JP2022016896A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2022016896A
JP2022016896A JP2020119876A JP2020119876A JP2022016896A JP 2022016896 A JP2022016896 A JP 2022016896A JP 2020119876 A JP2020119876 A JP 2020119876A JP 2020119876 A JP2020119876 A JP 2020119876A JP 2022016896 A JP2022016896 A JP 2022016896A
Authority
JP
Japan
Prior art keywords
water
space
treated
flow rate
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020119876A
Other languages
Japanese (ja)
Inventor
優子 梶原
Yuko Kajiwara
徹 中野
Toru Nakano
勇規 中村
Yuki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2020119876A priority Critical patent/JP2022016896A/en
Publication of JP2022016896A publication Critical patent/JP2022016896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a water treatment method and a water treatment device which can reduce an influence of concentration polarization in concentration treatment of water using a semipermeable membrane module.SOLUTION: A water treatment method comprises: a semipermeable membrane treatment step of using a semipermeable membrane module 12 having a first space 16 and a second space 18 divided by a semipermeable membrane 14 to pass water to be treated including a dissolved solid component through the first space 16 and pressurize the first space 16 to cause the water included in the water to be treated to penetrate the semipermeable membrane 14 to thereby obtain concentrated water while passing a part of the concentrated water through the second space 18, obtaining diluted water; and a circulation step of returning an additional part of the concentrated water to the side of the water to be treated of the semipermeable membrane module 12.SELECTED DRAWING: Figure 1

Description

本発明は、溶解固形成分(TDS)等を含む水の濃縮処理を行う水処理方法および水処理装置に関する。 The present invention relates to a water treatment method and a water treatment apparatus for concentrating water containing a dissolved solid component (TDS) and the like.

近年、工場等からの排水量を減容化する方法として、エバポレーターを用いた蒸発法や、逆浸透膜を用いて透過水を回収し、排水量を減容化する逆浸透法が知られている。 In recent years, as a method for reducing the volume of wastewater from factories and the like, an evaporation method using an evaporator and a reverse osmosis method for recovering permeated water using a reverse osmosis membrane to reduce the volume of wastewater are known.

また、特許文献1のように、半透膜モジュールの半透膜で仕切られた第一空間と第二空間に被処理水またはその濃縮水を流し、第一空間を加圧することによって、水を濃縮する方法が知られている。このような半透膜を用いる濃縮方法は、一般的な逆浸透法と比較し、第一空間と第二空間との浸透圧差を小さくすることによって、より少ない消費エネルギーで排水を高濃縮し、減容化することができる。 Further, as in Patent Document 1, water is discharged by flowing water to be treated or concentrated water thereof through the first space and the second space partitioned by the semipermeable membrane of the semipermeable membrane module and pressurizing the first space. A method of concentrating is known. Compared with the general reverse osmosis method, such a concentration method using a semipermeable membrane reduces the osmotic pressure difference between the first space and the second space, thereby highly concentrating wastewater with less energy consumption. The volume can be reduced.

しかし、このような半透膜を用いる濃縮方法では、特に高濃度の被処理水を濃縮する際に、半透膜の膜面で液が濃縮され、より大きな浸透圧がかかってしまう現象(すなわち濃度分極)の影響を受け、膜の第一空間から第二空間へ透過する水量が少なくなる場合がある。また、特許文献1のように多段式の半透膜モジュールを用いる場合には、膜ユニットの後段にいくほど、膜の第一空間に通水する水が高濃度となり、濃度分極の影響が大きくなるため、膜の第一空間から第二空間へ透過する水量が少なくなる。その結果として、濃縮水を得るために高い圧力が必要になったり、濃縮に必要な膜ユニット数が増えたりして、イニシャルコストおよびランニングコストの増大につながる。 However, in such a concentration method using a semipermeable membrane, a phenomenon in which the liquid is concentrated on the membrane surface of the semipermeable membrane and a larger osmotic pressure is applied (that is, when concentrating high-concentration water to be treated). The amount of water that permeates from the first space to the second space of the membrane may decrease due to the influence of concentration polarization). Further, when a multi-stage semipermeable membrane module is used as in Patent Document 1, the concentration of water passing through the first space of the membrane becomes higher toward the latter stage of the membrane unit, and the influence of concentration polarization is large. Therefore, the amount of water permeating from the first space to the second space of the membrane is reduced. As a result, high pressure is required to obtain concentrated water, and the number of membrane units required for concentration increases, leading to an increase in initial cost and running cost.

特開2018-069198号公報Japanese Unexamined Patent Publication No. 2018-069198

本発明の目的は、半透膜モジュールを用いる水の濃縮処理において、濃度分極の影響を軽減することができる水処理方法および水処理装置を提供することにある。 An object of the present invention is to provide a water treatment method and a water treatment apparatus capable of reducing the influence of concentration polarization in a water concentration treatment using a semipermeable membrane module.

本発明は、半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記濃縮水の一部を通水して希釈水を得る半透膜処理工程と、前記濃縮水のさらに一部を前記半透膜モジュールの被処理水側に返送し循環する循環工程と、を含む、水処理方法である。 In the present invention, the water to be treated containing a dissolved solid component is passed through the first space by using a semi-transparent module having a first space and a second space partitioned by a semi-permeable film, and the first space is described. Concentrated water is obtained by pressurizing the space and allowing the water contained in the water to be treated to permeate through the semi-permeable film, and a part of the concentrated water is passed through the second space to obtain diluted water. It is a water treatment method including a water-permeable treatment step and a circulation step of returning a part of the concentrated water to the water to be treated side of the semi-transparent module and circulating the water.

本発明は、半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記被処理水の一部を通水して希釈水を得る半透膜処理工程と、前記濃縮水の少なくとも一部を前記半透膜モジュールの被処理水側に返送し循環する循環工程と、を含む、水処理方法である。 In the present invention, the water to be treated containing a dissolved solid component is passed through the first space by using a semi-transparent module having a first space and a second space partitioned by a semi-transparent film, and the first space is described. Concentrated water is obtained by pressurizing the space and allowing the water contained in the water to be treated to permeate through the semi-permeable film, and a part of the water to be treated is passed through the second space to obtain diluted water. It is a water treatment method including a semi-transparent film treatment step and a circulation step of returning at least a part of the concentrated water to the water to be treated side of the semi-transparent film module and circulating the semi-transparent film treatment step.

前記水処理方法において、前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記半透膜を透過する透過水量が所定の範囲になるように、前記循環する濃縮水の流量を制御することが好ましい。 In the water treatment method, when the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value, the circulating concentration is provided so that the amount of permeated water permeating the semipermeable membrane is within a predetermined range. It is preferable to control the flow rate of water.

前記水処理方法において、前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記第一空間に供給される被処理水の流量に対して、前記循環する濃縮水の流量が200%以上となるように、前記循環する濃縮水の流量を制御することが好ましい。 In the water treatment method, when the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value, the concentrated water that circulates with respect to the flow rate of the water to be treated supplied to the first space. It is preferable to control the flow rate of the circulating concentrated water so that the flow rate of the water is 200% or more.

前記水処理方法において、前記所定の濃度値が、前記被処理水の浸透圧が5MPa以上となる濃度値であることが好ましい。 In the water treatment method, the predetermined concentration value is preferably a concentration value at which the osmotic pressure of the water to be treated is 5 MPa or more.

本発明は、半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記濃縮水の一部を通水して希釈水を得る半透膜処理手段と、前記濃縮水のさらに一部を前記半透膜モジュールの被処理水側に返送し循環する循環手段と、を備える、水処理装置である。 In the present invention, the water to be treated containing a dissolved solid component is passed through the first space by using a semi-transparent module having a first space and a second space partitioned by a semi-permeable film, and the first space is described. Concentrated water is obtained by pressurizing the space and allowing the water contained in the water to be treated to permeate through the semi-permeable film, and a part of the concentrated water is passed through the second space to obtain diluted water. It is a water treatment apparatus including a water-permeable treatment means and a circulation means for returning a part of the concentrated water to the water to be treated side of the semi-transparent module and circulating the water.

本発明は、半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記被処理水の一部を通水して希釈水を得る半透膜処理手段と、前記濃縮水の少なくとも一部を前記半透膜モジュールの被処理水側に返送し循環する循環手段と、を備える、水処理装置である。 In the present invention, the water to be treated containing a dissolved solid component is passed through the first space by using a semi-transparent module having a first space and a second space partitioned by a semi-transparent film, and the first space is described. Concentrated water is obtained by pressurizing the space and allowing the water contained in the water to be treated to permeate through the semi-permeable film, and a part of the water to be treated is passed through the second space to obtain diluted water. It is a water treatment apparatus including a semi-transparent film treatment means and a circulation means for returning at least a part of the concentrated water to the water to be treated side of the semi-transparent film module and circulating the semi-transparent film treatment means.

前記水処理装置において、前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記半透膜を透過する透過水量が所定の範囲になるように、前記循環する濃縮水の流量を制御する制御手段をさらに備えることが好ましい。 In the water treatment apparatus, when the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value, the circulating concentration is provided so that the amount of permeated water permeating the semipermeable membrane is within a predetermined range. It is preferable to further provide a control means for controlling the flow rate of water.

前記水処理装置において、前記制御手段は、前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記第一空間に供給される被処理水の流量に対して、前記循環する濃縮水の流量が200%以上となるように、前記循環する濃縮水の流量を制御することが好ましい。 In the water treatment apparatus, the control means refers to the flow rate of the water to be treated supplied to the first space when the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value. It is preferable to control the flow rate of the circulating concentrated water so that the flow rate of the circulating concentrated water is 200% or more.

前記水処理装置において、前記所定の濃度値が、前記被処理水の浸透圧が5MPa以上となる濃度値であることが好ましい。 In the water treatment apparatus, the predetermined concentration value is preferably a concentration value at which the osmotic pressure of the water to be treated is 5 MPa or more.

本発明により、半透膜モジュールを用いる水の濃縮処理において、濃度分極の影響を軽減することができる水処理方法および水処理装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a water treatment method and a water treatment apparatus capable of reducing the influence of concentration polarization in a water concentration treatment using a semipermeable membrane module.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 比較例1で用いた水処理装置を示す概略構成図である。It is a schematic block diagram which shows the water treatment apparatus used in the comparative example 1. FIG. 実施例2~5における、第一空間側(一次側)流量(L/min)と透過水量の増加割合(%)を示すグラフである。It is a graph which shows the 1st space side (primary side) flow rate (L / min) and the increase rate (%) of the permeation water amount in Examples 2-5.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。 An outline of an example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. 1, and the configuration thereof will be described.

図1に示す水処理装置1は、半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する半透膜モジュールを用いて溶解固形成分(TDS)等を含む被処理水を濃縮する半透膜処理手段として、例えば、膜モジュール12を備える。膜モジュール12は、半透膜14で仕切られた第一空間16および第二空間18を有する。水処理装置1は、被処理水を貯留する被処理水槽10を備えてもよい。 The water treatment apparatus 1 shown in FIG. 1 uses a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane to prepare a dissolved solid component (TDS) and the like. As a semipermeable membrane treatment means for concentrating the contained water to be treated, for example, a membrane module 12 is provided. The membrane module 12 has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The water treatment device 1 may include a water treatment tank 10 for storing water to be treated.

図1の水処理装置1において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と膜モジュール12の第一空間入口とは、ポンプ20を介して配管24により接続されている。膜モジュール12の第一空間出口には配管26が接続されている。配管26から分岐した配管28が膜モジュール12の第二空間入口に接続されている。膜モジュール12の第二空間出口には配管30が接続されている。配管26から分岐した配管32が被処理水槽10の循環水入口に接続されている。 In the water treatment apparatus 1 of FIG. 1, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the membrane module 12 are connected by a pipe 24 via a pump 20. A pipe 26 is connected to the first space outlet of the membrane module 12. The pipe 28 branched from the pipe 26 is connected to the second space entrance of the membrane module 12. A pipe 30 is connected to the second space outlet of the membrane module 12. The pipe 32 branched from the pipe 26 is connected to the circulating water inlet of the water tank 10 to be treated.

