WO2020090021A1 - Power system monitoring device and method - Google Patents

Power system monitoring device and method Download PDF

Info

Publication number
WO2020090021A1
WO2020090021A1 PCT/JP2018/040443 JP2018040443W WO2020090021A1 WO 2020090021 A1 WO2020090021 A1 WO 2020090021A1 JP 2018040443 W JP2018040443 W JP 2018040443W WO 2020090021 A1 WO2020090021 A1 WO 2020090021A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power system
allowable value
system monitoring
monitoring device
Prior art date
Application number
PCT/JP2018/040443
Other languages
French (fr)
Japanese (ja)
Inventor
龍哉 小松
英佑 黒田
弘一 原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2018/040443 priority Critical patent/WO2020090021A1/en
Priority to JP2020554658A priority patent/JPWO2020090021A1/en
Publication of WO2020090021A1 publication Critical patent/WO2020090021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a power system monitoring device and method.
  • Japanese Patent Application Laid-Open No. 2004-242242 describes that "a plurality of monitoring point candidates are set in the power system, the system state quantity at the monitoring point candidates is input to a computer, and changes in the system state quantity are monitored. Either one or both of the monitoring point candidates that exceed the set value and the monitoring point candidate that the system state quantity is kept near the upper and lower limits within the setting range are set as the monitoring points. " It is described (see Patent Document 1 abstract).
  • Patent Document 2 "Measurement value fetching means 2 fetches a power flow value of a power system via a distant monitoring control device 1.
  • a power flow allowable value calculating means 5 calculates a plurality of power flow allowable values based on system operating conditions. Then, the minimum permissible value determining means 6 selects the minimum power flow allowable value, and the power flow deviation detecting means 3 selects the power flow value captured by the measured value capturing means 2 by the minimum allowable value determining means 6. It is determined whether or not the minimum power flow allowable value is exceeded, and if the measured power flow value deviates from the minimum power flow allowable value, an alarm is output by the alarm output means 4 "(see Patent Document 2 Abstract). ).
  • Non-Patent Documents 1 and 2 current capacity calculation, dynamic rating calculation, and heat capacity calculation are described in Non-Patent Documents 1 and 2.
  • the state estimation calculation is described in Non-Patent Document 3.
  • the power flow calculation is described in Non-Patent Document 4.
  • the optimum power flow calculation is described in Non-Patent Document 5.
  • the transient stability calculation is described in Non-Patent Documents 6 and 7.
  • the steady-state stability calculation may use a method of the steady-state stability calculation that is the same calculation as the transient stability calculation, or the method described in Non-Patent Documents 8 and 9.
  • the voltage stability calculation is described in Non-Patent Documents 10 and 11.
  • the frequency stability calculation is described in Non-Patent Document 12.
  • the power transmission rule is described in Non-Patent Document 13.
  • renewable energy such as solar power generation or wind power generation is an output fluctuation type power source whose output fluctuates depending on the weather, so if the introduction of renewable energy into the power system progresses, voltage classes and inter-operator (power generation , Power transmission and distribution companies, etc.)
  • the power flow state or the operation form of the power system changes in a complicated and frequent manner. Therefore, the power flow state or the operation mode changes more complicatedly and more frequently than the present time, and the current system planning, operation and control may not be able to operate the power system stably and economically.
  • Patent Document 1 makes it difficult to realize system stability and economical operation.
  • the setting of the above-mentioned monitoring point may be performed at each timing of controlling the system state quantity of the control target, and according to this, it is applied to the time zone when the power demand changes abruptly. This enables high-quality power with less voltage fluctuation to be supplied.
  • the processing cycle for setting monitoring points can be lengthened during times when power demand changes little, such as at night. However, there is no specific disclosure about the cycle of setting the monitoring points.
  • Patent Document 2 reduces the usability of the operator and It will be difficult to achieve stability and economic operation.
  • DR Dynamic Rating, Dynamic Rating
  • the transmittable capacity (power operation allowable value) of the power transmission and transformation equipment which is calculated by keeping the external environment data such as the temperature constant, is calculated by using the external environment data collected in real time or in a constant cycle.
  • an object of the present invention is to provide an electric power system monitoring device and method capable of monitoring the electric power system even when the power flow state or the operation form of the electric power system changes.
  • the power system monitoring device includes an operation allowance calculator that calculates at least one operation allowance from one or more of a measured value and a set value, and an operation allowance calculator.
