of the coating polymer compound contained in the electrode composition is small. Too much, the electrode may crack or the moldability may deteriorate.
On the other hand, when the content of the coating polymer compound contained in the electrode composition exceeds 10% by weight based on the weight of the electrode composition, the content of the coating polymer compound contained in the electrode composition is high. Too much may increase electrical resistance.

電極組成物に含まれる電極活物質粒子の重量割合は、電極組成物の重量を基準として70~95重量%であることが好ましい。
なお、電極活物質粒子が被覆活物質粒子である場合、被覆活物質粒子を構成する被覆層は、電極活物質粒子の重量に含めないものとする。
The weight ratio of the electrode active material particles contained in the electrode composition is preferably 70 to 95% by weight based on the weight of the electrode composition.
When the electrode active material particles are coated active material particles, the coating layer constituting the coated active material particles shall not be included in the weight of the electrode active material particles.

電極組成物は、電極活物質粒子以外に、導電助剤、溶液乾燥型の公知の電極用バインダ(結着剤ともいう)及び粘着性樹脂を含有していてもよい。また、リチウムイオン電池の製造に用いられる非水電解液を構成する電解質や溶媒等を含有していてもよい。
ただし、電極組成物は、公知の電極用バインダを含有していないことが好ましい。
In addition to the electrode active material particles, the electrode composition may contain a conductive auxiliary agent, a solution-drying type known electrode binder (also referred to as a binder), and an adhesive resin. Further, it may contain an electrolyte, a solvent or the like constituting a non-aqueous electrolytic solution used for manufacturing a lithium ion battery.
However, it is preferable that the electrode composition does not contain a known electrode binder.

導電助剤は、導電性を有する材料から選択される。
具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電助剤は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
The conductive auxiliary agent is selected from materials having conductivity.
Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc.), etc. ], And a mixture thereof, etc., but is not limited thereto.
These conductive auxiliaries may be used alone or in combination of two or more. Moreover, you may use these alloys or metal oxides. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Further, as these conductive auxiliaries, a conductive material (a metal one among the above-mentioned conductive auxiliaries materials) may be coated around a particle-based ceramic material or a resin material by plating or the like.

導電助剤の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。なお、本明細書中において、「粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size of the conductive auxiliary agent is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm, and 0, from the viewpoint of the electrical characteristics of the battery. It is more preferably 3.03 to 1 μm. In the present specification, the “particle diameter” means the maximum distance L among the distances between arbitrary two points on the contour line of the conductive auxiliary agent. As the value of the "average particle size", the average value of the particle size of the particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.

導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性材料として実用化されている形態であってもよい。 The shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, or may be a form practically used as a so-called filler-based conductive material such as carbon nanotubes.

導電助剤は、その形状が繊維状である導電性繊維であってもよい。
導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。
導電助剤が導電性繊維である場合、その平均繊維径は0.1~20μmであることが好ましい。
The conductive auxiliary agent may be a conductive fiber whose shape is fibrous.
The conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers in which a metal having good conductivity and graphite are uniformly dispersed in synthetic fibers, and a metal such as stainless steel. Examples thereof include fibrous metal fibers, conductive fibers in which the surface of organic fibers is coated with metal, and conductive fibers in which the surface of organic fibers is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable. Further, a polypropylene resin kneaded with graphene is also preferable.
When the conductive auxiliary agent is a conductive fiber, the average fiber diameter thereof is preferably 0.1 to 20 μm.

電極組成物に含まれる導電助剤の重量割合は、電極組成物の重量を基準として0~5重量%であることが好ましい。 The weight ratio of the conductive auxiliary agent contained in the electrode composition is preferably 0 to 5% by weight based on the weight of the electrode composition.

溶液乾燥型の公知の電極用バインダとしては、デンプン、ポリフッ化ビニリデン(PVdF)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリエチレン(PE)及びポリプロピレン(PP)等が挙げられる。
ただし、公知の電極用バインダの含有量は、電極組成物全体の重量を基準として、2.0重量%以下であることが好ましい。
Known solution-drying binders for electrodes include polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), polytetrafluoroethylene (PTFE), and styrene-butadiene. Examples thereof include rubber (SBR), polyethylene (PE) and polypropylene (PP).
However, the content of the known electrode binder is preferably 2.0% by weight or less based on the total weight of the electrode composition.

電極組成物に含まれる公知の電極用バインダの重量割合は、電極組成物の重量を基準として0~2重量%であることが好ましく、0~0.5重量%であることがより好ましい。 The weight ratio of the known electrode binder contained in the electrode composition is preferably 0 to 2% by weight, more preferably 0 to 0.5% by weight, based on the weight of the electrode composition.