図1の水処理装置1は、半透膜14で仕切られた第一空間16および第二空間18を有する膜モジュール12を用い、被処理水を膜モジュール12の第一空間入口から第一空間16に通水するとともに、膜モジュール12の第一空間16の第一空間出口から排出された濃縮水の一部を膜モジュール12の第二空間入口から第二空間18に通水し、第一空間16を加圧することによって、その第一空間16の被処理水に含まれる水を半透膜14を介して第二空間18に透過させて水を濃縮する装置である。すなわち、水処理装置1において、半透膜14を用いて被処理水が濃縮される。水処理装置1は、膜モジュール12の第一空間16に被処理水を供給し、第一空間16の出口から得られた濃縮水の一部を膜モジュール12の第二空間18に供給して濃縮処理を行う装置である。 The water treatment device 1 of FIG. 1 uses a film module 12 having a first space 16 and a second space 18 partitioned by a semi-permeable film 14, and allows water to be treated to be transferred from the first space inlet of the film module 12 to the first space. Along with passing water through 16, a part of the concentrated water discharged from the first space outlet of the first space 16 of the membrane module 12 is passed through the second space inlet of the membrane module 12 to the second space 18, and the first is By pressurizing the space 16, the water contained in the water to be treated in the first space 16 is permeated into the second space 18 through the semi-permeable film 14 to concentrate the water. That is, in the water treatment apparatus 1, the water to be treated is concentrated using the semipermeable membrane 14. The water treatment device 1 supplies water to be treated to the first space 16 of the membrane module 12, and supplies a part of the concentrated water obtained from the outlet of the first space 16 to the second space 18 of the membrane module 12. It is a device that performs concentration processing.

本実施形態に係る水処理方法および水処理装置1の動作について説明する。 The water treatment method and the operation of the water treatment apparatus 1 according to the present embodiment will be described.

水処理装置1において、溶解固形成分(TDS)を含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留された後、被処理水槽10からポンプ20により配管24を通して、膜モジュール12の第一空間入口から第一空間16へ加圧送液され、通水される。加圧された被処理水に含まれる水の一部は半透膜14を介して第一空間16から第二空間18に向かって透過する。このとき、溶解固形成分の大部分は半透膜14を透過することができないので、半透膜14を透過しなかった第一空間16内の水が濃縮される。一方、第二空間18では、配管28を通して通水された濃縮水の一部と、半透膜14を透過したTDS濃度の低い透過水とが合流するため、希釈効果が働く。第一空間16で得られた濃縮水は、第一空間出口から配管26を通して排出され、濃縮水の一部は、配管26から分岐した配管28を通して、膜モジュール12の第二空間入口から第二空間18へ送液され、通水される。第二空間18で得られた希釈水は、第二空間出口から配管30を通して排出される。ここで、膜モジュール12において、第一空間16が加圧されてその第一空間16の被処理水に含まれる水が半透膜14を介して第二空間18に透過され、第一空間16で濃縮水が得られる(濃縮工程)とともに、第二空間18で希釈水が得られる(希釈工程)。第一空間16で得られた濃縮水の一部は、配管26を通して系外へ排出されてもよい。濃縮水の一部は、上記の通り膜モジュール12の第二空間18へ配管26,28を通して送液、通水され、濃縮水のさらに一部は、循環水として配管32を通して膜モジュール12の被処理水側、例えば被処理水槽10に返送し循環される(循環工程)。循環水は、配管24に返送されてもよい。 In the water treatment apparatus 1, the water to be treated containing dissolved solids (TDS) is stored in the water tank 10 to be treated as needed through the pipe 22, and then the film is passed from the water tank 10 to be treated through the pipe 24 by the pump 20. Pressurized liquid is sent from the entrance of the first space of the module 12 to the first space 16 and water is passed therethrough. A part of the water contained in the pressurized water to be treated permeates from the first space 16 to the second space 18 through the semipermeable membrane 14. At this time, since most of the dissolved solid components cannot pass through the semipermeable membrane 14, the water in the first space 16 that did not pass through the semipermeable membrane 14 is concentrated. On the other hand, in the second space 18, a part of the concentrated water passed through the pipe 28 and the permeated water having a low TDS concentration permeated through the semipermeable membrane 14 merge, so that the diluting effect works. The concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and a part of the concentrated water is passed through the pipe 28 branched from the pipe 26 and is second from the second space inlet of the membrane module 12. The liquid is sent to the space 18 and water is passed through it. The diluted water obtained in the second space 18 is discharged from the second space outlet through the pipe 30. Here, in the membrane module 12, the first space 16 is pressurized, and the water contained in the water to be treated in the first space 16 is permeated into the second space 18 via the semipermeable membrane 14, and the first space 16 is used. Concentrated water is obtained in (concentration step), and diluted water is obtained in the second space 18 (diluting step). A part of the concentrated water obtained in the first space 16 may be discharged to the outside of the system through the pipe 26. As described above, a part of the concentrated water is sent to and passed through the pipes 26 and 28 to the second space 18 of the membrane module 12, and a further part of the concentrated water is covered with the membrane module 12 through the pipe 32 as circulating water. It is returned to the treated water side, for example, the water tank 10 to be treated and circulated (circulation step). The circulating water may be returned to the pipe 24.

ここで、ポンプ20、配管24,26,28等が、半透膜モジュール12の第一空間16に被処理水を供給し、第一空間16の出口から得られた濃縮水の少なくとも一部を半透膜モジュール12の第二空間18に供給する供給手段として機能する。 Here, the pump 20, pipes 24, 26, 28, etc. supply the water to be treated to the first space 16 of the semipermeable membrane module 12, and at least a part of the concentrated water obtained from the outlet of the first space 16 is used. It functions as a supply means for supplying the second space 18 of the semipermeable membrane module 12.

第二空間18で得られた希釈水は、配管30を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよい。希釈水の少なくとも一部は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。希釈水の少なくとも一部は、さらに逆浸透膜処理装置へ送液され、逆浸透膜処理装置において、逆浸透膜処理が行われてもよい(逆浸透膜処理工程)。逆浸透膜処理により得られたRO透過水は、系外へ排出される。逆浸透膜処理により得られたRO濃縮水は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。 The diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 30, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. At least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step). The RO permeated water obtained by the reverse osmosis membrane treatment is discharged to the outside of the system. The RO concentrated water obtained by the reverse osmosis membrane treatment may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated.

以上のようにして、処理対象である、溶解固形成分等を含む被処理水から、溶解固形成分等の物質が濃縮された処理水(濃縮水)と、希釈水とが得られ、被処理水の減容化が行われる。 As described above, the treated water (concentrated water) in which the substance such as the dissolved solid component is concentrated and the diluted water are obtained from the treated water containing the dissolved solid component and the like, which is the treatment target, and the treated water is obtained. Volume is reduced.

本実施形態に係る水処理方法および水処理装置1では、濃縮水の一部を膜モジュール12の被処理水側に返送し、循環する循環手段として配管32を設けている。濃縮水の一部を膜モジュール12の被処理水側に返送、循環して、半透膜モジュール12の第一空間16に供給する水量を増やすことによって、濃度分極の影響の軽減を可能とする。その結果として、濃縮水を得るための圧力を与える運転動力を低減できるため、イニシャルコストおよびランニングコストの低減につながり、低コストな水処理方法および水処理装置を提供することができる。 In the water treatment method and the water treatment apparatus 1 according to the present embodiment, a pipe 32 is provided as a circulation means for returning a part of the concentrated water to the water to be treated side of the membrane module 12 and circulating it. By returning a part of the concentrated water to the water to be treated side of the membrane module 12 and circulating it to increase the amount of water supplied to the first space 16 of the semipermeable membrane module 12, it is possible to reduce the influence of concentration polarization. .. As a result, it is possible to reduce the operating power that gives pressure to obtain concentrated water, which leads to a reduction in initial cost and running cost, and it is possible to provide a low-cost water treatment method and water treatment apparatus.

本発明の実施形態に係る水処理装置の他の例の概略を図2に示し、その構成について説明する。 An outline of another example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. 2, and the configuration thereof will be described.

図2に示す水処理装置2は、半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する半透膜モジュールを用いて溶解固形成分(TDS)等を含む被処理水を濃縮する半透膜処理手段として、例えば、膜モジュール12を備える。膜モジュール12は、半透膜14で仕切られた第一空間16および第二空間18を有する。水処理装置2は、被処理水を貯留する被処理水槽10を備えてもよい。 The water treatment apparatus 2 shown in FIG. 2 uses a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane to control dissolved solid components (TDS) and the like. As a semipermeable membrane treatment means for concentrating the contained water to be treated, for example, a membrane module 12 is provided. The membrane module 12 has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The water treatment device 2 may include a water treatment tank 10 for storing water to be treated.

図2の水処理装置2において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と膜モジュール12の第一空間入口とは、ポンプ20を介して配管24により接続され、配管24におけるポンプ20の下流側で配管24から分岐した配管34が膜モジュール12の第二空間入口に接続されている。膜モジュール12の第一空間出口には配管26が接続され、膜モジュール12の第二空間出口には配管36が接続されている。配管26から分岐した配管32が被処理水槽10の循環水入口に接続されている。 In the water treatment apparatus 2 of FIG. 2, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the membrane module 12 are connected by a pipe 24 via a pump 20, and the pipe 34 branched from the pipe 24 on the downstream side of the pump 20 in the pipe 24 is the membrane module 12. It is connected to the entrance of the second space. A pipe 26 is connected to the first space outlet of the membrane module 12, and a pipe 36 is connected to the second space outlet of the membrane module 12. The pipe 32 branched from the pipe 26 is connected to the circulating water inlet of the water tank 10 to be treated.

図2の水処理装置2は、半透膜14で仕切られた第一空間16および第二空間18を有する膜モジュール12を用い、被処理水を膜モジュール12の第一空間入口から第一空間16と第二空間入口から第二空間18とに通水し、第一空間16を加圧することによって、その第一空間16の被処理水に含まれる水を半透膜14を介して第二空間18に透過させて水を濃縮する装置である。すなわち、水処理装置2において、半透膜14を用いて被処理水が濃縮される。水処理装置2は、膜モジュール12の第一空間16と第二空間18の両方に被処理水を供給して濃縮処理を行う装置である。 The water treatment device 2 of FIG. 2 uses a membrane module 12 having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and the water to be treated is transferred from the first space inlet of the membrane module 12 to the first space. By passing water from the 16 and the entrance of the second space to the second space 18 and pressurizing the first space 16, the water contained in the water to be treated in the first space 16 is seconded through the semitransparent membrane 14. It is a device that permeates the space 18 to concentrate water. That is, in the water treatment device 2, the water to be treated is concentrated using the semipermeable membrane 14. The water treatment device 2 is a device that supplies water to be treated to both the first space 16 and the second space 18 of the membrane module 12 to perform concentration treatment.

