JP2022013098A - Magnetic pole, electric motor and assembling method of magnetic pole - Google Patents

Magnetic pole, electric motor and assembling method of magnetic pole Download PDF

Info

Publication number
JP2022013098A
JP2022013098A JP2020115426A JP2020115426A JP2022013098A JP 2022013098 A JP2022013098 A JP 2022013098A JP 2020115426 A JP2020115426 A JP 2020115426A JP 2020115426 A JP2020115426 A JP 2020115426A JP 2022013098 A JP2022013098 A JP 2022013098A
Authority
JP
Japan
Prior art keywords
core
iron core
support member
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020115426A
Other languages
Japanese (ja)
Other versions
JP7391783B2 (en
Inventor
舞帆 辰巳
Maho Tatsumi
俊平 林
Jiun-Ping Lin
信吾 笠井
Shingo Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020115426A priority Critical patent/JP7391783B2/en
Priority to PCT/JP2021/023538 priority patent/WO2022004481A1/en
Publication of JP2022013098A publication Critical patent/JP2022013098A/en
Application granted granted Critical
Publication of JP7391783B2 publication Critical patent/JP7391783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

To provide a magnetic pole or the like that can support a magnet or an iron core without deteriorating the characteristics.SOLUTION: A magnetic pole includes a first iron core, a second iron core, a permanent magnet arranged such that a first pole faces the first iron core and a second pole faces the second iron core, a support member molded by a non-magnetic material, which covers at least one of a surface that does not face the armature and a surface that does not face the permanent magnet in the first iron core and the second iron core, and supports the first iron core, the second iron core, and the permanent magnet.SELECTED DRAWING: Figure 1

Description

本発明は、磁極子、電動機、及び、磁極子の組立方法に関する。 The present invention relates to a monopole, a motor, and a method for assembling the monopole.

従来、電機子と可動子との間のギャップに生じる磁束数を増大させることができる電動機が提案されている。
例えば、特許文献1に記載されたアキシャルギャップ形の電動機は、以下のように構成されている。すなわち、電動機は、円環扇形板状をなす鉄心の1つの主面以外の5つの面のそれぞれに永久磁石が取り付けられた複数の磁極ブロックが回転軸を中心とした環状方向である可動方向に並べて構成された回転子と、回転子と軸方向に向き合うように配置された円盤状の電機子とを有する。
Conventionally, an electric machine capable of increasing the number of magnetic fluxes generated in the gap between the armature and the mover has been proposed.
For example, the axial gap type motor described in Patent Document 1 is configured as follows. That is, in the electric motor, a plurality of magnetic pole blocks to which permanent magnets are attached to each of five surfaces other than one main surface of the iron core forming a circular fan-shaped plate are in a movable direction which is an annular direction centered on a rotation axis. It has a rotor configured side by side and a disk-shaped armature arranged so as to face the rotor in the axial direction.

特開2019-75848号公報JP-A-2019-75848

特許文献1に記載されたアキシャルギャップ形の電動機においては、永久磁石や鉄心を立体的に配置させる必要があるので、永久磁石や鉄心を回転可能に支持するという点で、さらなる改善の余地があった。一方で、磁極子から発生する磁束が低下したり、電動機の体積を増加したりして、電動機の特性が低下することは好ましくない。
本発明は、特性を低下させることなく、磁石や鉄心を支持することができる磁極子等を提供することを目的とする。
In the axial gap type motor described in Patent Document 1, since it is necessary to arrange the permanent magnets and iron cores in three dimensions, there is room for further improvement in that the permanent magnets and iron cores are rotatably supported. rice field. On the other hand, it is not preferable that the magnetic flux generated from the magnetic pole is reduced or the volume of the motor is increased to reduce the characteristics of the motor.
An object of the present invention is to provide a magnetic monopole or the like that can support a magnet or an iron core without deteriorating the characteristics.

かかる目的のもと完成させた本発明は、第1鉄心と、第2鉄心と、第1極が前記第1鉄心の方を向くとともに第2極が前記第2鉄心の方を向くように配置された永久磁石と、前記第1鉄心及び前記第2鉄心における、電機子と対向しない面及び前記永久磁石と対向しない面の少なくとも一つの面を覆うとともに、当該第1鉄心、当該第2鉄心及び当該永久磁石を支持する、非磁性材料にて成形された支持部材と、を備える磁極子である。
ここで、前記支持部材は、前記永久磁石が前記第1鉄心又は前記第2鉄心の方へ移動することを抑制する複数の突起を有しても良い。
また、前記複数の突起は、前記永久磁石における第1面側に配置される突起である第1面側突起を複数有するとともに、当該永久磁石における前記第1面とは反対側の面である第2面側に配置される突起である第2面側突起を複数有し、前記第1鉄心は、複数の前記第1面側突起間に配置され、前記第2鉄心は、複数の前記第2面側突起間に配置されていても良い。
また、前記複数の前記第2面側突起における一方の当該第2面側突起は、他方の当該第2面側突起の方に屈曲した一方側屈曲部を有し、当該他方の当該第2面側突起は、当該一方の当該第2面側突起の方に屈曲した他方側屈曲部を有し、前記第2鉄心には、前記一方側屈曲部及び前記他方側屈曲部を収容する凹部が形成されていても良い。
あるいは、前記支持部材は、回転方向に並べられるとともに半径方向に突出した複数の突起を有し、前記複数の突起における一方の突起は、他方の突起の方に屈曲した屈曲部を有し、当該他方の突起は、当該一方の突起の方に屈曲した屈曲部を有し、前記第1鉄心は、前記一方の突起と前記他方の突起とで囲まれた部位に配置されるとともに、当該一方の突起の屈曲部と当該他方の突起の屈曲部との間に配置される凸部を有しても良い。
また、前記第2鉄心及び前記永久磁石は、回転軸の軸方向に見た形状が全て同一であっても良い。
あるいは、前記支持部材は、回転方向に並べられるとともに半径方向に突出した複数の突起を有し、当該複数の突起における一方の突起は、当該複数の突起における他方の突起の方に屈曲した屈曲部を有し、当該他方の突起は、当該一方の突起の方に屈曲した屈曲部を有し、前記第1鉄心には、前記複数の突起が嵌り込む凹部が形成されていても良い。
また、前記支持部材は、回転方向に並べられるとともに半径方向に突出した、前記複数の突起と対向する他の複数の突起を有し、当該他の複数の突起における一方の突起は、当該他の複数の突起における他方の突起の方に屈曲した屈曲部を有し、当該他方の突起は、当該一方の突起の方に屈曲した屈曲部を有し、前記第2鉄心には、前記他の複数の突起が嵌り込む凹部が形成され、前記第1鉄心、前記永久磁石及び前記第2鉄心は、前記複数の突起と前記他の複数の突起との間に配置されていても良い。
また、前記第1鉄心、前記第2鉄心及び前記永久磁石を有するユニットを複数有し、さらに、複数の前記ユニット相互間の距離を維持するように当該複数の当該ユニット間に配置された中間支持部材を備えても良い。
また、前記ユニットは、前記第1鉄心に対して、前記第2鉄心と直交する方向に配置された第3鉄心と、第1極が当該第1鉄心の方を向くとともに第2極が当該第3鉄心の方を向くように配置された第2の永久磁石と、を有し、前記中間支持部材は、隣り合うユニットの前記第2の永久磁石間に配置されても良い。
また、他の観点から捉えると、本発明は、電機子と、回転軸を有し、前記電機子と対向して配置された磁極子と、を備えるアキシャルギャップ形の電動機であって、前記磁極子は、第1鉄心と、当該第1鉄心に対して前記電機子とは反対側に配置された第2鉄心と、第1極が当該第1鉄心の方を向くとともに第2極が当該第2鉄心の方を向くように配置された永久磁石と、当該第1鉄心及び当該第2鉄心における前記回転軸の軸方向に伸びる面、又は、当該第2鉄心における当該電機子とは反対側の面を覆うとともに、当該第1鉄心、当該第2鉄心及び当該永久磁石を支持する、非磁性材料にて成形された支持部材と、を備える電動機である。
また、他の観点から捉えると、本発明は、分割された状態の外側支持部材に対して、複数の第1鉄心と、複数の第2鉄心と、第1極が当該第1鉄心の方を向くとともに第2極が当該第2鉄心の方を向くように当該第1鉄心と当該第2鉄心との間に第1永久磁石を嵌め込み、複数の前記第1鉄心の内の隣り合う当該第1鉄心の間に第2永久磁石を嵌め込み、複数の前記第2鉄心の内の隣り合う当該第2鉄心の間に第3永久磁石を嵌め込み、分割された状態の内側支持部材に対して、複数の第3鉄心と、複数の第4鉄心と、第1極が当該第3鉄心の方を向くとともに第2極が当該第4鉄心の方を向くように当該第3鉄心と当該第4鉄心との間に第4永久磁石を嵌め込み、複数の前記第3鉄心の内の隣り合う当該第3鉄心の間に第5永久磁石を嵌め込み、複数の前記第4鉄心の内の隣り合う当該第4鉄心の間に第6永久磁石を嵌め込み、前記第1鉄心と前記第3鉄心との間に第7永久磁石を配置し、前記第2鉄心と前記第4鉄心との間に第8永久磁石を配置し、前記分割された状態の外側支持部材と前記分割された状態の内側支持部材とを組み合わせることでサブユニットを構成する磁極子の組立方法である。
また、複数の前記サブユニットにおける、前記分割された状態の内側支持部材同士を接合するとともに、前記分割された状態の外側支持部材同士を接合しても良い。
In the present invention completed for this purpose, the first core, the second core, and the first pole are arranged so as to face the first core and the second pole faces the second core. The permanent magnet is covered with at least one surface of the first core and the second core that does not face the armature and the surface that does not face the permanent magnet, and the first core, the second core, and the permanent magnet are covered. A magnetic pole provided with a support member formed of a non-magnetic material that supports the permanent magnet.
Here, the support member may have a plurality of protrusions that prevent the permanent magnet from moving toward the first core or the second core.
Further, the plurality of protrusions have a plurality of first surface side protrusions which are protrusions arranged on the first surface side of the permanent magnet, and are surfaces opposite to the first surface of the permanent magnet. It has a plurality of second surface side protrusions which are protrusions arranged on the two surface side, the first iron core is arranged between the plurality of the first surface side projections, and the second core is a plurality of the second iron cores. It may be arranged between the surface side protrusions.
Further, one of the second surface side projections in the plurality of the second surface side projections has a one-sided bending portion bent toward the other second surface side projection, and the other second surface side projection has a bent portion. The side protrusion has a other side bending portion bent toward the second surface side protrusion of the one side, and the second iron core is formed with a recess for accommodating the one side bending portion and the other side bending portion. It may have been done.
Alternatively, the support member has a plurality of protrusions arranged in the rotational direction and protruding in the radial direction, and one protrusion in the plurality of protrusions has a bent portion bent toward the other protrusion. The other protrusion has a bent portion bent toward the one protrusion, and the first iron core is arranged at a portion surrounded by the one protrusion and the other protrusion, and the one is arranged. It may have a convex portion arranged between the bent portion of the protrusion and the bent portion of the other protrusion.
Further, the second iron core and the permanent magnet may all have the same shape as seen in the axial direction of the rotating shaft.
Alternatively, the support member has a plurality of protrusions arranged in the rotational direction and protruding in the radial direction, and one protrusion in the plurality of protrusions is a bent portion bent toward the other protrusion in the plurality of protrusions. The other protrusion may have a bent portion bent toward the one protrusion, and the first iron core may be formed with a recess into which the plurality of protrusions are fitted.
Further, the support member has a plurality of other protrusions facing the plurality of protrusions, which are arranged in the rotation direction and project in the radial direction, and one protrusion in the other plurality of protrusions is the other protrusion. The other protrusion has a bent portion bent toward the other protrusion in the plurality of protrusions, the other protrusion has a bent portion bent toward the one protrusion, and the second iron core has the other plurality. A recess is formed in which the protrusions of the above are fitted, and the first iron core, the permanent magnet, and the second iron core may be arranged between the plurality of protrusions and the other plurality of protrusions.
Further, it has a plurality of units having the first core, the second core and the permanent magnet, and further, an intermediate support arranged between the plurality of units so as to maintain a distance between the plurality of units. A member may be provided.
In addition, the unit has a third core arranged in a direction orthogonal to the second core with respect to the first core, a first pole facing the first core, and a second pole facing the first core. 3 It has a second permanent magnet arranged so as to face the iron core, and the intermediate support member may be arranged between the second permanent magnets of adjacent units.
From another point of view, the present invention is an axial gap type motor including an armature and a magnetic pole element having a rotating shaft and arranged so as to face the armature, wherein the magnetic pole is provided. The child consists of a first core, a second core arranged on the opposite side of the first core from the armature, a first pole facing the first core, and a second pole facing the first pole. 2 Permanent magnets arranged so as to face the core, a surface extending in the axial direction of the rotation axis in the first core and the second core, or a side opposite to the armature in the second core. It is an electric motor provided with a support member formed of a non-magnetic material that covers the surface and supports the first core, the second core, and the permanent magnet.
From another point of view, in the present invention, with respect to the outer support member in the divided state, a plurality of first cores, a plurality of second cores, and a first pole are the first cores. A first permanent magnet is fitted between the first core and the second core so that the second pole faces toward the second core, and the first of the plurality of first cores adjacent to each other is fitted. A second permanent magnet is fitted between the iron cores, and a third permanent magnet is fitted between the adjacent second permanent magnets among the plurality of the second cores, and a plurality of inner support members in a divided state are fitted. The third core, the plurality of fourth cores, and the third core and the fourth core so that the first pole faces the third core and the second pole faces the fourth core. A fourth permanent magnet is fitted between them, and a fifth permanent magnet is fitted between the adjacent third cores of the plurality of the third cores, and the adjacent fourth cores of the plurality of the fourth cores are fitted. A sixth permanent magnet is fitted between them, a seventh permanent magnet is placed between the first core and the third core, and an eighth permanent magnet is placed between the second core and the fourth core. It is a method of assembling a magnetic pole element which constitutes a subunit by combining the outer support member in the divided state and the inner support member in the divided state.
Further, the inner support members in the divided state in the plurality of subunits may be joined to each other, and the outer support members in the divided state may be joined to each other.

本発明によれば、特性を低下させることなく、磁石や鉄心を支持することができる磁極子等を提供することができる。 According to the present invention, it is possible to provide a magnetic pole or the like that can support a magnet or an iron core without deteriorating the characteristics.

第1の実施形態に係る電動機の概略構成の断面図の一例を示す図である。It is a figure which shows an example of the sectional view of the schematic structure of the electric motor which concerns on 1st Embodiment. (a)は、磁極子を、電機子側から軸方向に見た形状の一例を示す図である。(b)は、磁極ユニットを軸方向に見た形状の一例を示す図である。(c)は、支持部材を軸方向に見た形状の一例を示す図である。(A) is a figure which shows an example of the shape which the magnetic monopole is seen in the axial direction from the armature side. (B) is a figure which shows an example of the shape which looked at the magnetic pole unit in the axial direction. (C) is a diagram showing an example of a shape of a support member viewed in the axial direction. 磁極ユニットの構成の一例を示す斜視図である。It is a perspective view which shows an example of the structure of a magnetic pole unit. 磁極子を、回転方向に直交な面及び半径方向に直交な面で切断した断面図の一例である。This is an example of a cross-sectional view in which a magnetic monopole is cut at a plane orthogonal to the rotation direction and a plane orthogonal to the radial direction. 半径方向に隣り合うティース部に、互いに逆向きに磁路が形成された場合の、断面図の一例を示している。An example of a cross-sectional view is shown in the case where magnetic paths are formed in opposite directions to the teeth portions adjacent to each other in the radial direction. 回転方向に隣り合うティース部に、互いに逆向きに磁路が形成された場合の断面図の一例を示す図である。It is a figure which shows an example of the cross-sectional view in the case where the magnetic paths are formed in the opposite direction to each other in the tooth portions adjacent to each other in the rotation direction. 他方側支持部材の固定方法の一例を示す図である。It is a figure which shows an example of the fixing method of the other side support member. 磁極ユニットと支持部材との半径方向の固定方法の一例を示す図である。It is a figure which shows an example of the fixing method in the radial direction of a magnetic pole unit and a support member. 第2の実施形態に係る電動機の概略構成の断面図の一例を示す図である。It is a figure which shows an example of the sectional view of the schematic structure of the electric motor which concerns on 2nd Embodiment. 磁極ユニットの構成の一例を示す斜視図である。It is a perspective view which shows an example of the structure of a magnetic pole unit. 支持部材の構成の一例を示す図である。It is a figure which shows an example of the structure of a support member. 磁極子の組み立て方法の一例を示す図である。It is a figure which shows an example of the assembly method of a magnetic monopole. 磁極子の組み立て方法の一例を示す図である。It is a figure which shows an example of the assembly method of a magnetic monopole. 磁極子を、回転方向に直交な面及び半径方向に直交な面で切断した断面図の一例である。This is an example of a cross-sectional view in which a magnetic monopole is cut at a plane orthogonal to the rotation direction and a plane orthogonal to the radial direction. 半径方向に隣り合うティース部に、互いに逆向きに磁路が形成されるとともに、軸方向に対向するティース部に、互いに逆向きに磁路が形成された場合の、断面図の一例を示している。An example of a cross-sectional view is shown in a case where magnetic circuits are formed in opposite directions in the teeth portions adjacent to each other in the radial direction, and magnetic paths are formed in opposite directions in the teeth portions facing in the axial direction. There is. 回転方向に隣り合うティース部に、互いに逆向きに磁路が形成されるとともに、軸方向に対向するティース部に、互いに逆向きに磁路が形成された場合の一例を示している。An example is shown in which magnetic circuits are formed in opposite directions in the teeth portions adjacent to each other in the rotation direction, and magnetic paths are formed in opposite directions in the tooth portions facing in the axial direction. サブユニットの変形例の一例を示す図である。It is a figure which shows an example of the modification of a subunit. 一の分割部材と他の分割部材の組み合わせ部位の変形例を示す図である。It is a figure which shows the deformation example of the combination part of one division member and another division member. 外側支持部材を構成する第一分割部材と第二分割部材との組み合わせ部位を示す図である。It is a figure which shows the combination part of the 1st division member and the 2nd division member which constitute an outer support member. 焼き嵌めにより固定された磁極子の一例を示す図である。It is a figure which shows an example of the magnetic monopole fixed by shrink fitting. 支持部材の一対の突起群及び鉄心の変形例の一例を示す図である。It is a figure which shows an example of the deformation example of a pair of protrusions of a support member, and an iron core. (a)は、一対の突起群の変形例の一例を示す図であり、(b)は、鉄心及び永久磁石の変形例の一例を示す図であり、(c)は、鉄心及び永久磁石を一対の突起群に嵌め込んだ状態の一例を示す図である。(A) is a diagram showing an example of deformation of a pair of protrusions, (b) is a diagram showing an example of deformation of an iron core and a permanent magnet, and (c) is a diagram showing an example of deformation of an iron core and a permanent magnet. It is a figure which shows an example of the state of being fitted in a pair of protrusions. (a)は、鉄心及び永久磁石の変形例の一例を示す図であり、(b)は、鉄心及び永久磁石を一対の突起群に嵌め込んだ状態の一例を示す図である。(A) is a diagram showing an example of deformation of an iron core and a permanent magnet, and (b) is a diagram showing an example of a state in which an iron core and a permanent magnet are fitted into a pair of protrusions. (a)は、中間支持部材、R第2磁石の変形例の一例を示す図であり、(b)は、中間支持部材とR第2磁石とを嵌め合わせた状態の一例を示す図である。(A) is a diagram showing an example of modification of the intermediate support member and the R second magnet, and (b) is a diagram showing an example of a state in which the intermediate support member and the R second magnet are fitted together. ..

以下、添付図面を参照して、実施の形態について詳細に説明する。
<第1の実施形態>
図1は、第1の実施形態に係る電動機1の概略構成の断面図の一例を示す図である。図1は、図2のI-I部の断面図である。
図2(a)は、磁極子20を、電機子10側から軸方向に見た形状の一例を示す図である。図2(b)は、磁極ユニット30を軸方向に見た形状の一例を示す図である。図2(c)は、支持部材50を軸方向に見た形状の一例を示す図である。
図3は、磁極ユニット30の構成の一例を示す斜視図である。
電動機1は、磁界を発生させる電機子10と、軟磁性体の回転軸5を有する回転子である磁極子20とを備えた、シングルステータ構造のアキシャルギャップ形の電動機である。電機子10と磁極子20とは、それぞれ円盤状であり、回転軸5の軸方向に一定の距離のギャップを介して配置されている。
Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.
<First Embodiment>
FIG. 1 is a diagram showing an example of a cross-sectional view of a schematic configuration of the motor 1 according to the first embodiment. FIG. 1 is a cross-sectional view of the I-I portion of FIG.
FIG. 2A is a diagram showing an example of the shape of the magnetic monopole 20 viewed from the armature 10 side in the axial direction. FIG. 2B is a diagram showing an example of the shape of the magnetic pole unit 30 as viewed in the axial direction. FIG. 2C is a diagram showing an example of the shape of the support member 50 as viewed in the axial direction.
FIG. 3 is a perspective view showing an example of the configuration of the magnetic pole unit 30.
The electric motor 1 is an axial gap type electric motor having a single stator structure, which includes an armature 10 for generating a magnetic field and a magnetic pole element 20 which is a rotor having a rotating shaft 5 of a soft magnetic material. The armature 10 and the magnetic pole 20 are each disk-shaped, and are arranged via a gap of a certain distance in the axial direction of the rotating shaft 5.

以下の説明において、磁極子20が移動する方向を「回転方向」と称する場合がある。また、回転軸5の中心線から回転軸5の外周面に向かう方向を「半径方向」と称する場合がある。また、回転軸5の軸方向を「軸方向」と称する場合がある。軸方向において、一方の端部側(図1においては上側)を「一方側」、他方の端部側(図1においては下側)を「他方側」と称する場合がある。 In the following description, the direction in which the magnetic monopole 20 moves may be referred to as a "rotational direction". Further, the direction from the center line of the rotating shaft 5 toward the outer peripheral surface of the rotating shaft 5 may be referred to as a "radial direction". Further, the axial direction of the rotating shaft 5 may be referred to as "axial direction". In the axial direction, one end side (upper side in FIG. 1) may be referred to as "one side", and the other end side (lower side in FIG. 1) may be referred to as "other side".