  • Difference calculation unit that calculates the difference from one or more of the operation allowance value, the measured value, and the set value that have been calculated, and the operation allowance value calculated by the operation allowance value calculation unit and the difference and the setting value calculated by the difference calculation unit
  • the operation allowance value selection unit that selects the operation allowance value for the output target from one or more of the above, and the difference between the measured value, the set value, and the operation allowance value for the selected operation allowance value for the output target.
  • An output unit for outputting one or more of the above.
  • the present invention it is possible to display one or more of the measured value, the set value, the operation allowable value, and the difference for the selected operation allowable value of the output target according to a predetermined display method.
  • FIG. 1 is an overall configuration diagram of a power system monitoring device according to a first embodiment.
  • FIG. 1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. It is a block diagram which shows the content of a program database. It is a flowchart of a power system monitoring process. It is a flow chart of operation allowable value calculation processing. It is a flow chart of difference calculation processing and operation permissible value selection processing. It is a figure which shows setting value data. An example of the calculation result of the operation allowable value selection process is shown. An example of the calculation result of the operation allowable value calculation process is shown. It is an example of a calculation result of the operation allowable value calculation process. It is an example of a calculation result of the operation allowable value calculation process. It is an example of a calculation result of the operation allowable value calculation process.
  • FIG. 7 is an overall configuration diagram of a power system monitoring device according to a second embodiment. 1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. An example of priority data is shown. It is a flow chart of difference calculation processing and operation permissible value selection processing.
  • FIG. 7 is an overall configuration diagram of a power system monitoring device according to a third embodiment.
  • 1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. It is a block diagram which shows the content of a program database.
  • 1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. It is a block diagram which shows the content of a program database. It is a flow chart which shows electric power system monitoring processing. It is an explanatory view showing evaluation of an operation allowance.
  • the power system monitoring device can monitor the power system automatically, manually, or semi-automatically.
  • the power system monitoring device can support the judgment of the user who monitors the power system, and thus can also be called a power system monitoring support device.
  • “supporting the user's judgment” means, for example, judgment of control, judgment of degree of violation, judgment of problem area, judgment of improvement measures, and judgment of settling value. Including one or more or all.
  • display contents (output contents) of operation constraint information for example, operation range, operation upper limit value or lower limit value, nomogram, etc.
  • operation constraint information for example, operation range, operation upper limit value or lower limit value, nomogram, etc.
  • the operation constraint information is information including an operation allowable value.
  • the power system monitoring device can display the operation allowable value of the output target on a display device or the like, and can also transmit or output to another device.
  • the case where the output is the display output will be described as an example.
  • the power system monitoring device calculates operation allowable values for a plurality of evaluation axes (axis that evaluates operation allowable values of monitored variables (PQVF etc.)). Then, the power system monitoring device according to the present embodiment selects an operation allowable value to be output from the calculated operation allowable values according to a predetermined condition and causes the output unit to display it. That is, the power system monitoring device operates the output target so as to be updated at a predetermined frequency from the operation allowable values (which can also be called the operation allowable value candidates) calculated on the selected evaluation axis. Select an acceptable value.
  • monitoring targets for example, P (fence power flow), Q, V, F, etc.
  • multi-dimensional operational constraint information can be created respectively.
  • the operation constraint information may be provided to a computer terminal used by the user or an external control system.
  • the providing method can be controlled. For example, the update frequency can be reduced for all or part of the information included in the operation restriction information.
  • the operation allowable value is calculated based on the calculation condition and the measured value, and the output content and frequency of the operation allowable value are changed based on the calculation result and the set value.
  • the power system monitoring device at least one or both of system stability or economical operation, even when the power flow state of the power system to be monitored or the operation mode is complicated and changes frequently. Can be realized.
  • the power system monitoring apparatus includes, for example, an operation allowance value calculation unit 31 that calculates an operation allowance value from one or more of calculation conditions and measured values, and a calculation result D4 ( (Operation allowance value), a measurement value D1 and a set value D2, and a difference calculation unit 32 that calculates a difference (for example, a difference or a ratio) D5, and a calculation result D4 of the operation allowance value calculation unit 31 and the difference.
  • An operation allowance value selection unit 33 that selects an operation allowance value from one or more of the calculation result D5 (difference) and the setting value D2 of the calculation unit 32, a calculation condition, a measurement value D1, a setting value D2, and the operation allowance value calculation result.
  • the output unit 43 displays one or more of D4, the difference calculation result D5, and the operation allowable value selection result D6.