水処理装置2において、溶解固形成分(TDS)を含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留された後、被処理水槽10からポンプ20により配管24を通して、膜モジュール12の第一空間入口から第一空間16へ加圧送液され、通水される。また、被処理水は、配管24から分岐した配管34を通して、膜モジュール12の第二空間入口から第二空間18へ送液され、通水される。第一空間16で得られた濃縮水は、第一空間出口から配管26を通して排出され、第二空間18で得られた希釈水は、第二空間出口から配管36を通して排出される。ここで、膜モジュール12において、第一空間16が加圧されてその第一空間16の被処理水に含まれる水が半透膜14を介して第二空間18に透過され、第一空間16で濃縮水が得られる(濃縮工程)とともに、第二空間18で希釈水が得られる(希釈工程)。第一空間16で得られた濃縮水の一部は、配管26を通して系外へ排出されてもよい。濃縮水の少なくとも一部は、循環水として配管32を通して膜モジュール12の被処理水側、例えば被処理水槽10に返送される(循環工程)。循環水は、配管24における配管34との分岐点の上流側において返送されてもよい。 In the water treatment apparatus 2, the water to be treated containing dissolved solids (TDS) is stored in the water tank 10 to be treated as needed through the pipe 22, and then the film is passed from the water tank 10 to be treated through the pipe 24 by the pump 20. Pressurized liquid is sent from the entrance of the first space of the module 12 to the first space 16 and water is passed therethrough. Further, the water to be treated is sent from the second space inlet of the membrane module 12 to the second space 18 through the pipe 34 branched from the pipe 24, and is passed through the water. The concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and the diluted water obtained in the second space 18 is discharged from the second space outlet through the pipe 36. Here, in the membrane module 12, the first space 16 is pressurized, and the water contained in the water to be treated in the first space 16 is permeated into the second space 18 via the semipermeable membrane 14, and the first space 16 is used. Concentrated water is obtained in (concentration step), and diluted water is obtained in the second space 18 (diluting step). A part of the concentrated water obtained in the first space 16 may be discharged to the outside of the system through the pipe 26. At least a part of the concentrated water is returned as circulating water through the pipe 32 to the water to be treated side of the membrane module 12, for example, the water tank 10 to be treated (circulation step). The circulating water may be returned on the upstream side of the branch point of the pipe 24 with the pipe 34.

ここで、ポンプ20、配管24,34等が、半透膜モジュール12の第一空間16と第二空間18の両方に被処理水を供給する供給手段として機能する。 Here, the pump 20, the pipes 24, 34, etc. function as supply means for supplying the water to be treated to both the first space 16 and the second space 18 of the semipermeable membrane module 12.

第二空間18で得られた希釈水は、配管36を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよい。希釈水の少なくとも一部は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。希釈水の少なくとも一部は、さらに逆浸透膜処理装置へ送液され、逆浸透膜処理装置において、逆浸透膜処理が行われてもよい(逆浸透膜処理工程)。逆浸透膜処理により得られたRO透過水は、系外へ排出される。逆浸透膜処理により得られたRO濃縮水は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。 The diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 36, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. At least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step). The RO permeated water obtained by the reverse osmosis membrane treatment is discharged to the outside of the system. The RO concentrated water obtained by the reverse osmosis membrane treatment may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated.

以上のようにして、処理対象である、溶解固形成分等を含む被処理水から、溶解固形成分等の物質が濃縮された処理水(濃縮水)と、希釈水とが得られ、被処理水の減容化が行われる。 As described above, the treated water (concentrated water) in which the substance such as the dissolved solid component is concentrated and the diluted water are obtained from the treated water containing the dissolved solid component and the like, which is the treatment target, and the treated water is obtained. Volume is reduced.

本実施形態に係る水処理方法および水処理装置2では、濃縮水の少なくとも一部を膜モジュール12の被処理水側に返送し、循環する循環手段として配管32を設けている。濃縮水の少なくとも一部を膜モジュール12の被処理水側に返送、循環して、半透膜モジュール12の第一空間16に供給する水量を増やすことによって、濃度分極の影響の軽減を可能とする。その結果として、濃縮水を得るための圧力を与える運転動力を低減できるため、イニシャルコストおよびランニングコストの低減につながり、低コストな水処理方法および水処理装置を提供することができる。 In the water treatment method and the water treatment apparatus 2 according to the present embodiment, at least a part of the concentrated water is returned to the water to be treated side of the membrane module 12, and a pipe 32 is provided as a circulation means for circulation. By returning at least a part of the concentrated water to the water to be treated side of the membrane module 12 and circulating it to increase the amount of water supplied to the first space 16 of the semipermeable membrane module 12, it is possible to reduce the influence of concentration polarization. do. As a result, it is possible to reduce the operating power that gives pressure to obtain concentrated water, which leads to a reduction in initial cost and running cost, and it is possible to provide a low-cost water treatment method and water treatment apparatus.

本実施形態に係る水処理方法および水処理装置において、膜モジュール12の第一空間16の入口の被処理水のTDS濃度を測定し、測定したTDS濃度が所定の濃度値を超えた場合に、第一空間16から第二空間18へ半透膜14を透過する透過水量が所定の範囲になるように、循環する濃縮水(循環水)の流量を制御することが好ましい。このような構成の水処理装置の一例を図3に示す。 In the water treatment method and the water treatment apparatus according to the present embodiment, the TDS concentration of the water to be treated at the inlet of the first space 16 of the membrane module 12 is measured, and when the measured TDS concentration exceeds a predetermined concentration value, It is preferable to control the flow rate of the concentrated water (circulating water) that circulates so that the amount of permeated water that permeates the semipermeable membrane 14 from the first space 16 to the second space 18 is within a predetermined range. FIG. 3 shows an example of a water treatment device having such a configuration.

図3に示す水処理装置3は、図2に示す水処理装置2と同様の構成に加えて、配管24におけるポンプ20の上流側に、膜モジュール12の第一空間16の入口における被処理水の溶解固形成分の濃度を測定する濃度測定手段として、濃度測定装置44と、膜モジュール12の第一空間16の入口における被処理水の流量(FI1)を測定する第一空間被処理水流量測定手段として、被処理水流量測定装置46と、を備える。配管32に、循環する濃縮水(循環水)の流量(FI2)を測定する循環流量測定手段として、循環流量測定装置56を備える。配管26における配管32との分岐点の下流側に、膜モジュール12の第一空間16の出口におけるブローする濃縮水の流量(FI3)を測定するブロー流量測定手段として、ブロー流量測定装置54を備える。図1に示す水処理装置1に、水処理装置3と同様の追加の構成を加えてもよい。 In addition to the same configuration as the water treatment device 2 shown in FIG. 2, the water treatment device 3 shown in FIG. 3 has the water to be treated at the inlet of the first space 16 of the membrane module 12 on the upstream side of the pump 20 in the pipe 24. As a concentration measuring means for measuring the concentration of the dissolved solid component, the concentration measuring device 44 and the first space treated water flow rate measurement for measuring the flow rate (FI1) of the treated water at the inlet of the first space 16 of the membrane module 12. As a means, a water flow rate measuring device 46 to be treated is provided. The pipe 32 is provided with a circulation flow rate measuring device 56 as a circulation flow rate measuring means for measuring the flow rate (FI2) of the circulating concentrated water (circulating water). A blow flow rate measuring device 54 is provided on the downstream side of the branch point of the pipe 26 with the pipe 32 as a blow flow rate measuring means for measuring the flow rate (FI3) of the concentrated water to be blown at the outlet of the first space 16 of the film module 12. .. An additional configuration similar to that of the water treatment device 3 may be added to the water treatment device 1 shown in FIG.

ポンプ20は、例えば、入力された駆動周波数に応じた回転速度で駆動され、被処理水を吸入して膜モジュール12に吐出する加圧ポンプである。ポンプ20には、例えば、入力された指令信号に対応する駆動周波数をポンプ20に出力するインバーター42が設置されている。バルブ60が、配管26における配管32との分岐点の下流側であって、ブロー流量測定装置54の上流側に設けられている。バルブ60は、例えば、被処理水流量測定装置46およびブロー流量測定装置54の測定値に基づいて開度を調節する比例制御バルブである。配管24におけるポンプ20の下流側には、第一空間16の入口における圧力を測定する入口圧力測定手段として、入口圧力測定装置48が設置され、配管26における配管32との分岐点の上流側には、第一空間16の出口における圧力を測定する出口圧力測定手段として、出口圧力測定装置58が設置されていてもよい。配管24から分岐した配管34は、ポンプ52を介して膜モジュール12の第二空間18の入口と接続され、ポンプ52の上流側には、膜モジュール12の第二空間18の入口における被処理水の流量(FI4)を測定する第二空間被処理水流量測定手段として、被処理水流量測定装置50が設置されていてもよい。 The pump 20 is, for example, a pressurizing pump that is driven at a rotation speed corresponding to an input drive frequency, sucks water to be treated, and discharges it to the membrane module 12. The pump 20 is equipped with, for example, an inverter 42 that outputs a drive frequency corresponding to the input command signal to the pump 20. The valve 60 is provided on the downstream side of the branch point of the pipe 26 with the pipe 32 and on the upstream side of the blow flow rate measuring device 54. The valve 60 is, for example, a proportional control valve that adjusts the opening degree based on the measured values of the water flow rate measuring device 46 to be treated and the blow flow rate measuring device 54. An inlet pressure measuring device 48 is installed on the downstream side of the pump 20 in the pipe 24 as an inlet pressure measuring means for measuring the pressure at the inlet of the first space 16, and is located upstream of the branch point with the pipe 32 in the pipe 26. May be equipped with an outlet pressure measuring device 58 as an outlet pressure measuring means for measuring the pressure at the outlet of the first space 16. The pipe 34 branched from the pipe 24 is connected to the inlet of the second space 18 of the membrane module 12 via the pump 52, and the water to be treated at the inlet of the second space 18 of the membrane module 12 is on the upstream side of the pump 52. As a second space treated water flow rate measuring means for measuring the flow rate (FI4), the treated water flow rate measuring device 50 may be installed.

水処理装置3は、溶解固形成分の濃度が所定の濃度値を超えた場合に、透過水量が所定の範囲になるように循環する濃縮水の流量を制御する制御手段として、制御装置40を備えてもよく、制御装置40は、インバーター42、濃度測定装置44、被処理水流量測定装置46、ブロー流量測定装置54、循環流量測定装置56と、バルブ62と、電気的接続等によって接続されていてもよい。制御装置40は、バルブ60と電気的接続等によって接続されていてもよい。制御装置40は、例えば、プログラムを演算するCPU等の演算手段、プログラムや演算結果を記憶するROMおよびRAM等の記憶手段等から構成されるマイクロコンピュータと電子回路等で構成され、ポンプ20の流量、バルブ62の開閉度等を制御する機能を有するものである。 The water treatment device 3 includes a control device 40 as a control means for controlling the flow rate of concentrated water that circulates so that the amount of permeated water falls within a predetermined range when the concentration of the dissolved solid component exceeds a predetermined concentration value. The control device 40 may be connected to the inverter 42, the concentration measuring device 44, the water flow rate measuring device 46 to be treated, the blow flow rate measuring device 54, the circulating flow rate measuring device 56, the valve 62, or the like by electrical connection or the like. May be. The control device 40 may be connected to the valve 60 by an electrical connection or the like. The control device 40 is composed of, for example, a microcomputer and an electronic circuit composed of a calculation means such as a CPU for calculating a program, a storage means such as a ROM and a RAM for storing the program and the calculation result, and the flow rate of the pump 20. It has a function of controlling the degree of opening / closing of the valve 62.

水処理装置3において、水処理装置2と同様にして、処理対象である、溶解固形成分等を含む被処理水から、溶解固形成分等の物質が濃縮された処理水(濃縮水)と、希釈水とが得られ、被処理水の減容化が行われる。 In the water treatment device 3, in the same manner as in the water treatment device 2, the treated water containing the dissolved solid component and the like to be treated is diluted with the treated water (concentrated water) in which the substance such as the dissolved solid component is concentrated. Water is obtained, and the volume of water to be treated is reduced.