(電機子10)
電機子10は、ベース部材11と、ベース部材11に巻かれたコイル12と、を有している。
ベース部材11は、円盤状のヨーク部111と、ヨーク部111における軸方向の他方側の面から軸方向に突出した複数のティース部112とを有している。複数のティース部112は、回転方向に等間隔に並べられている。各ティース部112は、軸方向に見た場合に、扇形状である。ベース部材11は、軟鉄、ソフトフェライト等の軟磁性体によって構成されている。また、ベース部材11は、中央部に、回転軸5を回転可能に支持するベアリング113を有している。
コイル12は、各ティース部112に巻き回されている。
(Armature 10)
The armature 10 has a base member 11 and a coil 12 wound around the base member 11.
The base member 11 has a disk-shaped yoke portion 111 and a plurality of teeth portions 112 protruding in the axial direction from the other side surface in the axial direction of the yoke portion 111. The plurality of tooth portions 112 are arranged at equal intervals in the rotation direction. Each tooth portion 112 has a fan shape when viewed in the axial direction. The base member 11 is made of a soft magnetic material such as soft iron or soft ferrite. Further, the base member 11 has a bearing 113 at the center thereof that rotatably supports the rotating shaft 5.
The coil 12 is wound around each tooth portion 112.

(磁極子20)
磁極子20は、回転方向に複数個(本実施形態においては10個)並べられた磁極ユニット30と、複数の磁極ユニット30を支持する支持部材50とを有している。
(Monopole 20)
The magnetic pole element 20 has a plurality of magnetic pole units 30 (10 in this embodiment) arranged in the rotation direction, and a support member 50 for supporting the plurality of magnetic pole units 30.

支持部材50は、半径方向の内側に設けられた内側支持部材51と、半径方向の外側に設けられた外側支持部材52とを備えている。内側支持部材51は、円筒状の部材であり、軸方向における一方の端部に、外周面から外側に突出する内側突出部51aが磁極ユニット30と同数設けられている。外側支持部材52は、円筒状の部材であり、軸方向における一方の端部に、内周面から内側に突出する外側突出部52aが磁極ユニット30と同数設けられている。 The support member 50 includes an inner support member 51 provided on the inner side in the radial direction and an outer support member 52 provided on the outer side in the radial direction. The inner support member 51 is a cylindrical member, and the same number of inner protrusions 51a protruding outward from the outer peripheral surface are provided at one end in the axial direction as the number of magnetic pole units 30. The outer support member 52 is a cylindrical member, and the same number of outer protrusions 52a protruding inward from the inner peripheral surface are provided at one end in the axial direction as the number of magnetic pole units 30.

また、支持部材50は、軸方向の他方側に設けられた他方側支持部材53を備えている。他方側支持部材53は、中央部に回転軸5が通る貫通孔が形成された円盤状の部材である。他方側支持部材53の内径は、内側支持部材51の内周面の径よりも大きく、内側支持部材51の外周面の径よりも小さい。他方側支持部材53の外径は、外側支持部材52の内周面の径よりも大きく、外側支持部材52の外周面の径よりも小さい。 Further, the support member 50 includes a support member 53 on the other side provided on the other side in the axial direction. The other side support member 53 is a disk-shaped member having a through hole formed in the central portion through which the rotation shaft 5 passes. The inner diameter of the other side support member 53 is larger than the diameter of the inner peripheral surface of the inner support member 51 and smaller than the diameter of the outer peripheral surface of the inner support member 51. The outer diameter of the other side support member 53 is larger than the diameter of the inner peripheral surface of the outer support member 52 and smaller than the diameter of the outer peripheral surface of the outer support member 52.

複数の磁極ユニット30は、軸方向の一方側が内側突出部51a及び外側突出部52aにて、軸方向の他方側が他方側支持部材53にて支持されることにより、軸方向の移動が抑制される。
磁極ユニット30と支持部材50との固定方法については後で詳述する。
なお、支持部材50は、非磁性材料にて成形されている。例えば、支持部材50は、アルミニウム、チタン、樹脂にて成形されていることを例示することができる。
The plurality of magnetic pole units 30 are supported by the inner protruding portion 51a and the outer protruding portion 52a on one side in the axial direction and by the other side support member 53 on the other side in the axial direction, so that the movement in the axial direction is suppressed. ..
The method of fixing the magnetic pole unit 30 and the support member 50 will be described in detail later.
The support member 50 is made of a non-magnetic material. For example, it can be exemplified that the support member 50 is made of aluminum, titanium, or resin.

磁極ユニット30は、軸方向の一方側であって半径方向の内側に設けられた第1内ブロック31と、軸方向の他方側であって半径方向の内側に設けられた第2内ブロック32と、軸方向の一方側であって半径方向の外側に設けられた第1外ブロック41と、軸方向の他方側であって半径方向の外側に設けられた第2外ブロック42とを有している。 The magnetic pole unit 30 includes a first inner block 31 on one side in the axial direction and provided inside in the radial direction, and a second inner block 32 on the other side in the axial direction and provided inside in the radial direction. It has a first outer block 41 on one side in the axial direction and provided on the outer side in the radial direction, and a second outer block 42 on the other side in the axial direction and provided on the outer side in the radial direction. There is.

第1内ブロック31は、円弧状であって平板状の軟磁性体の鉄心311と、鉄心311における6面の内、内周面及び一方側の面以外の4面それぞれを隠すように設けられた、4個の永久磁石312とを有している。各永久磁石312は、対向する鉄心311の一面と略同じ大きさの主面313を有している。各永久磁石312は、鉄心311に同一の磁極を向けて配置される。
第1内ブロック31の鉄心311における電機子10と対向するように開放された一面は回転子磁極315となる。回転子磁極315は、各永久磁石312が鉄心311を向く主面313の磁極と同一磁極となる。また、各永久磁石312の外側を向く面(主面313とは反対側の面)は回転子磁極315の反対磁極となる。
The first inner block 31 is provided so as to hide each of the arcuate and flat plate-shaped soft magnetic iron core 311 and the four surfaces other than the inner peripheral surface and one side surface of the six surfaces of the iron core 311. It also has four permanent magnets 312. Each permanent magnet 312 has a main surface 313 having substantially the same size as one surface of the opposing iron core 311. Each permanent magnet 312 is arranged with the same magnetic pole facing the iron core 311.
One surface of the iron core 311 of the first inner block 31 opened so as to face the armature 10 becomes a rotor magnetic pole 315. The rotor magnetic pole 315 has the same magnetic pole as the magnetic pole of the main surface 313 in which each permanent magnet 312 faces the iron core 311. Further, the surface of each permanent magnet 312 facing the outside (the surface opposite to the main surface 313) is the opposite magnetic pole of the rotor magnetic pole 315.

第2内ブロック32は、円弧状であって平板状の軟磁性体の鉄心321と、鉄心321における6面の内、内周面及び他方側の面以外の4面それぞれを隠すように設けられた、4個の永久磁石322とを有している。各永久磁石322は、対向する鉄心321の一面と略同じ大きさの主面323を有している。各永久磁石322は、鉄心321に同一の磁極を向けて配置される。 The second inner block 32 is provided so as to hide each of the arcuate and flat plate-shaped soft magnetic iron core 321 and four of the six surfaces of the iron core 321 other than the inner peripheral surface and the other side surface. It also has four permanent magnets 322. Each permanent magnet 322 has a main surface 323 having substantially the same size as one surface of the opposing iron core 321. Each permanent magnet 322 is arranged with the same magnetic pole facing the iron core 321.

第1外ブロック41は、円弧状であって平板状の軟磁性体の鉄心411と、鉄心411における6面の内、外周面及び一方側の面以外の4面それぞれを隠すように設けられた、4個の永久磁石412とを有している。各永久磁石412は、対向する鉄心411の一面と略同じ大きさの主面413を有している。各永久磁石412は、鉄心411に同一の磁極を向けて配置される。
第1外ブロック41の鉄心411における電機子10と対向するように開放された一面は回転子磁極415となる。回転子磁極415は、各永久磁石412が鉄心411を向く主面413の磁極と同一磁極となる。また、各永久磁石412の外側を向く面(主面413とは反対側の面)は回転子磁極415の反対磁極となる。
The first outer block 41 is provided so as to hide each of the arc-shaped and flat plate-shaped soft magnetic iron core 411 and the four surfaces other than the outer peripheral surface and one side surface of the six surfaces of the iron core 411. It has four permanent magnets 412. Each permanent magnet 412 has a main surface 413 having substantially the same size as one surface of the opposing iron core 411. Each permanent magnet 412 is arranged with the same magnetic pole facing the iron core 411.
One surface of the iron core 411 of the first outer block 41 that is open so as to face the armature 10 is a rotor magnetic pole 415. The rotor magnetic pole 415 has the same magnetic pole as the magnetic pole of the main surface 413 in which each permanent magnet 412 faces the iron core 411. Further, the surface of each permanent magnet 412 facing outward (the surface opposite to the main surface 413) is the opposite magnetic pole of the rotor magnetic pole 415.

第2外ブロック42は、円弧状であって平板状の軟磁性体の鉄心421と、鉄心421における6面の内、外周面及び他方側の面以外の4面それぞれを隠すように設けられた、4個の永久磁石422とを有している。各永久磁石422は、対向する鉄心421の一面と略同じ大きさの主面423を有している。各永久磁石422は、鉄心421に同一の磁極を向けて配置される。 The second outer block 42 is provided so as to hide each of the arc-shaped and flat plate-shaped soft magnetic iron core 421 and the four surfaces other than the outer peripheral surface and the other side surface of the six surfaces of the iron core 421. It has four permanent magnets 422. Each permanent magnet 422 has a main surface 423 having substantially the same size as one surface of the opposing iron core 421. Each permanent magnet 422 is arranged with the same magnetic pole facing the iron core 421.

以下、第1内ブロック31、第2内ブロック32、第1外ブロック41、及び、第2外ブロック42を区別する必要がない場合には、まとめて「磁極ブロック40」と称する場合がある。また、鉄心311、鉄心321、鉄心411、及び、鉄心421を区別する必要がない場合には、まとめて「鉄心401」と称する場合がある。また、永久磁石312、永久磁石322、永久磁石412、及び、永久磁石422を区別する必要がない場合には、まとめて「永久磁石402」と称する場合がある。また、回転子磁極315及び回転子磁極415を区別する必要がない場合には、まとめて「回転子磁極405」と称する場合がある。 Hereinafter, when it is not necessary to distinguish the first inner block 31, the second inner block 32, the first outer block 41, and the second outer block 42, they may be collectively referred to as "magnetic pole block 40". Further, when it is not necessary to distinguish between the iron core 311 and the iron core 321 and the iron core 411 and the iron core 421, they may be collectively referred to as "iron core 401". Further, when it is not necessary to distinguish between the permanent magnet 312, the permanent magnet 322, the permanent magnet 412, and the permanent magnet 422, they may be collectively referred to as "permanent magnet 402". When it is not necessary to distinguish between the rotor magnetic pole 315 and the rotor magnetic pole 415, they may be collectively referred to as "rotor magnetic pole 405".

なお、上述した、隣り合う永久磁石、例えば、永久磁石312と永久磁石322、永久磁石412と永久磁石422、永久磁石312と永久磁石412、永久磁石322と永久磁石422、永久磁石312と永久磁石312、永久磁石322と永久磁石322、永久磁石412と永久磁石412、永久磁石422と永久磁石422は、一体であっても良い。つまり、鉄心311と鉄心321との間に配置された永久磁石312と永久磁石322とは一体であっても良い。また、鉄心411と鉄心421との間に配置された永久磁石412と永久磁石422とは一体であっても良い。また、鉄心311と鉄心411との間に配置された永久磁石312と永久磁石412とは一体であっても良い。また、鉄心321と鉄心421との間に配置された永久磁石322と永久磁石422とは一体であっても良い。また、隣り合う鉄心311と鉄心311との間に配置された2つの永久磁石312は一体であっても良い。また、隣り合う鉄心321と鉄心321との間に配置された2つの永久磁石322は一体であっても良い。また、隣り合う鉄心411と鉄心411との間に配置された2つの永久磁石412は一体であっても良い。また、隣り合う鉄心421と鉄心421との間に配置された2つの永久磁石422は一体であっても良い。 It should be noted that the above-mentioned permanent magnets adjacent to each other, for example, permanent magnet 312 and permanent magnet 322, permanent magnet 412 and permanent magnet 422, permanent magnet 312 and permanent magnet 412, permanent magnet 322 and permanent magnet 422, permanent magnet 312 and permanent magnet. 312, permanent magnet 322 and permanent magnet 322, permanent magnet 412 and permanent magnet 412, permanent magnet 422 and permanent magnet 422 may be integrated. That is, the permanent magnet 312 and the permanent magnet 322 arranged between the iron core 311 and the iron core 321 may be integrated. Further, the permanent magnet 412 and the permanent magnet 422 arranged between the iron core 411 and the iron core 421 may be integrated. Further, the permanent magnet 312 and the permanent magnet 412 arranged between the iron core 311 and the iron core 411 may be integrated. Further, the permanent magnet 322 and the permanent magnet 422 arranged between the iron core 321 and the iron core 421 may be integrated. Further, the two permanent magnets 312 arranged between the adjacent iron cores 311 and the iron cores 311 may be integrated. Further, the two permanent magnets 322 arranged between the adjacent iron cores 321 and the iron cores 321 may be integrated. Further, the two permanent magnets 412 arranged between the adjacent iron cores 411 and the iron cores 411 may be integrated. Further, the two permanent magnets 422 arranged between the adjacent iron cores 421 and the iron cores 421 may be integrated.

隣り合う磁極ブロック40同士は、面と面とが接するように配置される。そして、電機子10に対向するように配置された、複数の第1内ブロック31及び第1外ブロック41の内、隣接する2つの磁極ブロック40の回転子磁極315、415は互いに異なる磁極となる。つまり、回転子磁極315、415の磁極が交互に反転するように第1内ブロック31及び第1外ブロック41が並べられている。そのため、複数の第1内ブロック31及び第1外ブロック41の内、隣り合う2つの磁極ブロック40の接触面は一方がS極となり他方がN極となる。また、複数の第1内ブロック31及び第2内ブロック32の内、隣り合う第1内ブロック31と第2内ブロック32の接触面は一方がS極となり他方がN極となる。また、複数の第1外ブロック41及び第2外ブロック42の内、隣り合う第1外ブロック41と第2外ブロック42の接触面は一方がS極となり他方がN極となる。また、複数の第2内ブロック32及び第2外ブロック42の内、隣り合う第2内ブロック32と第2外ブロック42の接触面は一方がS極となり他方がN極となる。これらにより、隣接する2つの磁極ブロック40は磁力によって互いに引きつけ合うので、複数の磁極ブロック40を容易に配置することが可能になっている。 The adjacent magnetic pole blocks 40 are arranged so that the surfaces are in contact with each other. Then, among the plurality of first inner blocks 31 and the first outer blocks 41 arranged so as to face the armature 10, the rotor magnetic poles 315 and 415 of the two adjacent magnetic pole blocks 40 are different magnetic poles from each other. .. That is, the first inner block 31 and the first outer block 41 are arranged so that the magnetic poles of the rotor magnetic poles 315 and 415 are alternately inverted. Therefore, of the plurality of first inner blocks 31 and first outer blocks 41, one of the contact surfaces of two adjacent magnetic pole blocks 40 has an S pole and the other has an N pole. Further, among the plurality of first inner blocks 31 and second inner blocks 32, one of the contact surfaces of the adjacent first inner block 31 and the second inner block 32 has an S pole and the other has an N pole. Further, among the plurality of first outer blocks 41 and second outer blocks 42, one of the contact surfaces of the adjacent first outer block 41 and the second outer block 42 has an S pole and the other has an N pole. Further, among the plurality of second inner blocks 32 and second outer blocks 42, one of the contact surfaces of the adjacent second inner block 32 and the second outer block 42 has an S pole and the other has an N pole. As a result, the two adjacent magnetic pole blocks 40 are attracted to each other by a magnetic force, so that a plurality of magnetic pole blocks 40 can be easily arranged.

以上のように構成された磁極子20は、第1内ブロック31の回転子磁極315及び第1外ブロック41の回転子磁極415が、軸方向に直交するように電機子10の方を向き、4つの側面の内の2つの側面が回転方向に直交する方向を向き、残りの2つの側面が半径方向に直交する方向を向くように配置される。これにより、回転方向及び半径方向のそれぞれにおいて、回転子磁極315及び回転子磁極415の磁極が1つずつ反転する。
また、第2内ブロック32は第1内ブロック31と接するように配置され、第2外ブロック42は第1外ブロック41と接するように配置されている。そして、第2内ブロック32及び第2外ブロック42は、それぞれ、4つの側面の内の2つの側面が回転方向に直交する方向を向き、残りの2つの側面が半径方向に直交する方向を向くように配置される。
In the magnetic pole 20 configured as described above, the rotor magnetic pole 315 of the first inner block 31 and the rotor magnetic pole 415 of the first outer block 41 face the armature 10 so as to be orthogonal to each other in the axial direction. Two of the four sides are arranged so that they face a direction orthogonal to the rotation direction and the other two sides face a direction orthogonal to the radial direction. As a result, the magnetic poles of the rotor magnetic poles 315 and the rotor magnetic poles 415 are inverted one by one in each of the rotation direction and the radial direction.
Further, the second inner block 32 is arranged so as to be in contact with the first inner block 31, and the second outer block 42 is arranged so as to be in contact with the first outer block 41. Then, in the second inner block 32 and the second outer block 42, two of the four side surfaces face in a direction orthogonal to the rotation direction, and the remaining two sides face in a direction orthogonal to the radial direction, respectively. Arranged like this.

鉄心401は、その周囲を取り囲む永久磁石402によって磁化されている。複数の磁極ブロック40の内、S極が鉄心401に面する永久磁石402から出た磁束が鉄心401内を進む。鉄心401には4面に永久磁石402が取り付けられているため、これらの4つの永久磁石402のそれぞれから出た磁束が鉄心401の内部を進み、それぞれの磁束が、電機子10の方へ軸方向に進行して回転子磁極405から、電機子10との間の隙間に出る。かかる磁束は、放射状に分岐し、隣り合う磁極ブロック40のN極の回転子磁極405に進入する。このN極の回転子磁極405には、隣り合う全ての磁極ブロック40からの磁束が進入する。そして、N極の回転子磁極405となる鉄心401には永久磁石402のN極が面しているため、磁束はさらにこの鉄心401の内部を進み、回転方向、半径方向、軸方向に分岐して永久磁石402に入る。 The iron core 401 is magnetized by a permanent magnet 402 that surrounds it. Of the plurality of magnetic pole blocks 40, the magnetic flux generated from the permanent magnet 402 whose S pole faces the iron core 401 travels in the iron core 401. Since the permanent magnets 402 are attached to the four surfaces of the iron core 401, the magnetic fluxes generated from each of these four permanent magnets 402 travel inside the iron core 401, and the magnetic fluxes of the respective magnetic fluxes are axial toward the armature 10. It travels in the direction and exits from the rotor magnetic flux 405 into the gap between the armature 10 and the armature 10. The magnetic flux branches radially and enters the rotor magnetic pole 405 of the N pole of the adjacent magnetic pole blocks 40. Magnetic fluxes from all adjacent magnetic pole blocks 40 enter the N-pole rotor magnetic pole 405. Since the N pole of the permanent magnet 402 faces the iron core 401 which is the rotor magnetic pole 405 of the N pole, the magnetic flux further advances inside the iron core 401 and branches in the rotational direction, the radial direction, and the axial direction. And enter the permanent magnet 402.

図4は、磁極子20を、回転方向に直交な面及び半径方向に直交な面で切断した断面図の一例である。図4は、図2のIV-IV部の断面図である。図4において、矢印は磁化方向を示しており、極性はS→Nである。
図4に示した例では、複数の第1内ブロック31の内、S極が鉄心311に面する永久磁石312から出た磁束が鉄心311内を進む。鉄心311には4面に永久磁石312が取り付けられているため、これらの4つの永久磁石312のそれぞれから出た磁束が鉄心311の内部を進み、それぞれの磁束が、電機子10の方へ軸方向に進行して回転子磁極315から、電機子10との間の隙間に出る。かかる磁束は放射状に分岐し、隣り合う第1内ブロック31のN極の回転子磁極315から鉄心311の内部に、及び、第1外ブロック41のN極の回転子磁極415から鉄心411の内部に進入する。その後、磁束は、鉄心311、鉄心411の内部を進む。そして、鉄心311の内部を進んだ磁束は、さらに、軸方向に進むとともに、回転方向及び半径方向に分岐して永久磁石312に入る。また、鉄心411の内部を進んだ磁束は、さらに、軸方向に進むとともに、回転方向の両方向に分岐して永久磁石412に入る。
FIG. 4 is an example of a cross-sectional view of the magnetic monopole 20 cut along a plane orthogonal to the rotation direction and a plane orthogonal to the radial direction. FIG. 4 is a cross-sectional view of the IV-IV portion of FIG. In FIG. 4, the arrow indicates the magnetization direction, and the polarity is S → N.
In the example shown in FIG. 4, among the plurality of first inner blocks 31, the magnetic flux generated from the permanent magnet 312 whose S pole faces the iron core 311 travels in the iron core 311. Since the permanent magnets 312 are attached to the four surfaces of the iron core 311, the magnetic fluxes emitted from each of these four permanent magnets 312 travel inside the iron core 311 and each magnetic flux is axial toward the armature 10. It travels in the direction and exits from the rotor magnetic flux 315 into the gap between the armature 10 and the armature 10. The magnetic flux branches radially and extends from the rotor pole 315 of the N pole of the adjacent first inner block 31 to the inside of the iron core 311 and from the rotor magnetic pole 415 of the N pole of the first outer block 41 to the inside of the iron core 411. Enter into. After that, the magnetic flux travels inside the iron core 311 and the iron core 411. Then, the magnetic flux that has traveled inside the iron core 311 further travels in the axial direction and branches in the rotational direction and the radial direction to enter the permanent magnet 312. Further, the magnetic flux that has traveled inside the iron core 411 further travels in the axial direction and branches in both directions in the rotational direction to enter the permanent magnet 412.

回転子磁極405は、当該回転子磁極405を含む鉄心401に面した永久磁石402の磁極と同一極性となる。つまり、鉄心401に永久磁石402のS極が面している場合、当該鉄心401の回転子磁極405はS極となり、鉄心401に永久磁石402のN極が面している場合、当該鉄心401の回転子磁極405はN極となる。 The rotor magnetic pole 405 has the same polarity as the magnetic pole of the permanent magnet 402 facing the iron core 401 including the rotor magnetic pole 405. That is, when the S pole of the permanent magnet 402 faces the iron core 401, the rotor magnetic pole 405 of the iron core 401 becomes the S pole, and when the N pole of the permanent magnet 402 faces the iron core 401, the iron core 401 The rotor magnetic pole 405 of is N pole.