  • the content or frequency of the operation allowable value can be changed based on the set value and the measured value. Therefore, the power system monitoring device of the present embodiment, at least one of system stability and economical operation, even when the power flow state or operation mode of the monitored power system changes more complexly and frequently than the current configuration. Either one or both can be realized. Further, according to the present embodiment, the user (operator) does not need to change the setting value frequently for the operation of the power system monitoring device, so that the labor of the user can be reduced and the usability of the user can be improved. Is improved.
  • a power monitoring device or power monitoring method having the following configuration is disclosed.
  • the power system monitoring device or the power monitoring method may be realized by a computer program running on one or more computers. Further, the computer program can be distributed on a communication network or can be distributed in a state of being stored in a storage medium.
  • the predetermined condition is to extract an operation allowance value satisfying a predetermined update frequency from operation allowance values included in one or more predetermined evaluation axes selected from a plurality of evaluation axes, Power system monitoring device.
  • the set value D2 is an operation target value, an operation upper / lower limit value, a constraint condition, a threshold value, a margin, a filter time constant, a discretization condition, an operation allowable set time, an allowable current calculation condition, a line configuration, a line resistance, a line type, and a system.
  • a power system monitoring device that is one or more of a configuration, a system topology, a line constant, a generator constant, and system data.
  • the measured value D1 is active power, reactive power, apparent power, voltage, frequency, power factor, weather condition, temperature, wind speed, wind direction, solar radiation, load current value, wire temperature, ambient temperature, telemeter information, supervision information. , A power system monitoring device.
  • the operation allowance value selection unit 33A selects the operation allowance value of the output target based on the priority D8 preset for at least one operation allowance value calculated by the operation allowance value calculation unit. Monitoring equipment.
  • the operation allowance value calculation unit 31 uses the operation allowance value candidates as current capacity calculation, dynamic rating calculation, heat capacity calculation, power flow calculation, transient stability calculation, stationary stability calculation, voltage stability calculation, frequency stability calculation, An electric power system monitoring device characterized by being obtained from one or more of cascading calculation, islanding calculation, and transmission rules between electric power companies.
  • the difference calculation unit 32 calculates a difference from the operation allowable value candidate and the setting value, and determines an operation allowable value of the output target based on the calculation result of the difference and the setting value. Monitoring equipment.
  • the operation allowance value selection unit 33 uses the set value to pass the operation allowance value candidate through one or more of a low pass filter, a moving average filter, a high pass filter, a moving difference filter, a band pass filter, or a discrete value.
  • the power system monitoring apparatus determines the operation allowable value of the output target by converting the output power into a power system.
  • the operation allowance value selection unit 33 is a power system monitoring device that selects the operation allowance value to be output from the difference between the operation allowance value calculated by the operation allowance value calculation unit and the measured value.
  • the output unit 43 In the power system monitoring device according to configuration 1, The output unit 43, one or more operation allowable values of the output target, a one-dimensional numerical value, a two-dimensional numerical table, a two-dimensional plan view, a two-dimensional nomogram diagram, a three-dimensional nomogram diagram, multidimensional A power system monitoring device that outputs at least one of a diagram and a multidimensional nomogram diagram.
  • the output unit 43 further includes notifying means for notifying a time transition of the operation allowable value of the output target, and the notifying means is one-dimensional numerical value, one or more blinks of colon or time, two-dimensional By outputting at least one or more of a time-series waveform, a trajectory of a driving point in a two-dimensional plan view or a nomogram diagram, a trajectory of a driving point in a three-dimensional nomogram diagram, or a trajectory of a driving point in a multidimensional nomogram diagram, A power system monitoring device that notifies the time transition of the operation allowable value.
  • (Configuration 12) In the power system monitoring device according to configuration 11, The output unit 43, based on the input instruction, at least one or more of reproduction, rewind, fast forward, pause, skip for a fixed time, repeat, and the like regarding time transition of the operation allowable value of the output target.
  • a power system monitoring device that outputs at.
  • the priority D8 is a power system monitoring device that is a weighting factor set based on at least one of system information, operation information, weather information, and operation constraints.
  • the calculator is An operation allowance calculation step of calculating at least one operation allowance from one or more of the measured value and the set value, A difference calculation step of calculating a difference from one or more of the operation allowable value, the measured value, and the setting value calculated by the operation allowable value calculating step, Operation allowance value selecting step of selecting an operation allowance value to be output from one or more of the operation allowance value calculated in the operation allowance value calculating step, the difference calculated in the difference calculating step, and the setting value
  • An output step of outputting one or more of the measured value, the set value, the operation allowable value, and the difference based on a predetermined output method for the selected operation allowable value of the output target,
  • the power system monitoring method for executing.