ここで、例えば、濃度測定装置44によって、膜モジュール12の第一空間16の入口における被処理水の溶解固形成分の濃度が測定され(濃度測定工程)、被処理水流量測定装置46によって、膜モジュール12の第一空間16の入口における被処理水の流量(FI1)が測定され(第一空間被処理水流量測定工程)、循環流量測定装置56によって、循環する濃縮水の流量(FI2)が測定され(循環流量測定工程)、ブロー流量測定装置54によって、膜モジュール12の第一空間16の出口におけるブローする濃縮水の流量(FI3)が測定される(ブロー流量測定工程)。そして、濃度測定工程で測定された溶解固形成分の濃度が所定の濃度値を超えた場合に、例えば、第一空間被処理水流量測定工程、循環流量測定工程、ブロー流量測定工程で測定された各流量(FI1,FI2,FI3)から求められる、第一空間16から第二空間18へ透過する透過水量=FI1-(FI2+FI3)が所定の範囲になるように、循環する濃縮水の流量を制御する(制御工程)。 Here, for example, the concentration of the dissolved solid component of the water to be treated at the inlet of the first space 16 of the membrane module 12 is measured by the concentration measuring device 44 (concentration measuring step), and the film is measured by the water flow measuring device 46 to be treated. The flow rate (FI1) of the water to be treated at the inlet of the first space 16 of the module 12 is measured (the flow rate measurement step of the water to be treated in the first space), and the flow rate of concentrated water (FI2) circulated by the circulation flow rate measuring device 56 is measured. It is measured (circulation flow rate measuring step), and the flow rate (FI3) of the concentrated water to be blown at the outlet of the first space 16 of the film module 12 is measured by the blow flow rate measuring device 54 (blow flow rate measuring step). Then, when the concentration of the dissolved solid component measured in the concentration measuring step exceeds a predetermined concentration value, for example, it is measured in the first space processed water flow rate measuring step, the circulating flow rate measuring step, and the blow flow rate measuring step. The flow rate of concentrated water circulating is controlled so that the amount of permeated water permeating from the first space 16 to the second space 18 = FI1- (FI2 + FI3), which is obtained from each flow rate (FI1, FI2, FI3), is within a predetermined range. (Control process).

例えば、制御装置40は、濃度測定装置44によって測定された溶解固形成分の濃度が所定の濃度値を超えた場合に、被処理水流量測定装置46、循環流量測定装置56、ブロー流量測定装置54により測定された各流量(FI1,FI2,FI3)から求められる透過水量=FI1-(FI2+FI3)が所定の範囲になるように、任意の演算式を用いて駆動周波数を演算し、この演算値に対応する指令信号をインバーター42に出力してポンプ20を制御し、バルブ62の開閉度を制御して、循環する濃縮水の流量を制御すればよい。なお、透過水量の求め方は「FI1,FI2,FI3から透過水量=FI1-(FI2+FI3)として求める方法」に限らない。例えば、第二空間18の出口である配管36に透過水流量測定手段として透過水流量測定装置51を設置して、第二空間18の入口における被処理水の流量(FI4)が測定され(第二空間被処理水流量測定工程)、第二空間18の出口における透過水の流量(FI5)が測定され(透過水流量測定工程)、各流量(FI4,FI5)から求められる透過水量=FI5-FI4が所定の範囲になるように、循環する濃縮水の流量を制御してもよい。 For example, the control device 40 includes a water flow rate measuring device 46, a circulating flow rate measuring device 56, and a blow flow rate measuring device 54 when the concentration of the dissolved solid component measured by the concentration measuring device 44 exceeds a predetermined concentration value. The drive frequency is calculated using an arbitrary calculation formula so that the permeated water amount = FI1- (FI2 + FI3) obtained from each flow rate (FI1, FI2, FI3) measured by The corresponding command signal may be output to the inverter 42 to control the pump 20, control the open / close degree of the valve 62, and control the flow rate of the circulating concentrated water. The method of obtaining the permeated water amount is not limited to "the method of obtaining the permeated water amount from FI1, FI2, FI3 as FI1- (FI2 + FI3)". For example, a permeated water flow rate measuring device 51 is installed in the pipe 36 which is the outlet of the second space 18 as a permeated water flow rate measuring means, and the flow rate (FI4) of the water to be treated at the inlet of the second space 18 is measured (No. 1). (Two-space treated water flow rate measurement step), the flow rate of permeated water (FI5) at the outlet of the second space 18 is measured (permeated water flow rate measurement step), and the permeated water amount obtained from each flow rate (FI4, FI5) = FI5- The flow rate of the circulating concentrated water may be controlled so that the FI4 is within a predetermined range.

本実施形態に係る水処理方法および水処理装置3では、膜モジュール12の第一空間16の入口における被処理水のTDS濃度を測定し、所定の濃度値を超えた場合に、バルブ62の開度を調節し、濃縮水の少なくとも一部を、TDS濃度が所定の濃度値を超えた膜モジュール12の被処理水側に返送、循環して、半透膜モジュール12の第一空間16に供給する水量を増やす。その結果として、半透膜モジュールを用いる水の濃縮処理において、被処理水の溶解固形成分の濃度が所定の濃度値を超えた場合であっても濃度分極の影響を軽減することができる。 In the water treatment method and the water treatment apparatus 3 according to the present embodiment, the TDS concentration of the water to be treated at the inlet of the first space 16 of the membrane module 12 is measured, and when the predetermined concentration value is exceeded, the valve 62 is opened. The degree is adjusted, and at least a part of the concentrated water is returned to the water to be treated side of the membrane module 12 whose TDS concentration exceeds a predetermined concentration value, circulated, and supplied to the first space 16 of the semipermeable membrane module 12. Increase the amount of water to be treated. As a result, in the water concentration treatment using the semipermeable membrane module, the influence of concentration polarization can be reduced even when the concentration of the dissolved solid component of the water to be treated exceeds a predetermined concentration value.

例えば、被処理水のTDS濃度が所定の濃度値を超えた場合に、膜モジュール12の第一空間16に供給される被処理水の流量に対して、循環する濃縮水の流量が200%以上となるように循環する濃縮水の流量を制御することが好ましく、循環する濃縮水の流量が250%以上となるように循環する濃縮水の流量を制御することがより好ましい。循環する濃縮水の流量が200%未満であると、濃度分極の影響を軽減することができない場合がある。 For example, when the TDS concentration of the water to be treated exceeds a predetermined concentration value, the flow rate of the circulating concentrated water is 200% or more with respect to the flow rate of the water to be treated supplied to the first space 16 of the membrane module 12. It is preferable to control the flow rate of the concentrated water circulated so as to be, and it is more preferable to control the flow rate of the concentrated water circulated so that the flow rate of the circulated concentrated water is 250% or more. If the flow rate of the circulating concentrated water is less than 200%, the influence of concentration polarization may not be mitigated.

例えば、ポンプ20を起動し、被処理水槽10から膜モジュール12の第一空間16に被処理水を通水する。このとき、バルブ62を全閉状態とし、バルブ60を開状態として、装置の運転を行う。被処理水のTDS濃度が所定の濃度値(例えば、6%)を超えた場合、インバーター42の出力値を所定の割合(例えば、10%)上げる。ブロー流量測定装置54による測定値(FI3)と透過水量(FI1-(FI2+FI3))が増加するので、透過水量が所定の範囲になるように、バルブ60を開状態、バルブ62を開状態とし、バルブ60とバルブ62の開度を調整する。循環流量測定装置56による測定値(FI2)が第一空間16の供給流量に対し、循環量が所定の値(例えば、200%以上)となるまで、動作を繰り返せばよい。被処理水のTDS濃度が所定の濃度値以下の場合は、バルブ62を閉じていき、循環する濃縮水の流量を調節して徐々に減らしていってもよいし、バルブ62を全閉状態とし、濃縮水の循環を行わなくてもよい。 For example, the pump 20 is started, and the water to be treated is passed from the water tank 10 to be treated to the first space 16 of the membrane module 12. At this time, the device is operated with the valve 62 fully closed and the valve 60 open. When the TDS concentration of the water to be treated exceeds a predetermined concentration value (for example, 6%), the output value of the inverter 42 is increased by a predetermined ratio (for example, 10%). Since the value (FI3) measured by the blow flow rate measuring device 54 and the permeated water amount (FI1- (FI2 + FI3)) increase, the valve 60 is opened and the valve 62 is opened so that the permeated water amount is within a predetermined range. The opening degrees of the valve 60 and the valve 62 are adjusted. The operation may be repeated until the measured value (FI2) by the circulation flow rate measuring device 56 becomes a predetermined value (for example, 200% or more) with respect to the supply flow rate of the first space 16. When the TDS concentration of the water to be treated is equal to or less than the predetermined concentration value, the valve 62 may be closed and the flow rate of the circulating concentrated water may be adjusted to gradually reduce the concentration, or the valve 62 may be fully closed. , It is not necessary to circulate the concentrated water.

被処理水のTDS濃度の「所定の濃度値」は、例えば、被処理水の浸透圧が5MPa以上となる濃度値であることが好ましく、被処理水の浸透圧が8MPa以上となる濃度値であることがより好ましい。被処理水の浸透圧が5MPa未満となる濃度値である場合、濃度分極の影響が小さく、透過水量の減少はわずかである。例えば、溶解固形成分が塩化ナトリウム(NaCl)である場合、被処理水のTDS濃度の「所定の濃度値」は、「6質量%」となる。なお、浸透圧は、下記式によって計算される。
浸透圧(MPa)=モル濃度(mol/L)×気体定数(Pa・L/(mol・K))×絶対温度(K)×10-6
The "predetermined concentration value" of the TDS concentration of the water to be treated is preferably, for example, a concentration value at which the osmotic pressure of the water to be treated is 5 MPa or more, and a concentration value at which the osmotic pressure of the water to be treated is 8 MPa or more. It is more preferable to have. When the osmotic pressure of the water to be treated is a concentration value of less than 5 MPa, the influence of concentration polarization is small and the decrease in the amount of permeated water is slight. For example, when the dissolved solid component is sodium chloride (NaCl), the "predetermined concentration value" of the TDS concentration of the water to be treated is "6% by mass". The osmotic pressure is calculated by the following formula.
Osmotic pressure (MPa) = molar concentration (mol / L) x gas constant (Pa · L / (mol · K)) x absolute temperature (K) x 10-6

本実施形態に係る水処理方法および水処理装置において、多段式の半透膜モジュールを用いてもよい。このような構成の水処理装置の一例を図4に示す。 In the water treatment method and the water treatment apparatus according to the present embodiment, a multi-stage semipermeable membrane module may be used. FIG. 4 shows an example of a water treatment device having such a configuration.

図4に示す水処理装置4は、半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する半透膜モジュールを用いて溶解固形成分(TDS)等を含む被処理水を濃縮し、その濃縮水をさらに半透膜モジュールを用いて濃縮する半透膜処理手段として、例えば、1段目膜モジュール12a、2段目膜モジュール12b、3段目膜モジュール12cを備える。それぞれの膜モジュールは、半透膜14で仕切られた第一空間16および第二空間18を有する。水処理装置4は、2段目膜モジュール12bからの濃縮水、すなわち3段目膜モジュール12cの被処理水を貯留する被処理水槽10を備えてもよい。水処理装置4は、第1段の膜モジュールの第一空間に被処理水を供給し、その濃縮水が最終段の半透膜モジュールの第一空間を通過した後に最終段の濃縮水の一部を最終段の半透膜モジュールの第二空間に供給して濃縮処理を行う装置である。 The water treatment apparatus 4 shown in FIG. 4 uses a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane to control dissolved solid components (TDS) and the like. As a semipermeable membrane treatment means for concentrating the contained water to be treated and further concentrating the concentrated water using a semipermeable membrane module, for example, the first-stage membrane module 12a, the second-stage membrane module 12b, and the third-stage membrane module. 12c is provided. Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The water treatment device 4 may include a water tank 10 to be treated for storing concentrated water from the second-stage membrane module 12b, that is, water to be treated of the third-stage membrane module 12c. The water treatment device 4 supplies water to be treated to the first space of the first stage membrane module, and after the concentrated water passes through the first space of the final stage semipermeable membrane module, one of the final stage concentrated water. This is a device that supplies the part to the second space of the semipermeable membrane module in the final stage to perform concentration processing.