電極組成物は、公知の電極用バインダではなく、粘着性樹脂を含むことが好ましい。
電極組成物が上記溶液乾燥型の公知の電極用バインダを含む場合には、圧縮成形体を形成した後に乾燥工程を行うことで一体化する必要があるが、粘着性樹脂を含む場合には、乾燥工程を行うことなく常温において僅かな圧力で電極組成物を一体化することができる。乾燥工程を行わない場合、加熱による圧縮成形体の収縮や亀裂の発生がおこらないため好ましい。
The electrode composition preferably contains an adhesive resin rather than a known electrode binder.
When the electrode composition contains the above-mentioned solution-drying type known electrode binder, it is necessary to integrate the electrode composition by performing a drying step after forming the compression molded product. However, when the electrode composition contains an adhesive resin, the electrode composition needs to be integrated. The electrode composition can be integrated with a slight pressure at room temperature without performing a drying step. When the drying step is not performed, the compression molded product does not shrink or crack due to heating, which is preferable.

なお、溶液乾燥型の電極用バインダは、溶媒成分を揮発させることで乾燥、固体化して電極活物質粒子同士を強固に固定するものを意味する。一方、粘着性樹脂は、粘着性(水、溶媒、熱等を使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。
溶液乾燥型の電極用バインダと粘着性樹脂とは異なる材料である。
The solution-drying type binder for electrodes means a binder that dries and solidifies by volatilizing a solvent component to firmly fix the electrode active material particles to each other. On the other hand, the adhesive resin means a resin having adhesiveness (property of adhering by applying a slight pressure without using water, a solvent, heat, etc.).
The solution-drying type binder for electrodes and the adhesive resin are different materials.

粘着性樹脂としては、被覆層を構成する高分子化合物(特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂等)に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805公報等に粘着剤として記載されたものを好適に用いることができる。 As the adhesive resin, a small amount of an organic solvent is mixed with a polymer compound constituting the coating layer (such as the resin for coating a non-aqueous secondary battery active material described in Japanese Patent Application Laid-Open No. 2017-054703) and its glass transition. Those whose temperature is adjusted to room temperature or lower and those described as an adhesive in JP-A No. 10-255805 can be preferably used.

電極組成物に含まれる粘着性樹脂の重量割合は、電極組成物の重量を基準として0~2重量%であることが好ましい。 The weight ratio of the adhesive resin contained in the electrode composition is preferably 0 to 2% by weight based on the weight of the electrode composition.

電極組成物に含まれる樹脂成分(被覆用高分子化合物、電極用バインダ及び粘着性樹脂)の合計重量の割合は、0.1~10重量%であることが好ましい。 The ratio of the total weight of the resin components (polymer compound for coating, binder for electrode and adhesive resin) contained in the electrode composition is preferably 0.1 to 10% by weight.

電解質としては、公知の非水電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPFである。 As the electrolyte, those used in known non-aqueous electrolytes can be used, for example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO). 2 ) Examples thereof include lithium salts of organic acids such as 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Of these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

溶媒としては、公知の非水電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状カーボネート、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the solvent, those used in known non-aqueous electrolytic solutions can be used, and for example, a lactone compound, a cyclic or chain carbonate, a chain carboxylic acid ester, a cyclic or chain ether, a phosphoric acid ester, or a nitrile compound can be used. , Amid compounds, sulfones, sulfolanes and the like and mixtures thereof can be used.

配置工程において用いられる基板の種類は特に限定されないが、電極集電体であってもよい。なお、電極集電体以外にも、樹脂フィルムや金属箔などを基板として用いてもよい。 The type of substrate used in the arranging step is not particularly limited, but may be an electrode current collector. In addition to the electrode current collector, a resin film, metal foil, or the like may be used as the substrate.

電極集電体以外の基板を用いた場合には、基板とリチウムイオン電池用電極材との間に、電極集電体をさらに配置してもよい。 When a substrate other than the electrode current collector is used, the electrode current collector may be further arranged between the substrate and the electrode material for the lithium ion battery.

電極集電体としては、正極集電体又は負極集電体が挙げられる。 Examples of the electrode current collector include a positive electrode current collector or a negative electrode current collector.

正極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。また、正極集電体として、導電剤と樹脂からなる樹脂集電体を用いてもよい。 Examples of the material constituting the positive electrode current collector include copper, aluminum, titanium, stainless steel, nickel, calcined carbon, a conductive polymer, and conductive glass. Further, as the positive electrode current collector, a resin current collector composed of a conductive agent and a resin may be used.

負極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料等が挙げられる。なかでも、軽量化、耐食性、高導電性の観点から、好ましくは銅である。負極集電体としては、焼成炭素、導電性高分子及び導電性ガラス等からなる集電体であってもよく、導電剤と樹脂からなる樹脂集電体であってもよい。 Examples of the material constituting the negative electrode current collector include copper, aluminum, titanium, stainless steel, nickel, and metal materials such as alloys thereof. Among them, copper is preferable from the viewpoint of weight reduction, corrosion resistance, and high conductivity. The negative electrode current collector may be a current collector made of calcined carbon, a conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.