図5は、半径方向に隣り合うティース部112に、互いに逆向きに磁路が形成された場合の断面図の一例を示す図である。
上記のような構成のアキシャルギャップ形の電動機1において、電機子10の半径方向に隣り合うコイル12に逆向きの電流を流すと、コイル12の周囲に磁界が発生し、図5に示すような、ティース部112と、ヨーク部111とを通る磁路が形成される。このとき、ティース部112における磁極子20と対向する面が電機子磁極13となる。半径方向に隣り合う2つのティース部112のうち、一方のティース部112の電機子磁極13がS極となり、他方のティース部112の電機子磁極13がN極となる。
FIG. 5 is a diagram showing an example of a cross-sectional view in which magnetic paths are formed in opposite directions to the tooth portions 112 adjacent to each other in the radial direction.
In the axial gap type motor 1 having the above configuration, when a reverse current is passed through the coils 12 adjacent to each other in the radial direction of the armature 10, a magnetic field is generated around the coils 12, as shown in FIG. , A magnetic path is formed through the teeth portion 112 and the yoke portion 111. At this time, the surface of the teeth portion 112 facing the magnetic monopole 20 becomes the armature magnetic pole 13. Of the two tooth portions 112 adjacent to each other in the radial direction, the armature magnetic pole 13 of one of the teeth portions 112 is the S pole, and the armature magnetic pole 13 of the other teeth portion 112 is the N pole.

図6は、回転方向に隣り合うティース部112に、互いに逆向きに磁路が形成された場合の断面図の一例を示す図である。
図6に示した例においては、回転方向に隣り合うティース部112の内、一方のティース部112の電機子磁極13がS極となり、他方のティース部112の電機子磁極13がN極となる。
FIG. 6 is a diagram showing an example of a cross-sectional view in which magnetic paths are formed in opposite directions to the teeth portions 112 adjacent to each other in the rotation direction.
In the example shown in FIG. 6, of the teeth portions 112 adjacent to each other in the rotation direction, the armature magnetic pole 13 of one of the teeth portions 112 is the S pole, and the armature magnetic pole 13 of the other teeth portion 112 is the N pole. ..

したがって、コイル12に電流が流れると、電機子磁極13と、回転子磁極315、415とが磁力によって吸引または反発される。
図5、図6には、電機子磁極13と、回転子磁極315、415とが吸引される場合の磁路を示している。
そして、電機子10のコイル12に流す電流の方向とタイミングが制御されることで、磁極子20の回転方向や回転速度が制御される。
Therefore, when a current flows through the coil 12, the armature magnetic pole 13 and the rotor magnetic poles 315 and 415 are attracted or repelled by the magnetic force.
5 and 6 show a magnetic path when the armature magnetic pole 13 and the rotor magnetic poles 315 and 415 are attracted to each other.
Then, by controlling the direction and timing of the current flowing through the coil 12 of the armature 10, the rotation direction and rotation speed of the magnetic pole element 20 are controlled.

上述した実施形態に係る電動機1は、各鉄心401を永久磁石402が取り囲んでいるため、従来型の円環扇形板状の永久磁石が電機子に対向配置された構造の回転子に比べて、回転子磁極405に生じる磁束が増大される。 In the motor 1 according to the above-described embodiment, since each iron core 401 is surrounded by a permanent magnet 402, as compared with a rotor having a structure in which a conventional annular fan-shaped plate-shaped permanent magnet is arranged facing the armature. The magnetic flux generated in the rotor magnetic pole 405 is increased.

次に、他方側支持部材53の固定方法について説明する。
内側突出部51aと外側突出部52aとの間の隙間に、複数の磁極ユニット30を、軸方向の他方側から嵌め込んだ後に、他方側支持部材53を、複数の磁極ユニット30又は外側突出部52aの少なくともいずれかに固定する。
Next, a method of fixing the other side support member 53 will be described.
After fitting the plurality of magnetic pole units 30 into the gap between the inner protrusion 51a and the outer protrusion 52a from the other side in the axial direction, the other side support member 53 is fitted to the plurality of magnetic pole units 30 or the outer protrusions 30. It is fixed to at least one of 52a.

図7は、他方側支持部材53の固定方法の一例を示す図である。
図7(a)に示すように、各磁極ユニット30の第1外ブロック41及び第2外ブロック42における、回転方向及び半径方向の中央部に軸方向の貫通孔45を形成するとともに、他方側支持部材53に雌ねじ531を形成する。そして、貫通孔45に通したボルト55の雄ねじを、他方側支持部材53に形成された雌ねじ531に締め付けることで、磁極ユニット30と支持部材50とを固定する。
なお、他方側支持部材53に雌ねじ531を形成する代わりに貫通孔を形成し、磁極ユニット30に形成された貫通孔45と他方側支持部材53に形成された貫通孔とに通したボルト55を、他方側支持部材53における他方側の面に配置されたナットに締め付けても良い。
FIG. 7 is a diagram showing an example of a method of fixing the other side support member 53.
As shown in FIG. 7A, in the first outer block 41 and the second outer block 42 of each magnetic pole unit 30, an axial through hole 45 is formed in the central portion in the rotational direction and the radial direction, and the other side thereof. A female screw 531 is formed on the support member 53. Then, the male screw of the bolt 55 passed through the through hole 45 is tightened to the female screw 531 formed on the other side support member 53 to fix the magnetic pole unit 30 and the support member 50.
Instead of forming a female screw 531 on the other side support member 53, a through hole is formed, and a bolt 55 is passed through the through hole 45 formed on the magnetic pole unit 30 and the through hole formed on the other side support member 53. , May be tightened to a nut arranged on the other side surface of the other side support member 53.

あるいは、図7(b)に示すように、他方側支持部材53における外側支持部材52と対向する部位に、複数(例えば磁極ユニット30の数と同数)の貫通孔532を等間隔に形成するとともに、外側支持部材52に雌ねじ(不図示)を形成する。そして、貫通孔532に通したボルト56の雄ねじを、外側支持部材52に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。 Alternatively, as shown in FIG. 7B, a plurality of through holes 532 (for example, the same number as the number of magnetic pole units 30) are formed at equal intervals in a portion of the other side support member 53 facing the outer support member 52. , A female screw (not shown) is formed on the outer support member 52. Then, the magnetic pole unit 30 and the support member 50 may be fixed by tightening the male screw of the bolt 56 passed through the through hole 532 to the female screw formed on the outer support member 52.

また、図示はしていないが、他方側支持部材53における内側支持部材51と対向する部位に、複数(例えば磁極ユニット30の数と同数)の貫通孔(不図示)を等間隔に形成するとともに、内側支持部材51に雌ねじ(不図示)を形成する。そして、他方側支持部材53の貫通孔に通したボルト(不図示)の雄ねじを、内側支持部材51に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。 Further, although not shown, a plurality of through holes (not shown) are formed at equal intervals in a portion of the other side support member 53 facing the inner support member 51 (for example, the same number as the number of magnetic pole units 30). , A female screw (not shown) is formed on the inner support member 51. Then, the magnetic pole unit 30 and the support member 50 may be fixed by tightening a male screw (not shown) of a bolt (not shown) passed through a through hole of the other side support member 53 to a female screw formed on the inner support member 51. ..

あるいは、図7(c)に示すように、図7(a)に示した固定方法と図7(b)に示した固定方法とを組み合わせても良い。
なお、他方側支持部材53を固定するのは、特にボルト55やボルト56による締め付けに限定されない。例えば、他方側支持部材53と、外側支持部材52、内側支持部材51、第2外ブロック42、第2内ブロック32とを、溶接や接着にて固定しても良い。
Alternatively, as shown in FIG. 7 (c), the fixing method shown in FIG. 7 (a) and the fixing method shown in FIG. 7 (b) may be combined.
It should be noted that fixing the other side support member 53 is not particularly limited to tightening with bolts 55 or 56. For example, the other side support member 53 and the outer support member 52, the inner support member 51, the second outer block 42, and the second inner block 32 may be fixed by welding or adhesion.

図8は、磁極ユニット30と支持部材50との半径方向の固定方法の一例を示す図である。
図8(a)に示すように、外側支持部材52における、各第1外ブロック41の鉄心411と対向する部位に、貫通孔(不図示)を形成するとともに、鉄心411に雌ねじ(不図示)を形成する。そして、外側支持部材52に形成された貫通孔に通したボルト57の雄ねじを、鉄心411に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。
なお、第1外ブロック41の鉄心411の代わりに、第2外ブロック42の鉄心421にボルト57を締め付けても良いし、第1外ブロック41の鉄心411に加えて、第2外ブロック42の鉄心421にボルト57を締め付けても良い。
FIG. 8 is a diagram showing an example of a method of fixing the magnetic pole unit 30 and the support member 50 in the radial direction.
As shown in FIG. 8A, a through hole (not shown) is formed in a portion of the outer support member 52 facing the iron core 411 of each first outer block 41, and a female screw (not shown) is formed in the iron core 411. To form. Then, the magnetic pole unit 30 and the support member 50 may be fixed by tightening the male screw of the bolt 57 passed through the through hole formed in the outer support member 52 to the female screw formed in the iron core 411.
Instead of the iron core 411 of the first outer block 41, bolts 57 may be tightened to the iron core 421 of the second outer block 42, and in addition to the iron core 411 of the first outer block 41, the second outer block 42 Bolts 57 may be tightened to the iron core 421.

あるいは、図8(b)に示すように、内側支持部材51における、各第1内ブロック31の鉄心311と対向する部位に、貫通孔(不図示)を形成するとともに、鉄心311に雌ねじ(不図示)を形成する。そして、内側支持部材51に形成された貫通孔に通したボルト58の雄ねじを、鉄心311に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。
なお、第1内ブロック31の鉄心311の代わりに、第2内ブロック32の鉄心321にボルト58を締め付けても良いし、第1内ブロック31の鉄心311に加えて、第2内ブロック32の鉄心321にボルト58を締め付けても良い。
Alternatively, as shown in FIG. 8B, a through hole (not shown) is formed in a portion of the inner support member 51 facing the iron core 311 of each first inner block 31, and a female screw (not shown) is formed in the iron core 311. (Illustrated) is formed. Then, the magnetic pole unit 30 and the support member 50 may be fixed by tightening the male screw of the bolt 58 passed through the through hole formed in the inner support member 51 to the female screw formed in the iron core 311.
Instead of the iron core 311 of the first inner block 31, bolts 58 may be tightened to the iron core 321 of the second inner block 32, and in addition to the iron core 311 of the first inner block 31, the second inner block 32 Bolts 58 may be tightened to the iron core 321.

あるいは、図8(c)に示すように、外側支持部材52における、各第1外ブロック41の鉄心411と鉄心411との間に配置された永久磁石412に対向する部位に、貫通孔(不図示)を形成するとともに、永久磁石412に雌ねじ(不図示)を形成する。そして、外側支持部材52に形成された貫通孔に通したボルト57の雄ねじを、永久磁石412に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。
なお、第1外ブロック41の鉄心411と鉄心411との間に配置された永久磁石412の代わりに、第2外ブロック42の鉄心421と鉄心421との間に配置された永久磁石422にボルト57を締め付けても良いし、鉄心411と鉄心411との間に配置された永久磁石412に加えて、第2外ブロック42の鉄心421と鉄心421との間に配置された永久磁石422にボルト57を締め付けても良い。
Alternatively, as shown in FIG. 8C, a through hole (non-perforated) is formed in the outer support member 52 at a portion of the outer support member 52 facing the permanent magnet 412 arranged between the iron core 411 and the iron core 411 of each first outer block 41. A female screw (not shown) is formed on the permanent magnet 412 while forming (not shown). Then, the magnetic pole unit 30 and the support member 50 may be fixed by tightening the male screw of the bolt 57 passed through the through hole formed in the outer support member 52 to the female screw formed in the permanent magnet 412.
Instead of the permanent magnet 412 arranged between the iron core 411 and the iron core 411 of the first outer block 41, a bolt is attached to the permanent magnet 422 arranged between the iron core 421 and the iron core 421 of the second outer block 42. 57 may be tightened, and in addition to the permanent magnet 412 arranged between the iron core 411 and the iron core 411, a bolt is attached to the permanent magnet 422 arranged between the iron core 421 and the iron core 421 of the second outer block 42. 57 may be tightened.

あるいは、図8(a)を用いて説明した態様に代えて、鉄心411に雌ねじを形成する代わりに外周面から凹んだ凹部(不図示)を形成するとともに、図8(d)に示すように、外側支持部材52に形成された貫通孔と鉄心411に形成された凹部とに円柱状のピン59を嵌め込むことで、磁極ユニット30と支持部材50とを固定しても良い。
なお、第1外ブロック41の鉄心411の代わりに、第2外ブロック42の鉄心421にピン59を嵌め込んでも良いし、第1外ブロック41の鉄心411に加えて、第2外ブロック42の鉄心421にもピン59を嵌め込んでも良い。
Alternatively, instead of forming the female thread on the iron core 411, a recess (not shown) recessed from the outer peripheral surface is formed instead of the embodiment described with reference to FIG. 8 (a), and as shown in FIG. 8 (d). The magnetic pole unit 30 and the support member 50 may be fixed by fitting a columnar pin 59 into the through hole formed in the outer support member 52 and the recess formed in the iron core 411.
Instead of the iron core 411 of the first outer block 41, the pin 59 may be fitted into the iron core 421 of the second outer block 42, or in addition to the iron core 411 of the first outer block 41, the second outer block 42 may be fitted. The pin 59 may also be fitted into the iron core 421.

図8(a)~図8(d)を用いて説明した態様は適宜組み合わせても良い。例えば、図8(e)に示すように、外側支持部材52に形成された貫通孔に通したボルト57の雄ねじを、鉄心411に形成された雌ねじに締め付けるとともに、内側支持部材51に形成された貫通孔に通したボルト58の雄ねじを、鉄心311に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。
あるいは、図8(f)に示すように、図8(e)に示した態様に加えて、さらに、外側支持部材52に形成された貫通孔に通したボルト57の雄ねじを、永久磁石412に形成された雌ねじに締め付けることで、磁極ユニット30と支持部材50とを固定しても良い。
The embodiments described with reference to FIGS. 8 (a) to 8 (d) may be appropriately combined. For example, as shown in FIG. 8 (e), the male screw of the bolt 57 passed through the through hole formed in the outer support member 52 is tightened to the female screw formed in the iron core 411, and is formed in the inner support member 51. The magnetic pole unit 30 and the support member 50 may be fixed by tightening the male screw of the bolt 58 passed through the through hole to the female screw formed on the iron core 311.
Alternatively, as shown in FIG. 8 (f), in addition to the embodiment shown in FIG. 8 (e), the male screw of the bolt 57 passed through the through hole formed in the outer support member 52 is further attached to the permanent magnet 412. The magnetic pole unit 30 and the support member 50 may be fixed by tightening to the formed female screw.

なお、内側支持部材51及び外側支持部材52と、磁極ユニット30とを固定するのは、特に、ボルト57やボルト58による締め付け、ピン59の嵌め込みに限定されない。例えば、内側支持部材51及び外側支持部材52と、磁極ユニット30とを、溶接や接着にて固定しても良い。 The fixing of the inner support member 51 and the outer support member 52 and the magnetic pole unit 30 is not particularly limited to tightening with bolts 57 and 58 and fitting of pins 59. For example, the inner support member 51, the outer support member 52, and the magnetic pole unit 30 may be fixed by welding or adhesion.

以上説明したように、磁極子20は、第1鉄心の一例としての鉄心311と、第2鉄心の一例としての鉄心321と、第1極の一例としてのS極が鉄心311の方を向くとともに第2極の一例としてのN極が鉄心321の方を向くように配置された永久磁石(例えば、永久磁石312,322)と、を備える。また、磁極子20は、鉄心311及び鉄心321における、電機子10と対向しない面及び永久磁石(例えば、永久磁石312,322)と対向しない面の少なくとも一つの面を覆うとともに、鉄心311、鉄心321及び永久磁石(例えば、永久磁石312,322)を支持する、非磁性材料にて成形された支持部材50を備える。例えば、内側支持部材51は、鉄心311及び鉄心321の内周面を覆うとともに、鉄心311及び鉄心321が内側に移動することを抑制する。また、他方側支持部材53は、電機子10と対向しない、鉄心321における軸方向の他方側の面を覆うとともに、内側支持部材51の内側突出部51aと他方側支持部材53とで、鉄心311、鉄心321及び永久磁石(例えば、永久磁石312,322)が軸方向に移動することを抑制する。 As described above, in the magnetic pole element 20, the iron core 311 as an example of the first iron core, the iron core 321 as an example of the second iron core, and the S pole as an example of the first pole face toward the iron core 311. As an example of the second pole, a permanent magnet (for example, permanent magnets 312 and 322) arranged so that the N pole faces the iron core 321 is provided. Further, the magnetic pole element 20 covers at least one surface of the iron core 311 and the iron core 321 that does not face the armature 10 and the surface that does not face the permanent magnet (for example, the permanent magnets 312 and 322), and also covers the iron core 311 and the iron core 321. It comprises a support member 50 molded from a non-magnetic material that supports 321 and a permanent magnet (eg, permanent magnets 312, 322). For example, the inner support member 51 covers the inner peripheral surfaces of the iron core 311 and the iron core 321 and suppresses the movement of the iron core 311 and the iron core 321 inward. Further, the other side support member 53 covers the other side surface in the axial direction of the iron core 321 that does not face the armature 10, and the inner protrusion 51a of the inner support member 51 and the other side support member 53 form the iron core 311. , The iron core 321 and the permanent magnet (for example, the permanent magnets 312 and 322) are suppressed from moving in the axial direction.

また、磁極子20は、第1鉄心の一例としての鉄心411と、第2鉄心の一例としての鉄心421と、永久磁石(例えば、永久磁石412,422)と、を備える。また、磁極子20は、鉄心411及び鉄心421における、電機子10と対向しない面及び永久磁石(例えば、永久磁石412,422)と対向しない面の少なくとも一つの面を覆うとともに、鉄心411、鉄心421及び永久磁石(例えば、永久磁石412,422)を支持する、非磁性材料にて成形された支持部材50を備える。例えば、外側支持部材52は、鉄心411及び鉄心421の内周面を覆うとともに、鉄心411及び鉄心421が外側に移動することを抑制する。また、他方側支持部材53は、電機子10と対向しない、鉄心421における軸方向の他方側の面を覆うとともに、外側支持部材52の外側突出部52aと他方側支持部材53とで、鉄心411、鉄心421及び永久磁石(例えば、永久磁石412,422)が軸方向に移動することを抑制する。 Further, the magnetic pole element 20 includes an iron core 411 as an example of the first iron core, an iron core 421 as an example of the second iron core, and a permanent magnet (for example, a permanent magnet 421, 422). Further, the magnetic pole element 20 covers at least one surface of the iron core 411 and the iron core 421 that does not face the armature 10 and the surface that does not face the permanent magnet (for example, the permanent magnets 421 and 422), and also covers the iron core 411 and the iron core 421. Includes a support member 50 molded from a non-magnetic material that supports the 421 and permanent magnets (eg, permanent magnets 421 and 422). For example, the outer support member 52 covers the inner peripheral surfaces of the iron core 411 and the iron core 421, and suppresses the iron core 411 and the iron core 421 from moving to the outside. Further, the other side support member 53 covers the other side surface in the axial direction of the iron core 421 that does not face the armature 10, and the outer protrusion 52a of the outer support member 52 and the other side support member 53 form the iron core 411. , The iron core 421 and the permanent magnets (eg, permanent magnets 421 and 422) are prevented from moving in the axial direction.

このように、支持部材50が、鉄心311,321,411,421における、出力に寄与しない磁束が漏れる面を覆う。これにより、当該面に、磁性体が近接するもしくは接触することを抑制することができる。その結果、鉄心311,321,411,421から出力に寄与しない磁束が漏れ、出力に寄与する磁束、言い換えれば、電機子10の方へ向かう磁束が低下することを抑制することができる。従って、磁極子20によれば、電動機1の磁気効率を向上させることができる。 In this way, the support member 50 covers the surface of the iron core 311, 321, 411, 421 where the magnetic flux that does not contribute to the output leaks. As a result, it is possible to prevent the magnetic material from coming into close contact with or coming into contact with the surface. As a result, it is possible to suppress the leakage of the magnetic flux that does not contribute to the output from the iron cores 311, 321 and 411, 421, and the decrease of the magnetic flux that contributes to the output, that is, the magnetic flux toward the armature 10. Therefore, according to the magnetic monopole 20, the magnetic efficiency of the electric motor 1 can be improved.

<第2の実施形態>
図9は、第2の実施形態に係る電動機2の概略構成の一例を示す図である。
図10は、磁極ユニット70の構成の一例を示す斜視図である。
電動機2は、磁界を発生させる2つの電機子10と、回転軸5を有する回転子である磁極子60とを備えた、ダブルステータ構造のアキシャルギャップ形の電動機である。以下、第1の実施形態と異なる点について説明する。第1の実施形態と第2の実施形態とで、同じものについては同じ符号を用い、その詳細な説明は省略する。
2つの電機子10は、軸方向に直交する面に対して対称となるように配置されている。
<Second embodiment>
FIG. 9 is a diagram showing an example of a schematic configuration of the motor 2 according to the second embodiment.
FIG. 10 is a perspective view showing an example of the configuration of the magnetic pole unit 70.
The electric motor 2 is an axial gap type electric motor having a double stator structure, which includes two armatures 10 for generating a magnetic field and a magnetic pole element 60 which is a rotor having a rotating shaft 5. Hereinafter, the points different from the first embodiment will be described. In the first embodiment and the second embodiment, the same reference numerals are used for the same ones, and detailed description thereof will be omitted.
The two armatures 10 are arranged so as to be symmetrical with respect to planes orthogonal to the axial direction.

磁極子60は、回転方向に複数個(本実施形態においては10個)、並べられた磁極ユニット70を有している。
磁極ユニット70は、鉄心311に相当する鉄心71と、鉄心321に相当する鉄心72と、鉄心411に相当する鉄心73と、鉄心421に相当する鉄心74とを有している。また、磁極ユニット70は、鉄心71と鉄心72との間に配置された永久磁石であるZ内磁石81と、鉄心73と鉄心74との間に配置された永久磁石であるZ外磁石82とを有している。また、磁極ユニット70は、鉄心71と鉄心73との間に配置された永久磁石であるR第1磁石83と、鉄心72と鉄心74との間に配置された永久磁石であるR第2磁石84とを有している。また、磁極ユニット70は、鉄心71と、隣り合う磁極ユニット70の鉄心71との間に配置された永久磁石であるθ第1内磁石85と、鉄心72と、隣り合う磁極ユニット70の鉄心72との間に配置された永久磁石であるθ第2内磁石86とを有している。また、磁極ユニット70は、鉄心73と、隣り合う磁極ユニット70の鉄心73との間に配置された永久磁石であるθ第1外磁石87と、鉄心74と、隣り合う磁極ユニット70の鉄心74との間に配置された永久磁石であるθ第2外磁石88とを有している。
The magnetic poles 60 have a plurality of (10 in this embodiment) magnetic pole units 70 arranged in the rotation direction.
The magnetic pole unit 70 has an iron core 71 corresponding to the iron core 311, an iron core 72 corresponding to the iron core 321 and an iron core 73 corresponding to the iron core 411, and an iron core 74 corresponding to the iron core 421. Further, the magnetic pole unit 70 includes a Z inner magnet 81 which is a permanent magnet arranged between the iron core 71 and the iron core 72, and a Z outer magnet 82 which is a permanent magnet arranged between the iron core 73 and the iron core 74. have. Further, the magnetic pole unit 70 includes an R first magnet 83, which is a permanent magnet arranged between the iron core 71 and the iron core 73, and an R second magnet, which is a permanent magnet arranged between the iron core 72 and the iron core 74. It has 84 and. Further, the magnetic pole unit 70 includes a θ first inner magnet 85, which is a permanent magnet arranged between the iron core 71 and the iron cores 71 of the adjacent magnetic pole units 70, the iron core 72, and the iron core 72 of the adjacent magnetic pole units 70. It has a θ second inner magnet 86 which is a permanent magnet arranged between and. Further, the magnetic pole unit 70 includes a θ first outer magnet 87, which is a permanent magnet arranged between the iron core 73 and the iron cores 73 of the adjacent magnetic pole units 70, the iron core 74, and the iron core 74 of the adjacent magnetic pole units 70. It has a θ second outer magnet 88 which is a permanent magnet arranged between and.