図4の水処理装置4において、1段目膜モジュール12aの第一空間入口にはポンプ66を介して配管68が接続されている。1段目膜モジュール12aの第一空間出口と2段目膜モジュール12bの第一空間入口とは、配管70により接続されている。2段目膜モジュール12bの第一空間出口と被処理水槽10の濃縮水入口とは、配管72により接続されている。被処理水槽10の出口と3段目膜モジュール12cの第一空間入口とは、ポンプ20を介して配管24により接続されている。3段目膜モジュール12cの第一空間出口には、バルブ60を介して配管26が接続されている。配管26におけるバルブ60の上流側から分岐した配管28が、バルブ64を介して3段目膜モジュール12cの第二空間入口に接続されている。配管26におけるバルブ60の上流側であって配管28の分岐点の下流側から分岐した配管32がバルブ62を介して被処理水槽10の循環水入口に接続されている。3段目膜モジュール12cの第二空間出口と2段目膜モジュール12bの第二空間入口とは、配管74により接続されている。2段目膜モジュール12bの第二空間出口と1段目膜モジュール12aの第二空間入口とは、配管76により接続されている。1段目膜モジュール12aの出口には、配管78が接続されている。 In the water treatment apparatus 4 of FIG. 4, a pipe 68 is connected to the first space inlet of the first stage membrane module 12a via a pump 66. The first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 70. The first space outlet of the second stage membrane module 12b and the concentrated water inlet of the water tank 10 to be treated are connected by a pipe 72. The outlet of the water tank 10 to be treated and the first space inlet of the third stage membrane module 12c are connected by a pipe 24 via a pump 20. A pipe 26 is connected to the first space outlet of the third stage membrane module 12c via a valve 60. The pipe 28 branched from the upstream side of the valve 60 in the pipe 26 is connected to the second space inlet of the third stage membrane module 12c via the valve 64. The pipe 32, which is the upstream side of the valve 60 in the pipe 26 and is branched from the downstream side of the branch point of the pipe 28, is connected to the circulating water inlet of the water tank 10 to be treated via the valve 62. The second space outlet of the third stage membrane module 12c and the second space inlet of the second stage membrane module 12b are connected by a pipe 74. The second space outlet of the second stage membrane module 12b and the second space inlet of the first stage membrane module 12a are connected by a pipe 76. A pipe 78 is connected to the outlet of the first-stage membrane module 12a.

図4に示す水処理装置4は、配管24におけるポンプ20の下流側に、3段目膜モジュール12cの第一空間16の入口における被処理水の溶解固形成分の濃度を測定する濃度測定手段として、濃度測定装置44と、3段目膜モジュール12cの第一空間16の入口における被処理水の流量(FI1)を測定する第一空間被処理水流量測定手段として、被処理水流量測定装置46と、を備える。配管32に、循環する濃縮水(循環水)の流量(FI2)を測定する循環流量測定手段として、循環流量測定装置56を備える。配管26におけるバルブ60の下流側に、3段目膜モジュール12cの第一空間16の出口におけるブローする濃縮水の流量(FI3)を測定するブロー流量測定手段として、ブロー流量測定装置54を備える。配管28におけるバルブ64の下流側に、分岐した濃縮水の流量を測定する分岐濃縮水流量測定手段として、分岐濃縮水流量測定装置53を備える。これらの構成を、第1段の半透膜モジュールの第一空間と第二空間の両方に被処理水を供給する装置や、最終段の半透膜モジュールの第一空間と第二空間の両方にその前段の濃縮水を供給する装置に適用してもよい。 The water treatment device 4 shown in FIG. 4 is used as a concentration measuring means for measuring the concentration of the dissolved solid component of the water to be treated at the inlet of the first space 16 of the third stage membrane module 12c on the downstream side of the pump 20 in the pipe 24. As a first space treated water flow rate measuring means for measuring the flow rate (FI1) of the treated water at the inlet of the first space 16 of the concentration measuring device 44 and the third stage film module 12c, the treated water flow rate measuring device 46. And prepare. The pipe 32 is provided with a circulation flow rate measuring device 56 as a circulation flow rate measuring means for measuring the flow rate (FI2) of the circulating concentrated water (circulating water). A blow flow rate measuring device 54 is provided on the downstream side of the valve 60 in the pipe 26 as a blow flow rate measuring means for measuring the flow rate (FI3) of the concentrated water to be blown at the outlet of the first space 16 of the third stage film module 12c. A branched concentrated water flow rate measuring device 53 is provided on the downstream side of the valve 64 in the pipe 28 as a branched concentrated water flow rate measuring means for measuring the flow rate of the branched concentrated water. With these configurations, a device that supplies water to be treated to both the first space and the second space of the first-stage semipermeable membrane module, and both the first space and the second space of the final-stage semipermeable membrane module. It may be applied to a device for supplying concentrated water in the previous stage.

ポンプ20は、例えば、入力された駆動周波数に応じた回転速度で駆動され、2段目膜モジュール12bからの濃縮水、すなわち3段目膜モジュール12cの被処理水を吸入して3段目膜モジュール12cに吐出する加圧ポンプである。ポンプ20には、例えば、入力された指令信号に対応する駆動周波数をポンプ20に出力するインバーター42が設置されている。バルブ60は、例えば、被処理水流量測定装置46およびブロー流量測定装置54の測定値に基づいて開度を調節する比例制御バルブである。 The pump 20 is driven, for example, at a rotation speed according to the input drive frequency, and sucks the concentrated water from the second-stage membrane module 12b, that is, the water to be treated of the third-stage membrane module 12c, to suck the third-stage membrane. It is a pressurizing pump that discharges to the module 12c. The pump 20 is equipped with, for example, an inverter 42 that outputs a drive frequency corresponding to the input command signal to the pump 20. The valve 60 is, for example, a proportional control valve that adjusts the opening degree based on the measured values of the water flow rate measuring device 46 to be treated and the blow flow rate measuring device 54.

水処理装置4は、溶解固形成分の濃度が所定の濃度値を超えた場合に、透過水量が所定の範囲になるように循環する濃縮水の流量を制御する制御手段として、制御装置40を備えてもよく、制御装置40は、インバーター42、濃度測定装置44、被処理水流量測定装置46、分岐濃縮水流量測定装置53、ブロー流量測定装置54、循環流量測定装置56と、バルブ62と、電気的接続等によって接続されていてもよい。制御装置40は、バルブ60と電気的接続等によって接続されていてもよい。制御装置40は、例えば、プログラムを演算するCPU等の演算手段、プログラムや演算結果を記憶するROMおよびRAM等の記憶手段等から構成されるマイクロコンピュータと電子回路等で構成され、ポンプ20の流量、バルブ62の開閉度等を制御する機能を有するものである。 The water treatment device 4 includes a control device 40 as a control means for controlling the flow rate of concentrated water that circulates so that the amount of permeated water falls within a predetermined range when the concentration of the dissolved solid component exceeds a predetermined concentration value. The control device 40 may include an inverter 42, a concentration measuring device 44, a water flow rate measuring device 46 to be treated, a branched concentrated water flow rate measuring device 53, a blow flow rate measuring device 54, a circulating flow rate measuring device 56, a valve 62, and the like. It may be connected by an electrical connection or the like. The control device 40 may be connected to the valve 60 by an electrical connection or the like. The control device 40 is composed of, for example, a microcomputer and an electronic circuit composed of a calculation means such as a CPU for calculating a program, a storage means such as a ROM and a RAM for storing the program and the calculation result, and the flow rate of the pump 20. It has a function of controlling the degree of opening / closing of the valve 62.

水処理装置4は、半透膜14で仕切られた第一空間16および第二空間18を有する多段式の膜モジュールを用い、被処理水を多段式の膜モジュールの第一空間16に直列的に通水し、最終段の膜モジュールユニット(図4の例では、3段目膜モジュール12c)の第二空間18にその最終段の膜モジュールユニットの濃縮水を送液し、最終段の膜モジュールの希釈水をその前段の膜モジュールの第二空間18に直列的に通水し、第一空間16を加圧することによってその第一空間16に含まれる水を半透膜14を介して第二空間18に透過させて水を濃縮する装置である。すなわち、水処理装置4において、半透膜14を用いて被処理水が濃縮され、その濃縮水がさらに次の段の半透膜14を用いて濃縮される。第1段の膜モジュールユニット(図4の例では、1段目膜モジュール12a)の第一空間16に被処理水が供給され、最終段の膜モジュールの第一空間16にその前段(図4の例では、2段目膜モジュール12b)の濃縮水が供給される。そして、最終段の膜モジュールの第二空間18を通過した希釈水を、各段の膜モジュールの第二空間18に供給していき、各段の膜モジュールの第一空間16を加圧してその第一空間16に含まれる水を第二空間18に透過させる。 The water treatment device 4 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semi-permeable film 14, and water to be treated is serialized in the first space 16 of the multi-stage membrane module. , The concentrated water of the final stage membrane module unit is sent to the second space 18 of the final stage membrane module unit (in the example of FIG. 4, the third stage membrane module 12c), and the final stage membrane. The diluted water of the module is passed in series to the second space 18 of the membrane module in the previous stage, and by pressurizing the first space 16, the water contained in the first space 16 is passed through the semi-permeable film 14. It is a device that concentrates water by allowing it to permeate through the two spaces 18. That is, in the water treatment apparatus 4, the water to be treated is concentrated using the semipermeable membrane 14, and the concentrated water is further concentrated using the semipermeable membrane 14 of the next stage. Water to be treated is supplied to the first space 16 of the first-stage membrane module unit (in the example of FIG. 4, the first-stage membrane module 12a), and the first stage (FIG. 4) thereof is supplied to the first space 16 of the final-stage membrane module. In the example of, the concentrated water of the second stage membrane module 12b) is supplied. Then, the diluted water that has passed through the second space 18 of the membrane module in the final stage is supplied to the second space 18 of the membrane module in each stage, and the first space 16 of the membrane module in each stage is pressurized. The water contained in the first space 16 is allowed to permeate through the second space 18.

具体的には、水処理装置4において、溶解固形成分(TDS)を含む被処理水は、ポンプ66により配管68を通して、1段目膜モジュール12aの第一空間16へ送液される。一方、後述する3段目膜モジュール12cの第二空間18、2段目膜モジュール12bの第二空間18を経由して送液された希釈水が配管76を通して、1段目膜モジュール12aの第二空間18へ送液される。1段目膜モジュール12aにおいて、第一空間16が加圧されてその第一空間16に含まれる水が第二空間18に透過される(濃縮工程(1段目))。 Specifically, in the water treatment apparatus 4, the water to be treated containing the dissolved solid component (TDS) is sent to the first space 16 of the first stage membrane module 12a through the pipe 68 by the pump 66. On the other hand, the diluted water sent through the second space 18 of the third-stage membrane module 12c and the second space 18 of the second-stage membrane module 12b, which will be described later, passes through the pipe 76 and is the first of the first-stage membrane module 12a. The liquid is sent to the two spaces 18. In the first-stage membrane module 12a, the first space 16 is pressurized and the water contained in the first space 16 is permeated into the second space 18 (concentration step (first stage)).