正極集電体、負極集電体とも、樹脂集電体を構成する導電剤としては、電極組成物に含まれる導電助剤と同様のものを好適に用いることができる。
樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
As the conductive agent constituting the resin current collector, the same as the conductive auxiliary agent contained in the electrode composition can be preferably used for both the positive electrode current collector and the negative electrode current collector.
The resins constituting the resin collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetra. Fluoroethylene (PTFE), Styrene-butadiene rubber (SBR), Polyacrylonitrile (PAN), Polymethylacrylate (PMA), Polymethylmethacrylate (PMMA), Polyfluorinated vinylidene (PVdF), Epoxy resin, Silicone resin or mixtures thereof. And so on.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).

基板の形状は特に限定されないが、枠状部材の平面視外形形状と同じか、枠状部材の外形形状と略相似で、枠状部材よりも少しだけ小さい形状であることが好ましい。 The shape of the substrate is not particularly limited, but it is preferably the same as the external shape of the frame-shaped member in a plan view, or substantially similar to the external shape of the frame-shaped member, and slightly smaller than the frame-shaped member.

[その他の実施形態]
上記リチウムイオン電池用電極の製造方法において、基板上に配置されるリチウムイオン電池用電極材は、2種類の電極組成物を有していてもよい。
2種類の電極組成物を有するリチウムイオン電池用電極材の例としては、第1の電極組成物粒子を含む第1の電極組成物と、第1の電極組成物の周囲を囲むように環状に配置される第1の枠状部材と、第1の電極組成物及び第1の枠状部材上に配置されるセパレータと、第1の電極組成物とセパレータを介して対向するように配置される第2の電極組成物粒子を含む第2の電極組成物と、第2の電極組成物の周囲を囲むように環状に配置される第2の枠状部材とを有するリチウムイオン電池用電極材が挙げられる。
[Other embodiments]
In the method for manufacturing an electrode for a lithium ion battery, the electrode material for a lithium ion battery arranged on a substrate may have two types of electrode compositions.
As an example of the electrode material for a lithium ion battery having two kinds of electrode compositions, a first electrode composition containing the first electrode composition particles and a ring around the first electrode composition. The first frame-shaped member to be arranged, the first electrode composition, the separator arranged on the first frame-shaped member, and the first electrode composition are arranged so as to face each other via the separator. The electrode material for a lithium ion battery has a second electrode composition containing the second electrode composition particles and a second frame-shaped member arranged in a ring shape so as to surround the periphery of the second electrode composition. Can be mentioned.

第1の電極活物質粒子及び第2の電極活物質粒子のいずれか一方が正極活物質粒子であり、他方が負極活物質粒子である。 One of the first electrode active material particle and the second electrode active material particle is a positive electrode active material particle, and the other is a negative electrode active material particle.

2種類の電極組成物を有するリチウムイオン電池用電極材の例を、図7及び図8を参照しながら説明する。 An example of an electrode material for a lithium ion battery having two kinds of electrode compositions will be described with reference to FIGS. 7 and 8.

図7は、リチウムイオン電池用電極材の別の一例の層構成を模式的に示す斜視図である。
図7に示すリチウムイオン電池用電極材2’は、基材10上に載置される正極組成物31と、正極組成物31の周囲を覆う正極枠状部材21と、セパレータ60と、正極組成物31とセパレータ60を介して対向する負極組成物33と、負極組成物33の周囲を覆う負極枠状部材23とからなる。
FIG. 7 is a perspective view schematically showing the layer structure of another example of the electrode material for a lithium ion battery.
The electrode material 2'for a lithium ion battery shown in FIG. 7 includes a positive electrode composition 31 placed on a base material 10, a positive electrode frame-shaped member 21 covering the periphery of the positive electrode composition 31, a separator 60, and a positive electrode composition. It is composed of a negative electrode composition 33 facing the object 31 via a separator 60, and a negative electrode frame-shaped member 23 that covers the periphery of the negative electrode composition 33.

リチウムイオン電池用電極材2’は、正極組成物31及び負極組成物33がセパレータ60を介して対向するように配置されている。従って、リチウムイオン電池用電極材2’を用いて製造されたリチウムイオン電池用電極をリチウムイオン電池の製造に用いる場合、対極と組み合わせる工程を省略することができる。 In the electrode material 2'for a lithium ion battery, the positive electrode composition 31 and the negative electrode composition 33 are arranged so as to face each other with the separator 60 interposed therebetween. Therefore, when the electrode for a lithium ion battery manufactured by using the electrode material 2'for a lithium ion battery is used for manufacturing a lithium ion battery, the step of combining with the counter electrode can be omitted.

