JP2022013080A - Voltage reactive power control measure creation device, voltage reactive power control device, and method - Google Patents

Voltage reactive power control measure creation device, voltage reactive power control device, and method Download PDF

Info

Publication number
JP2022013080A
JP2022013080A JP2020115387A JP2020115387A JP2022013080A JP 2022013080 A JP2022013080 A JP 2022013080A JP 2020115387 A JP2020115387 A JP 2020115387A JP 2020115387 A JP2020115387 A JP 2020115387A JP 2022013080 A JP2022013080 A JP 2022013080A
Authority
JP
Japan
Prior art keywords
voltage
power control
input
reactive power
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020115387A
Other languages
Japanese (ja)
Inventor
宏基 臼井
Hiroki Usui
弘一 原
Koichi Hara
正明 伊藤
Masaaki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020115387A priority Critical patent/JP2022013080A/en
Publication of JP2022013080A publication Critical patent/JP2022013080A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Abstract

To enable an operator to select a voltage reactive power control method matching an operation case to improve convenience to the operator.SOLUTION: There is provided a voltage reactive power control measure creation device 100 which estimates a state of voltage reactive power at a node of an electric power system from the present to a future point of time, and finds measures to control voltage reactive power control equipment to avoid a deviation in the estimated state from a reference value if the deviation is predicted. The voltage reactive power control measure creation device comprises an input part which inputs information on the electric system, an HMI device which displays, on a screen, an input variable of the voltage reactive power control equipment from an operator, and a computation device. The computation device comprises state estimation means which uses the input from the input part to estimate a state of voltage reactive power at the node of the electric power system from the present to a future point of time, and control measure calculation means which uses an input variable of the voltage reactive power control equipment that the operator sets to calculate a tidal current of the electric power system, and finds a control measure for each input variable of the voltage reactive power control equipment, a plurality of found control measures being displayed on the screen of the HMI device.SELECTED DRAWING: Figure 1

Description

本発明は、電力系統監視制御システムにおける電圧無効電力制御策作成装置、電圧無効電力制御装置、及び方法に関する。 The present invention relates to a voltage-reactive power control measure creating device, a voltage-reactive power control device, and a method in a power system monitoring and control system.

電力系統運用を行う上で、運転員が電気を安定して供給する使命上、常に最新の電力系統状態を把握し、系統の状態変化時には迅速かつ的確な判断と処置を講じることが要求される。 In operating the power system, the operator is required to keep track of the latest power system status and take prompt and accurate judgments and measures when the system status changes in order to provide a stable supply of electricity. ..

近年、電力の需要増加による電力系統の大規模化や、再生可能エネルギー電源の連系量拡大に伴う需給・系統運用上の課題により、電力系統運用の高度化・複雑化が進んできており、電力系統監視制御システムも高機能化及び自動化へと発展してきている。 In recent years, the sophistication and complexity of electric power system operation has been increasing due to the increase in the scale of the electric power system due to the increase in electric power demand and the problems in supply and demand and system operation due to the expansion of the interconnection amount of renewable energy power sources. Power system monitoring and control systems are also developing into higher functionality and automation.

その中で、電力系統監視制御システムの一部の機能である電圧無効電力制御は、電力系統の電圧の安定運用(電圧崩壊・電圧逸脱の防止及び経済運用)電力損失・機器操作回数の低減を可能とすることを目的としている。 Among them, voltage-reactive power control, which is a part of the function of the power system monitoring and control system, reduces the stable operation of the voltage of the power system (prevention of voltage collapse / deviation and economic operation), power loss, and reduction of the number of equipment operations. The purpose is to make it possible.

電圧無効電力制御に関して、特許文献1によれば、天候によって出力が変動する電源(出力変動型電源が大量導入されると再生可能エネルギーの出力変動により電圧や潮流の変動量が大きくなること、電源構成や系統構成が変更されることの1つ以上が発生しても、電力系統の電圧と無効電力のバランス維持や設定範囲維持や、経済性向上や、電圧制御装置の基準値または目標値または整定値を設定するための運用者の労力を低減すること、の1つ以上を達成する技術を提供することを目的として、「電力系統の電圧無効電力を調整する個別制御装置について、評価対象データと目標値データと個別制御装置制御方式データと個別制御装置データを記憶する第1のデータベースと、個別制御装置について、機器操作データを記憶する第2のデータベースと、第1のデータベースに記憶されたデータから個別制御装置の動作を予測し個別制御装置動作予測データを得る個別制御装置動作予測部と、個別制御装置動作予測データと機器操作データを対比可能に表示する表示部とを備えることを特徴とする電圧無効電力運用支援装置。」とすることが知られている。 Regarding voltage ineffective power control, according to Patent Document 1, a power supply whose output fluctuates depending on the weather (when a large number of output fluctuating power supplies are introduced, the amount of fluctuation in voltage and power flow increases due to the output fluctuation of renewable energy, and the power supply Even if one or more of the configuration or grid configuration changes occur, the balance between the voltage of the power system and the ineffective power is maintained, the set range is maintained, the economic efficiency is improved, and the reference value or target value of the voltage control device or For the purpose of providing technology that achieves one or more of reducing the operator's effort to set the set value, "Evaluation target data for the individual control device that adjusts the voltage ineffective power of the power system. The target value data, the individual control device control method data, and the individual control device data are stored in the first database, and the individual control device is stored in the second database that stores the device operation data and the first database. It is characterized by including an individual control device operation prediction unit that predicts the operation of the individual control device from the data and obtains the individual control device operation prediction data, and a display unit that displays the individual control device operation prediction data and the device operation data in a comparable manner. It is known to be a voltage ineffective power operation support device.

また特許文献2によれば、運転員の手動制御に対し評価を行うとともに短長期的に分析を行い、手動制御の標準化を図り、運転員の考えを採り入れて機能の高機能化や改善の方向性を見出すことができるようにすることを目的として、「電力系統の状態量を監視し経済負荷配分を考慮に入れて状態量が基準値の許容幅内になるように需給制御を行うとともに系統設備の運用実績の系統運用評価を行う監視制御手段15と、監視制御手段15による監視制御のための入出力データを運用記録として保存するための運用記録保存部14と、運転員が操作/手動制御を行った結果を運用記録として運用記録保存部14に保存する運用記録手段13と、運用記録保存部14に保存された運用記録に対して予め設定された評価基準を用いて当日の運用を評価する評価手段16とを備える。」ことが知られている。 Further, according to Patent Document 2, the manual control of the operator is evaluated and analyzed in the short and long term to standardize the manual control, and the idea of the operator is incorporated to improve the function and improve the function. For the purpose of being able to find out the nature, "We monitor the state amount of the power system and control the supply and demand so that the state amount is within the allowable range of the standard value in consideration of the economic load distribution and the system. A monitoring control means 15 for system operation evaluation of equipment operation results, an operation record storage unit 14 for storing input / output data for monitoring control by the monitoring control means 15 as an operation record, and an operation / manual operation by an operator. The operation of the day is performed using the operation recording means 13 that stores the control result as an operation record in the operation record storage unit 14 and the evaluation criteria set in advance for the operation record stored in the operation record storage unit 14. It is provided with an evaluation means 16 for evaluation. "

特開2018-068045号公報Japanese Unexamined Patent Publication No. 2018-068045 特開2012-016111号公報Japanese Unexamined Patent Publication No. 2012-016111

電力系統監視制御システムにおける電圧無効電力制御においては、各種装置群からのデータ連携(需要予測データや電力系統設備の作業停止計画、天候データ)などから将来系統の設備の状態や母線電圧の電圧値を推定し、監視対象系統の母線電圧が基準電圧に収まるように、発電機の指令値の変更、変圧器タップ値の変更、調相設備の入/切等の組み合わせ、のいずれかあるいは複数の制御策を求め制御を実施する。 In the voltage invalid power control in the power system monitoring and control system, the state of the equipment of the future system and the voltage value of the bus voltage from the data linkage (demand forecast data, work stop plan of the power system equipment, weather data) from various equipment groups, etc. One or more of the combination of changing the command value of the generator, changing the transformer tap value, turning on / off the phase adjustment equipment, etc. so that the bus voltage of the monitored system falls within the reference voltage. Seek control measures and implement control.

また、その制御の方法として、算出した制御策を自動制御する方法と、算出した制御策を元に運用者が確認・見直しを行い手動制御する方法がある。 Further, as the control method, there are a method of automatically controlling the calculated control measure and a method of manual control by the operator checking and reviewing the calculated control measure based on the calculated control measure.