1段目膜モジュール12aの第一空間16で得られた濃縮水は、配管70を通して、2段目膜モジュール12bの第一空間16へ送液される。一方、後述する3段目膜モジュール12cの第二空間18を経由して送液された希釈水が配管74を通して、2段目膜モジュール12bの第二空間18へ送液される。1段目と同様にして、2段目膜モジュール12bにおいて、第一空間16が加圧されてその第一空間16に含まれる水が第二空間18に透過される(濃縮工程(2段目))。 The concentrated water obtained in the first space 16 of the first-stage membrane module 12a is sent to the first space 16 of the second-stage membrane module 12b through the pipe 70. On the other hand, the diluted water sent through the second space 18 of the third-stage membrane module 12c, which will be described later, is sent to the second space 18 of the second-stage membrane module 12b through the pipe 74. In the same manner as in the first stage, in the second stage membrane module 12b, the first space 16 is pressurized and the water contained in the first space 16 is permeated into the second space 18 (concentration step (second stage). )).

2段目膜モジュール12bの第一空間16で得られた濃縮水は、配管72を通して、必要に応じて被処理水槽10に貯留された後、被処理水槽10からポンプ20により配管24を通して、3段目膜モジュール12cの第一空間入口から第一空間16へ送液され、通水される。第一空間16で得られた濃縮水は、第一空間出口から配管26を通して排出され、濃縮水の一部は、配管26から分岐した配管28を通して、3段目膜モジュール12cの第二空間入口から第二空間18へ送液され、通水される。第二空間18で得られた希釈水は、第二空間出口から配管74を通して2段目膜モジュール12bの第二空間18へ送液される。ここで、3段目膜モジュール12cにおいて、第一空間16が加圧されてその第一空間16に含まれる水が第二空間18に透過され、第一空間16で濃縮水が得られる(濃縮工程(3段目))とともに、第二空間18で希釈水が得られる(希釈工程(3段目))。バルブ60,64が開状態、バルブ62が全閉状態で、第一空間16で得られた濃縮水の一部は、配管26を通して系外へ排出され、濃縮水の一部は、上記の通り3段目膜モジュール12cの第二空間18へ配管26,28を通して送液、通水される。バルブ60,64が開状態、バルブ62が開状態で、濃縮水の一部は、循環水として配管32を通して膜モジュール12の被処理水側、例えば被処理水槽10に返送し循環される(循環工程)。循環水は、配管24に返送されてもよい。 The concentrated water obtained in the first space 16 of the second stage membrane module 12b is stored in the water tank 10 to be treated as needed through the pipe 72, and then from the water tank 10 to be treated through the pipe 24 by the pump 20. Liquid is sent from the entrance of the first space of the step membrane module 12c to the first space 16 and water is passed therethrough. The concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and a part of the concentrated water is passed through the pipe 28 branched from the pipe 26 to the second space inlet of the third stage membrane module 12c. Liquid is sent from to the second space 18 and water is passed through. The diluted water obtained in the second space 18 is sent from the outlet of the second space to the second space 18 of the second stage membrane module 12b through the pipe 74. Here, in the third stage membrane module 12c, the first space 16 is pressurized and the water contained in the first space 16 is permeated into the second space 18, and concentrated water is obtained in the first space 16 (concentration). Along with the step (third step)), diluted water is obtained in the second space 18 (dilution step (third step)). With the valves 60 and 64 open and the valve 62 fully closed, a part of the concentrated water obtained in the first space 16 is discharged to the outside of the system through the pipe 26, and a part of the concentrated water is as described above. Liquid is sent and water is passed through the pipes 26 and 28 to the second space 18 of the third stage membrane module 12c. With the valves 60 and 64 open and the valves 62 open, a part of the concentrated water is returned as circulating water to the treated water side of the membrane module 12, for example, the treated water tank 10 and circulated (circulation). Process). The circulating water may be returned to the pipe 24.

ここで、ポンプ20、配管24,26,28等が、3段目膜モジュール12cの第一空間16に被処理水を供給し、第一空間16の出口から得られた濃縮水の少なくとも一部を3段目膜モジュール12cの第二空間18に供給する供給手段として機能する。 Here, the pump 20, pipes 24, 26, 28, etc. supply the water to be treated to the first space 16 of the third stage membrane module 12c, and at least a part of the concentrated water obtained from the outlet of the first space 16. Functions as a supply means for supplying the second space 18 of the third stage membrane module 12c.

3段目膜モジュール12cの第二空間18で得られた希釈水は、配管74を通して、2段目膜モジュール12bの第二空間18へ送液される。上記の通り、2段目膜モジュール12bにおいて、第一空間16が加圧されてその第一空間16に含まれる水が第二空間18に透過される(濃縮工程(2段目))。 The diluted water obtained in the second space 18 of the third-stage membrane module 12c is sent to the second space 18 of the second-stage membrane module 12b through the pipe 74. As described above, in the second stage membrane module 12b, the first space 16 is pressurized and the water contained in the first space 16 is permeated into the second space 18 (concentration step (second stage)).

2段目膜モジュール12bの第二空間18で得られた希釈水は、配管76を通して、1段目膜モジュール12aの第二空間18へ送液される。上記の通り、1段目膜モジュール12aにおいて、第一空間16が加圧されてその第一空間16に含まれる水が第二空間18に透過される(濃縮工程(1段目))。 The diluted water obtained in the second space 18 of the second stage membrane module 12b is sent to the second space 18 of the first stage membrane module 12a through the pipe 76. As described above, in the first-stage membrane module 12a, the first space 16 is pressurized and the water contained in the first space 16 is permeated into the second space 18 (concentration step (first stage)).

1段目膜モジュール12aの第二空間18で得られた希釈水は、配管78を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよい。希釈水の少なくとも一部は、1段目膜モジュール12aの被処理水と混合されてもよい。希釈水の少なくとも一部は、さらに逆浸透膜処理装置へ送液され、逆浸透膜処理装置において、逆浸透膜処理が行われてもよい(逆浸透膜処理工程)。逆浸透膜処理により得られたRO透過水は、系外へ排出される。逆浸透膜処理により得られたRO濃縮水は、1段目膜モジュール12aの被処理水と混合されてもよい。 The diluted water obtained in the second space 18 of the first-stage membrane module 12a may be discharged to the outside of the system through the pipe 78, or may be sent to the diluted water tank as necessary and stored, and then outside the system. It may be discharged to. At least a part of the diluted water may be mixed with the water to be treated of the first stage membrane module 12a. At least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step). The RO permeated water obtained by the reverse osmosis membrane treatment is discharged to the outside of the system. The RO concentrated water obtained by the reverse osmosis membrane treatment may be mixed with the water to be treated of the first stage membrane module 12a.

以上のようにして、処理対象である、溶解固形成分等を含む被処理水から、溶解固形成分等の物質が濃縮された処理水(最終段の濃縮水)と、希釈水(第1段の希釈水)とが得られ、被処理水の減容化が行われる。 As described above, the treated water (concentrated water in the final stage) in which substances such as dissolved solid components are concentrated from the water to be treated containing the dissolved solid components, etc., and the diluted water (first stage), which are the objects to be treated, are used. Diluted water) is obtained, and the volume of the water to be treated is reduced.

ここで、例えば、濃度測定装置44によって、3段目膜モジュール12cの第一空間16の入口における被処理水の溶解固形成分の濃度が測定され(濃度測定工程)、被処理水流量測定装置46によって、3段目膜モジュール12cの第一空間16の入口における被処理水の流量(FI1)が測定され(被処理水流量測定工程)、循環流量測定装置56によって、循環する濃縮水の流量(FI2)が測定され(循環流量測定工程)、ブロー流量測定装置54によって、3段目膜モジュール12cの第一空間16の出口におけるブローする濃縮水の流量(FI3)が測定され(ブロー流量測定工程)、分岐濃縮水流量測定装置53によって、3段目膜モジュール12cの第二空間18の入口における分岐濃縮水の流量(FI6)が測定される(分岐濃縮水流量測定工程)。そして、例えば、濃度測定工程で測定された溶解固形成分の濃度が所定の濃度値を超えた場合に、被処理水流量測定工程、循環流量測定工程、ブロー流量測定工程、分岐濃縮水流量測定工程で測定された各流量(FI1,FI2,FI3,FI6)から求められる、第一空間16から第二空間18へ透過する透過水量=FI1-(FI2+FI3+FI6)が所定の範囲になるように、循環する濃縮水の流量を制御する(制御工程)。 Here, for example, the concentration measuring device 44 measures the concentration of the dissolved solid component of the water to be treated at the inlet of the first space 16 of the third stage membrane module 12c (concentration measuring step), and the water flow rate measuring device 46 to be treated. The flow rate (FI1) of the water to be treated at the inlet of the first space 16 of the third stage membrane module 12c is measured (measurement process of the flow rate of the water to be treated), and the flow rate of the concentrated water circulated by the circulation flow rate measuring device 56 ( FI2) is measured (circulation flow rate measuring step), and the flow rate (FI3) of the concentrated water to be blown at the outlet of the first space 16 of the third stage film module 12c is measured by the blow flow rate measuring device 54 (blow flow rate measuring step). ), The branch concentrated water flow rate measuring device 53 measures the flow rate (FI6) of the branched concentrated water at the inlet of the second space 18 of the third stage membrane module 12c (branched concentrated water flow rate measuring step). Then, for example, when the concentration of the dissolved solid component measured in the concentration measuring step exceeds a predetermined concentration value, the treated water flow rate measuring step, the circulating flow rate measuring step, the blow flow rate measuring step, and the branched concentrated water flow rate measuring step. The amount of permeated water permeating from the first space 16 to the second space 18 = FI1- (FI2 + FI3 + FI6) obtained from each flow rate (FI1, FI2, FI3, FI6) measured in the above is circulated so as to be within a predetermined range. Control the flow rate of concentrated water (control process).

例えば、制御装置40は、濃度測定装置44によって測定された溶解固形成分の濃度が所定の濃度値を超えた場合に、被処理水流量測定装置46、循環流量測定装置56、ブロー流量測定装置54、分岐濃縮水流量測定装置53により測定された各流量(FI1,FI2,FI3,FI6)から求められる透過水量=FI1-(FI2+FI3+FI6)が所定の範囲になるように、任意の演算式を用いて駆動周波数を演算し、この演算値に対応する指令信号をインバーター42に出力してポンプ20を制御し、バルブ62の開閉度を制御して、循環する濃縮水の流量を制御すればよい。 For example, the control device 40 includes a water flow rate measuring device 46, a circulating flow rate measuring device 56, and a blow flow rate measuring device 54 when the concentration of the dissolved solid component measured by the concentration measuring device 44 exceeds a predetermined concentration value. , Permeated water amount obtained from each flow rate (FI1, FI2, FI3, FI6) measured by the branched concentrated water flow rate measuring device 53 = FI1- (FI2 + FI3 + FI6) using an arbitrary calculation formula so as to be within a predetermined range. The drive frequency may be calculated, a command signal corresponding to the calculated value may be output to the inverter 42 to control the pump 20, the open / close degree of the valve 62 may be controlled, and the flow rate of the circulating concentrated water may be controlled.