図8は、リチウムイオン電池用電極材のさらに別の一例の層構成を模式的に示す斜視図である。
図8に示すリチウムイオン電池用電極材3’は、正極集電体71として機能する基材11上に載置される正極組成物31と、正極組成物31の周囲を覆う正極枠状部材21と、セパレータ60と、セパレータ60を介して正極組成物31と対向する負極組成物33と、負極組成物33の周囲を覆う負極枠状部材23と、負極組成物33上に載置される負極集電体73からなる。
FIG. 8 is a perspective view schematically showing the layer structure of still another example of the electrode material for a lithium ion battery.
The electrode material 3'for a lithium ion battery shown in FIG. 8 is a positive electrode composition 31 placed on a base material 11 functioning as a positive electrode current collector 71, and a positive electrode frame-shaped member 21 covering the periphery of the positive electrode composition 31. A separator 60, a negative electrode composition 33 facing the positive electrode composition 31 via the separator 60, a negative electrode frame-shaped member 23 covering the periphery of the negative electrode composition 33, and a negative electrode placed on the negative electrode composition 33. It is composed of a current collector 73.

リチウムイオン電池用電極材3’は、正極組成物31及び負極組成物33がセパレータ60を介して対向するように配置されている。さらにリチウムイオン電池用電極材3’では、負極組成物33上に負極集電体73が配置されており、基板11が正極集電体71で構成されている。従って、リチウムイオン電池用電極材3’を用いて製造されたリチウムイオン電池用電極をリチウムイオン電池の製造に用いる場合、対極と組み合わせる工程、及び、電極集電体を電極組成物に接続する工程を省略することができる。 In the electrode material 3'for a lithium ion battery, the positive electrode composition 31 and the negative electrode composition 33 are arranged so as to face each other with the separator 60 interposed therebetween. Further, in the electrode material 3'for a lithium ion battery, the negative electrode current collector 73 is arranged on the negative electrode composition 33, and the substrate 11 is composed of the positive electrode current collector 71. Therefore, when the electrode for a lithium ion battery manufactured by using the electrode material 3'for a lithium ion battery is used for manufacturing a lithium ion battery, a step of combining the electrode with a counter electrode and a step of connecting the electrode current collector to the electrode composition. Can be omitted.

正極枠状部材と負極枠状部材は、平面視において略同一形状であることが好ましい。 It is preferable that the positive electrode frame-shaped member and the negative electrode frame-shaped member have substantially the same shape in a plan view.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples as long as it does not deviate from the gist of the present invention. Unless otherwise specified, parts mean parts by weight and% means parts by weight.

<製造例1:被覆用高分子化合物とその溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF407.9部を仕込み75℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、及びDMF116.5部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.7部及び2,2’-アゾビス(2-メチルブチロニトリル)4.7部をDMF58.3部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。これにDMFを789.8部加えて、樹脂固形分濃度30重量%である被覆用高分子化合物溶液を得た。
<Production Example 1: Preparation of a polymer compound for coating and its solution>
407.9 parts of DMF was placed in a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, and the temperature was raised to 75 ° C. Next, a monomer compounding solution containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate, and 116.5 parts of DMF, and 2,2'-azobis (2,4-dimethyl). While blowing nitrogen into a four-necked flask, an initiator solution prepared by dissolving 1.7 parts of valeronitrile) and 4.7 parts of 2,2'-azobis (2-methylbutyronitrile) in 58.3 parts of DMF was added to the flask. Under stirring, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of the dropping, the reaction was continued at 75 ° C. for 3 hours. Then, the temperature was raised to 80 ° C. and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. 789.8 parts of DMF was added thereto to obtain a polymer compound solution for coating having a resin solid content concentration of 30% by weight.

<製造例2:電解液の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを1.0mol/Lの割合で溶解させて電解液を準備した。
<Manufacturing example 2: Preparation of electrolytic solution>
An electrolytic solution was prepared by dissolving LiN (FSO 2 ) 2 in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and propylene carbonate (PC) at a ratio of 1.0 mol / L.

<製造例3:被覆正極活物質粒子の作製>
正極活物質粉末(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)93.7部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物溶液1部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電剤であるアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]1部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆正極活物質粒子を得た。
<Production Example 3: Preparation of Coated Positive Electrode Active Material Particles>
Put 93.7 parts of positive electrode active material powder (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) into the universal mixer High Speed Mixer FS25 [manufactured by EarthTechnica Co., Ltd.]. With stirring at room temperature and 720 rpm, one part of the coating polymer compound solution obtained in Production Example 1 was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
Then, in a stirred state, one part of acetylene black [Denka Black (registered trademark) manufactured by Denka Co., Ltd.], which is a conductive agent, was added while dividing it in 2 minutes, and stirring was continued for 30 minutes. Then, the pressure was reduced to 0.01 MPa while maintaining the stirring, then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of decompression, and the stirring, the degree of decompression and the temperature were maintained for 8 hours to distill off the volatile components. .. The obtained powder was classified with a sieve having an opening of 212 μm to obtain coated positive electrode active material particles.