一方で、電力系統運用では、時刻々と変化する系統状態や現場に設置されている電力系統設備の機器の特性を考慮する必要があり、運用者のノウハウが介入するケースが起こりえる。つまり、目的は母線電圧の逸脱を無くすことでも、運用者のノウハウによってはその手順が異なる場合があり、一定のロジックから算出した一つの解の制御策では、複雑化された電力系統運用の手法には機能の信頼性が満たない場合が考えられる。 On the other hand, in power system operation, it is necessary to consider the system state that changes from time to time and the characteristics of the equipment of the power system equipment installed at the site, and there may be cases where the know-how of the operator intervenes. In other words, even if the purpose is to eliminate the deviation of the bus voltage, the procedure may differ depending on the know-how of the operator, and one solution control measure calculated from a certain logic is a complicated power system operation method. It is possible that the reliability of the function is not satisfied.

本発明の目的は、電力系統運用には運用者のノウハウが介入することがあり、運用手法は必ずしも一つではない特性があることから、複数の制御策を運用者に提示することで、その時々の運用ケースに合わせた電圧無効電力制御手法を選択でき、運用者の電圧運用業務の利便性を図ることにある。 An object of the present invention is that the know-how of the operator may intervene in the operation of the electric power system, and there is a characteristic that the operation method is not necessarily one. Therefore, by presenting a plurality of control measures to the operator. It is possible to select a voltage-reactive power control method that suits the occasional operation case, and to improve the convenience of the operator's voltage operation work.

以上のことから本発明においては、「電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求める電圧無効電力制御策作成装置であって、電力系統の情報を入力する入力部と、運用者からの電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、入力部とHMI装置からの入力を用いて制御策を求めるための演算を行う演算部を備え、演算部は、入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定する状態推定手段と、HMI装置により運用者が設定した電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求める制御策算出手段を備え、求めた複数の制御策をHMI装置に画面表示することを特徴とする電圧無効電力制御策作成装置」とするものである。 From the above, in the present invention, "the state of the voltage ineffective power at the node of the power system from the present time to the future time point is estimated, and when it is predicted that the estimated state deviates from the reference value, the deviation avoidance is avoided. It is a voltage ineffective power control measure creation device that seeks control measures for voltage ineffective power control equipment, and takes in the input unit for inputting power system information and the input variables of the voltage ineffective power control equipment from the operator, and screens It is equipped with an HMI device for displaying and a calculation unit that performs an operation for obtaining a control measure using an input unit and an input from the HMI device. The calculation unit is a node of a power system using an input from the input unit. Using the state estimation means for estimating the state of voltage ineffective power from the present time to the future time point and the input variable of the voltage ineffective power control device set by the operator by the HMI device, the power system power flow is calculated and the voltage is invalid. It is a voltage-disabled power control measure creation device characterized by having a control measure calculation means for obtaining control measures for each input variable of the power control device and displaying a plurality of obtained control measures on the screen of the HMI device. " ..

また本発明においては、「電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求め、電圧無効電力制御機器を操作する電圧無効電力制御装置であって、電力系統の情報を入力する入力部と、運用者からの電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、入力部とHMI装置からの入力を用いて制御策を求めるための演算を行う演算部を備え、演算部は、入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定する状態推定手段と、HMI装置により運用者が設定した電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求める制御策算出手段と、求めた複数の制御策をHMI装置に画面表示し、運用者が画面上で選択した制御策に従い電力系統の電圧無効電力制御機器に与える出力部を備えることを特徴とする電圧無効電力制御装置」とするものである。 Further, in the present invention, "a voltage for avoiding deviation when the state of voltage ineffective power at a node of the power system is estimated from the present time to a future time point and the estimated state is predicted to deviate from the reference value. It is a voltage ineffective power control device that seeks control measures for the ineffective power control device and operates the voltage ineffective power control device. An input unit for inputting power system information and an input variable of the voltage ineffective power control device from the operator. It is equipped with an HMI device for capturing and displaying on the screen, and a calculation unit for performing an operation for obtaining a control measure using the input unit and the input from the HMI device. The calculation unit uses the input from the input unit to generate power. The power system power flow is calculated using the state estimation means for estimating the state of the voltage ineffective power from the present time to the future time in the node of the system and the input variable of the voltage ineffective power control device set by the operator by the HMI device. Then, the control measure calculation means for obtaining the control measure for each input variable of the voltage ineffective power control device and the obtained multiple control measures are displayed on the screen of the HMI device, and the control measure selected by the operator on the screen is displayed on the screen of the power system. The voltage ineffective power control device is characterized by having an output unit for giving to the voltage ineffective power control device.

また本発明においては、「電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求める電圧無効電力制御策作成方法であって、電力系統の情報を入力する入力部と、運用者からの電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、入力部とHMI装置からの入力を用いて制御策を求めるための演算を行う演算部を備え、演算部は、入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、HMI装置により運用者が設定した電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求め、求めた複数の制御策をHMI装置に画面表示することを特徴とする電圧無効電力制御策作成方法」とするものである。 Further, in the present invention, "a voltage for avoiding deviation when the state of voltage ineffective power at a node of the power system is estimated from the present time to a future time point and the estimated state is predicted to deviate from the reference value. This is a method for creating a voltage disabled power control measure that requires control measures for the disabled power control device. To capture the input unit for inputting power system information and the input variables of the voltage disabled power control device from the operator and display them on the screen. The HMI device and the calculation unit that performs the calculation to obtain the control measure using the input unit and the input from the HMI device are provided. Estimate the state of voltage ineffective power up to the time point, perform power system power flow calculation using the input variables of the voltage ineffective power control device set by the operator by the HMI device, and perform each input variable of the voltage ineffective power control device. It is a method of creating a voltage ineffective power control measure, which is characterized in that a control measure is requested in the HMI device and a plurality of the obtained control measures are displayed on the screen of the HMI device. "

また本発明においては、「電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求め、電圧無効電力制御機器を操作する電圧無効電力制御方法であって、電力系統の情報を入力する入力部と、運用者からの電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、入力部とHMI装置からの入力を用いて制御策を求めるための演算を行う演算部を備え、演算部は、入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、HMI装置により運用者が設定した電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求め、求めた複数の制御策をHMI装置に画面表示し、運用者が画面上で選択した制御策に従い電力系統の電圧無効電力制御機器に与えることを特徴とする電圧無効電力制御装置」とするものである。 Further, in the present invention, "a voltage for avoiding deviation when the state of voltage ineffective power at a node of the power system is estimated from the present time to a future time point and the estimated state is predicted to deviate from the reference value. It is a voltage ineffective power control method that seeks control measures for the ineffective power control device and operates the voltage ineffective power control device. An input unit for inputting power system information and an input variable of the voltage ineffective power control device from the operator. It is equipped with an HMI device for capturing and displaying on the screen, and a calculation unit for performing an operation for obtaining a control measure using the input unit and the input from the HMI device. The calculation unit uses the input from the input unit to generate power. Estimate the state of voltage ineffective power at the node of the system from the present time to the future time point, perform the power system power flow calculation using the input variable of the voltage ineffective power control device set by the operator by the HMI device, and make the voltage invalid. Request control measures for each input variable of the power control device, display the obtained multiple control measures on the screen of the HMI device, and give the voltage-disabled power control device of the power system according to the control measures selected on the screen by the operator. It is a characteristic voltage ineffective power control device.

本発明によれば、優先順位をつけた複数の制御策を運用者に提示し選択させることで、運用者の電圧運用業務の運用者利便性を図ることができる。また、選択された制御策データを蓄積することで運用パターンを分析し、より運用者のノウハウに沿った制御策を導き出すことのできる電力系統監視制御システムを提供できる。 According to the present invention, by presenting and having the operator select a plurality of prioritized control measures, it is possible to improve the convenience of the operator in the voltage operation work of the operator. Further, it is possible to provide a power system monitoring and control system capable of analyzing an operation pattern by accumulating selected control measure data and deriving a control measure more in line with the know-how of the operator.