Z内磁石81は、第1の実施形態に係る鉄心311と鉄心321との間に配置された、永久磁石312と永久磁石322とを一体にした永久磁石に相当する。Z外磁石82は、第1の実施形態に係る鉄心411と鉄心421との間に配置された、永久磁石412と永久磁石422とを一体にした永久磁石に相当する。R第1磁石83は、第1の実施形態に係る鉄心311と鉄心411との間に配置された、永久磁石312と永久磁石412とを一体にした永久磁石に相当する。R第2磁石84は、第1の実施形態に係る鉄心321と鉄心421との間に配置された、永久磁石322と永久磁石422とを一体にした永久磁石に相当する。 The Z-inner magnet 81 corresponds to a permanent magnet in which a permanent magnet 312 and a permanent magnet 322 are arranged between the iron core 311 and the iron core 321 according to the first embodiment. The Z outer magnet 82 corresponds to a permanent magnet in which a permanent magnet 412 and a permanent magnet 422 are integrated, which is arranged between the iron core 411 and the iron core 421 according to the first embodiment. The R first magnet 83 corresponds to a permanent magnet in which a permanent magnet 312 and a permanent magnet 412 are integrated, which is arranged between the iron core 311 and the iron core 411 according to the first embodiment. The R second magnet 84 corresponds to a permanent magnet in which a permanent magnet 322 and a permanent magnet 422 are integrated, which is arranged between the iron core 321 and the iron core 421 according to the first embodiment.

θ第1内磁石85は、第1の実施形態に係る隣り合う鉄心311間に配置された、2つの永久磁石312を一体にした永久磁石に相当する。θ第2内磁石86は、第1の実施形態に係る隣り合う鉄心321間に配置された、2つの永久磁石322を一体にした永久磁石に相当する。θ第1外磁石87は、第1の実施形態に係る隣り合う鉄心411間に配置された、2つの永久磁石412を一体にした永久磁石に相当する。θ第2外磁石88は、第1の実施形態に係る隣り合う鉄心421間に配置された、2つの永久磁石422を一体にした永久磁石に相当する。 The θ1 first inner magnet 85 corresponds to a permanent magnet in which two permanent magnets 312 are integrated, which are arranged between adjacent iron cores 311 according to the first embodiment. The θ second inner magnet 86 corresponds to a permanent magnet in which two permanent magnets 322 are integrated, which are arranged between adjacent iron cores 321 according to the first embodiment. The θ first outer magnet 87 corresponds to a permanent magnet in which two permanent magnets 412 are integrated, which are arranged between adjacent iron cores 411 according to the first embodiment. The θ second outer magnet 88 corresponds to a permanent magnet in which two permanent magnets 422 are integrated, which are arranged between adjacent iron cores 421 according to the first embodiment.

鉄心71と鉄心72とは、軸方向に直交な面に対して対称形状である。鉄心71における一方側の内部には、回転方向の全域に亘って一方側の面から凹んだ凹部711が形成され、鉄心72における他方側の内部には、回転方向の全域に亘って他方側の面から凹んだ凹部721が形成されている。鉄心71における他方側の内部には、回転方向の中央部に他方側の面から凹んだ凹部(不図示)が形成され、鉄心72における一方側の内部には、回転方向の中央部に一方側の面から凹んだ凹部722が形成されている。 The iron core 71 and the iron core 72 have a symmetrical shape with respect to a plane orthogonal to the axial direction. A recess 711 recessed from one side surface over the entire rotation direction is formed inside the iron core 71 on one side, and a recess 711 on the other side of the iron core 72 is formed on the other side over the entire rotation direction. A recess 721 recessed from the surface is formed. Inside the other side of the iron core 71, a recess (not shown) recessed from the other side surface is formed in the central portion in the rotation direction, and inside the one side of the iron core 72, one side is formed in the central portion in the rotation direction. A recess 722 recessed from the surface of the surface is formed.

鉄心73と鉄心74とは、軸方向に直交な面に対して対称形状である。鉄心73における一方側の外部には、回転方向の全域に亘って一方側の面から凹んだ凹部731が形成され、鉄心74における他方側の外部には、回転方向の全域に亘って他方側の面から凹んだ凹部741が形成されている。鉄心73における他方側の外部には、回転方向の中央部に他方側の面から凹んだ凹部732が形成され、鉄心74における一方側の外部には、回転方向の中央部に一方側の面から凹んだ凹部742が形成されている。
鉄心71~74における電機子10と対向するように開放された一面は回転子磁極75となる。回転子磁極75は、各永久磁石が鉄心71~74を向く主面の磁極と同一磁極となる。
The iron core 73 and the iron core 74 have a symmetrical shape with respect to a plane orthogonal to the axial direction. A recess 731 recessed from one side surface over the entire rotation direction is formed on the outside of one side of the iron core 73, and the other side is formed on the outside of the other side of the iron core 74 over the entire rotation direction. A recess 741 recessed from the surface is formed. On the outside of the other side of the iron core 73, a recess 732 recessed from the other side surface is formed in the central portion in the rotation direction, and on the outside of one side of the iron core 74, the central portion in the rotation direction is formed from one side surface. A recessed recess 742 is formed.
One surface of the iron cores 71 to 74 that is open so as to face the armature 10 is a rotor magnetic pole 75. The rotor magnetic pole 75 has the same magnetic pole as the magnetic pole on the main surface where each permanent magnet faces the iron cores 71 to 74.

Z内磁石81の内周面の径は、鉄心71の内周面の径と同じであり、Z内磁石81の外周面の径は、鉄心71の外周面の径と同じである。Z内磁石81の回転方向の大きさは、鉄心71の回転方向の大きさよりも大きい。
Z外磁石82の内周面の径は、鉄心73の内周面の径と同じであり、Z外磁石82の外周面の径は、鉄心73の外周面の径と同じである。Z外磁石82の回転方向の大きさは、鉄心73の回転方向の大きさよりも大きい。
The diameter of the inner peripheral surface of the Z inner magnet 81 is the same as the diameter of the inner peripheral surface of the iron core 71, and the diameter of the outer peripheral surface of the Z inner magnet 81 is the same as the diameter of the outer peripheral surface of the iron core 71. The size of the magnet 81 in the Z in the rotation direction is larger than the size of the iron core 71 in the rotation direction.
The diameter of the inner peripheral surface of the Z outer magnet 82 is the same as the diameter of the inner peripheral surface of the iron core 73, and the diameter of the outer peripheral surface of the Z outer magnet 82 is the same as the diameter of the outer peripheral surface of the iron core 73. The size of the Z outer magnet 82 in the rotation direction is larger than the size of the iron core 73 in the rotation direction.

R第1磁石83の内周面の径は、鉄心71の外周面の径と同じであり、R第1磁石83の内周面の回転方向の大きさは、鉄心71の外周面の回転方向の大きさと同じである。また、R第1磁石83の内周面の軸方向の大きさは、鉄心71の外周面の軸方向の大きさと同じである。また、R第1磁石83の外周面の径は、鉄心73の内周面の径と同じであり、R第1磁石83の外周面の回転方向の大きさは、鉄心73の内周面の回転方向の大きさと同じである。また、R第1磁石83の外周面の軸方向の大きさは、鉄心73の内周面の軸方向の大きさと同じである。そして、R第1磁石83における軸方向の両端面は、同じ形状である。R第1磁石83には、回転方向の両端面それぞれから回転方向に突出した凸部831が設けられている。 The diameter of the inner peripheral surface of the R first magnet 83 is the same as the diameter of the outer peripheral surface of the iron core 71, and the magnitude of the rotation direction of the inner peripheral surface of the R first magnet 83 is the rotation direction of the outer peripheral surface of the iron core 71. Is the same size as. Further, the axial size of the inner peripheral surface of the R first magnet 83 is the same as the axial size of the outer peripheral surface of the iron core 71. Further, the diameter of the outer peripheral surface of the R first magnet 83 is the same as the diameter of the inner peripheral surface of the iron core 73, and the size of the outer peripheral surface of the R first magnet 83 in the rotation direction is the inner peripheral surface of the iron core 73. It is the same as the size in the rotation direction. Further, the axial size of the outer peripheral surface of the R first magnet 83 is the same as the axial size of the inner peripheral surface of the iron core 73. The both end faces in the axial direction of the R first magnet 83 have the same shape. The R first magnet 83 is provided with convex portions 831 protruding in the rotational direction from both end faces in the rotational direction.

R第2磁石84の形状は、R第1磁石83の形状と同様であり、その詳細な説明は省略する。
R第1磁石83とR第2磁石84とは、R第1磁石83の軸方向の他方側の端面と、R第2磁石84の軸方向の一方側の端面とが接触するように配置される。これにより、R第1磁石83の軸方向の一方側の端面は、鉄心71の軸方向の一方側の端面よりも、他方側に位置する。また、R第2磁石84の軸方向の他方側の端面は、鉄心71の軸方向の他方側の端面よりも、一方側に位置する。
The shape of the R second magnet 84 is the same as the shape of the R first magnet 83, and detailed description thereof will be omitted.
The R first magnet 83 and the R second magnet 84 are arranged so that the end face on the other side in the axial direction of the R first magnet 83 and the end face on the one side in the axial direction of the R second magnet 84 come into contact with each other. Magnet. As a result, the end face on one side in the axial direction of the R first magnet 83 is located on the other side of the end face on one side in the axial direction of the iron core 71. Further, the end face on the other side in the axial direction of the R second magnet 84 is located on one side of the end face on the other side in the axial direction of the iron core 71.

θ第1内磁石85は、略直線状であり、半径方向の大きさは、鉄心71における半径方向の大きさよりも大きい。θ第1内磁石85における外側の端部には、回転方向の両端面それぞれから回転方向に突出した凸部851が設けられている。θ第1内磁石85の軸方向の大きさは、鉄心71の軸方向の大きさよりも小さい。θ第1内磁石85の回転方向の大きさは、鉄心71の回転方向の大きさよりも小さい。
θ第2内磁石86の形状は、θ第1内磁石85の形状と同様であり、その詳細な説明は省略する。
The θ first inner magnet 85 has a substantially linear shape, and the size in the radial direction is larger than the size in the radial direction in the iron core 71. At the outer end of the θ1 first inner magnet 85, convex portions 851 protruding in the rotational direction from both end faces in the rotational direction are provided. The axial size of the θ first inner magnet 85 is smaller than the axial size of the iron core 71. The size of the θ1 first inner magnet 85 in the rotation direction is smaller than the size of the iron core 71 in the rotation direction.
The shape of the θ second inner magnet 86 is the same as the shape of the θ first inner magnet 85, and detailed description thereof will be omitted.

θ第1外磁石87は、略直線状であり、半径方向の大きさは、鉄心73における半径方向の大きさよりも大きい。θ第1外磁石87における内側の端部には、回転方向の両端面それぞれから回転方向に突出した凸部871が設けられている。θ第1外磁石87の軸方向の大きさは、鉄心73の軸方向の大きさよりも小さい。θ第1外磁石87の回転方向の大きさは、鉄心73の回転方向の大きさよりも小さい。
θ第2外磁石88の形状は、θ第1外磁石87の形状と同様であり、その詳細な説明は省略する。
The θ first outer magnet 87 has a substantially linear shape, and its radial size is larger than the radial size of the iron core 73. At the inner end of the θ1 first outer magnet 87, convex portions 871 protruding in the rotational direction from both end faces in the rotational direction are provided. The axial size of the θ first outer magnet 87 is smaller than the axial size of the iron core 73. The size of the θ first outer magnet 87 in the rotation direction is smaller than the size of the iron core 73 in the rotation direction.
The shape of the θ second outer magnet 88 is the same as the shape of the θ first outer magnet 87, and detailed description thereof will be omitted.

(支持構造)
また、磁極子60は、複数の磁極ユニット70を支持する支持部材100を備えている。また、磁極子60は、θ第1内磁石85及びθ第2内磁石86と、θ第1外磁石87及びθ第2外磁石88との間、隣り合う磁極ユニット70のR第1磁石83及びR第2磁石84間の隙間に配置される直方体状の中間支持部材151を備えている。また、磁極子60は、R第1磁石83、θ第1内磁石85及びθ第1外磁石87における、軸方向の一方側に配置されて、これらの磁石が軸方向の一方側に移動するのを抑制する第1Rθ磁石抑え部材152を備えている。また、磁極子60は、R第2磁石84、θ第2内磁石86及びθ第2外磁石88における、軸方向の他方側に配置されて、これらの磁石が軸方向の他方側に移動するのを抑制する第2Rθ磁石抑え部材153を備えている。また、磁極子60は、鉄心71の凹部711に配置されて、鉄心71が軸方向の一方側に移動するのを抑制する第1内鉄心抑え部材154と、鉄心72の凹部721に配置されて、鉄心72が軸方向の他方側に移動するのを抑制する第2内鉄心抑え部材155とを備えている。また、磁極子60は、鉄心73の凹部731に配置されて、鉄心73が軸方向の一方側に移動するのを抑制する第1外鉄心抑え部材156と、鉄心74の凹部741に配置されて、鉄心74が軸方向の他方側に移動するのを抑制する第2外鉄心抑え部材157とを備えている。
(Support structure)
Further, the magnetic monopole 60 includes a support member 100 that supports a plurality of magnetic pole units 70. Further, the magnetic pole element 60 is the R first magnet 83 of the magnetic pole unit 70 adjacent to each other between the θ 1st inner magnet 85 and the θ 2nd inner magnet 86 and the θ 1st outer magnet 87 and the θ 2nd outer magnet 88. And a rectangular parallelepiped intermediate support member 151 arranged in the gap between the R second magnets 84 is provided. Further, the magnetic monopole 60 is arranged on one side in the axial direction of the R first magnet 83, the θ first inner magnet 85, and the θ first outer magnet 87, and these magnets move to one side in the axial direction. The first Rθ magnet holding member 152 is provided. Further, the magnetic monopole 60 is arranged on the other side in the axial direction of the R second magnet 84, the θ second inner magnet 86, and the θ second outer magnet 88, and these magnets move to the other side in the axial direction. The second Rθ magnet holding member 153 is provided. Further, the magnetic monopole 60 is arranged in the recess 711 of the iron core 71, and is arranged in the first inner core restraining member 154 that suppresses the movement of the iron core 71 to one side in the axial direction, and in the recess 721 of the iron core 72. The second inner core holding member 155 that suppresses the movement of the iron core 72 to the other side in the axial direction is provided. Further, the magnetic monopole 60 is arranged in the recess 731 of the iron core 73, and is arranged in the first outer core restraining member 156 that suppresses the movement of the iron core 73 to one side in the axial direction, and in the recess 741 of the iron core 74. The second outer core holding member 157 that suppresses the movement of the iron core 74 to the other side in the axial direction is provided.

図11は、支持部材100の構成の一例を示す図である。
支持部材100は、半径方向の内側に設けられた内側支持部材110と、半径方向の外側に設けられた外側支持部材120とを備えている。
内側支持部材110は、円筒状の部材であり、外周面から外側に突出する一対の突起群150を磁極ユニット70と同数有している。また、内側支持部材110は、一対の突起群150間であって軸方向の中央部に、外周面から外側に突出した2つの凸部155を、磁極ユニット70と同数有している。内側支持部材110は、回転方向に、複数に分割可能に成形されており、これら複数の部材を組み合わせることにより、円筒状となる。図11には、複数に分割可能な内側支持部材110を、組み合わせた状態を示している。
FIG. 11 is a diagram showing an example of the configuration of the support member 100.
The support member 100 includes an inner support member 110 provided on the inner side in the radial direction and an outer support member 120 provided on the outer side in the radial direction.
The inner support member 110 is a cylindrical member, and has a pair of protrusions 150 protruding outward from the outer peripheral surface in the same number as the magnetic pole unit 70. Further, the inner support member 110 has two convex portions 155 protruding outward from the outer peripheral surface in the central portion in the axial direction between the pair of projection groups 150, in the same number as the magnetic pole unit 70. The inner support member 110 is formed so as to be split into a plurality of members in the rotational direction, and by combining these plurality of members, the inner support member 110 becomes cylindrical. FIG. 11 shows a state in which the inner support members 110 that can be divided into a plurality of pieces are combined.

外側支持部材120は、円筒状の部材であり、内周面から内側に突出する一対の突起群130を磁極ユニット70と同数有している。また、外側支持部材120は、一対の突起群130間であって軸方向の中央部に、内周面から内側に突出した2つの凸部140を、磁極ユニット70と同数有している。外側支持部材120は、回転方向に、複数に分割可能に成形されており、これら複数の部材を組み合わせることにより、円筒状となる。図11には、複数に分割可能な外側支持部材120を、組み合わせた状態を示している。 The outer support member 120 is a cylindrical member, and has a pair of protrusions 130 protruding inward from the inner peripheral surface in the same number as the magnetic pole unit 70. Further, the outer support member 120 has two convex portions 140 protruding inward from the inner peripheral surface in the central portion in the axial direction between the pair of projection groups 130, as many as the magnetic pole unit 70. The outer support member 120 is formed so as to be split into a plurality of members in the rotational direction, and by combining these plurality of members, the outer support member 120 becomes cylindrical. FIG. 11 shows a state in which the outer support members 120 that can be divided into a plurality of pieces are combined.

一対の突起群130と、一対の突起群150とは同様であるので、一対の突起群130について代表して説明する。
一対の突起群130は、回転軸5の中心から見た場合に左側に位置する左側突起群131と、右側に位置する右側突起群132とを備えている。
左側突起群131は、軸方向の一方側から他方側へ並んだ4つの直方体状の突起である、第1左側突起131a、第2左側突起131b、第3左側突起131c、第4左側突起131dを有している。
右側突起群132は、軸方向の一方側から他方側へ並んだ4つの直方体状の突起である、第1右側突起132a、第2右側突起132b、第3右側突起132c、第4右側突起132dを有している。
Since the pair of protrusions 130 and the pair of protrusions 150 are the same, the pair of protrusions 130 will be described as a representative.
The pair of protrusions 130 includes a left side protrusion group 131 located on the left side when viewed from the center of the rotation shaft 5, and a right side protrusion group 132 located on the right side.
The left side protrusion group 131 includes four rectangular parallelepiped protrusions arranged from one side to the other in the axial direction, that is, the first left side protrusion 131a, the second left side protrusion 131b, the third left side protrusion 131c, and the fourth left side protrusion 131d. Have.
The right side protrusion group 132 includes four rectangular parallelepiped protrusions arranged from one side to the other side in the axial direction, that is, a first right side protrusion 132a, a second right side protrusion 132b, a third right side protrusion 132c, and a fourth right side protrusion 132d. Have.

例えば、第2左側突起131bと第2右側突起132bとの間の間隔は、鉄心73の回転方向の大きさと同じであり、Z外磁石82の回転方向の大きさよりも小さい。第2左側突起131b及び第2右側突起132bと、第3左側突起131c及び第3右側突起132cとの間の軸方向の大きさは、Z外磁石82の軸方向の大きさと同じである。そして、Z外磁石82は、第2左側突起131b及び第2右側突起132bと、第3左側突起131c及び第3右側突起132cとの間に嵌め込まれ、軸方向の移動が抑制される。鉄心73は、第1左側突起131a及び第2左側突起131bと、第1右側突起132a及び第2右側突起132bとの間であって、Z外磁石82の一方側に配置される。その際、2つの凸部140の一方側の凸部が、鉄心73の凹部731に収容される。鉄心74は、第3左側突起131c及び第4左側突起131dと、第3右側突起132c及び第4右側突起132dとの間であって、Z外磁石82の他方側に配置される。その際、2つの凸部140の他方側の凸部が、鉄心74の凹部741に収容される。 For example, the distance between the second left side protrusion 131b and the second right side protrusion 132b is the same as the size of the iron core 73 in the rotation direction, and smaller than the size of the Z outer magnet 82 in the rotation direction. The axial size between the second left side protrusion 131b and the second right side protrusion 132b and the third left side protrusion 131c and the third right side protrusion 132c is the same as the axial size of the Z outer magnet 82. Then, the Z outer magnet 82 is fitted between the second left side protrusion 131b and the second right side protrusion 132b and the third left side protrusion 131c and the third right side protrusion 132c, and the movement in the axial direction is suppressed. The iron core 73 is located between the first left side protrusion 131a and the second left side protrusion 131b and the first right side protrusion 132a and the second right side protrusion 132b, and is arranged on one side of the Z outer magnet 82. At that time, the convex portion on one side of the two convex portions 140 is housed in the concave portion 731 of the iron core 73. The iron core 74 is located between the third left projection 131c and the fourth left projection 131d and the third right projection 132c and the fourth right projection 132d, and is arranged on the other side of the Z outer magnet 82. At that time, the convex portion on the other side of the two convex portions 140 is accommodated in the concave portion 741 of the iron core 74.

一対の突起群130の第1左側突起131a及び隣り合う一対の突起群130の第1右側突起132aと、当該一対の突起群130の第2左側突起131b及び当該隣り合う一対の突起群130の第2右側突起132bとの間の軸方向の大きさは、θ第1外磁石87の軸方向の大きさと同じである。また、一対の突起群130の第1左側突起131aと、隣り合う一対の突起群130の第1右側突起132aとの間の回転方向の大きさは、θ第1外磁石87の回転方向の大きさよりも小さい。これらより、θ第1外磁石87は、一対の突起群130の第1左側突起131a及び隣り合う一対の突起群130の第1右側突起132aと、当該一対の突起群130の第2左側突起131b及び当該隣り合う一対の突起群130の第2右側突起132bとの間に嵌め込まれ、軸方向の移動が抑制される。そして、θ第1外磁石87に設けられた両凸部871が、例えば、一対の突起群130の第1左側突起131a及び隣り合う一対の突起群130の第1右側突起132aよりも内側に位置する。 The first left side protrusion 131a of the pair of protrusions 130, the first right side protrusion 132a of the pair of adjacent protrusions 130, the second left side protrusion 131b of the pair of protrusions 130, and the second of the pair of adjacent protrusions 130. The axial size between the two right side protrusions 132b is the same as the axial size of the θ first outer magnet 87. Further, the magnitude in the rotation direction between the first left projection 131a of the pair of projections 130 and the first right projection 132a of the pair of adjacent projections 130 is the magnitude in the rotation direction of the θ first outer magnet 87. Smaller than that. From these, the θ first outer magnet 87 includes the first left projection 131a of the pair of projection groups 130, the first right projection 132a of the pair of adjacent projection groups 130, and the second left projection 131b of the pair of projection groups 130. And, it is fitted between the second right side protrusion 132b of the pair of adjacent protrusions 130, and the movement in the axial direction is suppressed. The biconvex portion 871 provided on the θ first outer magnet 87 is located inside, for example, the first left projection 131a of the pair of projection groups 130 and the first right projection 132a of the pair of adjacent projection groups 130. do.