<製造例4:枠状部材の作製>
東ソー(株)製 メルセン(登録商標)G(融点:77℃)を押出成形によって厚さ150μmのフィルム状に成形し、内形が11mm×11mmの正方形、外形が15mm×15mmの正方形である環状形状に打ち抜いて、枠状部材を得た。
<Manufacturing Example 4: Fabrication of frame-shaped member>
Melsen (registered trademark) G (melting point: 77 ° C.) manufactured by Tosoh Corporation is extruded into a film with a thickness of 150 μm, and the inner shape is a square of 11 mm × 11 mm and the outer shape is a square of 15 mm × 15 mm. A frame-shaped member was obtained by punching into a shape.

<実施例1>
<配置工程>
製造例3で作製した被覆電極活物質粒子95部と導電助剤であるアセチレンブラック5部及び製造例2で作製した電解液30部を混合し、正極組成物を作製した。
基板となるSUS板(15mm×15mm、厚さ200μm)上に製造例4で製造した枠状部材を1つ載置し、枠状部材の内側に枠状部材の厚さと同じ厚さとなるように正極組成物を充填して、リチウムイオン電池用電極材を作製した。
<Example 1>
<Placement process>
A positive electrode composition was prepared by mixing 95 parts of the coated electrode active material particles prepared in Production Example 3, 5 parts of acetylene black as a conductive auxiliary agent, and 30 parts of the electrolytic solution prepared in Production Example 2.
One frame-shaped member manufactured in Production Example 4 is placed on a SUS plate (15 mm × 15 mm, thickness 200 μm) to be a substrate, and the thickness of the frame-shaped member is the same as the thickness of the frame-shaped member inside the frame-shaped member. The positive electrode composition was filled to prepare an electrode material for a lithium ion battery.

<真空包装工程>
リチウムイオン電池用電極材をPP製の包装材(20mm×25mm)内に収容し、ゲージ圧-95kPaとなるまで減圧して開口部をヒートシールし、真空パッケージを得た。
<Vacuum packaging process>
The electrode material for the lithium ion battery was housed in a packaging material (20 mm × 25 mm) made of PP, the pressure was reduced until the gauge pressure reached −95 kPa, and the opening was heat-sealed to obtain a vacuum package.

<加圧成形工程>
一対のローラにより真空パッケージをロールプレスして、正極組成物を成形した。ロールの回転速度は、50mm/sとした。一対のローラの間隔は、320μmとした。
<Pressure molding process>
The vacuum package was roll pressed with a pair of rollers to form a positive electrode composition. The rotation speed of the roll was 50 mm / s. The distance between the pair of rollers was 320 μm.

<成形状態の評価>
加圧成形工程後の正極組成物の状態を目視で観察し、形状の乱れがないかを確認し、以下の基準で評価した。また、加圧成形工程後の正極組成物の状態を撮影した写真を図9に示す。図9は、実施例1に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。
○:正極組成物の形状に乱れがみられない。
△:正極組成物が変形している。
×:正極組成物が噴き出した痕跡がみられ、正極組成物が大きく変形している。
<Evaluation of molding condition>
The state of the positive electrode composition after the pressure molding step was visually observed, and it was confirmed whether or not the shape was disturbed, and the evaluation was made according to the following criteria. Further, FIG. 9 shows a photograph of the state of the positive electrode composition after the pressure molding step. FIG. 9 is a photograph of the electrode material for a lithium ion battery according to Example 1 after the pressure molding step.
◯: The shape of the positive electrode composition is not disturbed.
Δ: The positive electrode composition is deformed.
X: Traces of the positive electrode composition spouting are observed, and the positive electrode composition is significantly deformed.