本発明の実施例に係る電力系統監視制御システムにおける電圧無効電力制御装置の構成例を示す図。The figure which shows the structural example of the voltage ineffective power control apparatus in the power system monitoring control system which concerns on embodiment of this invention. 状態推定手段5により作成された将来系統状態(電圧変動予測例)を示す図。The figure which shows the future system state (voltage fluctuation prediction example) created by the state estimation means 5. 図1の演算装置8を計算機で実現する場合の全体処理フローを示す図。The figure which shows the whole processing flow when the arithmetic unit 8 of FIG. 1 is realized by a computer. 制御策算出手段6(処理ステップS37)の処理内容を示す図。The figure which shows the processing content of the control measure calculation means 6 (processing step S37). HMI画面90に複数の制御策を表示した例を示す図。The figure which shows the example which displayed a plurality of control measures on the HMI screen 90. データベース登録値の変化幅とオンライン操作時の変化幅の際についての概念を表した図。The figure which showed the concept about the change width of a database registration value and the change width at the time of an online operation.

以下本発明の実施例について図面を用いて説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、本発明の実施例に係る電力系統監視制御システムにおける電圧無効電力制御策作成装置の構成例を示す図である。図1の電力系統監視制御システムは、電圧無効電力制御装置と電力系統1により構成されている。また電圧無効電力制御装置は、電圧無効電力制御策作成装置100を含んで構成されている。 FIG. 1 is a diagram showing a configuration example of a voltage-reactive power control measure creating device in the power system monitoring and control system according to the embodiment of the present invention. The power system monitoring and control system of FIG. 1 is composed of a voltage-reactive power control device and a power system 1. Further, the voltage ineffective power control device includes a voltage ineffective power control measure creating device 100.

このうち、図1の電圧無効電力制御策作成装置100は、演算装置8を主体に情報伝送装置2、HMI装置10、外部データ受信装置3、運用記録保存装置9を含んで構成されており、情報伝送装置2や外部データ受信装置3を介して電力系統1の情報等を入手し、電圧無効電力制御策を作成する。さらに電圧無効電力制御策作成装置100は、複数作成した電圧無効電力制御策の中から状況に応じた最適な制御策を、電力系統1の構成設備に対する電圧無効電力制御指令として与えることで、電圧無効電力制御装置として機能することができる。 Of these, the voltage ineffective power control measure creating device 100 of FIG. 1 is composed mainly of an arithmetic device 8 and includes an information transmission device 2, an HMI device 10, an external data reception device 3, and an operation record storage device 9. Information of the power system 1 and the like are obtained via the information transmission device 2 and the external data reception device 3, and a voltage ineffective power control measure is created. Further, the voltage ineffective power control measure creating device 100 gives an optimum control measure according to the situation from a plurality of created voltage ineffective power control measures as a voltage ineffective power control command to the constituent equipment of the power system 1. It can function as an ineffective power control device.

これに対し、電力系統1は、多くの設備や機器で構成されており、このうち本発明が目的とする電圧、無効電力の制御に貢献する機器は、発電機G、タップ付き変圧器LRT、調相設備SRである。電力系統1は多数の、これら電圧、無効電力制御用の機器で構成されていることから、電圧、無効電力を改善するにしても、どの機器をどの程度操作し、どういう順序で動かすのがよいかという組み合わせが複数あり得、最適な組み合わせであることが求められる。 On the other hand, the power system 1 is composed of many facilities and devices, and among them, the devices that contribute to the control of the voltage and the reactive power, which are the objects of the present invention, are the generator G, the tapped transformer LRT, and the like. Phase adjustment equipment SR. Since the power system 1 is composed of a large number of devices for controlling these voltages and reactive powers, it is better to operate which device and to what extent and in what order even if the voltage and reactive power are improved. There can be multiple combinations, and it is required to be the optimum combination.

演算装置8は、電力系統1の状態変化データを情報伝送装置2から受信することによりHMI装置10に現在および将来の系統状態、あるいは電圧、無効電力改善のための制御策案などを表示する。具体的には、演算装置8内の状態推定手段5が現在系統データと外部データ受信装置3の情報をもとに将来系統状態を推定作成し、さらに操作変数設定手段7を参照して電圧、無効電力改善のための制御策案などを作成する。なお外部データ受信装置3の情報とは、電力系統の構成、各種機器、各種設定或は運用上の制限に関する情報などである。 By receiving the state change data of the power system 1 from the information transmission device 2, the arithmetic unit 8 displays the current and future system states, voltage, control measures for improving the reactive power, and the like on the HMI device 10. Specifically, the state estimation means 5 in the arithmetic unit 8 estimates and creates a future system state based on the current system data and the information of the external data receiving device 3, and further refers to the operation variable setting means 7 to determine the voltage. Create control measures to improve reactive power. The information of the external data receiving device 3 is information on the configuration of the power system, various devices, various settings, or operational restrictions.

状態推定手段5により作成された将来系統状態(電圧変動予測例)は、図2に例示するようなものである。図2は、横軸に時間、縦軸に電圧の運用基準値を挟んで上下に設定された電圧の監視上下限値を示している。図2の表示例によれば、現在時刻t0では監視上下限値の範囲内にある実線で示す電圧が、将来時刻t1では監視上限値に接近し、その後時刻t2に至るまで監視上限値から超過状態のまま増加する傾向を示すことが示されている。これに対し、例えば時刻t1以前に、電圧低減のための適正な制御策を実行するのであれば、点線で示すように電圧回復することができる。 The future system state (voltage fluctuation prediction example) created by the state estimation means 5 is as illustrated in FIG. In FIG. 2, the horizontal axis shows the time, and the vertical axis shows the upper and lower monitoring lower limit values of the voltage set above and below the operation reference value of the voltage. According to the display example of FIG. 2, the voltage shown by the solid line within the range of the monitoring upper limit value at the current time t0 approaches the monitoring upper limit value at the future time t1 and then exceeds the monitoring upper limit value until the time t2. It has been shown to show a tendency to increase in the state. On the other hand, for example, if an appropriate control measure for reducing the voltage is executed before the time t1, the voltage can be recovered as shown by the dotted line.

図1の電圧無効電力制御策作成装置100内の制御策算出手段6においては、電圧無効電力の予測結果が、図2の例のように監視上限値からの逸脱を検知した場合、基準値に収まるよう制御策を算出する。制御策算出手段6の入力情報として、状態推定手段5の情報と、操作変数設定手段7と運用記録保存装置9に蓄積されている各種実績データを用いる。なお、操作変数設定手段7に保持している操作変数の情報は、HMI装置10から運用者により入力される。 In the control measure calculation means 6 in the voltage ineffective power control measure creating device 100 of FIG. 1, when the prediction result of the voltage ineffective power detects a deviation from the monitoring upper limit value as in the example of FIG. 2, it is set as a reference value. Calculate control measures to fit. As the input information of the controlled measure calculation means 6, the information of the state estimation means 5 and various actual data stored in the operation variable setting means 7 and the operation record storage device 9 are used. The information on the manipulated variables held in the manipulated variable setting means 7 is input by the operator from the HMI device 10.

制御策算出手段6で算出した電圧無効電力制御の制御策は、HMI装置10のHMI画面に表示され、運用記録保存装置9に蓄積され、さらには電圧無効電力制御装置として機能させるときには、操作指令出力手段4を介して電力系統1の電圧無効電力制御用の機器(発電機G、タップ付き変圧器LRT、調相設備SR)に与えられる。なお入力されたデータや、各種演算での中間生成物としてのデータ、及び最終的な結果物としてのデータは、適宜運用記録保存装置9に蓄積されているものとする。 The control measure for voltage ineffective power control calculated by the control measure calculation means 6 is displayed on the HMI screen of the HMI device 10, stored in the operation record storage device 9, and further, when functioning as a voltage ineffective power control device, an operation command is given. It is given to a device (generator G, a transformer with a tap LRT, a phase adjustment facility SR) for controlling voltage reactive power of the power system 1 via an output means 4. It is assumed that the input data, the data as an intermediate product in various operations, and the data as the final result are appropriately stored in the operation record storage device 9.

図3は、図1の演算装置8を計算機で実現する場合の全体処理フローを示している。図3には各種外部装置からの入力情報を受けた後、演算装置8が制御策を算出し操作実行するまでの処理をフローとして表している。 FIG. 3 shows an overall processing flow when the arithmetic unit 8 of FIG. 1 is realized by a computer. FIG. 3 shows as a flow the process from receiving the input information from various external devices to the calculation of the control measure by the arithmetic unit 8 and the execution of the operation.