本実施形態に係る水処理方法および水処理装置4では、3段目膜モジュール12cの第一空間16の入口における被処理水のTDS濃度を測定し、所定の濃度値を超えた場合に、バルブ62の開度を調節し、濃縮水の少なくとも一部を、TDS濃度が所定の濃度値を超えた3段目膜モジュール12cの被処理水側に返送、循環して、3段目膜モジュール12cの第一空間16に供給する水量を増やす。その結果として、多段式の半透膜モジュールを用いる水の濃縮処理において、膜の第一空間に通水する水が高濃度となり、濃度分極の影響が大きくなりやすい最終段の膜モジュールで被処理水の溶解固形成分の濃度が所定の濃度値を超えた場合であっても濃度分極の影響を軽減することができる。 In the water treatment method and the water treatment apparatus 4 according to the present embodiment, the TDS concentration of the water to be treated at the inlet of the first space 16 of the third stage membrane module 12c is measured, and when the predetermined concentration value is exceeded, the valve is used. By adjusting the opening degree of 62, at least a part of the concentrated water is returned to the water to be treated side of the third stage membrane module 12c whose TDS concentration exceeds a predetermined concentration value and circulated to the third stage membrane module 12c. Increase the amount of water supplied to the first space 16. As a result, in the water concentration treatment using the multi-stage semipermeable membrane module, the water passing through the first space of the membrane becomes high concentration, and the final stage membrane module, which tends to be greatly affected by the concentration polarization, is treated. Even when the concentration of the dissolved solid component of water exceeds a predetermined concentration value, the influence of concentration polarization can be reduced.

多段式の膜モジュールを用いる場合、膜モジュールの段数は、目的の処理水の濃度等によって決めればよい。例えば、より薄い濃度の被処理水からより濃い濃度の処理水を得たい場合には、膜モジュールユニットの段数を増やせばよい。本実施形態に係る水処理方法および水処理装置は、多段式の膜モジュールを用いる場合に好適に適用することができる。 When a multi-stage membrane module is used, the number of stages of the membrane module may be determined by the concentration of the target treated water or the like. For example, when it is desired to obtain a treatment water having a higher concentration from a water to be treated having a lower concentration, the number of stages of the membrane module unit may be increased. The water treatment method and the water treatment apparatus according to the present embodiment can be suitably applied when a multi-stage membrane module is used.

各段の膜モジュールとして、並列的に接続された複数本の膜モジュールを備える膜モジュールユニットを用いてもよい。各膜モジュールユニットにおける膜モジュールの本数は、被処理水の流量等によって決めればよい。 As the membrane module of each stage, a membrane module unit including a plurality of membrane modules connected in parallel may be used. The number of membrane modules in each membrane module unit may be determined by the flow rate of the water to be treated or the like.

各段の膜モジュールに、第一空間16からの濃縮水を第二空間18へ送液する配管を設けてもよい。 The membrane module of each stage may be provided with a pipe for sending concentrated water from the first space 16 to the second space 18.

各段の膜モジュールに、処理水槽や希釈水槽を設けてもよい。 A treatment water tank or a dilution water tank may be provided in the membrane module of each stage.

膜モジュールが備える半透膜14としては、例えば、逆浸透膜(RO膜)、正浸透膜(FO膜)、ナノろ過膜(NF膜)等の半透膜が挙げられる。半透膜は、逆浸透膜、正浸透膜、ナノろ過膜が好ましい。なお、半透膜として逆浸透膜または正浸透膜、ナノろ過膜を用いる場合、第一空間16の被処理水の圧力は、好ましくは0.5~10.0MPaである。 Examples of the semi-permeable membrane 14 included in the membrane module include a semi-permeable membrane such as a reverse osmosis membrane (RO membrane), a forward osmosis membrane (FO membrane), and a nanofiltration membrane (NF membrane). The semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane. When a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane is used as the semipermeable membrane, the pressure of the water to be treated in the first space 16 is preferably 0.5 to 10.0 MPa.

半透膜14を構成する材料としては、特に限定されないが、例えば、酢酸セルロース系樹脂等のセルロース系樹脂、ポリエーテルスルホン系樹脂等のポリスルホン系樹脂、ポリアミド系樹脂等が挙げられる。半透膜14を構成する材料は、酢酸セルロース系樹脂であることが好ましい。 The material constituting the semipermeable membrane 14 is not particularly limited, and examples thereof include a cellulosic resin such as a cellulose acetate resin, a polysulfone resin such as a polyethersulfone resin, and a polyamide resin. The material constituting the semipermeable membrane 14 is preferably a cellulose acetate-based resin.

半透膜14の形状としては、平膜、中空糸膜、スパイラル膜等が挙げられる。 Examples of the shape of the semipermeable membrane 14 include a flat membrane, a hollow fiber membrane, and a spiral membrane.

濃度測定手段としては、例えば、導電率計、密度計、イオン濃度計等を用いることができる。 As the concentration measuring means, for example, a conductivity meter, a density meter, an ion densitometer, or the like can be used.

被処理水は、溶解固形成分(TDS)等の物質を含む水であればよく、特に制限はないが、例えば、工場排水、塩水、海水、薬品廃液、逆浸透膜処理後の濃縮排水等が挙げられる。 The water to be treated may be water containing a substance such as a dissolved solid component (TDS), and is not particularly limited. For example, factory wastewater, salt water, seawater, chemical waste liquid, concentrated waste water after reverse osmosis membrane treatment, etc. Can be mentioned.

TDS(溶解固形成分)は、例えば、塩化ナトリウム等の塩化物、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、硫酸カルシウム、硫酸マグネシウム等の硫酸塩等を成分とする。 The TDS (dissolved solid component) contains, for example, chlorides such as sodium chloride, carbonates such as calcium carbonate and magnesium carbonate, and sulfates such as calcium sulfate and magnesium sulfate.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1>
図3に示す水処理装置3を用いて、処理を実施した。膜モジュールは、東洋紡株式会社製 5インチ膜(HP5255SI)を1本用いた。TDS成分として、塩化ナトリウム(NaCl)を使用した。純水に塩化ナトリウムを添加してTDS濃度6質量%の試験水を調製した。ポンプ20,52を起動し、膜モジュール12の第一空間入口における流量(FI1)が5L/min、第二空間入口における流量(FI4)が1L/minとなるように運転を開始した。第一空間入口における圧力(PI1)と第一空間出口における圧力(PI2)の測定値ができるだけ一定となるように、ポンプ20のインバーター42の値とバルブ62の開度を調節し(インバーター42の値を上げると圧力が上昇するので、バルブ62の開度を大きくして圧力を下げる)、第一空間入口における流量(FI1)が10L/minとなるまで濃縮水を循環した。このときの第一空間入口における流量(FI1)、循環水の流量(FI2)、ブローする濃縮水の流量(FI3)の値から、濃縮倍率(FI1/FI3)と透過水量(FI1-(FI2+FI3))を算出した。結果を表1に示す。
<Example 1>
The treatment was carried out using the water treatment apparatus 3 shown in FIG. As the membrane module, one 5-inch membrane (HP5255SI) manufactured by Toyobo Co., Ltd. was used. Sodium chloride (NaCl) was used as the TDS component. Sodium chloride was added to pure water to prepare test water having a TDS concentration of 6% by mass. The pumps 20 and 52 were started, and the operation was started so that the flow rate (FI1) at the inlet of the membrane module 12 was 5 L / min and the flow rate (FI4) at the inlet of the second space was 1 L / min. Adjust the value of the inverter 42 of the pump 20 and the opening degree of the valve 62 so that the measured values of the pressure (PI1) at the inlet of the first space and the pressure (PI2) at the outlet of the first space are as constant as possible (of the inverter 42). Since the pressure rises when the value is raised, the opening degree of the valve 62 is increased to lower the pressure), and the concentrated water is circulated until the flow rate (FI1) at the inlet of the first space reaches 10 L / min. From the values of the flow rate (FI1), the flow rate of circulating water (FI2), and the flow rate of concentrated water to be blown (FI3) at the inlet of the first space at this time, the concentration ratio (FI1 / FI3) and the permeated water amount (FI1- (FI2 + FI3)). ) Was calculated. The results are shown in Table 1.

<比較例1>
図5に示す水処理装置5を用いて、処理を実施した。水処理装置5は、循環手段である配管32、循環流量測定装置56、バルブ62を有さない点で水処理装置3と異なる。TDS成分として、塩化ナトリウム(NaCl)を使用した。純水に塩化ナトリウムを添加してTDS濃度6質量%の試験水を調製した。ポンプ20,52を起動し、膜モジュール12の第一空間入口における流量(FI1)が10L/min、第二空間入口における流量(FI4)が1L/minとなるように運転した。このときの第一空間入口における流量(FI1)、ブローする濃縮水の流量(FI3)の値から、濃縮倍率(FI1/FI3)と透過水量(FI1-FI3)を算出した。結果を表1に示す。
<Comparative Example 1>
The treatment was carried out using the water treatment apparatus 5 shown in FIG. The water treatment device 5 is different from the water treatment device 3 in that it does not have a pipe 32 which is a circulation means, a circulation flow rate measuring device 56, and a valve 62. Sodium chloride (NaCl) was used as the TDS component. Sodium chloride was added to pure water to prepare test water having a TDS concentration of 6% by mass. The pumps 20 and 52 were started and operated so that the flow rate (FI1) at the inlet of the membrane module 12 was 10 L / min and the flow rate (FI4) at the inlet of the second space was 1 L / min. The concentration ratio (FI1 / FI3) and the permeated water amount (FI1-FI3) were calculated from the values of the flow rate (FI1) at the inlet of the first space and the flow rate (FI3) of the concentrated water to be blown at this time. The results are shown in Table 1.

Figure 2022016896000002
Figure 2022016896000002

このように、実施例1のように濃縮水を循環させて第一空間側の流量を増やすことによって、比較例1のように濃縮水を循環しなかったときに比べて、濃度分極の影響を軽減することができ、高い濃縮倍率を保ちながら運転することができた。 In this way, by circulating the concentrated water to increase the flow rate on the first space side as in Example 1, the effect of concentration polarization is affected as compared with the case where the concentrated water is not circulated as in Comparative Example 1. It was possible to reduce the concentration, and it was possible to operate while maintaining a high concentration ratio.

<実施例2>
図3に示す水処理装置3を用いて、処理を実施した。TDS成分として、塩化ナトリウム(NaCl)を使用した。純水および塩化ナトリウムを被処理水槽10に添加して導電率計で測定、換算されるNaCl濃度が6質量%となるように試験水を逐次調製した。ポンプ20,52を起動し、膜モジュール12の第一空間入口における流量(FI1)が5L/min、第二空間入口における流量(FI4)が1L/minとなるように運転を開始した。第一空間入口における圧力(PI1)と第一空間出口における圧力(PI2)の測定値ができるだけ一定となるように、ポンプ20のインバーター42の値とバルブ62の開度を調節し、第一空間入口における流量(FI1)が10L/minとなるまで濃縮水を循環した。このときの第一空間入口における流量(FI1)、循環水の流量(FI2)、ブローする濃縮水の流量(FI3)の値から、透過水量(FI1-(FI2+FI3))を算出した。さらに同様の操作を第一空間入口における流量(FI1)が20L/minとなるまで行い、このときの第一空間入口における流量(FI1)、循環水の流量(FI2)、ブローする濃縮水の流量(FI3)の値から、透過水量を算出した。結果を図6に示す。
<Example 2>
The treatment was carried out using the water treatment apparatus 3 shown in FIG. Sodium chloride (NaCl) was used as the TDS component. Pure water and sodium chloride were added to the water tank 10 to be treated, and the test water was sequentially prepared so that the NaCl concentration measured and converted by the conductivity meter was 6% by mass. The pumps 20 and 52 were started, and the operation was started so that the flow rate (FI1) at the inlet of the membrane module 12 was 5 L / min and the flow rate (FI4) at the inlet of the second space was 1 L / min. The value of the inverter 42 of the pump 20 and the opening degree of the valve 62 are adjusted so that the measured values of the pressure (PI1) at the inlet of the first space and the pressure (PI2) at the outlet of the first space are as constant as possible, and the first space is adjusted. Concentrated water was circulated until the flow rate (FI1) at the inlet reached 10 L / min. The permeated water amount (FI1- (FI2 + FI3)) was calculated from the values of the flow rate (FI1), the flow rate of circulating water (FI2), and the flow rate of concentrated water to be blown (FI3) at the inlet of the first space at this time. Further, the same operation is performed until the flow rate (FI1) at the first space inlet becomes 20 L / min, and at this time, the flow rate at the first space inlet (FI1), the flow rate of circulating water (FI2), and the flow rate of the concentrated water to be blown. The amount of permeated water was calculated from the value of (FI3). The results are shown in FIG.