<実施例2、比較例1~6>
枠状部材の有無、真空包装工程における真空度及びロールの回転速度を表1に示すように変更して、実施例2及び比較例1~6に係るリチウムイオン電池用電極を製造し、正極組成物の状態を目視で観察した。結果を表1及び図10~図16に示す。図10~図16は、実施例2及び比較例1~6に係るリチウムイオン電池用電極材の加圧成形工程後の写真である。
なお、枠状部材を用いていない比較例3~6については、配置工程において、実施例1~2及び比較例1~2で用いた枠状部材と同じ寸法を有するPP製の枠を基板上に載置し、正極組成物を充填した後に枠を取り除くことにより、正極組成物の形状を実施例1~2及び比較例1~2と同一とした。
また、真空度が0kPaの比較例1~2及び5~6は、真空包装工程において、リチウムイオン電池用電極材を包装材内に収容した後、正極組成物の形状を変形させないように包装材を手で軽く押さえながら包装材内部の気体を排出して、ヒートシールを行った。
<Example 2, Comparative Examples 1 to 6>
The presence or absence of the frame-shaped member, the degree of vacuum in the vacuum packaging process, and the rotation speed of the roll were changed as shown in Table 1, and the electrodes for lithium ion batteries according to Example 2 and Comparative Examples 1 to 6 were manufactured to produce a positive electrode composition. The condition of the object was visually observed. The results are shown in Table 1 and FIGS. 10 to 16. 10 to 16 are photographs of the electrode materials for lithium ion batteries according to Example 2 and Comparative Examples 1 to 6 after the pressure molding step.
For Comparative Examples 3 to 6 in which the frame-shaped member is not used, a PP frame having the same dimensions as the frame-shaped members used in Examples 1 and 2 and Comparative Examples 1 and 2 is placed on the substrate in the arrangement step. The shape of the positive electrode composition was made the same as that of Examples 1 and 2 and Comparative Examples 1 and 2 by removing the frame after filling the positive electrode composition with the positive electrode composition.
Further, in Comparative Examples 1 to 2 and 5 to 6 having a vacuum degree of 0 kPa, in the vacuum packaging step, after the electrode material for a lithium ion battery is housed in the packaging material, the packaging material is not deformed so as to prevent the shape of the positive electrode composition from being deformed. The gas inside the packaging material was discharged while lightly pressing with the hand, and heat sealing was performed.

<実施例3>
基板となるSUS板(15mm×15mm、厚さ200μm)上に製造例4で製造した枠状部材を2つ重ねて載置し、枠状部材の内側に正極組成物を充填した後、枠状部材を1つ取り除いて、リチウムイオン電池用電極材を作製したほかは、実施例1と同様の手順で実施例3に係るリチウムイオン電池用電極を作製し、成形状態を評価した。結果を表1に示す。包装材に収容する前の正極組成物の厚さは、枠状部材の厚さの200%であった。加圧成形工程で用いる一対のローラの間隔も、実施例1と同様とした。
<Example 3>
Two frame-shaped members manufactured in Production Example 4 are placed on a SUS plate (15 mm × 15 mm, thickness 200 μm) as a substrate, and the positive electrode composition is filled inside the frame-shaped members, and then the frame-shaped member is formed. Except for producing an electrode material for a lithium ion battery by removing one member, an electrode for a lithium ion battery according to Example 3 was produced by the same procedure as in Example 1, and the molding state was evaluated. The results are shown in Table 1. The thickness of the positive electrode composition before being contained in the packaging material was 200% of the thickness of the frame-shaped member. The distance between the pair of rollers used in the pressure forming step was also the same as in Example 1.

Figure 2022017924000002
Figure 2022017924000002

表1、図9及び図10に示すように、本発明のリチウムイオン電池用電極の製造方法により製造されたリチウムイオン電池用電極には、形状の乱れが確認できなかった。
一方、真空パッケージを作製したが枠状部材を用いなかった比較例3~4では、図13及び図14に示すように、正極組成物が変形していた。さらに、真空パッケージの真空度が0kPaである比較例1~2、5~6では、図11、図12、図15及び図16に示すように、枠状部材の有無に関わらず正極組成物が噴き出した痕跡がみられ、正極組成物が大きく変形していた。また、正極組成物の噴き出しは、ロールの回転速度が速いほど顕著であった。
以上より、本発明のリチウムイオン電池用電極の製造方法は、ロールの回転速度を上げた場合であっても成形不良を起こしにくいことがわかる。
As shown in Table 1, FIG. 9 and FIG. 10, the irregular shape of the lithium ion battery electrode manufactured by the method for manufacturing the lithium ion battery electrode of the present invention could not be confirmed.
On the other hand, in Comparative Examples 3 to 4 in which the vacuum package was produced but the frame-shaped member was not used, the positive electrode composition was deformed as shown in FIGS. 13 and 14. Further, in Comparative Examples 1 to 2, 5 to 6 in which the degree of vacuum of the vacuum package is 0 kPa, as shown in FIGS. 11, 12, 15 and 16, the positive electrode composition has a positive electrode composition regardless of the presence or absence of the frame-shaped member. Traces of spouting were observed, and the positive electrode composition was significantly deformed. Further, the ejection of the positive electrode composition was more remarkable as the rotation speed of the roll was faster.
From the above, it can be seen that the method for manufacturing an electrode for a lithium ion battery of the present invention is less likely to cause molding defects even when the rotation speed of the roll is increased.