図3の最初の処理ステップS31では、電力系統に複数設定した電圧、無効電力の監視対象点であるノードにおける現在断面の情報として、例えば電流、電圧、電力などを、情報伝送装置2を介して入手する。またこのとき、外部データ受信装置3を介して、系統状態を推定するに必要な、電力系統の構成、各種機器、各種設定或は運用上の制限に関する情報などについても入手する。 In the first processing step S31 of FIG. 3, for example, current, voltage, power, etc. are transmitted via the information transmission device 2 as information on the current cross section of the node which is the monitoring target point of the voltage set in the power system and the reactive power. Obtain. At this time, information on the power system configuration, various devices, various settings, or operational restrictions necessary for estimating the system state is also obtained via the external data receiving device 3.

処理ステップS32では、適宜状態推定処理を実施する。これはノードによっては、必要な情報の検出器を備えていない、あるいは検出器は存在するが十分な時間精度での情報を入手することができないといった事情があることから、現在断面の情報について適宜補間処理、潮流計算などによる推定処理を行うものである。 In the process step S32, the state estimation process is appropriately performed. This is because some nodes do not have a detector for the necessary information, or there is a detector but it is not possible to obtain information with sufficient time accuracy. It performs estimation processing by interpolation processing, power flow calculation, etc.

処理ステップS33は、処理ステップS38との間にある処理ステップの繰り返し実行をノードごとに行うものである。この繰り返し処理では、処理ステップS34とS35において現時点から将来時点に至る各時点での系統状態を推定、作成し、処理ステップS36において当該ノードの運用最適電圧を設定し、処理ステップS37において運用最適電圧を実現可能とする電圧制御策を決定する。この繰り返し処理の結果として、電圧、無効電力の監視対象点である複数個所のノードにおける電圧を全て運用最適電圧とすることができる制御策が決定される。 The processing step S33 repeatedly executes the processing step between the processing step S38 and the processing step S38 for each node. In this iterative process, the system state at each time point from the present time to the future time point is estimated and created in the process steps S34 and S35, the operation optimum voltage of the node is set in the process step S36, and the operation optimum voltage is set in the process step S37. Determine the voltage control measures that make this feasible. As a result of this iterative processing, a control measure capable of setting all the voltages at the plurality of nodes, which are the monitoring target points of the voltage and the reactive power, to the operation optimum voltage is determined.

処理ステップS37において運用最適電圧を実現可能とする電圧制御策を決定する場合に、操作変数設定手段7が与えるデータ、ならびに運用記録保存装置9に蓄積されている各種実績データが参照される。 When determining the voltage control measure that realizes the optimum operating voltage in the processing step S37, the data given by the instrumental variable setting means 7 and various actual data stored in the operation record storage device 9 are referred to.

処理ステップS39では、処理ステップS37において求めた運用最適電圧を実現可能とする電圧制御策を操作実行し、処理ステップS40では、この時の操作実績を運用記録保存装置9に蓄積、保存する。なお、運用記録保存装置9に蓄積、保存された情報は将来における処理ステップS37での処理に反映される。 In the processing step S39, the voltage control measure that enables the realization of the optimum operation voltage obtained in the processing step S37 is operated and executed, and in the processing step S40, the operation results at this time are stored and stored in the operation record storage device 9. The information stored and stored in the operation record storage device 9 will be reflected in the processing in the processing step S37 in the future.

本発明は、処理ステップS37から処理ステップS39の処理に特徴を有しており、他の部分は公知の既存技術で実現可能であることから、以下においては処理ステップS37の処理内容を主体として説明する。 The present invention is characterized by the processing from the processing step S37 to the processing step S39, and other parts can be realized by known existing techniques. Therefore, the processing content of the processing step S37 will be mainly described below. do.

図1の制御策算出手段6(処理ステップS37)の処理内容を詳細に説明する前提として、ここで使用するデータ(操作変数設定手段7が与えるデータと、運用記録保存装置9に蓄積されている各種実績データ、およびそれらのインプット情報)、および操作変数設定手段7が果たす役割について明確にしておく。 As a premise for explaining in detail the processing contents of the control measure calculation means 6 (processing step S37) of FIG. 1, the data used here (data given by the operation variable setting means 7 and the operation record storage device 9) are stored. Various actual data and their input information), and the role played by the instrumental variable setting means 7 will be clarified.

まず操作変数設定手段7は、運用者がHMI画面より設定した各種入力情報に対して、入力情報に重みを付けることで、運用者のノウハウに即した制御策を算出することを目的としている。ここで言う各種入力情報とは、電力系統に設置された各種機器の操作組み合わせ、系統毎の特性を考慮した入力を意味する。なお、電力系統は送電線を介し、複数の電気所から構築されるため、各種入力情報は電気所毎に設定可能できるものとする。一般にノードは電気所内の母線であることから、この設定はノードごとに行ったものである。 First, the operation variable setting means 7 aims to calculate a controlled measure according to the know-how of the operator by weighting the input information with respect to various input information set by the operator from the HMI screen. The various input information referred to here means an input considering the operation combination of various devices installed in the power system and the characteristics of each system. Since the power system is constructed from multiple electric stations via transmission lines, various input information can be set for each electric station. Since a node is generally a bus in an electric station, this setting is made for each node.

因みに、機器の操作組み合わせとは、電力系統に設置されて電圧無効電力制御に貢献する機器である発電機、変圧器、調相設備の制御方法の組み合わせであり、組合せを設定できることを可能とする。例えば運用者の考え方により、電圧無効電力制御を行う際の制御方法として、例えば調相設備のみを操作して制御策を求めたい等、制御方法が異なる。また運用者の考え方により、調相設備の制御を行った後、発電機の制御を行うなど、電圧調整機器の調整順番の組み合わせも考慮する必要がある。 Incidentally, the operation combination of the equipment is a combination of the control methods of the generator, the transformer, and the phase adjustment equipment, which are the equipment installed in the power system and contributes to the control of the voltage reactive power, and makes it possible to set the combination. .. For example, depending on the way of thinking of the operator, as a control method when performing voltage reactive power control, the control method is different, for example, it is desired to operate only the phase adjustment equipment to obtain a control measure. In addition, depending on the operator's thinking, it is necessary to consider the combination of the adjustment order of the voltage adjustment equipment, such as controlling the phase adjustment equipment and then the generator.

また系統毎の特性とは、操作する機器の累計動作回数や稼働状況(老朽化考慮)のことであり、これらの点を加味し、重み付けを行うことで系統毎の特性を考慮した入力とする。例えば、ある調相設備機器の稼働状況を考慮し、制御策算出にはできる限り用いたくない場合において、当該調相設備を用いた制御策については操作優先を低くする。 In addition, the characteristics of each system are the cumulative number of operations of the equipment to be operated and the operating status (considering aging), and by taking these points into consideration and weighting, the input takes into consideration the characteristics of each system. .. For example, in consideration of the operating status of a certain phase adjustment equipment, when it is not desired to use it as much as possible in the calculation of control measures, the operation priority is lowered for the control measures using the phase adjustment equipment.

さらに運用記録保存装置9に蓄積されている各種実績データとは、運用者毎に選択された制御策の内容を選択率として保存することで、運用のノウハウを蓄積し次回制御策算出時にフィードバックすることに使用する。 Furthermore, the various actual data stored in the operation record storage device 9 are stored as the selection rate of the contents of the control measures selected for each operator, so that the operation know-how is accumulated and fed back when the next control measure is calculated. Especially used.

また、例えば変圧器のタップ操作ではタップ値の変更による電圧変化幅はあらかじめデータベースに保持されているが、実際のオンライン制御では外気状況等により異なった変化幅になる場合がある。そのため、実際のオンライン操作時の変化幅をデータベースに保存し次回制御策算出時にフィードバックする仕組みを付与する。 Further, for example, in the tap operation of the transformer, the voltage change width due to the change of the tap value is stored in the database in advance, but in the actual online control, the change width may be different depending on the outside air condition or the like. Therefore, a mechanism is provided in which the change width during actual online operation is saved in the database and fed back when the next control measure is calculated.

以下に制御策算出手段6(処理ステップS37)の処理内容について図4を用いて詳細に説明する。図4の処理フローでは、最初に処理ステップS37aにおいて、操作変数設定手段7にてHMI画面より各種入力情報を設定する。 The processing contents of the control measure calculation means 6 (processing step S37) will be described in detail below with reference to FIG. In the processing flow of FIG. 4, first, in the processing step S37a, various input information is set from the HMI screen by the operation variable setting means 7.