同様に、一対の突起群130の第3左側突起131c及び隣り合う一対の突起群130の第3右側突起132cと、当該一対の突起群130の第4左側突起131d及び当該隣り合う一対の突起群130の第4右側突起132dとの間の軸方向の大きさは、θ第2外磁石88の軸方向の大きさと同じである。また、一対の突起群130の第3左側突起131cと、隣り合う一対の突起群130の第3右側突起132cとの間の回転方向の大きさは、θ第2外磁石88の回転方向の大きさよりも小さい。これらより、θ第2外磁石88は、一対の突起群130の第3左側突起131c及び隣り合う一対の突起群130の第3右側突起132cと、当該一対の突起群130の第4左側突起131d及び当該隣り合う一対の突起群130の第4右側突起132dとの間に嵌め込まれ、軸方向の移動が抑制される。 Similarly, the third left projection 131c of the pair of projections 130 and the third right projection 132c of the pair of adjacent projections 130, the fourth left projection 131d of the pair of projections 130, and the pair of adjacent projections The axial size of the 130 with the fourth right projection 132d is the same as the axial size of the θ second outer magnet 88. Further, the magnitude in the rotation direction between the third left projection 131c of the pair of projections 130 and the third right projection 132c of the pair of adjacent projections 130 is the magnitude in the rotation direction of the θ second outer magnet 88. Smaller than that. From these, the θ second outer magnet 88 includes the third left projection 131c of the pair of projection groups 130, the third right projection 132c of the pair of adjacent projection groups 130, and the fourth left projection 131d of the pair of projection groups 130. And, it is fitted between the fourth right side protrusion 132d of the pair of adjacent protrusions 130, and the movement in the axial direction is suppressed.

上述したように、外側支持部材120が一対の突起群130を有することで、Z外磁石82、θ第1外磁石87及びθ第2外磁石88を保持する。
同様に、内側支持部材110が一対の突起群150を有することで、Z内磁石81、θ第1内磁石85及びθ第2内磁石86を保持する。内側支持部材110が有する一対の突起群150と、Z内磁石81、θ第1内磁石85及びθ第2内磁石86との相対的な大きさは、外側支持部材120の一対の突起群130と、Z外磁石82、θ第1外磁石87及びθ第2外磁石88との相対的な大きさの関係と同様であるので、詳細な説明は省略する。
As described above, the outer support member 120 has the pair of protrusions 130 to hold the Z outer magnet 82, the θ first outer magnet 87, and the θ second outer magnet 88.
Similarly, the inner support member 110 has a pair of protrusions 150 to hold the Z inner magnet 81, the θ first inner magnet 85, and the θ second inner magnet 86. The relative size of the pair of protrusions 150 of the inner support member 110 and the Z inner magnet 81, the θ first inner magnet 85 and the θ second inner magnet 86 is the pair of protrusions 130 of the outer support member 120. And, since it is the same as the relationship of the relative magnitude between the Z outer magnet 82, the θ first outer magnet 87 and the θ second outer magnet 88, detailed description thereof will be omitted.

(組立方法)
図12、図13は、磁極子60の組立方法の一例を示す図である。
先ず、図12(a)に示した、分割された状態の外側支持部材120に対して、先ず、図12(b)に示すように、鉄心73、鉄心74及びZ外磁石82を嵌め込む。
その後、図12(c)に示すように、θ第1外磁石87及びθ第2外磁石88を嵌め込む。
その後、図12(d)に示すように、鉄心73の内側にR第1磁石83を配置し、鉄心74の内側にR第2磁石84を配置する。そして、事前に、分割された状態の内側支持部材110に対して、鉄心71、鉄心72、Z内磁石81、θ第1内磁石85及びθ第2内磁石86を組み込んだ物にて、図13(a)に示すように、R第1磁石83及びR第2磁石84を挟み込む。
(Assembly method)
12 and 13 are views showing an example of a method of assembling the magnetic monopole 60.
First, as shown in FIG. 12 (b), the iron core 73, the iron core 74, and the Z outer magnet 82 are fitted into the outer support member 120 in the divided state shown in FIG. 12 (a).
After that, as shown in FIG. 12 (c), the θ first outer magnet 87 and the θ second outer magnet 88 are fitted.
After that, as shown in FIG. 12D, the R first magnet 83 is arranged inside the iron core 73, and the R second magnet 84 is arranged inside the iron core 74. Then, in the figure, the inner support member 110 in the divided state incorporates the iron core 71, the iron core 72, the Z inner magnet 81, the θ first inner magnet 85, and the θ second inner magnet 86 in advance. As shown in 13 (a), the R first magnet 83 and the R second magnet 84 are sandwiched.

その後、図13(b)に示すように、θ第1外磁石87及びθ第2外磁石88と、θ第1内磁石85及びθ第2内磁石86との間の隙間に、中間支持部材151を、軸方向から挿入する。
その後、図13(c)に示すように、軸方向の両側から、第1Rθ磁石抑え部材152、第2Rθ磁石抑え部材153を中間支持部材151に固定して、R第1磁石83、R第2磁石84、θ第1内磁石85、θ第2内磁石86、θ第1外磁石87及びθ第2外磁石88における軸方向の端面を覆う。第1Rθ磁石抑え部材152、第2Rθ磁石抑え部材153を中間支持部材151に固定する方法は、ボルトやビスなどにてネジ締結する方法、溶接、溶着、接着にて接合する方法、であることを例示することができる。
After that, as shown in FIG. 13B, an intermediate support member is formed in the gap between the θ1 outer magnet 87 and the θ2 outer magnet 88 and the θ1 inner magnet 85 and the θ2 inner magnet 86. 151 is inserted from the axial direction.
After that, as shown in FIG. 13C, the first Rθ magnet holding member 152 and the second Rθ magnet holding member 153 are fixed to the intermediate support member 151 from both sides in the axial direction, and the R first magnet 83 and the R second magnet are fixed. It covers the axial end faces of the magnet 84, the θ first inner magnet 85, the θ second inner magnet 86, the θ first outer magnet 87, and the θ second outer magnet 88. The method of fixing the first Rθ magnet holding member 152 and the second Rθ magnet holding member 153 to the intermediate support member 151 is a method of screwing with bolts or screws, or a method of joining by welding, welding, or adhesion. It can be exemplified.

その後、図13(d)に示すように、鉄心71における凹部711を抑える第1内鉄心抑え部材154を、内側支持部材110に固定する。また、鉄心72における凹部721を抑える第2内鉄心抑え部材155を、内側支持部材110に固定する。また、鉄心73における凹部731を抑える第1外鉄心抑え部材156を、外側支持部材120に固定する。また、鉄心74における凹部741を抑える第2外鉄心抑え部材157を、外側支持部材120に固定する。
第1内鉄心抑え部材154、第2内鉄心抑え部材155を、内側支持部材110に固定する方法、及び、第1外鉄心抑え部材156及び第2外鉄心抑え部材157を、外側支持部材120に固定する方法は、ボルトやビスなどにてネジ締結する方法、溶接、溶着、接着にて接合する方法、であることを例示することができる。
これにより、サブユニット60aが完成する。
After that, as shown in FIG. 13D, the first inner core holding member 154 that holds the recess 711 in the iron core 71 is fixed to the inner support member 110. Further, the second inner core holding member 155 that holds the recess 721 in the iron core 72 is fixed to the inner support member 110. Further, the first outer core holding member 156 that holds the recess 731 in the iron core 73 is fixed to the outer support member 120. Further, the second outer core holding member 157 that holds the recess 741 in the iron core 74 is fixed to the outer support member 120.
A method of fixing the first inner core holding member 154 and the second inner core holding member 155 to the inner support member 110, and the first outer core holding member 156 and the second outer core holding member 157 to the outer support member 120. Examples of the fixing method include a method of screwing with bolts and screws, and a method of joining by welding, welding, and adhesion.
As a result, the subunit 60a is completed.

そして、同様にして組み立てたサブユニット60a同士における、分割状態の内側支持部材110同士及び分割状態の外側支持部材120同士を組み合わせる。その際、一のサブユニット60aと他のサブユニット60aとの間に、内側支持部材110、外側支持部材120に嵌め込んでいない磁極ユニット70を、挟み込む。あるいは、分割状態の内側支持部材110同士及び分割状態の外側支持部材120同士を組み合わせた後に、磁極ユニット70を構成する鉄心71等の各部品を、嵌め込んでも良い。そして、サブユニット60a同士を組み合わせた後、内側支持部材110同士及び外側支持部材120同士を接合して磁極子60を完成させる。内側支持部材110同士及び外側支持部材120同士の接合方法は、溶接、溶着、接着であることを例示することができる。 Then, in the subunits 60a assembled in the same manner, the inner support members 110 in the divided state and the outer support members 120 in the divided state are combined. At that time, the magnetic pole unit 70 that is not fitted in the inner support member 110 and the outer support member 120 is sandwiched between one subunit 60a and the other subunit 60a. Alternatively, after combining the inner support members 110 in the split state and the outer support members 120 in the split state, each component such as the iron core 71 constituting the magnetic pole unit 70 may be fitted. Then, after combining the subunits 60a, the inner support members 110 and the outer support members 120 are joined to complete the magnetic monopole 60. It can be exemplified that the method of joining the inner support members 110 to each other and the outer support members 120 to each other is welding, welding, and adhesion.

すなわち、上記組立方法においては、先ず、分割された状態の外側支持部材120に対して、複数の第1鉄心の一例としての鉄心73と、複数の第2鉄心の一例としての鉄心74と、第1極が鉄心73の方を向くとともに第2極が鉄心74の方を向くように鉄心73と鉄心74との間に第1永久磁石の一例としてのZ外磁石82を嵌め込む。その後、複数の鉄心73の内の隣り合う鉄心73の間に第2永久磁石の一例としてのθ第1外磁石87を嵌め込み、複数の鉄心74の内の隣り合う鉄心74の間に第3永久磁石の一例としてのθ第2外磁石88を嵌め込む。
一方、分割された状態の内側支持部材110に対して、複数の第3鉄心の一例としての鉄心71と、複数の第4鉄心の一例としての鉄心72と、第1極が鉄心71の方を向くとともに第2極が鉄心72の方を向くように鉄心71と鉄心72との間に第4永久磁石の一例としてのZ内磁石81を嵌め込む。その後、複数の鉄心71の内の隣り合う鉄心71の間に第5永久磁石の一例としてのθ第1内磁石85を嵌め込み、複数の鉄心72の内の隣り合う鉄心72の間に第6永久磁石の一例としてのθ第2内磁石86を嵌め込む。
そして、鉄心73と鉄心71との間に第7永久磁石の一例としてのR第1磁石83を配置し、鉄心74と鉄心72との間に第8永久磁石の一例としてのR第2磁石84を配置し、分割された状態の外側支持部材120と分割された状態の内側支持部材110とを組み合わせることでサブユニット60aを構成する。
そして、複数のサブユニット60aにおける、分割された状態の内側支持部材110同士を接合するとともに、分割された状態の外側支持部材120同士を接合する。
That is, in the above assembly method, first, with respect to the outer support member 120 in the divided state, the iron core 73 as an example of the plurality of first iron cores, the iron core 74 as an example of the plurality of second iron cores, and the first. A Z outer magnet 82 as an example of the first permanent magnet is fitted between the iron core 73 and the iron core 74 so that the first pole faces the iron core 73 and the second pole faces the iron core 74. After that, the θ1 outer magnet 87 as an example of the second permanent magnet is fitted between the adjacent iron cores 73 among the plurality of iron cores 73, and the third permanent magnet is inserted between the adjacent iron cores 74 among the plurality of iron cores 74. The θ second outer magnet 88 as an example of the magnet is fitted.
On the other hand, with respect to the inner support member 110 in the divided state, the iron core 71 as an example of the plurality of third iron cores, the iron core 72 as an example of the plurality of fourth iron cores, and the iron core 71 as the first pole are used. The Z-inner magnet 81 as an example of the fourth permanent magnet is fitted between the iron core 71 and the iron core 72 so that the second pole faces toward the iron core 72 as it faces. After that, the θ 1st inner magnet 85 as an example of the 5th permanent magnet is fitted between the adjacent iron cores 71 among the plurality of iron cores 71, and the 6th permanent magnet is inserted between the adjacent iron cores 72 among the plurality of iron cores 72. The θ second inner magnet 86 as an example of the magnet is fitted.
Then, the R first magnet 83 as an example of the seventh permanent magnet is arranged between the iron core 73 and the iron core 71, and the R second magnet 84 as an example of the eighth permanent magnet is arranged between the iron core 74 and the iron core 72. Is arranged, and the subunit 60a is configured by combining the outer support member 120 in the divided state and the inner support member 110 in the divided state.
Then, the inner support members 110 in the divided state are joined to each other in the plurality of subunits 60a, and the outer support members 120 in the divided state are joined to each other.

図14は、磁極子60を、回転方向に直交な面及び半径方向に直交な面で切断した断面図の一例である。図14において、矢印は磁化方向を示しており、極性はS→Nである。
図14に示した例では、S極が鉄心71,73に面する永久磁石から出た磁束が当該鉄心内を進み、それぞれの磁束が、一方側に設けられた電機子10の方へ軸方向に進行して回転子磁極75から、電機子10との間の隙間に出る。かかる磁束は放射状に分岐し、隣り合う鉄心71,73のN極の回転子磁極75から当該鉄心の内部に進入し、当該鉄心内部を進む。そして、当該鉄心の内部を進んだ磁束は、回転方向及び半径方向に分岐するとともに、さらに、軸方向に進み、Z内磁石81又はZ外磁石82に入る。Z内磁石81に入った磁束は、その他方側に設けられた鉄心72を進むとともに、当該鉄心72の周囲に設けられた永久磁石はS極が当該鉄心72に面しているので、これらの永久磁石から出た磁束が当該鉄心72内を進む。そして、それぞれの磁束が、他方側に設けられた電機子10の方へ軸方向に進行して回転子磁極75から、電機子10との間の隙間に出る。また、Z外磁石82に入った磁束は、その他方側に設けられた鉄心74を進むとともに、当該鉄心74の周囲に設けられた永久磁石はS極が当該鉄心74に面しているので、これらの永久磁石から出た磁束が当該鉄心74内を進む。そして、それぞれの磁束が、他方側に設けられた電機子10の方へ軸方向に進行して回転子磁極75から、電機子10との間の隙間に出る。
S極の永久磁石が面する鉄心71の他方側に設けられた鉄心72にはN極の永久磁石が面しているので、隣り合う鉄心72,74から侵入した磁束が、軸方向の一方側に進み、当該鉄心71内に進入する。
FIG. 14 is an example of a cross-sectional view of the magnetic monopole 60 cut at a plane orthogonal to the rotation direction and a plane orthogonal to the radial direction. In FIG. 14, the arrow indicates the magnetization direction, and the polarity is S → N.
In the example shown in FIG. 14, the magnetic flux generated from the permanent magnet whose S pole faces the iron cores 71 and 73 travels in the iron core, and each magnetic flux is axially directed toward the armature 10 provided on one side. From the rotor magnetic flux 75 to the gap between the armature 10 and the armature 10. The magnetic flux branches radially, enters the inside of the iron core from the rotor magnetic poles 75 of the N poles of the adjacent iron cores 71 and 73, and travels inside the iron core. Then, the magnetic flux that has traveled inside the iron core branches in the rotational direction and the radial direction, and further travels in the axial direction to enter the Z inner magnet 81 or the Z outer magnet 82. The magnetic flux entering the Z inner magnet 81 travels on the iron core 72 provided on the other side, and the permanent magnets provided around the iron core 72 have the S pole facing the iron core 72. The magnetic flux generated from the permanent magnet travels in the iron core 72. Then, each magnetic flux travels axially toward the armature 10 provided on the other side and exits from the rotor magnetic pole 75 into the gap between the armature 10 and the armature 10. Further, the magnetic flux entering the Z outer magnet 82 travels on the iron core 74 provided on the other side, and the permanent magnet provided around the iron core 74 has the S pole facing the iron core 74. The magnetic flux generated from these permanent magnets travels in the iron core 74. Then, each magnetic flux travels axially toward the armature 10 provided on the other side and exits from the rotor magnetic pole 75 into the gap between the armature 10 and the armature 10.
Since the N-pole permanent magnet faces the iron core 72 provided on the other side of the iron core 71 facing the S-pole permanent magnet, the magnetic flux invading from the adjacent iron cores 72 and 74 is on one side in the axial direction. Proceed to, and enter the inside of the iron core 71.

図15は、半径方向に隣り合うティース部112に、互いに逆向きに磁路が形成されるとともに、軸方向に対向するティース部112に、互いに逆向きに磁路が形成された場合の、断面図の一例を示している。
電動機2において、電機子10の半径方向に隣り合うコイル12に逆向きの電流を流すとともに、軸方向に対向するコイル12に同じ向きの電流を流すと、図15に示すような、ティース部112と、ヨーク部111とを通る磁路が形成される。これにより、半径方向に隣り合う2つのティース部112のうち、一方のティース部112の電機子磁極13がS極となり、他方のティース部112の電機子磁極13がN極となる。また、電機子磁極13がS極となるティース部112に軸方向に対向するティース部112の電機子磁極13がN極となる。
FIG. 15 shows a cross section in which magnetic paths are formed in opposite directions to the teeth portions 112 adjacent to each other in the radial direction, and magnetic paths are formed in opposite directions to the teeth portions 112 facing in the axial direction. An example of the figure is shown.
In the electric machine 2, when a current in the opposite direction is passed through the coils 12 adjacent to each other in the radial direction of the armature 10 and a current in the same direction is passed through the coils 12 facing in the axial direction, the teeth portion 112 as shown in FIG. And a magnetic path passing through the yoke portion 111 is formed. As a result, of the two tooth portions 112 adjacent to each other in the radial direction, the armature magnetic pole 13 of one of the teeth portions 112 becomes the S pole, and the armature magnetic pole 13 of the other teeth portion 112 becomes the N pole. Further, the armature magnetic pole 13 of the teeth portion 112 facing the teeth portion 112 in which the armature magnetic pole 13 is the S pole is the N pole.

図16には、回転方向に隣り合うティース部112に、互いに逆向きに磁路が形成されるとともに、軸方向に対向するティース部112に、互いに逆向きに磁路が形成された場合の一例を示している。
図16に示した例においては、回転方向に隣り合うティース部112の内、一方のティース部112の電機子磁極13がS極となり、他方のティース部112の電機子磁極13がN極となる。また、電機子磁極13がS極となるティース部112に軸方向に対向するティース部112の電機子磁極13がN極となる。
FIG. 16 shows an example in which magnetic paths are formed in opposite directions to the teeth portions 112 adjacent to each other in the rotation direction, and magnetic paths are formed in opposite directions to the teeth portions 112 facing in the axial direction. Is shown.
In the example shown in FIG. 16, among the teeth portions 112 adjacent to each other in the rotation direction, the armature magnetic pole 13 of one of the teeth portions 112 is the S pole, and the armature magnetic pole 13 of the other teeth portion 112 is the N pole. .. Further, the armature magnetic pole 13 of the teeth portion 112 facing the teeth portion 112 in which the armature magnetic pole 13 is the S pole is the N pole.

したがって、コイル12に電流が流れると、電機子磁極13と、回転子磁極75とが磁力によって吸引または反発される。
図15、図16には、電機子磁極13と、回転子磁極75とが吸引される場合の磁路を示している。
そして、電機子10のコイル12に流す電流の方向とタイミングが制御されることで、磁極子60の回転方向や回転速度が制御される。
Therefore, when a current flows through the coil 12, the armature magnetic pole 13 and the rotor magnetic pole 75 are attracted or repelled by the magnetic force.
15 and 16 show a magnetic path when the armature magnetic pole 13 and the rotor magnetic pole 75 are attracted to each other.
Then, by controlling the direction and timing of the current flowing through the coil 12 of the armature 10, the rotation direction and rotation speed of the magnetic pole element 60 are controlled.

以上説明したように、第2の実施形態に係る磁極子60は、第1鉄心の一例としての鉄心71と、第2鉄心の一例としての鉄心72と、Z内磁石81と、を備える。また、磁極子60は、鉄心71及び鉄心72における、電機子10と対向しない面及びZ内磁石81と対向しない面の少なくとも一つの面を覆うとともに、鉄心71、鉄心72及びZ内磁石81を支持する、非磁性材料にて成形された支持部材100を備える。例えば、内側支持部材110は、鉄心71及び鉄心72の内周面を覆うとともに、鉄心71、鉄心72及びZ内磁石81が内側に移動することを抑制する。また、第1内鉄心抑え部材154や第2内鉄心抑え部材155は、鉄心71、鉄心72及びZ内磁石81が軸方向に移動することを抑制する。 As described above, the magnetic monopole 60 according to the second embodiment includes an iron core 71 as an example of the first iron core, an iron core 72 as an example of the second iron core, and a magnet 81 in Z. Further, the magnetic pole element 60 covers at least one surface of the iron core 71 and the iron core 72 that does not face the armature 10 and the surface that does not face the Z inner magnet 81, and also covers the iron core 71, the iron core 72, and the Z inner magnet 81. A support member 100 formed of a non-magnetic material to support is provided. For example, the inner support member 110 covers the inner peripheral surfaces of the iron core 71 and the iron core 72, and suppresses the movement of the iron core 71, the iron core 72, and the Z inner magnet 81 inward. Further, the first inner core holding member 154 and the second inner core holding member 155 suppress the movement of the iron core 71, the iron core 72, and the Z inner magnet 81 in the axial direction.