  • the operation allowance value selection unit 33A calculates the difference between the operation allowance value calculation result and the measurement value, and selects the operation allowance value to be output from the difference calculation result, and the difference calculation result.
  • An electric power system monitoring device characterized by calculating both or one of the cases where an operation allowable value of an output target is selected after weighting priorities.
  • the output unit 43 outputs a difference value when selecting an operation allowance value to be output without weighting the priority and when selecting an operation allowance value to be output after weighting the priority.
  • the power system monitoring device is characterized in that both can be switched.
  • Example 1 will be described with reference to FIGS. 1 to 18.
  • the following description shows an example of the content of the present invention.
  • the present invention is not limited to the following description, and various changes and modifications can be made by those skilled in the art within the scope of the technical idea disclosed in this specification.
  • the power system monitoring device 10 calculates the operation allowable value D4 using the measured value data D1 and the set value data D2, and calculates the operation allowable value calculation result data D4, the measured value data D1, and the set value data.
  • the difference D5 is calculated from at least one of D2
  • the operation allowable value D6 is selected from at least one of the operation allowable value calculation result data D4, the difference calculation result data D5, and the set value data D2, and the measured value data D1 is obtained.
  • One or more of the set value data D2, the operation allowable value calculation result data D4, the difference calculation result data D5, and the operation allowable value selection result data D6 are displayed.
  • the functions of the power system monitoring device 10 can be roughly divided into, for example, a data acquisition unit 40, a calculation unit 41, a result storage unit 42, and a display output control unit 43.
  • the data acquisition unit 40 acquires the input data D40.
  • the input data D40 includes data D1 (measured value D1) and data D2 (set value D2).
  • the data D1 is managed by the measurement value database DB1.
  • the data D2 is managed by the setting value database DB2.
  • the calculation unit 41 includes an operation allowance value calculation unit 31, a difference calculation unit 32, and an operation allowance value selection unit 33.
  • these respective functions 31 to 33 may be referred to as calculation units 31 to 33.
  • the result storage unit 42 stores the result data D42.
  • the result data D42 includes data D4 (calculation result of operation allowable value), data D5 (calculation result of difference), and data D6 (selection result of operation allowable value).
  • the data D4 is managed in the operation allowable value calculation result database DB4.
  • the data D5 is managed by the difference calculation result database DB5.
  • the data D6 is managed in the operation allowable value selection result database DB6.
  • the names of the databases DB1 to DB6 may be simplified and expressed, as the measurement value database DB1 is simplified and shown as the database DB1.
  • the measured value data D1 and the set value data D2 may be simply referred to as the measured value D1 and the set value D2.
  • Other data D4 to D6 may be simplified as appropriate.
  • the measured value D1 is input to the operation allowable value calculation unit 31 and the difference calculation unit 32.
  • the set value D2 is input to each of the calculation units 31 to 33.
  • the measurement value D1 is, for example, PQVF (active power value, reactive power value, voltage value, frequency) of the tidal current.
  • the measurement value D1 may be time-series data.
  • the set value D2 is, for example, one or more preset operation allowable values (may be time series data), a threshold value for determining necessity, and the like.
  • the operation allowable value may be a value indicating an operation range, an upper limit value or a lower limit value of operation, or a nomogram.
  • the operation allowable value can also be calculated from the measured value D1 and data indicating the system configuration (system data).
  • the operation allowance D4, which is the calculation result of the operation allowance calculator 31, is input to the database DB4 and the difference calculator 32.
  • the difference D5, which is the calculation result of the difference calculation unit 32, is input to the database DB5 and the operation allowable value selection unit 33.
  • the operation allowance value selection unit 33 selects the operation allowance value D6 to be output based on the set value D1, the operation allowance value D4, and the difference D5.
  • the selected operation allowable value D6 is input to the database D6.
  • the output control unit 43 as an “output unit” controls the content and timing of information provided to the user.
  • FIG. 2 shows the hardware configuration of the power system monitoring device 10 and the overall configuration of the power system 100.
  • FIG. 2 shows a situation in which electric power is exchanged across a plurality of electric power systems 100a, 100b, 100c.
  • the power systems 100a, 100b, 100c are not distinguished, they are referred to as the power system 100.