表1、表2を用いて、運用者によってHMI画面を介して操作変数設定手段7に読みこまれた入力変数の例を説明する。表1は、入力変数として、電圧、無効電力の制御に貢献可能な電圧調整機器(発電機、変圧器、調相設備)の組合せ操作優先順位を運用者が与えた例を示したものである。表1には、組合せ操作優先順位として、指令優先順位が記述されている。 Using Tables 1 and 2, an example of the input variable read into the operation variable setting means 7 by the operator via the HMI screen will be described. Table 1 shows an example in which the operator gives the combined operation priority of voltage adjusting equipment (generator, transformer, phase adjustment equipment) that can contribute to the control of voltage and reactive power as input variables. .. In Table 1, the command priority is described as the combination operation priority.

Figure 2022013080000002
Figure 2022013080000002

ここでは、電圧、無効電力の変動に対して、これを解消するに有効な機器の組み合わせ例として、1、2、3、4の組み合わせ例が運用者により推奨されたものである。因みに、1台の機器で対処する場合(例えば組合せ操作優先順位4)には、指令優先順位1の欄にのみ機器名(調相設備)が記述され、複数台の機器による順次制御で対処する場合(例えば組合せ操作優先順位2)には、機器の操作順序に従い指令優先順位1の欄、指令優先順位2の欄、指令優先順位3の欄に順次機器名(変圧器→調相設備→発電機)を記述している。ここには、4パターン設定した場合を例示しているが、組み合わせ優先順位が低いほど、運用者が操作したい制御方式であることを意味している。図示の例では、調相設備のみを用いる4の方式が、運用者が操作したい制御方式である。 Here, the operator recommends combinations of 1, 2, 3, and 4 as examples of combinations of devices that are effective in resolving fluctuations in voltage and inactive power. By the way, when dealing with one device (for example, combination operation priority 4), the device name (phase adjustment equipment) is described only in the column of command priority 1, and the measures are dealt with by sequential control by multiple devices. In the case (for example, combination operation priority 2), the device name (transformer → phase adjustment equipment → power generation) is sequentially displayed in the command priority 1 column, the command priority 2 column, and the command priority 3 column according to the operation order of the devices. Machine) is described. Here, the case where four patterns are set is illustrated, but the lower the combination priority, the more the control method the operator wants to operate. In the illustrated example, the method 4 using only the phase adjustment equipment is the control method that the operator wants to operate.

表2には、運用者が操作したい電圧調整機器である調相設備について、設備毎の所属する電気所、設備名、動作回数、稼働状況、制御可否(〇:制御策算出に使用×:制御策算出に使用しない)のデータが、入力変数として示されている。 In Table 2, for the phase adjustment equipment that is the voltage adjustment equipment that the operator wants to operate, the electrical station to which each equipment belongs, the equipment name, the number of operations, the operating status, and controllability (○: used for calculation of control measures ×: control) The data (not used for strategy calculation) is shown as an input variable.

Figure 2022013080000003
Figure 2022013080000003

なおここには示していないが、他の電圧調整機器(変圧器、発電機)の制御方式に対しても同様趣旨での入力が準備されている。また、表1の情報は、運用者が自己意思に従い設定するものであるが、表2の情報は予め設定されデータベースに記憶されている機器情報を参照することであってもよい。 Although not shown here, inputs for the same purpose are prepared for the control methods of other voltage adjusting devices (transformers, generators). Further, the information in Table 1 is set by the operator according to his / her own will, but the information in Table 2 may refer to the device information set in advance and stored in the database.

以上要するに、処理ステップS37aでは、電圧制御策を算出するときの条件として入力変数を読みこむが、これらは機器の操作内容・順序に関するものである。例えば、ある系統では「変圧器・調相操作のみで無効電力制御をしたい」、あるいはまた操作の順番は「変圧器(タップ操作)→調相操作の順で操作をしたい」などである。またこのとき、操作する設備の累計動作回数や稼働状況(老朽化)を考慮し、各種実績データ(過去の選択した操作内容・順序や制御幅の実績)を参照するなどである。 In short, in the processing step S37a, the input variables are read as the conditions for calculating the voltage control measure, but these are related to the operation contents and order of the equipment. For example, in a certain system, "I want to control the reactive power only by the transformer / phase adjustment operation", or "I want to operate in the order of transformer (tap operation)-> phase adjustment operation". At this time, the cumulative number of operations of the equipment to be operated and the operating status (aging) are taken into consideration, and various actual data (actual results of the operation contents / order and control range selected in the past) are referred to.

処理ステップS37bでは、設定された入力変数の時の条件での最適潮流計算を実施する。この潮流計算は表1、表2の優先順位、機器名に従って、異なる入力条件について順次実行する。最適潮流計算では、「入力変数」を条件とし、母線電圧が基準値(目標電圧)に近似するように算出するとともに、機器の操作回数が最小化となるように算出する。 In the processing step S37b, the optimum power flow calculation is performed under the conditions at the time of the set input variable. This power flow calculation is sequentially executed for different input conditions according to the priorities and device names in Tables 1 and 2. In the optimum power flow calculation, the bus voltage is calculated so as to be close to the reference value (target voltage) under the condition of the "input variable", and the number of operation of the device is minimized.

かくして、設定した各種入力情報より、入力変数ごとに機器の操作回数が最小となるような制御策を算出する。その際、表2で設定した制御否の機器(この例では△△変電所の△△調相設備1)は制御策算出に用いられない。 In this way, from the various input information that has been set, a control measure that minimizes the number of operation of the device for each input variable is calculated. At that time, the control / non-control device set in Table 2 (in this example, the △△ phase adjustment equipment 1 of the △△ substation) is not used for the control measure calculation.

処理ステップS37cでは、制御策を立案するが、一意の解ではなく「入力変数」から複数手順を算出する。また「入力変数」に重みを付け、制御策をスコアリングして推奨手順を運用者に提示する。参考情報とともに、複数の制御策をHMI画面に表示することで、運用者が判断するに必要な十分な判断材料を提示し、運用者の判断を仰ぐ。 In the process step S37c, a control measure is devised, but a plurality of procedures are calculated from "input variables" instead of a unique solution. It also weights "input variables", scores control measures, and presents recommended procedures to operators. By displaying a plurality of control measures on the HMI screen together with reference information, sufficient judgment material necessary for the operator to make a judgment is presented, and the operator's judgment is sought.

各種入力情報に基づき算出された複数の制御策は、図5のHMI画面90に表示される。画面90上には、操作概要92ごとに、指令優先順93、選択率94、効果指数95を組にして、詳細の操作順序手順を表示し、選択ボタン91により運用者に実際にどのような制御策を採用するかを選ばせる。画面90下には、選択ボタン91により選択した操作の詳細として、電気所名96、操作機器97、操作内容を具体的に表示する。 The plurality of control measures calculated based on various input information are displayed on the HMI screen 90 of FIG. On the screen 90, the command priority order 93, the selection rate 94, and the effect index 95 are set for each operation outline 92, and the detailed operation order procedure is displayed. Let them choose whether to adopt control measures. At the bottom of the screen 90, the electric station name 96, the operation device 97, and the operation content are specifically displayed as the details of the operation selected by the selection button 91.

ここで、図5に例示した指令優先順93、選択率94、効果指数95は、それぞれ以下の意味を有する情報である。このうち指令優先順93は、表1で設定したような指令優先順位1~3の内容である。 Here, the command priority order 93, the selectivity 94, and the effect index 95 exemplified in FIG. 5 are information having the following meanings, respectively. Of these, the command priority order 93 is the content of the command priority order 1 to 3 as set in Table 1.

図5の選択率94は、実際に操作を実施した後の指令優先順位93の組み合わせを過去経験情報としてデータベースに登録し、前回操作実績までの操作割合を示した内容である。例えば過去に表3のような制御策の制御を実施したとする。 The selection rate 94 in FIG. 5 is a content showing the operation ratio up to the previous operation result by registering the combination of the command priority order 93 after actually performing the operation in the database as past experience information. For example, it is assumed that the control measures as shown in Table 3 have been controlled in the past.