<実施例3>
NaCl濃度が3質量%であることを除いて、実施例2と同様の要領で運転を実施した。結果を図6に示す。
<Example 3>
The operation was carried out in the same manner as in Example 2 except that the NaCl concentration was 3% by mass. The results are shown in FIG.

<実施例4>
NaCl濃度が10質量%であることを除いて、実施例2と同様の要領で運転を実施した。結果を図6に示す。
<Example 4>
The operation was carried out in the same manner as in Example 2 except that the NaCl concentration was 10% by mass. The results are shown in FIG.

<実施例5>
NaCl濃度が15質量%であることを除いて、実施例2と同様の要領で運転を実施した。結果を図6に示す。
<Example 5>
The operation was carried out in the same manner as in Example 2 except that the NaCl concentration was 15% by mass. The results are shown in FIG.

図6は、第一空間入口における流量(FI1)を5L/minとしたときの透過水量(100%)に対する、透過水量の増加割合を示したものである。特に被処理水のTDS濃度が6質量%以上の場合、濃縮水を循環することによって、濃度分極の影響を軽減し、より多くの透過水量を得ることができた。NaCl濃度が3質量%のときは、濃縮水を循環することによる濃度分極の影響の軽減効果は得られたもののわずかであった。 FIG. 6 shows the rate of increase in the amount of permeated water with respect to the amount of permeated water (100%) when the flow rate (FI1) at the inlet of the first space is 5 L / min. In particular, when the TDS concentration of the water to be treated was 6% by mass or more, the influence of concentration polarization was reduced by circulating the concentrated water, and a larger amount of permeated water could be obtained. When the NaCl concentration was 3% by mass, the effect of reducing the influence of the concentration polarization by circulating the concentrated water was obtained, but it was slight.

このように、実施例の水処理装置および水処理方法によって、半透膜モジュールを用いる水の濃縮処理において、濃度分極の影響を軽減することができた。 As described above, the water treatment apparatus and the water treatment method of the examples could reduce the influence of concentration polarization in the water concentration treatment using the semipermeable membrane module.

1,2,3,4,5 水処理装置、10 被処理水槽、12 膜モジュール、12a 1段目膜モジュール、12b 2段目膜モジュール、12c 3段目膜モジュール、14 半透膜、16 第一空間、18 第二空間、20,52,66 ポンプ、22,24,26,28,30,32,34,36,68,70,72,74,76,78 配管、40 制御装置、42 インバーター、44 濃度測定装置、46,50 被処理水流量測定装置、48 入口圧力測定装置、51 透過水流量測定装置、53 分岐濃縮水流量測定装置、54 ブロー流量測定装置、56 循環流量測定装置、58 出口圧力測定装置、60,62,64 バルブ。 1,2,3,4,5 Water treatment equipment, 10 Water tank to be treated, 12 film module, 12a 1st stage film module, 12b 2nd stage film module, 12c 3rd stage film module, 14 semi-permeable film, 16th 1 space, 18 2nd space, 20, 52, 66 pump, 22, 24, 26, 28, 30, 32, 34, 36, 68, 70, 72, 74, 76, 78 piping, 40 control device, 42 inverter , 44 Concentration measuring device, 46, 50 Processed water flow measuring device, 48 Inlet pressure measuring device, 51 Permeated water flow measuring device, 53 Branch concentrated water flow measuring device, 54 Blow flow measuring device, 56 Circulating flow measuring device, 58 Outlet pressure measuring device, 60, 62, 64 valves.

Claims (10)

半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記濃縮水の一部を通水して希釈水を得る半透膜処理工程と、
前記濃縮水のさらに一部を前記半透膜モジュールの被処理水側に返送し循環する循環工程と、
を含むことを特徴とする水処理方法。
Using a semi-transparent module having a first space and a second space partitioned by a semi-transparent film, water to be treated containing a dissolved solid component is passed through the first space, and the first space is pressurized. A semi-transmissive treatment step of obtaining concentrated water by permeating the water contained in the water to be treated through the semi-transparent film and passing a part of the concentrated water through the second space to obtain diluted water. When,
A circulation step in which a part of the concentrated water is returned to the water to be treated side of the semipermeable membrane module and circulated.
A water treatment method comprising.
半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記被処理水の一部を通水して希釈水を得る半透膜処理工程と、
前記濃縮水の少なくとも一部を前記半透膜モジュールの被処理水側に返送し循環する循環工程と、
を含むことを特徴とする水処理方法。
Using a semipermeable membrane module having a first space and a second space partitioned by a semipermeable membrane, water to be treated containing a dissolved solid component is passed through the first space, and the first space is pressurized. The semipermeable membrane treatment obtains concentrated water by allowing the water contained in the water to be treated to permeate through the semipermeable membrane, and also passes a part of the water to be treated through the second space to obtain diluted water. Process and
A circulation step in which at least a part of the concentrated water is returned to the water to be treated side of the semipermeable membrane module and circulated.
A water treatment method comprising.
請求項1または2に記載の水処理方法であって、
前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記半透膜を透過する透過水量が所定の範囲になるように、前記循環する濃縮水の流量を制御することを特徴とする水処理方法。
The water treatment method according to claim 1 or 2.
When the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value, the flow rate of the circulating concentrated water is controlled so that the amount of permeated water permeating through the semipermeable membrane falls within a predetermined range. A water treatment method characterized by that.
請求項3に記載の水処理方法であって、
前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記第一空間に供給される被処理水の流量に対して、前記循環する濃縮水の流量が200%以上となるように、前記循環する濃縮水の流量を制御することを特徴とする水処理方法。
The water treatment method according to claim 3.
When the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value, the flow rate of the circulating concentrated water is 200% or more with respect to the flow rate of the water to be treated supplied to the first space. A water treatment method comprising controlling the flow rate of the circulating concentrated water so as to be.
請求項4に記載の水処理方法であって、
前記所定の濃度値が、前記被処理水の浸透圧が5MPa以上となる濃度値であることを特徴とする水処理方法。
The water treatment method according to claim 4.
A water treatment method, wherein the predetermined concentration value is a concentration value at which the osmotic pressure of the water to be treated is 5 MPa or more.
半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記濃縮水の一部を通水して希釈水を得る半透膜処理手段と、
前記濃縮水のさらに一部を前記半透膜モジュールの被処理水側に返送し循環する循環手段と、
を備えることを特徴とする水処理装置。
Using a semi-transparent module having a first space and a second space partitioned by a semi-transparent film, water to be treated containing a dissolved solid component is passed through the first space, and the first space is pressurized. The semitransparent film treatment means for obtaining concentrated water by allowing the water contained in the water to be treated to permeate the semitransparent film and passing a part of the concentrated water through the second space to obtain diluted water. When,
A circulation means for returning and circulating a part of the concentrated water to the water to be treated side of the semipermeable membrane module.
A water treatment device characterized by being provided with.
半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、溶解固形成分を含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによって濃縮水を得るとともに、前記第二空間に前記被処理水の一部を通水して希釈水を得る半透膜処理手段と、
前記濃縮水の少なくとも一部を前記半透膜モジュールの被処理水側に返送し循環する循環手段と、
を備えることを特徴とする水処理装置。
Using a semipermeable membrane module having a first space and a second space partitioned by a semipermeable membrane, water to be treated containing a dissolved solid component is passed through the first space, and the first space is pressurized. The semipermeable membrane treatment obtains concentrated water by allowing the water contained in the water to be treated to permeate through the semipermeable membrane, and also passes a part of the water to be treated through the second space to obtain diluted water. Means and
A circulation means for returning and circulating at least a part of the concentrated water to the water to be treated side of the semipermeable membrane module.
A water treatment device characterized by being provided with.
請求項6または7に記載の水処理装置であって、
前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記半透膜を透過する透過水量が所定の範囲になるように、前記循環する濃縮水の流量を制御する制御手段をさらに備えることを特徴とする水処理装置。
The water treatment apparatus according to claim 6 or 7.
When the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value, the flow rate of the circulating concentrated water is controlled so that the amount of permeated water permeating through the semipermeable membrane falls within a predetermined range. A water treatment apparatus characterized by further comprising a control means.
請求項8に記載の水処理装置であって、
前記制御手段は、前記被処理水中の前記溶解固形成分の濃度が所定の濃度値を超えた場合に、前記第一空間に供給される被処理水の流量に対して、前記循環する濃縮水の流量が200%以上となるように、前記循環する濃縮水の流量を制御することを特徴とする水処理装置。
The water treatment apparatus according to claim 8.
The control means is the concentrated water that circulates with respect to the flow rate of the water to be treated supplied to the first space when the concentration of the dissolved solid component in the water to be treated exceeds a predetermined concentration value. A water treatment apparatus characterized in that the flow rate of the circulating concentrated water is controlled so that the flow rate is 200% or more.
請求項9に記載の水処理装置であって、
前記所定の濃度値が、前記被処理水の浸透圧が5MPa以上となる濃度値であることを特徴とする水処理装置。
The water treatment apparatus according to claim 9.
A water treatment apparatus characterized in that the predetermined concentration value is a concentration value at which the osmotic pressure of the water to be treated is 5 MPa or more.
JP2020119876A 2020-07-13 2020-07-13 Water treatment method and water treatment device Pending JP2022016896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020119876A JP2022016896A (en) 2020-07-13 2020-07-13 Water treatment method and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020119876A JP2022016896A (en) 2020-07-13 2020-07-13 Water treatment method and water treatment device

Publications (1)

Publication Number Publication Date
JP2022016896A true JP2022016896A (en) 2022-01-25

Family

ID=80185750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020119876A Pending JP2022016896A (en) 2020-07-13 2020-07-13 Water treatment method and water treatment device

Country Status (1)

Country Link
JP (1) JP2022016896A (en)

Similar Documents

Publication Publication Date Title
US10427957B2 (en) Osmotic separation systems and methods
JP5929195B2 (en) Fresh water production apparatus and operation method thereof
US20090152197A1 (en) System for Energy Recovery and Reduction of Deposits on the Membrane Surfaces in (Variable Power and Variable Production) Reverse Osmosis Desalination Systems
WO2017217008A1 (en) Reverse osmosis membrane separation apparatus
JP2012170880A (en) Sea water desalination system, and sea water desalination method
WO2011021420A1 (en) Fresh water generator
JP2015104710A (en) Seawater desalination system
US10435306B2 (en) Water treatment system and method
JP2016032810A (en) Water treatment system
JP6107287B2 (en) Water treatment equipment
JP2021016823A (en) Water treatment method and water treatment apparatus
JP2022016896A (en) Water treatment method and water treatment device
CN115010212B (en) Water treatment method and water treatment device
JPH09299944A (en) Fresh water producing device having reverse-osmosis membrane
JP2022028429A (en) Water treatment method and water treatment equipment
US20190209968A1 (en) Method and system for liquid treatment
JP2021037494A (en) Water treatment method and water treatment equipment
WO2022044363A1 (en) Concentration method, concentration apparatus, water treatment method, and water treatment apparatus
JP2014034005A (en) Salt water desalination apparatus and fresh water production method
JP2017221876A (en) Reverse osmosis membrane separation apparatus
CN115432876B (en) Water treatment method and water treatment device
JP2023038919A (en) Water treatment device, and water treatment method
JP7293079B2 (en) Water treatment system and water treatment method
JP2001149932A (en) Membrane treating device and fresh water generating method
JP2023038920A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240326