  • FIG. 2 includes, for example, a power supply, a bus bar, a line, a load, a power capacitor, a shunt reactor, a measuring device, a generator, a transformer, a phase adjusting device, etc., but they are omitted as appropriate in the drawing.
  • a plurality of devices are connected via a line (branch), a bus (node), a transformer (not shown), and a transformer with taps (not shown).
  • the lines 141ab, 142ab, 141cb, 142cb, 141sc, 142ac may be referred to as the line 140 without distinction.
  • the busbars 120a, 120b, 120c, 121a, 121b, 121c may be called the busbar 120 without distinguishing them.
  • the devices included in the power system 100 include, for example, a power supply, a load, a power capacitor (SC: Static Condenser), a shunt reactor (ShR: Shunt Reactor), a measuring device (for example, the device 44), and other controllable devices.
  • SC Static Condenser
  • SH shunt reactor
  • measuring device for example, the device 44
  • other controllable devices There is.
  • Other devices that can be controlled include, for example, batteries, rechargeable secondary batteries, EV storage batteries, flywheels, and other phase adjusting equipment (SVC (Static Var Compensator), SVG (static var compensator). Static C Var Generator: static reactive power generator), LPC (Loop Power Controller: transformer with phase adjuster), etc.). It is not necessary for each power system to be equipped with all of the above devices.
  • SVC Static Var Compensator
  • SVG static var compensator
  • Static C Var Generator static reactive power generator
  • LPC Loop Power Controller: transformer with phase adjuster
  • the measuring devices 44a and 44b are illustrated as if they are provided only in the power system 100a in FIG. 2, but the measuring devices may be provided in the other power systems 100b and 100c. When no distinction is made, it is referred to as a measuring device 44.
  • the measuring devices 44 included in each of the power systems 100a to 100c are connected to the communication unit 13 of the power system monitoring device 10 via the communication network CN.
  • the communication network CN may be a communication network using transmission and distribution lines, a communication network using optical fibers, or a wireless communication network.
  • the power sources included in the power system 100 include, for example, a rotary power source, a distributed power source, and an inverter interconnection power source.
  • the rotary power source is, for example, a thermal power generator, a hydraulic power generator, a nuclear power generator, or the like.
  • the distributed power source is, for example, a solar power generation device, a wind power generation device, or the like.
  • the inverter interconnection power supply is a power supply connected to the power system 100 via an inverter.
  • the example of the measurement value data D1 is, as described above, the node voltage V, the branch current I, the active power P, the reactive power Q, the power factor ⁇ , the tap value, the node, the branch, the transformer, the SC, the ShR, and the like. It is any one or a plurality of information such as opening / closing information of the switch.
  • the measurement value data D1 is transmitted to and stored in the measurement value database DB1 via the communication network CN.
  • the measuring device 44 measures, for example, one or more of each of the above-mentioned measured value data D1 by a voltage transformer (VT: Voltage Transformer) or a voltage transformer (PT: Potential Transformer) or a voltage transformer. It is a flow device (CT: Current Transformer).
  • the measuring device 44 has a function of creating measured value data D1 including, for example, an identifier (ID) for identifying a location where the data is measured, a built-in time stamp of the measuring device, and the created measured value data D1. It has a function of transmitting to 10.
  • the measurement value data D1 can also be generated as, for example, a telemeter (TM: Telemeter) or a supervision (SV: Super Vision).
  • the measuring device 44 may be a device that measures electric power information (voltage phasor information) with absolute time using GPS, a phase measuring device (PMU: Phase Measurement Units), or another type of measuring device. Furthermore, the measuring device 44 does not need to be provided in the power system 100, and may be installed on the bus 120 or the line 140. That is, the measuring device 44 may be installed on a bus, a line, or the like, which is connected to the power supply, the transformer, the tapped transformer, the load, the power capacitor, the shunt reactor, and the measuring device 44.
  • PMU Phase Measurement Units
  • the measured value data D1 is measured as the data of the electric power system 100a and is not illustrated as being measured from the electric power system 100b or the electric power system 100c, but in the operation of the electric power system A, This is an example assuming that the power system monitoring device 10 is used, and in reality, data from the power system 100b or the power system 100c may be received.
  • the measurement value database DB1 of the power system monitoring device 10 can directly receive the measurement value data D1 from each measurement device 44 via the communication network CN, or can indirectly receive the measurement value data D1 via another device. it can.
  • the measurement value data D1 may be sent to the setting value database DB2 via the communication network CN after being once collected by another monitoring device.