Figure 2022013080000004
Figure 2022013080000004

表3には過去事例1から5のケースについて、その時に行った回避操作として、指令優先順位ごとの機器名称が記述されている。本事例での5例の過去経験の内訳は、調相設備1台のみによる例が1例、変圧器と調相設備の順次操作による例が3例、変圧器と調相設備と発電機の順次操作による例が1例であった。この過去経験情報は、過去の電圧、無効電力逸脱の場面において、如何なる制御策を実行して回避したかをデータベースに記憶しておき、表示したものである。例えば事例5は調相設備の操作のみで回避できた事例であり、事例2は変圧器、調相設備、発電機の順序での操作で回避できた事例である。 Table 3 describes the device names for each command priority as the avoidance operations performed at that time for the cases 1 to 5 in the past. The breakdown of the past experience of 5 cases in this case is 1 case with only one phase adjustment equipment, 3 cases with sequential operation of transformer and phase adjustment equipment, transformer, phase adjustment equipment and generator. One example was a sequential operation. This past experience information is stored in a database and displayed as to what kind of control measures were executed and avoided in the past voltage and reactive power deviation situations. For example, Case 5 is a case where it can be avoided only by operating the phase adjusting equipment, and Case 2 is a case where it can be avoided by operating the transformer, the phase adjusting equipment, and the generator in this order.

表3の過去事例がある場合の、選択率が表4であり、ここには過去事例による機器の操作順序が選択された割合(選択率)を示している。この例では、変圧器、調相設備の順序での操作を選択した割合が60%、変圧器、調相設備、発電機の順序での操作を選択した割合が20%、調相設備のみを選択した割合が20%である。 The selection rate when there is a past case in Table 3 is shown in Table 4, and the ratio (selection rate) in which the operation order of the equipment according to the past case is selected is shown here. In this example, 60% selected the operation in the order of transformer, phase adjustment equipment, and 20% selected the operation in the order of transformer, phase adjustment equipment, and generator, and only the phase adjustment equipment. The selected percentage is 20%.

Figure 2022013080000005
Figure 2022013080000005

図5の効果指数95とは、制御策実施後の母線電圧と基準母線電圧に対する偏差から求めた指数であり、電圧偏差が小さいほど制御後の改善効果が高いと評価し、効果指数95として指数化したものである。 The effect index 95 in FIG. 5 is an index obtained from the deviation between the bus voltage and the reference bus voltage after the control measures are implemented. It is evaluated that the smaller the voltage deviation is, the higher the improvement effect after control is, and the index is as the effect index 95. It is a modified version.

操作変数設定手段7では、予測した将来状態を解消するに有効と考えられる、過去の運用事例を複数準備し、かつこの内容を少なくとも制御策である指令優先順93、過去操作で採用した割合である選択率94、その時の改善効果である効果指数95として把握している。そのうえで、運用者にこの内容を図5の例に示すように提示することで、選択ボタン91の操作により、いずれかを選択させようとしている。 The instrumental variable setting means 7 prepares a plurality of past operation cases that are considered to be effective in solving the predicted future state, and at least the command priority order 93, which is a control measure, and the ratio adopted in the past operation. It is grasped as a certain selectivity 94 and an effect index 95 which is an improvement effect at that time. Then, by presenting this content to the operator as shown in the example of FIG. 5, an attempt is made to select one by operating the selection button 91.

係る複数の制御策を表示し、選択させる場合、運用者の意向を反映した表示順序、あるいは強調表示とするのがよく、適宜の好みに応じて画面編集できるものであることが望ましい。例えば、制御策の表示順序としては、指令優先順93、選択率94、効果指数95の項目の中からあらかじめ運用者の目的に合わせてソート順を選べる仕組み、および計算機が重みを付けた制御策の順でソートし運用者に提示する仕組みの内、どちらかを選べるようにするのがよい。 When displaying and selecting a plurality of such control measures, it is preferable to use a display order or highlighting that reflects the intention of the operator, and it is desirable that the screen can be edited according to an appropriate preference. For example, as the display order of the control measures, a mechanism that allows the sort order to be selected in advance according to the purpose of the operator from the items of the command priority order 93, the selection rate 94, and the effect index 95, and the control measures weighted by the computer. It is better to be able to select either of the mechanisms that sort in the order of and present to the operator.

後者の、計算機が重みを付けた制御策の順でソートし運用者に提示する仕組みでは、段階的に2つの手法がある。第1の手法を表5、表6に示す。 In the latter mechanism, in which the computer sorts in the order of weighted control measures and presents them to the operator, there are two methods in stages. The first method is shown in Tables 5 and 6.

Figure 2022013080000006
Figure 2022013080000006

第1の手法について、表5は、制御策算出手法において、No.1からNo.5の5つの制御策が選択率、効果指数の情報とともに、算出された場合の例を示している。ここで仮に表5の例で、設定した電圧調整機器の指令優先順位の重みを、優先順位毎に順位1は2.0、順位2は1.8、順位3は1.6、順位4は1.4と定義し、効果指数95の重みを「3」とした場合、重みを元に制御策の表示順序をスコアリングすると、最終的に表5の制御策の表示順は表6となる。ここでは例えば、スコアリングは電圧調整機器の操作優先順位×重み+効果指数×重みで求めている。なお、重みは運用者が自由にチューニングできる。 Regarding the first method, Table 5 shows No. 1 in the control measure calculation method. 1 to No. An example is shown when the five control measures of 5 are calculated together with the selection rate and the effect index information. Here, tentatively, in the example of Table 5, the weights of the command priorities of the set voltage adjusting devices are set for each priority, with rank 1 being 2.0, rank 2 being 1.8, rank 3 being 1.6, and rank 4 being. When defined as 1.4 and the weight of the effect index 95 is "3", when the display order of the control measures is scored based on the weight, the display order of the control measures in Table 5 is finally shown in Table 6. .. Here, for example, scoring is obtained by the operation priority of the voltage adjusting device × weight + effect index × weight. The weight can be freely tuned by the operator.

Figure 2022013080000007
Figure 2022013080000007

計算機が重みを付けた制御策の順でソートし運用者に提示する仕組みの第2の手法を表7、表8に示す。第2の手法は選択率と効果指数に重みを付けた手法である。 Tables 7 and 8 show the second method of the mechanism in which the computer sorts in the order of weighted control measures and presents them to the operator. The second method is a method in which the selectivity and the effect index are weighted.

Figure 2022013080000008
Figure 2022013080000008

第2の手法について、表7は、制御策算出手法において、No.1からNo.5の5つの制御策が選択率、効果指数の情報とともに、算出された場合の例を示している。ここで仮に表7の例で、仮に効果指数の重みを「5」、選択率の重みを「3」とした場合、重みを元に制御策の表示順序をスコアリングした場合、最終的に表7の制御策の表示順は表8となる。ここでは例えば、スコアリングは選択率×重み+効果指数×重みで求めている。なお、重みは運用者が自由にチューニングできる。 Regarding the second method, Table 7 shows No. 1 in the control measure calculation method. 1 to No. An example is shown when the five control measures of 5 are calculated together with the selection rate and the effect index information. Here, in the example of Table 7, if the weight of the effect index is "5" and the weight of the selectivity is "3", and the display order of the control measures is scored based on the weight, the final table is used. The display order of the control measures 7 is shown in Table 8. Here, for example, scoring is obtained by selectivity × weight + effect index × weight. The weight can be freely tuned by the operator.

Figure 2022013080000009
Figure 2022013080000009

上記処理において、段階的に2つの手法に分けた理由は、操作優先順位と選択率は本来近似の意味を持つが、運用実績を蓄積し選択率の方が運用者のノウハウに沿うケースになった場合のことを加味したためである。また、操作優先順位と実際に操作した選択率のギャップを運用者が確認することで入力データの見直しや多数の運用者に対する運用パターンの平準化を図ることができる。 The reason why the above process is divided into two methods in stages is that the operation priority and the selection rate have the meaning of approximation, but the operation results are accumulated and the selection rate is in line with the know-how of the operator. This is because the case was taken into consideration. In addition, the operator can review the input data and standardize the operation pattern for a large number of operators by confirming the gap between the operation priority and the selection rate actually operated.

上記表示結果によれば、運用者は制御策毎に確認することができ、求められた制御策の内、明らかに運用に則さない制御策があった場合、当該制御策の入力項目を確認し見直すことで次回以降の制御策算出時の算出精度向上を図ることができる。 According to the above display result, the operator can confirm each control measure, and if there is a control measure that clearly does not conform to the operation among the requested control measures, the input item of the control measure is confirmed. By reviewing it, it is possible to improve the calculation accuracy when calculating the control measures from the next time onward.