また、磁極子60は、第1鉄心の一例としての鉄心73と、第2鉄心の一例としての鉄心74と、Z外磁石82と、を備える。また、磁極子60は、鉄心73及び鉄心74における、電機子10と対向しない面及びZ外磁石82と対向しない面の少なくとも一つの面を覆うとともに、鉄心73、鉄心74及びZ外磁石82を支持する、非磁性材料にて成形された支持部材100を備える。例えば、外側支持部材120は、鉄心73及び鉄心74の外周面を覆うとともに、鉄心73、鉄心74及びZ外磁石82が外側に移動することを抑制する。また、第1外鉄心抑え部材156や第2外鉄心抑え部材157は、鉄心73、鉄心74及びZ外磁石82が軸方向に移動することを抑制する。 Further, the magnetic pole element 60 includes an iron core 73 as an example of the first iron core, an iron core 74 as an example of the second iron core, and a Z outer magnet 82. Further, the magnetic pole element 60 covers at least one surface of the iron core 73 and the iron core 74 that does not face the armature 10 and the surface that does not face the Z outer magnet 82, and also covers the iron core 73, the iron core 74, and the Z outer magnet 82. A support member 100 formed of a non-magnetic material to support is provided. For example, the outer support member 120 covers the outer peripheral surfaces of the iron core 73 and the iron core 74, and suppresses the movement of the iron core 73, the iron core 74, and the Z outer magnet 82 to the outside. Further, the first outer core holding member 156 and the second outer core holding member 157 suppress the movement of the iron core 73, the iron core 74, and the Z outer magnet 82 in the axial direction.

このように、支持部材100が、鉄心71,72,73,74における、出力に寄与しない磁束が漏れる面を覆う。これにより、当該面に、磁性体が近接するもしくは接触することを抑制することができる。その結果、鉄心71,72,73,74から出力に寄与しない磁束が漏れ、出力に寄与する磁束、言い換えれば、電機子10の方へ向かう磁束が低下することを抑制することができる。従って、磁極子60によれば、電動機2の磁気効率を向上させることができる。 In this way, the support member 100 covers the surface of the iron cores 71, 72, 73, 74 where the magnetic flux that does not contribute to the output leaks. As a result, it is possible to prevent the magnetic material from coming into close contact with or coming into contact with the surface. As a result, it is possible to suppress the leakage of the magnetic flux that does not contribute to the output from the iron cores 71, 72, 73, 74, and the decrease of the magnetic flux that contributes to the output, that is, the magnetic flux toward the armature 10. Therefore, according to the magnetic monopole 60, the magnetic efficiency of the electric motor 2 can be improved.

外側支持部材120は、Z外磁石82が鉄心73又は鉄心74の方へ移動することを抑制する複数の突起の一例としての、左側突起群131の第2左側突起131b及び第3左側突起131c、右側突起群132の第2右側突起132b及び第3右側突起132cを有する。これにより、外側支持部材120は、Z外磁石82を支持することが可能となる。
また、複数の突起は、Z外磁石82における第1面の一例としての一方側の面側に配置される突起である第1面側突起の一例としての第2左側突起131b及び第2右側突起132bを有するとともに、Z外磁石82における第2面の一例としての他方側の面側に配置される突起である第2面側突起の一例としての第3左側突起131c及び第3右側突起132cを有する。そして、鉄心73は、複数の第1面側突起間の一例としての第2左側突起131bと第2右側突起132bとの間に配置され、鉄心74は、複数の第2面側突起間の一例としての第3左側突起131cと第3右側突起132cとの間に配置される。これにより、外側支持部材120は、鉄心73、鉄心74の回転方向の移動を抑制することが可能となる。
The outer support member 120 has the second left side protrusion 131b and the third left side protrusion 131c of the left side protrusion group 131 as an example of a plurality of protrusions that prevent the Z outer magnet 82 from moving toward the iron core 73 or the iron core 74. It has a second right projection 132b and a third right projection 132c of the right projection group 132. As a result, the outer support member 120 can support the Z outer magnet 82.
Further, the plurality of protrusions are the second left side protrusion 131b and the second right side protrusion as an example of the first surface side protrusion, which is a protrusion arranged on one side of the Z outer magnet 82 as an example of the first surface. The third left projection 131c and the third right projection 132c as an example of the second surface side projection which is a projection arranged on the other side surface side as an example of the second surface of the Z outer magnet 82 while having 132b. Have. The iron core 73 is arranged between the second left side protrusion 131b and the second right side protrusion 132b as an example between the plurality of first surface side protrusions, and the iron core 74 is an example between the plurality of second surface side protrusions. It is arranged between the third left projection 131c and the third right projection 132c. As a result, the outer support member 120 can suppress the movement of the iron core 73 and the iron core 74 in the rotational direction.

また、磁極子60は、鉄心73、鉄心74及びZ外磁石82等を有する磁極ユニット70を複数有し、複数の磁極ユニット70相互間の距離を維持するように隣り合う磁極ユニット70間に配置された中間支持部材151を備える。これにより、磁極ユニット70、あるいは、磁極ユニット70を構成する部品が回転方向に移動し難くなる。また、回転方向からの衝撃に対する強度を高めることができる。 Further, the magnetic pole element 60 has a plurality of magnetic pole units 70 having an iron core 73, an iron core 74, a Z outer magnet 82, and the like, and is arranged between adjacent magnetic pole units 70 so as to maintain a distance between the plurality of magnetic pole units 70. The intermediate support member 151 is provided. This makes it difficult for the magnetic pole unit 70 or the components constituting the magnetic pole unit 70 to move in the rotational direction. In addition, the strength against impact from the rotation direction can be increased.

また、磁極ユニット70は、鉄心73に対して、鉄心74と直交する方向に配置された第3鉄心の一例としての鉄心71と、S極が鉄心73の方を向くとともにN極が鉄心71の方を向くように配置された第2の永久磁石の一例としてのR第1磁石83と、を有する。そして、中間支持部材151は、隣り合う磁極ユニット70のR第1磁石83間に配置される。これにより、R第1磁石83が回転方向に移動し難くなる。それゆえ、回転方向からの衝撃に対する強度を高めることができ、R第1磁石83の破損を抑制することができる。また、中間支持部材151は、隣り合う磁極ユニット70のR第2磁石84間に配置される。これにより、R第2磁石84が回転方向に移動し難くなる。それゆえ、回転方向からの衝撃に対する強度を高めることができ、R第2磁石84の破損を抑制することができる。 Further, in the magnetic pole unit 70, the iron core 71 as an example of the third iron core arranged in the direction orthogonal to the iron core 74 with respect to the iron core 73, the S pole faces the iron core 73, and the N pole is the iron core 71. It has an R first magnet 83 as an example of a second permanent magnet arranged so as to face. Then, the intermediate support member 151 is arranged between the R first magnets 83 of the adjacent magnetic pole units 70. This makes it difficult for the R first magnet 83 to move in the rotational direction. Therefore, the strength against an impact from the rotation direction can be increased, and damage to the R first magnet 83 can be suppressed. Further, the intermediate support member 151 is arranged between the R second magnets 84 of the adjacent magnetic pole units 70. This makes it difficult for the R second magnet 84 to move in the rotational direction. Therefore, the strength against an impact from the rotation direction can be increased, and damage to the R second magnet 84 can be suppressed.

加えて、θ第1外磁石87の回転方向の両端面から突出した凸部871が、鉄心73とR第1磁石83の凸部831との間の隙間に入り込んでいる。これにより、R第1磁石83が回転方向に移動し難くなる。θ第2外磁石88とR第2磁石84との関係も同様であるので、R第2磁石84も回転方向に移動し難い。それゆえ、回転方向からの衝撃に対する強度を高めることができ、R第1磁石83及びR第2磁石84の破損を抑制することができる。 In addition, the convex portions 871 protruding from both end faces of the θ1 first outer magnet 87 in the rotational direction enter the gap between the iron core 73 and the convex portions 831 of the R first magnet 83. This makes it difficult for the R first magnet 83 to move in the rotational direction. Since the relationship between the θ second outer magnet 88 and the R second magnet 84 is the same, the R second magnet 84 is also difficult to move in the rotational direction. Therefore, the strength against an impact from the rotation direction can be increased, and damage to the R first magnet 83 and the R second magnet 84 can be suppressed.

また、中間支持部材151は、θ第1内磁石85及びθ第2内磁石86と、θ第1外磁石87及びθ第2外磁石88との間の隙間に配置される。これにより、θ第1内磁石85、θ第2内磁石86、θ第1外磁石87及びθ第2外磁石88が半径方向に移動し難くなる。それゆえ、半径方向からの衝撃に対する強度を高めることができ、θ第1内磁石85、θ第2内磁石86、θ第1外磁石87及びθ第2外磁石88の破損を抑制することができる。 Further, the intermediate support member 151 is arranged in the gap between the θ first inner magnet 85 and the θ second inner magnet 86 and the θ first outer magnet 87 and the θ second outer magnet 88. As a result, the θ first inner magnet 85, the θ second inner magnet 86, the θ first outer magnet 87, and the θ second outer magnet 88 become difficult to move in the radial direction. Therefore, it is possible to increase the strength against impact from the radial direction, and it is possible to suppress damage to the θ1 inner magnet 85, the θ2nd inner magnet 86, the θ1st outer magnet 87, and the θ2nd outer magnet 88. can.

また、磁極子60においては、鉄心71に形成された凹部711に第1内鉄心抑え部材154が嵌められ、鉄心73に形成された凹部731に第1外鉄心抑え部材156が嵌められている。かかる構成により、磁極子60における、一方側に配置された電機子10に対向する面を平坦にすることができる。これにより、電機子10と、磁極子60の鉄心71や鉄心73との間に生じる空隙(エアギャップ)を低減させることができる。ただし、この空隙の増加分をいとわない場合には、鉄心71,73に、凹部711,731を形成しなくても良い。
なお、磁極子60における軸方向の他方側の構成も同様である。
Further, in the magnetic monopole 60, the first inner core restraining member 154 is fitted in the recess 711 formed in the iron core 71, and the first outer core restraining member 156 is fitted in the recess 731 formed in the iron core 73. With such a configuration, the surface of the magnetic monopole 60 facing the armature 10 arranged on one side can be flattened. As a result, the gap (air gap) generated between the armature 10 and the iron core 71 or the iron core 73 of the magnetic pole element 60 can be reduced. However, if the increase in the voids is acceptable, the recesses 711 and 731 may not be formed in the iron cores 71 and 73.
The same applies to the configuration of the magnetic monopole 60 on the other side in the axial direction.

(支持構造の変形例)
図12、図13には、磁極子60の10個の磁極ユニット70の内、各サブユニット60aが4つの磁極ユニット70を含み、サブユニット60a同士を組み合わせる際に、2つの磁極ユニット70をその間に挟み込んでいる例を示しているが特にかかる態様に限定されない。
(Modification example of support structure)
In FIGS. 12 and 13, among the 10 magnetic pole units 70 of the magnetic pole elements 60, each subunit 60a includes four magnetic pole units 70, and when the subunits 60a are combined, the two magnetic pole units 70 are placed between them. An example of sandwiching the monopole is shown, but the present invention is not particularly limited to this mode.

図17は、サブユニット160aの変形例の一例を示す図である。
例えば、磁極子(不図示)が16個の磁極ユニットを有し、磁極子が回転方向に4つ、90度に分割されたサブユニット160aとする構成の例を示している。各サブユニット160aは、内側支持部材及び外側支持部材が回転方向に4つ、90度に分割されたものと、4個の磁極ユニットを有している。かかる態様である場合には、4つのサブユニット160aを組み合わせることで円環状の磁極子が完成する。サブユニット160a同士を組み合わせる際に、その間に、磁極ユニット70を挟み込むことは不要となる。これにより、全てのサブユニット160aを同一の形状とすることが可能となり、生産性が高まる。
FIG. 17 is a diagram showing an example of a modification of the subunit 160a.
For example, an example of a configuration in which a monopole (not shown) has 16 magnetic monopoles and the monopoles are four in the rotation direction and are divided into subunits 160a at 90 degrees is shown. Each subunit 160a has an inner support member and an outer support member divided into four, 90 degrees in the rotational direction, and four magnetic pole units. In such an embodiment, the annular magnetic monopole is completed by combining the four subunits 160a. When combining the subunits 160a, it is not necessary to sandwich the magnetic pole unit 70 between them. As a result, all the subunits 160a can have the same shape, and the productivity is improved.

全てのサブユニットを同一の形状とする点においては、磁極子が有する磁極ユニットの総数の約数にて分割すれば良い。例えば、磁極ユニット70の数が16個である場合には、2つ、4つ、8つに分割することで全てのサブユニットを同一の形状とすることが可能となる。また、磁極子が有する磁極ユニット70の総数にて分割しても全てのサブユニットを同一の形状とすることが可能となる。例えば、磁極ユニットの数が16個である場合には、16つに分割することで全てのサブユニットを同一の形状とすることが可能となる。 In terms of making all subunits have the same shape, it may be divided by a divisor of the total number of magnetic pole units possessed by the magnetic poles. For example, when the number of magnetic pole units 70 is 16, it is possible to make all subunits have the same shape by dividing them into two, four, and eight. Further, even if the subunits are divided by the total number of magnetic pole units 70, all subunits can have the same shape. For example, when the number of magnetic pole units is 16, it is possible to make all the subunits have the same shape by dividing them into 16.

第2の実施形態に係る10個の磁極ユニット70を有する磁極子60においても、2つ、5つ、10つに分割し、各サブユニットが、磁極ユニット70の総数/分割数の磁極ユニット70を有することで全てのサブユニットを同一の形状とすることが可能となる。
ただし、サブユニットを同一の形状とすることにこだわらなければ、分割数は特に限定されない。例えば、磁極ユニット70を4個有するサブユニットを2つと、磁極ユニット70を2個有するサブユニット1つとに分割しても良い。
The magnetic pole element 60 having 10 magnetic pole units 70 according to the second embodiment is also divided into two, five, and ten, and each subunit is the total number of magnetic pole units 70 / the number of divided magnetic pole units 70. It is possible to make all subunits have the same shape by having.
However, the number of divisions is not particularly limited as long as the subunits are not particular about having the same shape. For example, the subunit having four magnetic pole units 70 may be divided into two subunits and one subunit having two magnetic pole units 70.

分割した内側支持部材110同士や分割した外側支持部材120同士を組み合わせる部位の形状は特に限定されない。以下、内側支持部材110を分割したものと外側支持部材120を分割したものとをまとめて「分割部材」と称して、組み合わせ部の変形例について説明する。
例えば、図17に示すように、分割部材200の回転方向の一方の端部に、端面から回転方向に突出した複数の凸部201を設けるとともに、分割部材200の回転方向の他方の端部に、端面から回転方向に凹んだ複数の凹部202を設ける。複数の凸部201は、図17に示すように、軸方向に並ぶように設けられているとともに、分割部材200の厚さ方向(半径方向)に2つに分けられた部位のどちらか一方に設けられるように、交互に設けられている。また、複数の凹部202は、図17に示すように、軸方向に並ぶように形成されているとともに、分割部材200の厚さ方向(半径方向)に2つに分けられた部位のどちらか一方に形成されるように、交互に形成されている。
そして、一の分割部材200の凸部201を、他の分割部材200の凹部202に嵌め込むことで、一の分割部材200と他の分割部材200とを組み合わせても良い。かかる態様により、一の分割部材200と他の分割部材200とが軸方向及び半径方向にずれることが抑制される。
The shape of the portion where the divided inner support members 110 and the divided outer support members 120 are combined is not particularly limited. Hereinafter, the divided member of the inner support member 110 and the divided member of the outer support member 120 are collectively referred to as a “divided member”, and a modified example of the combined portion will be described.
For example, as shown in FIG. 17, a plurality of convex portions 201 protruding from the end face in the rotational direction are provided at one end of the split member 200 in the rotational direction, and the other end of the split member 200 in the rotational direction is provided. , A plurality of recesses 202 recessed in the rotational direction from the end face are provided. As shown in FIG. 17, the plurality of convex portions 201 are provided so as to be arranged in the axial direction, and are provided on either of the portions divided into two in the thickness direction (radial direction) of the dividing member 200. It is provided alternately so that it is provided. Further, as shown in FIG. 17, the plurality of recesses 202 are formed so as to be aligned in the axial direction, and one of the portions divided into two in the thickness direction (radial direction) of the dividing member 200. It is formed alternately so that it is formed in.
Then, one dividing member 200 and the other dividing member 200 may be combined by fitting the convex portion 201 of one dividing member 200 into the concave portion 202 of the other dividing member 200. According to such an embodiment, it is possible to prevent one split member 200 and the other split member 200 from being displaced in the axial direction and the radial direction.

図18は、一の分割部材210と他の分割部材210との組み合わせ部位の変形例を示す図である。
図18(a)に示すように、分割部材210の回転方向の一方の端部に、端面から、半径方向が柱方向となる三角柱状に回転方向に突出した凸部211を設け、回転方向の他方の端部に、端面から、半径方向が柱方向となる三角柱状に回転方向に凹んだ凹部212を設けても良い。そして、一の分割部材210と他の分割部材210とを半径方向に相対的に移動させて、一の分割部材210の凸部211を、他の分割部材210の凹部212に嵌め込むことで、一の分割部材210と他の分割部材210とを組み合わせても良い。かかる態様により、一の分割部材210と他の分割部材210とが軸方向及び回転方向にずれることが抑制される。なお、凸部211及び凹部212の数は特に限定されず、1つでも良いし、図18(a)に示すように複数でも良い。
FIG. 18 is a diagram showing a modified example of a combination portion of one divided member 210 and another divided member 210.
As shown in FIG. 18A, a convex portion 211 protruding in the rotational direction from the end face to a triangular columnar whose radial direction is the columnar direction is provided at one end of the split member 210 in the rotational direction, and is provided in the rotational direction. The other end may be provided with a recess 212 recessed in the rotational direction from the end face into a triangular columnar whose radial direction is the column direction. Then, the one dividing member 210 and the other dividing member 210 are relatively moved in the radial direction, and the convex portion 211 of the one dividing member 210 is fitted into the concave portion 212 of the other dividing member 210. One dividing member 210 and another dividing member 210 may be combined. According to such an embodiment, it is possible to prevent one split member 210 and the other split member 210 from being displaced in the axial direction and the rotational direction. The number of the convex portions 211 and the concave portions 212 is not particularly limited, and may be one or a plurality as shown in FIG. 18 (a).

また、図18(b)に示すように、分割部材220の回転方向の一方の端部に、端面から、回転方向が柱方向となる三角柱状に回転方向に突出した凸部221を設け、回転方向の他方の端部に、端面から、回転方向が柱方向となる三角柱状に回転方向に凹んだ凹部222を設けても良い。そして、一の分割部材220と他の分割部材220とを回転方向に相対的に移動させて、一の分割部材220の凸部221を、他の分割部材220の凹部222に嵌め込むことで、一の分割部材220と他の分割部材220とを組み合わせても良い。かかる態様により、一の分割部材220と他の分割部材220とが軸方向及び半径方向にずれることが抑制される。なお、凸部221及び凹部222の数は特に限定されず、1つでも良いし、図18(b)に示すように複数でも良い。また、凸部221及び凹部222の形状は、三角柱状に限定されず、図18(c)に示す直方体状、立方体状、円錐状であっても良い。 Further, as shown in FIG. 18B, a convex portion 221 protruding in the rotational direction from the end face to a triangular columnar whose rotational direction is the columnar direction is provided at one end of the split member 220 in the rotational direction, and the member rotates. At the other end of the direction, a recess 222 recessed in the rotation direction may be provided in a triangular columnar shape in which the rotation direction is the column direction from the end face. Then, the one split member 220 and the other split member 220 are relatively moved in the rotational direction, and the convex portion 221 of the one split member 220 is fitted into the concave portion 222 of the other split member 220. One split member 220 and another split member 220 may be combined. According to such an embodiment, it is possible to prevent one dividing member 220 and the other dividing member 220 from being displaced in the axial direction and the radial direction. The number of the convex portions 221 and the concave portions 222 is not particularly limited, and may be one or a plurality as shown in FIG. 18 (b). Further, the shapes of the convex portion 221 and the concave portion 222 are not limited to the triangular columnar shape, and may be a rectangular parallelepiped shape, a cube shape, or a conical shape shown in FIG. 18 (c).

また、図18(d)に示すように、分割部材230の回転方向の一方の端部に、端面から、軸方向が柱方向となる三角柱状に回転方向に突出した凸部231を設け、回転方向の他方の端部に、端面から、軸方向が柱方向となる三角柱状に回転方向に凹んだ凹部232を設けても良い。そして、一の分割部材230と他の分割部材230とを軸方向に相対的に移動させて、一の分割部材230の凸部231を、他の分割部材230の凹部232に嵌め込むことで、一の分割部材230と他の分割部材230とを組み合わせても良い。かかる態様により、一の分割部材230と他の分割部材230とが回転方向及び半径方向にずれることが抑制される。なお、図18(d)に示すように、一の分割部材230と他の分割部材230とを軸方向に相対的に移動させて嵌め込む際に、一の分割部材230と他の分割部材230とが突き当たる面233を設けても良い。 Further, as shown in FIG. 18D, a convex portion 231 protruding in the rotational direction from the end face to a triangular columnar whose axial direction is the columnar direction is provided at one end of the split member 230 in the rotational direction, and is rotated. At the other end in the direction, a recess 232 recessed in the rotational direction may be provided in a triangular columnar shape whose axial direction is the column direction from the end face. Then, the one split member 230 and the other split member 230 are relatively moved in the axial direction, and the convex portion 231 of the one split member 230 is fitted into the concave portion 232 of the other split member 230. One split member 230 and another split member 230 may be combined. According to such an embodiment, it is possible to prevent one split member 230 and the other split member 230 from being displaced in the rotational direction and the radial direction. As shown in FIG. 18D, when the one dividing member 230 and the other dividing member 230 are relatively moved in the axial direction and fitted, the one dividing member 230 and the other dividing member 230 are fitted. A surface 233 may be provided on which the and the surface abuts.

なお、上述した例では、第1Rθ磁石抑え部材152、第2Rθ磁石抑え部材153、第1内鉄心抑え部材154、第2内鉄心抑え部材155、第1外鉄心抑え部材156及び第2外鉄心抑え部材157を、内側支持部材110及び外側支持部材120が分割された状態であるときに固定しているが、特にかかる態様に限定されない。第1Rθ磁石抑え部材152、第2Rθ磁石抑え部材153、第1内鉄心抑え部材154、第2内鉄心抑え部材155、第1外鉄心抑え部材156及び第2外鉄心抑え部材157は、分割された状態の内側支持部材110及び外側支持部材120を組み合わせて円環状にした後に、固定しても良い。かかる場合には、第1Rθ磁石抑え部材152、第2Rθ磁石抑え部材153、第1内鉄心抑え部材154、第2内鉄心抑え部材155、第1外鉄心抑え部材156及び第2外鉄心抑え部材157を、円環状にすることが可能となる。 In the above-mentioned example, the first Rθ magnet holding member 152, the second Rθ magnet holding member 153, the first inner core holding member 154, the second inner core holding member 155, the first outer core holding member 156, and the second outer core holding member 156. The member 157 is fixed when the inner support member 110 and the outer support member 120 are in a divided state, but the present invention is not particularly limited. The first Rθ magnet holding member 152, the second Rθ magnet holding member 153, the first inner core holding member 154, the second inner core holding member 155, the first outer core holding member 156, and the second outer core holding member 157 were divided. The inner support member 110 and the outer support member 120 in the state may be combined to form an annular shape and then fixed. In such a case, the first Rθ magnet holding member 152, the second Rθ magnet holding member 153, the first inner core holding member 154, the second inner core holding member 155, the first outer core holding member 156 and the second outer core holding member 157. Can be made into an annular shape.