本発明のリチウムイオン電池用電極の製造方法及びその製造装置は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用等に用いられるリチウムイオン電池用電極を製造する方法及びその製造装置として有用である。 The method for manufacturing an electrode for a lithium ion battery and the manufacturing apparatus thereof of the present invention are particularly useful as a method for manufacturing an electrode for a lithium ion battery used for a mobile phone, a personal computer, a hybrid vehicle, an electric vehicle, etc. and a manufacturing apparatus thereof. Is.

1 リチウムイオン電池用電極
1’、2’、3’ リチウムイオン電池用電極材
5 真空パッケージ
10、11 基板
20 枠状部材
21 正極枠状部材
23 負極枠状部材
30 電極組成物
31 正極組成物
33 負極組成物
35 成形された電極組成物
40 包装材
41 開口部
50 プレスロール
60 セパレータ
71 正極集電体
73 負極集電体
1 Electrode for lithium ion battery 1', 2', 3'Electrode material for lithium ion battery 5 Vacuum package 10, 11 Substrate 20 Frame-shaped member 21 Positive electrode frame-shaped member 23 Negative electrode frame-shaped member 30 Electrode composition 31 Positive electrode composition 33 Negative electrode composition 35 Molded electrode composition 40 Packaging material 41 Opening 50 Press roll 60 Separator 71 Positive electrode current collector 73 Negative electrode current collector

Claims (8)

電極活物質粒子を含む電極組成物と、前記電極組成物の周囲を囲むように環状に配置される枠状部材とからなるリチウムイオン電池用電極材を基板上に配置する配置部と、
前記リチウムイオン電池用電極材を前記基板ごと真空包装して真空パッケージを得る真空包装部と、
前記真空パッケージをロールプレスする一対のローラを含む加圧成形部と、
を備えることを特徴とするリチウムイオン電池用電極の製造装置。
An arrangement portion for arranging an electrode material for a lithium ion battery composed of an electrode composition containing electrode active material particles and a frame-shaped member arranged in a ring shape so as to surround the periphery of the electrode composition, and an arrangement portion for arranging the electrode material for a lithium ion battery on a substrate.
A vacuum packaging unit for obtaining a vacuum package by vacuum packaging the electrode material for a lithium ion battery together with the substrate.
A pressure molding unit including a pair of rollers for roll pressing the vacuum package, and a pressure forming unit.
A device for manufacturing an electrode for a lithium ion battery, which comprises.
前記基板が、電極集電体である請求項1に記載のリチウムイオン電池用電極の製造装置。 The apparatus for manufacturing an electrode for a lithium ion battery according to claim 1, wherein the substrate is an electrode current collector. 前記加圧成形部における前記一対のローラの間隔は、前記電極活物質粒子の体積平均粒子径の3倍以上である請求項1又は2に記載のリチウムイオン電池用電極の製造装置。 The apparatus for manufacturing an electrode for a lithium ion battery according to claim 1 or 2, wherein the distance between the pair of rollers in the pressure forming portion is three times or more the volume average particle diameter of the electrode active material particles. 電極活物質粒子を含む電極組成物と、前記電極組成物の周囲を囲むように環状に配置される枠状部材とからなるリチウムイオン電池用電極材を基板上に配置する配置工程と、
前記リチウムイオン電池用電極材を前記基板ごと真空包装して真空パッケージを得る真空包装工程と、
一対のローラにより前記真空パッケージをロールプレスすることで、前記電極組成物を加圧成形する加圧成形工程と、を備えることを特徴とするリチウムイオン電池用電極の製造方法。
An arrangement step of arranging an electrode material for a lithium ion battery, which comprises an electrode composition containing electrode active material particles and a frame-shaped member arranged in a ring shape so as to surround the periphery of the electrode composition, on a substrate.
A vacuum packaging step of vacuum-packing the electrode material for a lithium-ion battery together with the substrate to obtain a vacuum package,
A method for manufacturing an electrode for a lithium ion battery, comprising: a pressure molding step of pressure molding the electrode composition by roll pressing the vacuum package with a pair of rollers.
前記基板が、電極集電体である請求項4に記載のリチウムイオン電池用電極の製造方法。 The method for manufacturing an electrode for a lithium ion battery according to claim 4, wherein the substrate is an electrode current collector. 前記一対のローラの間隔は、前記電極活物質粒子の体積平均粒子径の3倍以上である請求項4又は5に記載のリチウムイオン電池用電極の製造方法。 The method for manufacturing an electrode for a lithium ion battery according to claim 4 or 5, wherein the distance between the pair of rollers is three times or more the volume average particle diameter of the electrode active material particles. 前記電極活物質粒子の平均粒子径は、5~200μmである請求項4~6のいずれかに記載のリチウムイオン電池用電極の製造方法。 The method for manufacturing an electrode for a lithium ion battery according to any one of claims 4 to 6, wherein the average particle size of the electrode active material particles is 5 to 200 μm. 前記真空パッケージの真空度は、-70kPa以下である請求項4~7のいずれかに記載のリチウムイオン電池用電極の製造方法。
The method for manufacturing an electrode for a lithium ion battery according to any one of claims 4 to 7, wherein the degree of vacuum of the vacuum package is −70 kPa or less.
JP2020120773A 2020-07-14 2020-07-14 Device for manufacturing lithium ion battery electrode and method for manufacturing lithium ion battery electrode Active JP7148572B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020120773A JP7148572B2 (en) 2020-07-14 2020-07-14 Device for manufacturing lithium ion battery electrode and method for manufacturing lithium ion battery electrode
US18/015,796 US20230299260A1 (en) 2020-07-14 2021-07-14 Manufacturing device for electrode for a lithium-ion battery and method for manufacturing electrode for a lithium-ion battery
PCT/JP2021/026517 WO2022014649A1 (en) 2020-07-14 2021-07-14 Device for manufacturing electrode for lithium-ion cell, and method for manufacturing electrode for lithium-ion cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120773A JP7148572B2 (en) 2020-07-14 2020-07-14 Device for manufacturing lithium ion battery electrode and method for manufacturing lithium ion battery electrode