前記の通り制御策を算出した後、運用者は作成された制御策の手順を確認し操作を行う。
その後、操作された制御策に用いられた情報である操作優先順位および実際のオンライン操作時の変化幅を運用記録保存装置のデータベースに登録する。
After calculating the control measures as described above, the operator confirms the procedure of the created control measures and operates.
After that, the operation priority and the change width during the actual online operation, which are the information used for the operated control measures, are registered in the database of the operation record storage device.

図6はデータベース登録値の変化幅とオンライン操作時の変化幅の際についての概念を表した図である。この図で、L1はデータベースに記録されたタップ電圧、L2はオンライン操作時のタップ電圧、L3はオンライン操作時のタップ電圧、L4はオンライン操作時のタップ電圧の平均値である。 FIG. 6 is a diagram showing the concept of the change width of the database registration value and the change width during online operation. In this figure, L1 is the tap voltage recorded in the database, L2 is the tap voltage during online operation, L3 is the tap voltage during online operation, and L4 is the average value of the tap voltage during online operation.

運用記録保存装置のデータベースに登録されたデータの内、操作優先順位は選択率としてデータの加工を行う。実際のオンライン操作時の変化幅はデータの蓄積から変化幅の平均値を求め、次回制御策算出時に参考値として蓄積データを用いた効果指数を表示する。蓄積データよりゆくゆくは変化幅のデータベースの見直しを図ることで制御策算出の精度向上を図れるようにする。 Of the data registered in the database of the operation record storage device, the operation priority is the selection rate and the data is processed. For the change width during actual online operation, the average value of the change width is obtained from the accumulated data, and the effect index using the accumulated data is displayed as a reference value when calculating the next control measure. Eventually, the accuracy of control measure calculation will be improved by reviewing the database of change width from the accumulated data.

操作の実績等の蓄積データを一定期間保存した後、制御策算出の表示順位スコアがある一定以上の制御策手順は、実績も含め信頼性が高いといえる。従って一定以上のスコアが確立された制御策については、制御策算出時に求められた1番高順位の制御策を自動制御可能とする。 After storing the accumulated data such as the operation results for a certain period of time, it can be said that the control measure procedure with a certain or higher display order score for the control measure calculation is highly reliable including the results. Therefore, for the control measures for which the score above a certain level is established, the control measure with the highest rank obtained at the time of calculating the control measures can be automatically controlled.

なお本発明の別の目的は、過去に選択実行された制御策を選択率としてDB(DataBaseに保存することで、電力系統運用の特性を計算機が学習し自動制御方法を提供することにある。 Another object of the present invention is to provide an automatic control method in which a computer learns the characteristics of power system operation by storing a control measure selected and executed in the past as a selection rate in a DB (DataBase).

以上説明した本発明では、入力変数をもとに複数の操作手順を立案している。これにより、制御策算出条件を見える化(運用者の判断で設定)することで運用者が納得いく手順を選択できる。また算出した制御策毎の効果を表示し運用者の手順選択の判断材料にできる。また複数の操作手順を立案することで、系統の特性に合わせ、どの操作がマッチしているかを選択できる。また過去の操作実績を蓄積しオススメを運用者に提示できる。 In the present invention described above, a plurality of operation procedures are planned based on the input variables. This makes it possible to select a procedure that the operator is satisfied with by visualizing the control measure calculation conditions (setting at the discretion of the operator). In addition, the effect of each calculated control measure can be displayed and used as a judgment material for the operator's procedure selection. Also, by planning multiple operation procedures, it is possible to select which operation matches according to the characteristics of the system. In addition, past operation results can be accumulated and recommendations can be presented to the operator.

これに対し、複数提案からの選択を行わない場合には、一定のロジックから1つの制御策を算出することになる。この場合には、複雑化された電力系統の操作手順は一つの解ではなく、系統の状況や機器の特性を加味しなければならない。そのため、必ずしも算出された制御策が正しいか分からない。また計算機がどの条件で制御策を算出したかが分からない。つまり、ロジックが複雑であり制御策算出に至る過程が分からないので操作根拠が不明確になる場合がある。 On the other hand, when the selection from a plurality of proposals is not performed, one control measure is calculated from a certain logic. In this case, the complicated operation procedure of the power system is not one solution, but the situation of the system and the characteristics of the equipment must be taken into consideration. Therefore, it is not always known whether the calculated control measures are correct. Also, I do not know under what conditions the computer calculated the control measures. In other words, the logic is complicated and the process leading to the calculation of control measures is unknown, so the basis of operation may be unclear.

1:電力系統設備
2:情報伝送装置
3:外部データ受信装置
4:操作指令出力手段
5:状態推定手段
6:制御策算出手段
7:操作変数設定手段
8:演算装置
9:運用記録保存装置
10:HMI装置
1: Power system equipment 2: Information transmission device 3: External data reception device 4: Operation command output means 5: State estimation means 6: Control measure calculation means 7: Operation variable setting means 8: Calculation device 9: Operation record storage device 10 : HMI device

Claims (7)