(磁極ユニット70と支持部材100との半径方向の固定方法)
図8を用いて説明した方法を用いて、磁極ユニット70と支持部材100とを半径方向に固定しても良い。
例えば、図8(a)に示すように、外側支持部材120における、各鉄心73と対向する部位に、貫通孔(不図示)を形成するとともに、鉄心73に雌ねじ(不図示)を形成する。そして、外側支持部材120に形成された貫通孔に通したボルト57の雄ねじを、鉄心73に形成された雌ねじに締め付けることで、磁極ユニット70と支持部材100とを固定しても良い。
さらに、外側支持部材120における、各鉄心74と対向する部位に、貫通孔(不図示)を形成するとともに、鉄心74に雌ねじ(不図示)を形成し、外側支持部材120に形成された貫通孔に通したボルト57の雄ねじを、鉄心74に形成された雌ねじに締め付けても良い。
(Method of fixing the magnetic pole unit 70 and the support member 100 in the radial direction)
The magnetic pole unit 70 and the support member 100 may be fixed in the radial direction by using the method described with reference to FIG.
For example, as shown in FIG. 8A, a through hole (not shown) is formed in a portion of the outer support member 120 facing each iron core 73, and a female screw (not shown) is formed in the iron core 73. Then, the magnetic pole unit 70 and the support member 100 may be fixed by tightening the male screw of the bolt 57 passed through the through hole formed in the outer support member 120 to the female screw formed in the iron core 73.
Further, in the outer support member 120, a through hole (not shown) is formed in a portion facing each iron core 74, and a female screw (not shown) is formed in the iron core 74, and a through hole is formed in the outer support member 120. The male screw of the bolt 57 passed through may be tightened to the female screw formed on the iron core 74.

上述した方法に代えて、あるいは、上述した方法に加えて、図8(b)に示すように、内側支持部材110における、各鉄心71と対向する部位に、貫通孔(不図示)を形成するとともに、鉄心71に雌ねじ(不図示)を形成する。そして、内側支持部材110に形成された貫通孔に通したボルト58(図8(b)参照)の雄ねじを、鉄心71に形成された雌ねじに締め付けることで、磁極ユニット70と支持部材100とを固定しても良い。
さらに、内側支持部材110における、各鉄心72と対向する部位に、貫通孔(不図示)を形成するとともに、鉄心72に雌ねじ(不図示)を形成し、内側支持部材110に形成された貫通孔に通したボルト58の雄ねじを、鉄心72に形成された雌ねじに締め付けても良い。
Instead of or in addition to the above-mentioned method, as shown in FIG. 8 (b), a through hole (not shown) is formed in a portion of the inner support member 110 facing each iron core 71. At the same time, a female screw (not shown) is formed on the iron core 71. Then, by tightening the male screw of the bolt 58 (see FIG. 8 (b)) passed through the through hole formed in the inner support member 110 to the female screw formed in the iron core 71, the magnetic pole unit 70 and the support member 100 are attached. It may be fixed.
Further, a through hole (not shown) is formed in a portion of the inner support member 110 facing each iron core 72, and a female screw (not shown) is formed in the iron core 72 to form a through hole in the inner support member 110. The male screw of the bolt 58 passed through may be tightened to the female screw formed on the iron core 72.

上述した方法に代えて、あるいは、上述した方法に加えて、外側支持部材120における、各θ第1外磁石87と対向する部位に、貫通孔(不図示)を形成するとともに、θ第1外磁石87に雌ねじ(不図示)を形成する。そして、外側支持部材120に形成された貫通孔に通したボルト57(図8(c)参照)の雄ねじを、θ第1外磁石87に形成された雌ねじに締め付けることで、磁極ユニット70と支持部材100とを固定しても良い。
さらに、外側支持部材120における、各θ第2外磁石88と対向する部位に、貫通孔(不図示)を形成するとともに、θ第2外磁石88に雌ねじ(不図示)を形成し、外側支持部材120に形成された貫通孔に通したボルト57の雄ねじを、θ第2外磁石88に形成された雌ねじに締め付けても良い。
Instead of or in addition to the above-mentioned method, a through hole (not shown) is formed in a portion of the outer support member 120 facing each θ first outer magnet 87, and the θ first outer is formed. A female screw (not shown) is formed on the magnet 87. Then, the male screw of the bolt 57 (see FIG. 8C) passed through the through hole formed in the outer support member 120 is tightened to the female screw formed in the θ first outer magnet 87 to support the magnetic pole unit 70. The member 100 may be fixed.
Further, in the outer support member 120, a through hole (not shown) is formed in a portion facing each θ second outer magnet 88, and a female screw (not shown) is formed in the θ second outer magnet 88 to support the outer side. The male screw of the bolt 57 passed through the through hole formed in the member 120 may be tightened to the female screw formed in the θ second outer magnet 88.

また、ボルト57,58にて締め付ける代わりに、図8(d)に示すように、ピン59を嵌め込むことで磁極ユニット70と支持部材100とを固定しても良い。
また、ボルト57,58や、ピン59にて固定する代わりに、例えば、磁極ユニット70と支持部材100とを、溶接又は接着にて固定しても良い。
Further, instead of tightening with bolts 57 and 58, as shown in FIG. 8D, the magnetic pole unit 70 and the support member 100 may be fixed by fitting a pin 59.
Further, instead of fixing with bolts 57 and 58 or pins 59, for example, the magnetic pole unit 70 and the support member 100 may be fixed by welding or adhesion.

内側支持部材110及び外側支持部材120は、回転方向に分割可能である代わりに、軸方向に分割可能であっても良い。
例えば、内側支持部材110,外側支持部材120を、軸方向に2つに分かれた円筒状の部材同士を組み合わることで構成しても良い。
図19は、外側支持部材120を構成する第一分割部材241と第二分割部材242との組み合わせ部位を示す図である。
図19に示すように、第一分割部材241の軸方向の他方の端部に、端面から軸方向に他方側に突出した複数の凸部241aを設けるとともに、第二分割部材242の軸方向の一方の端部に、端面から軸方向に凹んだ複数の凹部242aを設ける。複数の凸部241aは、図19に示すように、回転方向に並ぶように設けられているとともに、第一分割部材240の厚さ方向(半径方向)に2つに分けられた部位のどちらか一方に設けられるように、交互に設けられている。また、複数の凹部242aは、図19に示すように、回転方向に並ぶように形成されているとともに、第二分割部材242の厚さ方向(半径方向)に2つに分けられた部位のどちらか一方に形成されるように、交互に形成されている。
The inner support member 110 and the outer support member 120 may be split in the axial direction instead of being split in the rotational direction.
For example, the inner support member 110 and the outer support member 120 may be configured by combining cylindrical members divided into two in the axial direction.
FIG. 19 is a diagram showing a combination portion of the first division member 241 and the second division member 242 constituting the outer support member 120.
As shown in FIG. 19, a plurality of convex portions 241a projecting from the end face to the other side in the axial direction are provided at the other end portion in the axial direction of the first division member 241 and in the axial direction of the second division member 242. A plurality of recesses 242a recessed in the axial direction from the end face are provided at one end. As shown in FIG. 19, the plurality of convex portions 241a are provided so as to be arranged in the rotation direction, and either of the portions is divided into two in the thickness direction (radial direction) of the first dividing member 240. It is provided alternately so that it is provided on one side. Further, as shown in FIG. 19, the plurality of recesses 242a are formed so as to be arranged in the rotation direction, and which of the portions of the second dividing member 242 is divided into two in the thickness direction (radial direction). It is formed alternately so that it is formed on one side.

そして、第一分割部材241の凸部241aを、第二分割部材242の凹部242aに嵌め込むことで、第一分割部材241と第二分割部材242とを組み合わせても良い。かかる態様により、第一分割部材241と第二分割部材242とが回転方向及び半径方向にずれることが抑制される。また、内側支持部材110及び外側支持部材120を、軸方向に分割可能に構成することにより、磁極ユニット70を構成する鉄心71等の部品を支持部材100に対して軸方向に挿入することで組み付けることができる。 Then, the first division member 241 and the second division member 242 may be combined by fitting the convex portion 241a of the first division member 241 into the concave portion 242a of the second division member 242. According to such an embodiment, it is possible to prevent the first division member 241 and the second division member 242 from being displaced in the rotational direction and the radial direction. Further, by configuring the inner support member 110 and the outer support member 120 so that they can be divided in the axial direction, parts such as the iron core 71 constituting the magnetic pole unit 70 are assembled by inserting them into the support member 100 in the axial direction. be able to.

なお、内側支持部材110、外側支持部材120を、軸方向に分割するのは2つに限定されない。
例えば、内側支持部材110、外側支持部材120を、磁極ユニット70を構成する鉄心71等、軸方向に重ねる部品の数と同数で分割しても良い。第2の実施形態に係る電動機2においては、磁極ユニット70を構成する部品の積層数は、例えば、鉄心73、Z外磁石82、鉄心74の3つであるので、鉄心73が配置される部位、Z外磁石82が配置される部位、鉄心74が配置される部位の3つに分割することを例示することができる。
なお、軸方向に、さらに、鉄心と永久磁石とが積層される場合には、積層される鉄心が配置される部位と永久磁石が配置される部位毎に分割しても良い。つまり、軸方向に、鉄心、永久磁石、鉄心、永久磁石、鉄心、永久磁石、鉄心と、7つの部品が積層される場合には、7つに分割しても良い。すなわち、鉄心と永久磁石との組数がnである場合には、2n+1の数に分割しても良い。
The inner support member 110 and the outer support member 120 are not limited to two in the axial direction.
For example, the inner support member 110 and the outer support member 120 may be divided by the same number as the number of components stacked in the axial direction, such as the iron core 71 constituting the magnetic pole unit 70. In the motor 2 according to the second embodiment, the number of laminated parts constituting the magnetic pole unit 70 is, for example, three, the iron core 73, the Z outer magnet 82, and the iron core 74, so that the portion where the iron core 73 is arranged. , It can be exemplified that the Z outer magnet 82 is divided into three parts, a portion where the Z outer magnet 82 is arranged and a portion where the iron core 74 is arranged.
In the axial direction, when the iron core and the permanent magnet are laminated, it may be further divided into a portion where the laminated iron core is arranged and a portion where the permanent magnet is arranged. That is, when seven parts such as an iron core, a permanent magnet, an iron core, a permanent magnet, an iron core, a permanent magnet, and an iron core are laminated in the axial direction, they may be divided into seven parts. That is, when the number of pairs of the iron core and the permanent magnet is n, the number may be divided into 2n + 1.

磁極ユニット70と支持部材100とを固定する方法として、焼き嵌めする方法を採用しても良い。
図20は、焼き嵌めにより固定された磁極子60の一例を示す図である。
より具体的には、上述したようにして磁極子60を組み立てた後、外側支持部材120の外周面の径よりも小さな径の内周面を有する円筒状のリング170を用いる。このリング170を加熱して内周面の径を外側支持部材120の外周面の径よりも大きくした状態で、リング170の内側に磁極子60を配置すれば良い。焼き嵌めすることで、磁極ユニット70と支持部材100とを強固に固定することが可能となる。なお、リング170の材質は、アルミニウム、鉄、ステンレス等の金属、又は、熱硬化性樹脂であることを例示することができる。軽量化の観点からは、アルミニウムが最も好ましい。
As a method of fixing the magnetic pole unit 70 and the support member 100, a method of shrink fitting may be adopted.
FIG. 20 is a diagram showing an example of a magnetic monopole 60 fixed by shrink fitting.
More specifically, after assembling the magnetic pole 60 as described above, a cylindrical ring 170 having an inner peripheral surface having a diameter smaller than the diameter of the outer peripheral surface of the outer support member 120 is used. The magnetic monopole 60 may be arranged inside the ring 170 in a state where the ring 170 is heated so that the diameter of the inner peripheral surface is larger than the diameter of the outer peripheral surface of the outer support member 120. By shrink fitting, the magnetic pole unit 70 and the support member 100 can be firmly fixed. It should be noted that the material of the ring 170 can be exemplified as a metal such as aluminum, iron, stainless steel, or a thermosetting resin. From the viewpoint of weight reduction, aluminum is most preferable.

なお、リング170を用いて焼き嵌めする場合には、分割状態の内側支持部材110同士及び分割状態の外側支持部材120同士を組み合わせることなく、回転方向の端面同士を接触させた状態でリング170の内側に磁極子60を配置すれば良い。つまり、図17及び図18を用いて説明した、凸部201,211,221,231や、凹部202,212,222,232を設けなくても良い。 When the ring 170 is used for shrink fitting, the ring 170 is in a state where the end faces in the rotational direction are in contact with each other without combining the inner support members 110 in the split state and the outer support members 120 in the split state. The magnetic monopole 60 may be arranged inside. That is, it is not necessary to provide the convex portions 2011, 211, 221, 231 and the concave portions 202, 212, 222, 232 described with reference to FIGS. 17 and 18.

(一対の突起群130の変形例)
図21は、支持部材100の一対の突起群及び鉄心の変形例の一例を示す図である。
一対の突起群130を構成する突起の形状は直方体状に限定されない。例えば、左側突起群131及び右側突起群132の内の一方の突起群(例えば左側突起群131)を構成する突起の先端が、他方の突起群(例えば右側突起群132)の方へ回転方向に屈曲していても良い。より具体的には、図21に示すように、左側突起群131の第2左側突起131b及び第3左側突起131cが、先端に、右側突起群132の方へ回転方向に屈曲した屈曲部131fを有すると良い。また、右側突起群132の第2右側突起132b及び第3右側突起132cが、先端に、左側突起群131の方へ回転方向に屈曲した屈曲部132fを有すると良い。
(Modification example of a pair of protrusions 130)
FIG. 21 is a diagram showing an example of a pair of protrusions of the support member 100 and a modified example of the iron core.
The shape of the protrusions constituting the pair of protrusions 130 is not limited to the rectangular parallelepiped shape. For example, the tip of a protrusion constituting one of the left protrusion group 131 and the right protrusion group 132 (for example, the left protrusion group 131) rotates toward the other protrusion group (for example, the right protrusion group 132). It may be bent. More specifically, as shown in FIG. 21, the second left projection 131b and the third left projection 131c of the left projection group 131 have a bent portion 131f bent in the rotational direction toward the right projection group 132 at the tip. Good to have. Further, it is preferable that the second right projection 132b and the third right projection 132c of the right projection group 132 have a bent portion 132f bent in the rotational direction toward the left projection group 131 at the tip end.

そして、屈曲部131f,132fを有する突起に対応する位置に配置される鉄心に、屈曲部131f,132fを収容する凹部を形成する。例えば、左側突起群131の第3左側突起131cが屈曲部131fを有し、かつ、右側突起群132の第3右側突起132cが屈曲部132fを有する場合には、図21に示すように、鉄心74における一方側の内部に、屈曲部131f,132fをそれぞれ収容する凹部76を形成すると良い。また、第2左側突起131bが屈曲部131fを有し、かつ、第2右側突起132bが屈曲部132fを有する場合には、鉄心73における他方側の内部に、屈曲部131f,132fをそれぞれ収容する凹部(不図示)を形成すると良い。これら屈曲部131f,132f、凹部76等により、鉄心73,74の軸方向の移動が抑制される。 Then, a recess for accommodating the bent portions 131f and 132f is formed in the iron core arranged at the position corresponding to the protrusion having the bent portions 131f and 132f. For example, when the third left projection 131c of the left projection group 131 has a bent portion 131f and the third right projection 132c of the right projection group 132 has a bending portion 132f, as shown in FIG. 21, the iron core It is preferable to form a recess 76 for accommodating the bent portions 131f and 132f, respectively, inside one side of the 74. When the second left side protrusion 131b has a bent portion 131f and the second right side protrusion 132b has a bent portion 132f, the bent portions 131f and 132f are housed inside the other side of the iron core 73, respectively. It is preferable to form a recess (not shown). The bending portions 131f, 132f, the recesses 76, and the like suppress the axial movement of the iron cores 73 and 74.

図22は、支持部材100の一対の突起群、鉄心及び永久磁石の変形例の一例を示す図である。図22(a)は、一対の突起群の変形例の一例を示す図であり、図22(b)は、鉄心及び永久磁石の変形例の一例を示す図であり、図22(c)は、鉄心及び永久磁石を一対の突起群に嵌め込んだ状態の一例を示す図である。
一対の突起群130の左側突起群131及び右側突起群132が有する突起の数は、4つに限定されない。
図22(a)に示す変形例に係る左側突起群131は、一方側の端部に設けられた第1一方側突起131gと、他方側の端部に設けられた第1他方側突起131hの2つの突起を有する。また、変形例に係る右側突起群132は、一方側の端部に設けられた第2一方側突起132gと、他方側の端部に設けられた第2他方側突起132hの2つの突起を有する構成でも良い。そして、第1一方側突起131g及び第1他方側突起131hは、先端に、右側突起群132の方へ回転方向に屈曲した屈曲部131jを有する。また、第2一方側突起132g及び第2他方側突起132hは、先端に、左側突起群131の方へ回転方向に屈曲した屈曲部132jを有する。
FIG. 22 is a diagram showing an example of deformation of a pair of protrusions, an iron core, and a permanent magnet of the support member 100. 22 (a) is a diagram showing an example of modification of a pair of protrusions, FIG. 22 (b) is a diagram showing an example of modification of an iron core and a permanent magnet, and FIG. 22 (c) is a diagram showing an example of modification. , Is a diagram showing an example of a state in which an iron core and a permanent magnet are fitted in a pair of protrusions.
The number of protrusions of the left side protrusion group 131 and the right side protrusion group 132 of the pair of protrusions 130 is not limited to four.
The left-side projection group 131 according to the modification shown in FIG. 22A is a first one-side projection 131g provided at one end and a first other-side projection 131h provided at the other end. It has two protrusions. Further, the right-side protrusion group 132 according to the modified example has two protrusions, a second one-side protrusion 132g provided at one end and a second other-side protrusion 132h provided at the other end. It may be configured. The first one-side projection 131g and the first other-side projection 131h have a bent portion 131j at the tip thereof, which is bent in the rotational direction toward the right-side projection group 132. Further, the second one-side protrusion 132g and the second other-side protrusion 132h have a bent portion 132j bent in the rotational direction toward the left side protrusion group 131 at the tip end.

図22(b)に示す変形例においては、鉄心73に相当する鉄心273、Z外磁石82に相当するZ外磁石282、鉄心74に相当する鉄心274は、軸方向から見た形状が全て同一である。そして、鉄心273、Z外磁石282、鉄心274は、それぞれ、内側の端面における回転方向の中央部に、当該端面から内側に突出した凸部273a,282a,274aを有する。鉄心273、Z外磁石282、鉄心274は、凸部273a,282a,274aが、回転方向における屈曲部131jと屈曲部132jとの間の隙間に位置し、その他の扇状の部分が、第1一方側突起131gと第2一方側突起132gとで囲まれた部位に位置する形状である。 In the modified example shown in FIG. 22B, the iron core 273 corresponding to the iron core 73, the Z outer magnet 282 corresponding to the Z outer magnet 82, and the iron core 274 corresponding to the iron core 74 all have the same shape when viewed from the axial direction. Is. The iron core 273, the Z outer magnet 282, and the iron core 274 each have convex portions 273a, 282a, 274a protruding inward from the end face at the central portion in the rotation direction on the inner end face. In the iron core 273, the Z outer magnet 282, and the iron core 274, the convex portions 273a, 282a, 274a are located in the gap between the bent portion 131j and the bent portion 132j in the rotational direction, and the other fan-shaped portion is the first one. The shape is located at a portion surrounded by the side protrusion 131 g and the second one side protrusion 132 g.

上述した一対の突起群と、鉄心273、Z外磁石282及び鉄心274との構成により、鉄心273、Z外磁石282及び鉄心274を、軸方向に、第1一方側突起131gと第2一方側突起132gとの間に挿入することが可能となる。また、かかる構成により、鉄心273及び鉄心274が、回転方向及び半径方向に移動することが抑制される。
なお、第1外鉄心抑え部材156、第2外鉄心抑え部材157にて、鉄心273、Z外磁石282、鉄心274が軸方向に移動することが抑制される。
Due to the configuration of the pair of protrusions described above and the iron core 273, the Z outer magnet 282 and the iron core 274, the iron core 273, the Z outer magnet 282 and the iron core 274 are axially arranged with the first one-side projection 131 g and the second one side. It can be inserted between the protrusion and 132 g. Further, with such a configuration, the iron core 273 and the iron core 274 are suppressed from moving in the rotational direction and the radial direction.
The first outer core holding member 156 and the second outer core holding member 157 suppress the movement of the iron core 273, the Z outer magnet 282, and the iron core 274 in the axial direction.

同様に、内側支持部材110の一対の突起群と、鉄心71に相当する鉄心、Z内磁石81に相当する永久磁石及び鉄心72に相当する鉄心との構成を、上述した外側支持部材120の一対の突起群と、鉄心273、Z外磁石282及び鉄心274との構成と同じにしても良い。
第1内鉄心抑え部材154、第2内鉄心抑え部材155にて、これらの鉄心、永久磁石、鉄心が軸方向に移動することが抑制される。
Similarly, the configuration of the pair of protrusions of the inner support member 110, the iron core corresponding to the iron core 71, the permanent magnet corresponding to the Z inner magnet 81, and the iron core corresponding to the iron core 72 is described as the pair of the outer support members 120 described above. The configuration of the protrusion group of the above and the iron core 273, the Z outer magnet 282, and the iron core 274 may be the same.
The first inner core holding member 154 and the second inner core holding member 155 suppress the movement of these iron cores, permanent magnets, and iron cores in the axial direction.

図23は、鉄心及び永久磁石の他の変形例を示す図である。図23(a)は、鉄心及び永久磁石の変形例の一例を示す図であり、図23(b)は、鉄心及び永久磁石を一対の突起群に嵌め込んだ状態の一例を示す図である。
図23に示した、他の変形例においては、鉄心73に相当する鉄心373における一方側の端面に、第1一方側突起131gが嵌り込む凹部373aと、第2一方側突起132gが嵌り込む凹部373bとが形成されている。また、鉄心74に相当する鉄心374における他方側の端面に、第1他方側突起131hが嵌り込む凹部374aと、第2他方側突起132hが嵌り込む凹部374bとが形成されている。
FIG. 23 is a diagram showing other modifications of the iron core and the permanent magnet. FIG. 23A is a diagram showing an example of deformation of the iron core and the permanent magnet, and FIG. 23B is a diagram showing an example of a state in which the iron core and the permanent magnet are fitted into a pair of protrusions. ..
In another modified example shown in FIG. 23, a recess 373a into which the first one-side projection 131g is fitted and a recess into which the second one-side projection 132g is fitted into one end surface of the iron core 373 corresponding to the iron core 73. 373b is formed. Further, a recess 374a into which the first other side projection 131h is fitted and a recess 374b into which the second other side protrusion 132h is fitted are formed on the other end surface of the iron core 374 corresponding to the iron core 74.