Publications (3)

Publication Number Publication Date
JP2022017924A true JP2022017924A (en) 2022-01-26
JP2022017924A5 JP2022017924A5 (en) 2022-04-22
JP7148572B2 JP7148572B2 (en) 2022-10-05

Family

ID=80186126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120773A Active JP7148572B2 (en) 2020-07-14 2020-07-14 Device for manufacturing lithium ion battery electrode and method for manufacturing lithium ion battery electrode

Country Status (1)

Country Link
JP (1) JP7148572B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113709A (en) * 1997-06-10 1999-01-06 Hitachi Maxell Ltd Manufacture of lithium secondary battery
JP2010244930A (en) * 2009-04-08 2010-10-28 Hitachi Maxell Ltd Method for manufacturing laminated battery
JP2015109256A (en) * 2013-10-21 2015-06-11 東芝三菱電機産業システム株式会社 Active material production device, battery production system, filler production device, and resin film production system
JP2015125872A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Manufacturing method for all solid battery and all solid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113709A (en) * 1997-06-10 1999-01-06 Hitachi Maxell Ltd Manufacture of lithium secondary battery
JP2010244930A (en) * 2009-04-08 2010-10-28 Hitachi Maxell Ltd Method for manufacturing laminated battery
JP2015109256A (en) * 2013-10-21 2015-06-11 東芝三菱電機産業システム株式会社 Active material production device, battery production system, filler production device, and resin film production system
JP2015125872A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Manufacturing method for all solid battery and all solid battery

Also Published As

Publication number Publication date
JP7148572B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
EP2162936B1 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
JP4778034B2 (en) Method for producing non-aqueous secondary battery
JP6126546B2 (en) Method and apparatus for producing negative electrode for lithium ion secondary battery
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP7317434B2 (en) Positive electrode and secondary battery containing the positive electrode
JP7022539B2 (en) Method for manufacturing electrodes for lithium-ion batteries and equipment for manufacturing electrodes for lithium-ion batteries
KR20180121411A (en) Positive electrode, lithium secondarty battery comprising the positive electrode, and method for manufacturing the positive electrode
WO2018194163A1 (en) Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery
WO2021025072A1 (en) Method for manufacturing lithium ion cell
KR101821045B1 (en) Method for manufacturing electrode sheet and electrode sheet
US20210151739A1 (en) Method for manufacturing electrode for lithium ion battery
JP6460400B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2013175396A (en) Composite particle, manufacturing method thereof, manufacturing method of electrode and electrochemical element
WO2019198495A1 (en) Battery production method
WO2019198454A1 (en) Battery manufacturing method
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7109506B2 (en) Device for manufacturing lithium ion battery electrode and method for manufacturing lithium ion battery electrode
WO2022014649A1 (en) Device for manufacturing electrode for lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
JP2022017924A (en) Manufacturing device of lithium-ion battery electrode and manufacturing method of lithium-ion battery electrode
JP2018181802A (en) Manufacturing method of electrode active material molded body and manufacturing method of lithium ion battery
JP7130540B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP2021044152A (en) Manufacturing method of lithium ion battery
JP2021044182A (en) Selective extraction method for cathode active material
JP2021044180A (en) Method for manufacturing regenerated electrode active material for lithium ion battery, method for manufacturing solution containing metal ions, and lithium ion battery
JP7256706B2 (en) Electrode active material compact for all-solid lithium ion secondary battery, electrode for all-solid lithium ion secondary battery, all-solid lithium ion secondary battery, and method for manufacturing electrode active material compact for all-solid lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150