電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求める電圧無効電力制御策作成装置であって、
電力系統の情報を入力する入力部と、運用者からの前記電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、前記入力部と前記HMI装置からの入力を用いて前記制御策を求めるための演算を行う演算部を備え、
前記演算部は、前記入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定する状態推定手段と、前記HMI装置により運用者が設定した前記電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求める制御策算出手段を備え、求めた複数の制御策を前記HMI装置に画面表示することを特徴とする電圧無効電力制御策作成装置。
Estimate the state of voltage reactive power from the present time to the future point in the node of the power system, and when it is predicted that the estimated state deviates from the reference value, the control measure of the voltage reactive power control device to avoid the deviation. It is a device for creating voltage-reactive power control measures that requires
The input unit for inputting power system information, an HMI device for taking in input variables of the voltage invalid power control device from the operator and displaying the screen, and the input unit and the input from the HMI device are used. Equipped with a calculation unit that performs calculations to obtain control measures
The calculation unit uses the input from the input unit to estimate the state of the voltage invalid power at the node of the power system from the present time to the future time point, and the voltage invalidity set by the operator by the HMI device. The HMI device is equipped with a control measure calculation means that calculates the power system flow using the input variables of the power control device and obtains control measures for each input variable of the voltage-disabled power control device. A voltage-disabled power control measure creation device characterized by displaying on the screen.
請求項1に記載の電圧無効電力制御策作成装置であって、
前記入力変数は、複数種類の前記電圧無効電力制御機器の種別および操作順序を指定したものであることを特徴とする電圧無効電力制御策作成装置。
The device for creating a voltage-reactive power control measure according to claim 1.
The input variable is a voltage-reactive power control measure creating device, characterized in that the type and operation order of the plurality of types of the voltage-reactive power control device are specified.
請求項1または請求項2に記載の電圧無効電力制御策作成装置であって、
前記HMI装置に画面表示された複数の制御策のうち、運用者が選択した制御策に従い電力系統の電圧無効電力制御機器が操作されることを特徴とする電圧無効電力制御策作成装置。
The voltage-reactive power control measure creating device according to claim 1 or 2.
A voltage-reactive power control measure creating device characterized in that a voltage-reactive power control device of a power system is operated according to a control measure selected by an operator among a plurality of control measures displayed on the screen of the HMI device.
請求項1から請求項3のいずれか1項に記載の電圧無効電力制御策作成装置であって、
前記HMI装置に画面表示された複数の制御策は、この制御策を実行したときの効果が指数表記されていることを特徴とする電圧無効電力制御策作成装置。
The voltage-reactive power control measure creating device according to any one of claims 1 to 3.
The plurality of control measures displayed on the screen of the HMI device is a voltage-reactive power control measure creating device, characterized in that the effect of executing this control measure is expressed in an exponential notation.
電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求め、前記電圧無効電力制御機器を操作する電圧無効電力制御装置であって、
電力系統の情報を入力する入力部と、運用者からの前記電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、前記入力部と前記HMI装置からの入力を用いて前記制御策を求めるための演算を行う演算部を備え、
前記演算部は、前記入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定する状態推定手段と、前記HMI装置により運用者が設定した前記電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求める制御策算出手段と、求めた複数の制御策を前記HMI装置に画面表示し、運用者が画面上で選択した制御策に従い電力系統の前記電圧無効電力制御機器に与える出力部を備えることを特徴とする電圧無効電力制御装置。
Estimate the state of voltage reactive power from the present time to the future point in the node of the power system, and when it is predicted that the estimated state deviates from the reference value, the control measure of the voltage reactive power control device to avoid the deviation. Is a voltage ineffective power control device that operates the voltage ineffective power control device.
The input unit for inputting power system information, an HMI device for taking in input variables of the voltage invalid power control device from the operator and displaying the screen, and the input unit and the input from the HMI device are used. Equipped with a calculation unit that performs calculations to obtain control measures
The calculation unit uses the input from the input unit to estimate the state of the voltage invalid power at the node of the power system from the present time to the future time point, and the voltage invalidity set by the operator by the HMI device. A control measure calculation means that calculates the power system flow using the input variables of the power control device and obtains control measures for each input variable of the voltage ineffective power control device, and a plurality of obtained control measures are applied to the HMI device. A voltage ineffective power control device that displays on a screen and includes an output unit that gives to the voltage ineffective power control device of the power system according to a control measure selected on the screen by the operator.
電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求める電圧無効電力制御策作成方法であって、
電力系統の情報を入力する入力部と、運用者からの前記電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、前記入力部と前記HMI装置からの入力を用いて前記制御策を求めるための演算を行う演算部を備え、
前記演算部は、前記入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、前記HMI装置により運用者が設定した前記電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求め、求めた複数の制御策を前記HMI装置に画面表示することを特徴とする電圧無効電力制御策作成方法。
Estimate the state of voltage reactive power from the present time to the future point in the node of the power system, and when it is predicted that the estimated state deviates from the reference value, the control measure of the voltage reactive power control device to avoid the deviation. It is a method of creating a voltage-reactive power control measure that requires
The input unit for inputting power system information, an HMI device for taking in input variables of the voltage invalid power control device from the operator and displaying the screen, and the input unit and the input from the HMI device are used. Equipped with a calculation unit that performs calculations to obtain control measures
The arithmetic unit estimates the state of the voltage reactive power at the node of the power system from the present time to the future time using the input from the input unit, and the voltage reactive power control device set by the operator by the HMI device. A voltage characterized by performing power system power flow calculation using input variables, obtaining control measures for each input variable of the voltage-reactive power control device, and displaying a plurality of the obtained control measures on the screen of the HMI device. How to create a reactive power control measure.
電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、推定した状態が基準値を逸脱することが予測されるときに、逸脱回避のための電圧無効電力制御機器の制御策を求め、前記電圧無効電力制御機器を操作する電圧無効電力制御方法であって、
電力系統の情報を入力する入力部と、運用者からの前記電圧無効電力制御機器の入力変数を取り込み、画面表示するためのHMI装置と、前記入力部と前記HMI装置からの入力を用いて前記制御策を求めるための演算を行う演算部を備え、
前記演算部は、前記入力部からの入力を用いて電力系統のノードにおける現時点から将来時点に至る電圧無効電力の状態を推定し、前記HMI装置により運用者が設定した前記電圧無効電力制御機器の入力変数を用いて、電力系統の潮流計算を実施し、電圧無効電力制御機器の入力変数ごとに制御策を求め、求めた複数の制御策を前記HMI装置に画面表示し、運用者が画面上で選択した制御策に従い電力系統の前記電圧無効電力制御機器に与えることを特徴とする電圧無効電力制御方法。
Estimate the state of voltage reactive power from the present time to the future point in the node of the power system, and when it is predicted that the estimated state deviates from the reference value, the control measure of the voltage reactive power control device to avoid the deviation. Is a voltage ineffective power control method for operating the voltage ineffective power control device.
The input unit for inputting power system information, an HMI device for taking in input variables of the voltage invalid power control device from the operator and displaying the screen, and the input unit and the input from the HMI device are used. Equipped with a calculation unit that performs calculations to obtain control measures
The arithmetic unit estimates the state of the voltage ineffective power at the node of the power system from the present time to the future time using the input from the input unit, and the voltage ineffective power control device set by the operator by the HMI device. The power system power flow is calculated using the input variables, control measures are obtained for each input variable of the voltage ineffective power control device, and the obtained multiple control measures are displayed on the screen of the HMI device, and the operator displays the control measures on the screen. A voltage ineffective power control method, characterized in that the voltage is applied to the voltage ineffective power control device of the power system according to the control measures selected in.
JP2020115387A 2020-07-03 2020-07-03 Voltage reactive power control measure creation device, voltage reactive power control device, and method Pending JP2022013080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115387A JP2022013080A (en) 2020-07-03 2020-07-03 Voltage reactive power control measure creation device, voltage reactive power control device, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115387A JP2022013080A (en) 2020-07-03 2020-07-03 Voltage reactive power control measure creation device, voltage reactive power control device, and method

Publications (1)

Publication Number Publication Date
JP2022013080A true JP2022013080A (en) 2022-01-18

Family

ID=80169465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115387A Pending JP2022013080A (en) 2020-07-03 2020-07-03 Voltage reactive power control measure creation device, voltage reactive power control device, and method

Country Status (1)

Country Link
JP (1) JP2022013080A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157363A (en) * 1999-09-06 2001-06-08 Fuji Electric Co Ltd Apparatus and method of controlling electric power system voltage
JP2003259554A (en) * 2002-03-04 2003-09-12 Toshiba Corp Device and program for voltage and reactive power monitoring control
JP2012016111A (en) * 2010-06-30 2012-01-19 Toshiba Corp Power system monitoring control system
WO2016002339A1 (en) * 2014-06-30 2016-01-07 株式会社日立製作所 Voltage stability monitoring device and method
JP2018068045A (en) * 2016-10-20 2018-04-26 株式会社日立製作所 Voltage reactive power operation support device and support method, and voltage reactive power operation monitoring control device and monitoring control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157363A (en) * 1999-09-06 2001-06-08 Fuji Electric Co Ltd Apparatus and method of controlling electric power system voltage
JP2003259554A (en) * 2002-03-04 2003-09-12 Toshiba Corp Device and program for voltage and reactive power monitoring control
JP2012016111A (en) * 2010-06-30 2012-01-19 Toshiba Corp Power system monitoring control system
WO2016002339A1 (en) * 2014-06-30 2016-01-07 株式会社日立製作所 Voltage stability monitoring device and method
JP2018068045A (en) * 2016-10-20 2018-04-26 株式会社日立製作所 Voltage reactive power operation support device and support method, and voltage reactive power operation monitoring control device and monitoring control method

Similar Documents

Publication Publication Date Title
US6188205B1 (en) Power system control apparatus and power system control method
Olivares et al. Stochastic-predictive energy management system for isolated microgrids
US6492801B1 (en) Method, apparatus, and system for real time reactive power output monitoring and predicting
CN101553766B (en) Voltage control for electric power systems
JP6191229B2 (en) Tap plan value calculation method, tap command value determination method, control target value calculation method, tap plan value calculation device, tap command value determination device, and tap plan value calculation program
EP3343496A1 (en) Method and system for energy management in a facility
JP2008118799A (en) System, method, and program for optimizing operation for distribution system
JPH04217817A (en) Method and apparatus for optimizing cost of power circuit network
Kong et al. Multifurnace optimization in electric smelting plants by load scheduling and control
JP2022013080A (en) Voltage reactive power control measure creation device, voltage reactive power control device, and method
JP3809569B2 (en) Power system control method and apparatus
CN116599073A (en) Intelligent load batch control method and system based on multi-strategy fusion automatic search
WO2023074058A1 (en) Power system control device and method
CN114330865A (en) Power grid reserve capacity prediction method and system, computer equipment and storage medium
JP2019198153A (en) Support device and method for voltage-adjustment-device arrangement plan in power distribution system
WO2007103500A2 (en) Method and system for controlling an operation of an electrical power network
EP4138008A1 (en) Energy supply/demand operation guidance device and method for energy supply/demand operation in ironworks
Zad et al. An innovative centralized voltage control method for MV distribution systems based on deep reinforcement learning: Application on a real test case in Benin
JP2001157363A (en) Apparatus and method of controlling electric power system voltage
JP2020028163A (en) Distribution system load switching system and method
KR102537638B1 (en) Voltage control device based on the measured equipment load voltage
JPH11341892A (en) Development of regular maintenance scheme for generator
CN109217282A (en) A kind of system and method for determining main transformer circulation operating parameter
JP2678258B2 (en) Power system voltage / reactive power control method
WO2020090021A1 (en) Power system monitoring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328