鉄心373、Z外磁石82に相当するZ外磁石382及び鉄心374は、軸方向に、第1一方側突起131g及び第2一方側突起132gと、第1他方側突起131h及び第2他方側突起132hとの間に配置される。
かかる構成により、第1外鉄心抑え部材156、第2外鉄心抑え部材157を設けなくても、鉄心373、Z外磁石382及び鉄心374が、軸方向に移動することが抑制される。
The Z outer magnet 382 and the iron core 374 corresponding to the iron core 373 and the Z outer magnet 82 have a first one-side protrusion 131 g and a second one-side protrusion 132 g, and a first other side protrusion 131h and a second other-side protrusion in the axial direction. It is arranged between 132h.
With such a configuration, the iron core 373, the Z outer magnet 382, and the iron core 374 are suppressed from moving in the axial direction without providing the first outer core holding member 156 and the second outer core holding member 157.

同様に、内側支持部材110の一対の突起群と、鉄心71に相当する鉄心、Z内磁石81に相当する永久磁石及び鉄心72に相当する鉄心との構成を、上述した外側支持部材120の一対の突起群と、鉄心373、Z外磁石382及び鉄心374との構成と同じにしても良い。
かかる構成により、第1内鉄心抑え部材154、第2内鉄心抑え部材155を設けなくても、これらの鉄心、永久磁石及び鉄心が、軸方向に移動することが抑制される。
Similarly, the configuration of the pair of protrusions of the inner support member 110, the iron core corresponding to the iron core 71, the permanent magnet corresponding to the Z inner magnet 81, and the iron core corresponding to the iron core 72 is described as the pair of the outer support members 120 described above. The configuration of the protrusion group of the above and the iron core 373, the Z outer magnet 382, and the iron core 374 may be the same.
With such a configuration, it is possible to prevent the core, the permanent magnet, and the iron core from moving in the axial direction without providing the first inner core holding member 154 and the second inner core holding member 155.

(中間支持部材151、R第2磁石84の変形例)
図24は、中間支持部材、R第2磁石の変形例を示す図である。図24(a)は、中間支持部材、R第2磁石の変形例の一例を示す図であり、図24(b)は、中間支持部材とR第2磁石とを嵌め合わせた状態の一例を示す図である。
図24に示した変形例においては、中間支持部材151に相当する中間支持部材251は、回転方向における両端面から、それぞれ回転方向に突出する突出部251aを有している。また、R第2磁石84に相当するR第2磁石284は、回転方向における両端面から突出した凸部831を有しておらず、代わりに、回転方向の両端部に一方側の端面から凹んだ凹部284aを有している。
(Modification example of intermediate support member 151, R second magnet 84)
FIG. 24 is a diagram showing a modified example of the intermediate support member and the R second magnet. FIG. 24 (a) is a diagram showing an example of deformation of the intermediate support member and the R second magnet, and FIG. 24 (b) is an example of a state in which the intermediate support member and the R second magnet are fitted together. It is a figure which shows.
In the modified example shown in FIG. 24, the intermediate support member 251 corresponding to the intermediate support member 151 has protrusions 251a protruding in the rotational direction from both end faces in the rotational direction. Further, the R second magnet 284 corresponding to the R second magnet 84 does not have convex portions 831 protruding from both end faces in the rotation direction, and instead is recessed from one end face to both ends in the rotation direction. It has a concave portion 284a.

そして、組み付ける際に、隣り合うR第2磁石284を並べた後に、隣り合うR第2磁石284の凹部284aに中間支持部材251の突出部251aが嵌まるまで、隣り合うR第2磁石284間に中間支持部材251を挿入する。
これにより、R第2磁石284が軸方向に移動することが抑制される。
Then, when assembling, after arranging the adjacent R second magnets 284, between the adjacent R second magnets 284 until the protruding portion 251a of the intermediate support member 251 fits into the concave portion 284a of the adjacent R second magnets 284. The intermediate support member 251 is inserted into the.
As a result, the R second magnet 284 is suppressed from moving in the axial direction.

(第1Rθ磁石抑え部材152、第2Rθ磁石抑え部材153の変形例)
第1Rθ磁石抑え部材152は、全てのR第1磁石83における一方側の面を覆うように円環状であるが、特にかかる態様に限定されない。また、第1Rθ磁石抑え部材152は、θ第1内磁石85及びθ第1外磁石87における一方側の面を覆うように円環状であるが、特にかかる態様に限定されない。例えば、中間支持部材151の両側にあるR第1磁石83の端面の一部と、θ第1内磁石85における外側部位の端面と、θ第1外磁石87における内側部位の端面とを覆うように十字状であっても良い。かかる構成である場合には、この十字状の押え部材間の領域にあるR第1磁石83や、この十字状の押え部材と第1内鉄心抑え部材154との間の領域にあるθ第1内磁石85や、この十字状の押え部材と第1外鉄心抑え部材156との間の領域にあるθ第1外磁石87の一方側の端面を、第1内鉄心抑え部材154の位置まで拡大させることが可能となる。
同様に、第2Rθ磁石抑え部材153を十字状にすることで、R第2磁石84や、θ第2内磁石86や、θ第2外磁石88の他方側の端面を、第2内鉄心抑え部材155の位置まで拡大させることが可能となる。
(Modification example of the first Rθ magnet holding member 152 and the second Rθ magnet holding member 153)
The first Rθ magnet holding member 152 has an annular shape so as to cover one surface of all the R first magnets 83, but is not particularly limited to such an embodiment. Further, the first Rθ magnet holding member 152 has an annular shape so as to cover one surface of the θ1 inner magnet 85 and the θ1 outer magnet 87, but is not particularly limited to such an embodiment. For example, to cover a part of the end face of the R first magnet 83 on both sides of the intermediate support member 151, the end face of the outer portion of the θ first inner magnet 85, and the end face of the inner portion of the θ first outer magnet 87. It may be cross-shaped. In the case of such a configuration, the R first magnet 83 in the region between the cross-shaped pressing members and the θ1 first magnet in the region between the cross-shaped pressing member and the first inner core holding member 154. The end surface of the inner magnet 85 and one end surface of the θ first outer magnet 87 in the region between the cross-shaped pressing member and the first outer core holding member 156 is expanded to the position of the first inner core holding member 154. It is possible to make it.
Similarly, by forming the second Rθ magnet holding member 153 into a cross shape, the other end face of the R second magnet 84, the θ2 inner magnet 86, and the θ2 second outer magnet 88 can be held down by the second inner core. It is possible to expand to the position of the member 155.

なお、第1の実施形態に係る電動機及び第2の実施形態に係る電動機においては、鉄心(例えば鉄心71)における、電機子10と対向しない面及び永久磁石(例えばZ内磁石81)と対向しない面の少なくとも一つの面を覆うとともに、当該鉄心及び当該永久磁石を支持する、非磁性材料にて成形された支持部材(例えば支持部材100、支持部材50)を、アキシャルギャップ形の電動機に適用している。しかしながら、この支持部材を適用するのはアキシャルギャップ形の電動機に限定されず、例えば、ラジアルギャップ形等の、電気エネルギーを回転運動に変換する電動機に適用しても良い。 In the electric motor according to the first embodiment and the electric motor according to the second embodiment, the surface of the iron core (for example, the iron core 71) that does not face the armature 10 and the permanent magnet (for example, the magnet 81 in Z) do not face each other. A support member (for example, support member 100, support member 50) formed of a non-magnetic material that covers at least one surface and supports the iron core and the permanent magnet is applied to an axial gap type motor. ing. However, the application of this support member is not limited to the axial gap type motor, and may be applied to, for example, a radial gap type motor that converts electrical energy into rotary motion.

1,2…電動機、5…回転軸、10…電機子、20…磁極子、30,70…磁極ユニット、50,100…支持部材、51,110…内側支持部材、52,120…外側支持部材、53…他方側支持部材、71,72,73,74,311,321,401,411,421…鉄心、75,315,405,415…回転子磁極、81…Z内磁石、82…Z外磁石、83…R第1磁石、84…R第2磁石、85…θ第1内磁石、86…θ第2内磁石、87…θ第1外磁石、88…θ第2外磁石、130,150…一対の突起群、151…中間支持部材、312,322,402,412,422…永久磁石 1, 2, ... Electric motor, 5 ... Rotating shaft, 10 ... Armor, 20 ... Magnetic pole element, 30, 70 ... Magnetic pole unit, 50, 100 ... Support member, 51, 110 ... Inner support member, 52, 120 ... Outer support member , 53 ... Other side support member, 71,72,73,74,311,321,401,411,421 ... Iron core, 75,315,405,415 ... Rotor magnetic pole, 81 ... Z inner magnet, 82 ... Z outside Magnet, 83 ... R 1st magnet, 84 ... R 2nd magnet, 85 ... θ 1st inner magnet, 86 ... θ 2nd inner magnet, 87 ... θ 1st outer magnet, 88 ... θ 2nd outer magnet, 130, 150 ... A pair of protrusions, 151 ... Intermediate support member, 312,322,402,421,422 ... Permanent magnet

Claims (13)

第1鉄心と、
第2鉄心と、
第1極が前記第1鉄心の方を向くとともに第2極が前記第2鉄心の方を向くように配置された永久磁石と、
前記第1鉄心及び前記第2鉄心における、電機子と対向しない面及び前記永久磁石と対向しない面の少なくとも一つの面を覆うとともに、当該第1鉄心、当該第2鉄心及び当該永久磁石を支持する、非磁性材料にて成形された支持部材と、
を備える磁極子。
The first iron core and
The second iron core and
A permanent magnet arranged so that the first pole faces the first core and the second pole faces the second core.
It covers at least one surface of the first core and the second core that does not face the armature and the surface that does not face the permanent magnet, and supports the first core, the second core, and the permanent magnet. , Support members molded from non-magnetic materials, and
A magnetic monopole with.
前記支持部材は、前記永久磁石が前記第1鉄心又は前記第2鉄心の方へ移動することを抑制する複数の突起を有する
請求項1に記載の磁極子。
The magnetic pole according to claim 1, wherein the support member has a plurality of protrusions that prevent the permanent magnet from moving toward the first core or the second core.
前記複数の突起は、前記永久磁石における第1面側に配置される突起である第1面側突起を複数有するとともに、当該永久磁石における前記第1面とは反対側の面である第2面側に配置される突起である第2面側突起を複数有し、
前記第1鉄心は、複数の前記第1面側突起間に配置され、
前記第2鉄心は、複数の前記第2面側突起間に配置される
請求項2に記載の磁極子。
The plurality of protrusions have a plurality of first surface side protrusions which are protrusions arranged on the first surface side of the permanent magnet, and a second surface which is a surface opposite to the first surface of the permanent magnet. It has a plurality of second surface side protrusions that are protrusions arranged on the side,
The first iron core is arranged between a plurality of the first surface side protrusions.
The magnetic monopole according to claim 2, wherein the second iron core is arranged between a plurality of the second surface side protrusions.
前記複数の前記第2面側突起における一方の当該第2面側突起は、他方の当該第2面側突起の方に屈曲した一方側屈曲部を有し、当該他方の当該第2面側突起は、当該一方の当該第2面側突起の方に屈曲した他方側屈曲部を有し、
前記第2鉄心には、前記一方側屈曲部及び前記他方側屈曲部を収容する凹部が形成されている
請求項3に記載の磁極子。
One of the second surface side projections in the plurality of the second surface side projections has a one-sided bending portion bent toward the other second surface side projection, and the other second surface side projection has a bent portion. Has a bent portion on the other side that is bent toward the protrusion on the second surface side of the one.
The magnetic pole according to claim 3, wherein the second iron core is formed with a recess for accommodating the one-sided bent portion and the other-side bent portion.
前記支持部材は、回転方向に並べられるとともに半径方向に突出した複数の突起を有し、前記複数の突起における一方の突起は、他方の突起の方に屈曲した屈曲部を有し、当該他方の突起は、当該一方の突起の方に屈曲した屈曲部を有し、
前記第1鉄心は、前記一方の突起と前記他方の突起とで囲まれた部位に配置されるとともに、当該一方の突起の屈曲部と当該他方の突起の屈曲部との間に配置される凸部を有する
請求項1に記載の磁極子。
The support member has a plurality of protrusions arranged in the rotational direction and protruding in the radial direction, and one protrusion in the plurality of protrusions has a bent portion bent toward the other protrusion and the other. The protrusion has a bend that bends toward one of the protrusions.
The first iron core is arranged at a portion surrounded by the one protrusion and the other protrusion, and is a protrusion arranged between the bent portion of the one protrusion and the bent portion of the other protrusion. The magnetic pole according to claim 1, which has a portion.
前記第2鉄心及び前記永久磁石は、回転軸の軸方向に見た形状が全て同一である
請求項5に記載の磁極子。
The magnetic pole according to claim 5, wherein the second core and the permanent magnet all have the same shape as seen in the axial direction of the rotating shaft.
前記支持部材は、回転方向に並べられるとともに半径方向に突出した複数の突起を有し、当該複数の突起における一方の突起は、当該複数の突起における他方の突起の方に屈曲した屈曲部を有し、当該他方の突起は、当該一方の突起の方に屈曲した屈曲部を有し、
前記第1鉄心には、前記複数の突起が嵌り込む凹部が形成されている
請求項1に記載の磁極子。
The support member has a plurality of protrusions arranged in the rotation direction and protruding in the radial direction, and one protrusion in the plurality of protrusions has a bent portion bent toward the other protrusion in the plurality of protrusions. However, the other protrusion has a bent portion bent toward the one protrusion.
The magnetic pole according to claim 1, wherein the first iron core is formed with a recess into which the plurality of protrusions are fitted.
前記支持部材は、回転方向に並べられるとともに半径方向に突出した、前記複数の突起と対向する他の複数の突起を有し、当該他の複数の突起における一方の突起は、当該他の複数の突起における他方の突起の方に屈曲した屈曲部を有し、当該他方の突起は、当該一方の突起の方に屈曲した屈曲部を有し、
前記第2鉄心には、前記他の複数の突起が嵌り込む凹部が形成され、
前記第1鉄心、前記永久磁石及び前記第2鉄心は、前記複数の突起と前記他の複数の突起との間に配置されている
請求項7に記載の磁極子。
The support member has a plurality of other protrusions facing the plurality of protrusions, which are arranged in the rotation direction and project in the radial direction, and one protrusion in the other plurality of protrusions is the other plurality of protrusions. The protrusion has a bend that bends toward the other protrusion, and the other protrusion has a bend that bends toward that one protrusion.
The second iron core is formed with a recess into which the other plurality of protrusions are fitted.
The magnetic pole according to claim 7, wherein the first core, the permanent magnet, and the second core are arranged between the plurality of protrusions and the other plurality of protrusions.
前記第1鉄心、前記第2鉄心及び前記永久磁石を有するユニットを複数有し、
さらに、複数の前記ユニット相互間の距離を維持するように当該複数の当該ユニット間に配置された中間支持部材を備える
請求項1から8のいずれか1項に記載の磁極子。
It has a plurality of units having the first core, the second core, and the permanent magnet.
The magnetic pole according to any one of claims 1 to 8, further comprising an intermediate support member arranged between the plurality of units so as to maintain a distance between the plurality of the units.
前記ユニットは、前記第1鉄心に対して、前記第2鉄心と直交する方向に配置された第3鉄心と、第1極が当該第1鉄心の方を向くとともに第2極が当該第3鉄心の方を向くように配置された第2の永久磁石と、を有し、
前記中間支持部材は、隣り合うユニットの前記第2の永久磁石間に配置される
請求項9に記載の磁極子。
The unit has a third core arranged in a direction orthogonal to the second core with respect to the first core, a first pole facing the first core, and a second pole facing the third core. With a second permanent magnet, arranged to face towards,
The magnetic pole according to claim 9, wherein the intermediate support member is arranged between the second permanent magnets of adjacent units.
電機子と、
回転軸を有し、前記電機子と対向して配置された磁極子と、
を備えるアキシャルギャップ形の電動機であって、
前記磁極子は、第1鉄心と、当該第1鉄心に対して前記電機子とは反対側に配置された第2鉄心と、第1極が当該第1鉄心の方を向くとともに第2極が当該第2鉄心の方を向くように配置された永久磁石と、当該第1鉄心及び当該第2鉄心における前記回転軸の軸方向に伸びる面、又は、当該第2鉄心における当該電機子とは反対側の面を覆うとともに、当該第1鉄心、当該第2鉄心及び当該永久磁石を支持する、非磁性材料にて成形された支持部材と、
を備える電動機。
With an armature
A magnetic monopole having a rotation axis and arranged to face the armature,
It is an axial gap type motor equipped with
The magnetic poles include a first core, a second core arranged on the opposite side of the first core from the armature, a first pole facing the first core, and a second pole. The permanent magnets arranged so as to face the second core and the surface extending in the axial direction of the rotation axis in the first core and the second core, or the opposite to the armature in the second core. A support member molded from a non-magnetic material that covers the side surface and supports the first core, the second core, and the permanent magnet.
Equipped with a motor.
分割された状態の外側支持部材に対して、複数の第1鉄心と、複数の第2鉄心と、第1極が当該第1鉄心の方を向くとともに第2極が当該第2鉄心の方を向くように当該第1鉄心と当該第2鉄心との間に第1永久磁石を嵌め込み、
複数の前記第1鉄心の内の隣り合う当該第1鉄心の間に第2永久磁石を嵌め込み、
複数の前記第2鉄心の内の隣り合う当該第2鉄心の間に第3永久磁石を嵌め込み、
分割された状態の内側支持部材に対して、複数の第3鉄心と、複数の第4鉄心と、第1極が当該第3鉄心の方を向くとともに第2極が当該第4鉄心の方を向くように当該第3鉄心と当該第4鉄心との間に第4永久磁石を嵌め込み、
複数の前記第3鉄心の内の隣り合う当該第3鉄心の間に第5永久磁石を嵌め込み、
複数の前記第4鉄心の内の隣り合う当該第4鉄心の間に第6永久磁石を嵌め込み、
前記第1鉄心と前記第3鉄心との間に第7永久磁石を配置し、前記第2鉄心と前記第4鉄心との間に第8永久磁石を配置し、
前記分割された状態の外側支持部材と前記分割された状態の内側支持部材とを組み合わせることでサブユニットを構成する
磁極子の組立方法。
With respect to the outer support member in the divided state, the plurality of first cores, the plurality of second cores, the first pole faces the first core, and the second pole faces the second core. Insert the first permanent magnet between the first core and the second core so that it faces.
A second permanent magnet is fitted between adjacent first cores among the plurality of first cores.
A third permanent magnet is fitted between adjacent second cores among the plurality of second cores.
With respect to the inner support member in the divided state, a plurality of third cores, a plurality of fourth cores, the first pole faces the third core, and the second pole faces the fourth core. Insert the 4th permanent magnet between the 3rd core and the 4th core so that it faces.
A fifth permanent magnet is fitted between adjacent third cores among the plurality of third cores.
A sixth permanent magnet is fitted between adjacent fourth cores among the plurality of fourth cores.
A seventh permanent magnet is placed between the first core and the third core, and an eighth permanent magnet is placed between the second core and the fourth core.
A method for assembling a magnetic monopole that constitutes a subunit by combining the outer support member in the divided state and the inner support member in the divided state.
複数の前記サブユニットにおける、前記分割された状態の内側支持部材同士を接合するとともに、前記分割された状態の外側支持部材同士を接合する
請求項12に記載の磁極子の組立方法。
The method for assembling a magnetic pole according to claim 12, wherein the inner support members in the divided state are joined to each other in the plurality of subunits, and the outer support members in the divided state are joined to each other.
JP2020115426A 2020-07-03 2020-07-03 How to assemble magnetic poles, motors, and magnetic poles Active JP7391783B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020115426A JP7391783B2 (en) 2020-07-03 2020-07-03 How to assemble magnetic poles, motors, and magnetic poles
PCT/JP2021/023538 WO2022004481A1 (en) 2020-07-03 2021-06-22 Magnetic pole element, electric motor, and magnetic pole element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115426A JP7391783B2 (en) 2020-07-03 2020-07-03 How to assemble magnetic poles, motors, and magnetic poles

Publications (2)

Publication Number Publication Date
JP2022013098A true JP2022013098A (en) 2022-01-18
JP7391783B2 JP7391783B2 (en) 2023-12-05

Family

ID=79316273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115426A Active JP7391783B2 (en) 2020-07-03 2020-07-03 How to assemble magnetic poles, motors, and magnetic poles

Country Status (2)

Country Link
JP (1) JP7391783B2 (en)
WO (1) WO2022004481A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055577A (en) 2009-08-31 2011-03-17 Daikin Industries Ltd Rotor
JP5569135B2 (en) * 2010-05-11 2014-08-13 ダイキン工業株式会社 Rotating electrical machine equipment
JP2012249347A (en) 2011-05-25 2012-12-13 Aisin Aw Co Ltd Rotor of axial gap rotary electric machine
JP6282795B2 (en) * 2011-11-10 2018-02-21 日本電産株式会社 motor

Also Published As

Publication number Publication date
WO2022004481A1 (en) 2022-01-06
JP7391783B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP5108236B2 (en) Rotor for motor
KR101255951B1 (en) Transverse Type Switched Reluctance Motor
US7963741B2 (en) Motor and fan device using the same
CN104011973B (en) Motor
US9018816B2 (en) Rotor of motor having interpole magnets in holding member
AU2005325361B2 (en) Armature, motor, compressor and method for manufacturing them
JP2006254619A (en) Core, armature, motor, and compressor, and manufacturing method thereof
KR101597965B1 (en) Motor using complex flux
TW201112583A (en) Permanent magnet type synchronous motor
US6897595B1 (en) Axial flux motor with active flux shaping
JP2003348805A (en) Generator
JP5702118B2 (en) Rotor structure and motor
JP2012070522A (en) Spherical motor
JP2002058184A (en) Rotor construction and motor
JP2022013098A (en) Magnetic pole, electric motor and assembling method of magnetic pole
KR101971096B1 (en) Motor for improving power
JP2010110096A (en) Rotor, rotating electric machine and method for manufacturing the rotor
JP2017135811A (en) Power generator
JP6798689B2 (en) Coreless rotary electric machine
US20240120788A1 (en) Magnet arrangement method and rotor manufacturing method
WO2023199709A1 (en) Rotary electric machine
JP7238726B2 (en) Rotor and rotor manufacturing method
JP3517543B2 (en) motor
WO2022254976A1 (en) Electric power generator
JP2007143253A (en) Stepping motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7391783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150