  • the measurement value data D1 may be received by the measurement value database DB1 from the measurement device 44 or another monitoring device via the communication network CN.
  • the other monitoring device is, for example, a central power supply command station, a system power supply command station, a backbone system power supply command station, a local power station, or a system stability monitoring server (all not shown).
  • the configuration of the power system monitoring device 10 will be described.
  • the power system monitoring device 10 includes, for example, a display unit 11, an input unit 12, a communication unit 13, a microprocessor (CPU: Central Processing Unit) 14, a memory 15, a measurement value database DB1, a set value database DB2, and an operation allowable value calculation result. It includes a database DB4, a difference calculation result database DB5, an operation allowable value selection result database DB6, and a program database DB7, and the respective constituent elements 11 to 15 and DB1 to DB7 are connected by a bus BL.
  • the microprocessor 14 may be configured as a computer or a computer server.
  • the display unit 11 is a device for providing information from the power system monitoring device 10 to a user such as an administrator or an operator.
  • the display unit 11 can be configured as a display device, for example. Instead of the display device or together with the display device, the display unit 11 may be configured by using a printer device, a voice output device, or the like. Alternatively, the display unit 11 may include an interface that outputs information to another device (not shown).
  • the display unit 11 can also be called an “information providing unit”.
  • the input unit 12 is a device for inputting information or instructions from the user to the power system monitoring device 10.
  • the input unit 12 can be configured to include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
  • the communication unit 13 is a device including a circuit for connecting to the communication network CN and a communication protocol.
  • the CPU 14 reads and executes a predetermined computer program from the program database DB7.
  • the CPU 14 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server.
  • the memory 15 is configured as a RAM (Random Access Memory), for example.
  • the memory 15 stores a computer program read from the program database DB7 and stores calculation result data and image data necessary for each process.
  • the screen data stored in the memory 14 is sent to the display unit 11 and displayed. An example of the displayed screen will be described later.
  • the program database DB7 stores, for example, an operation allowable value calculation program P10, a difference calculation program P11, an operation allowable value selection program P12, and an output program P13.
  • the CPU 14 executes the calculation program (operation allowable value calculation program P10, difference calculation program P11, operation allowable value selection program P12, output program P13) read from the program database DB7 to the memory 14 to calculate the operation allowable value. , Difference calculation, operation allowable value selection, instruction of image data to be output, and data search of each database.
  • the memory 14 is a memory for temporarily storing output (display) image data, measurement value data D1, setting value data D2, temporary data used in each calculation, and calculation result data in each calculation.
  • the CPU 14 generates image data necessary for output and displays it on the display unit 11 (for example, a display screen).
  • An output unit for providing information to the user (image data for managing the operation allowable value) and an output unit for performing maintenance of the power system monitoring device 10 may be separated. That is, the information to be provided to the user may be displayed on a computer terminal that is configured separately from the power system monitoring device 10.
  • the power system monitoring device 10 may be provided with an output unit for rewriting each computer program or database.
  • the computer terminal that provides information to the user may be a desktop, notebook, or tablet personal computer, or a personal digital assistant (including a so-called smartphone). Instead of a normal two-dimensional screen, VR (Virtual Reality: Virtual Reality), AR (Augmented Reality), MR (Mixed Reality: Mixed Reality) may be used.
  • the power system monitoring device 10 roughly stores six databases. Except for the program database DB7, the measurement value database DB1, the setting value database DB2, the operation allowable value calculation result database DB4, the difference calculation result database DB5, and the operation allowable value selection result database DB6 will be described.
  • the measurement value database DB1 includes measurement value data D1.
  • the measured value data D1 includes active power P, reactive power Q, voltage V, frequency, voltage phase angle ⁇ , current I, power factor ⁇ , tap value, power system and node or branch or transformer or SC. It also includes switching information of switches provided between the switch and ShR, time information, weather conditions, air temperature, wind speed, solar radiation amount, load current value, electric wire temperature, ambient temperature, telemeter information, supervision information, and the like.
  • the measurement value data D1 may be time stamped data or PMU data.
  • the voltage and the voltage phase angle at the node 120 connected to the power system 100 the line current (I) or the line flow (P + jQ) of the branch 140 connected to the node 120 connected to the power system 100, and the connection to the power system 100.
  • Voltage V and current I, active power P, reactive power Q and power factor ⁇ , load voltage V and current I, active power P, reactive power Q and power factor ⁇ , measuring device 44 and other monitoring devices From other nodes or branches connected to the power system 100 to be measured via the communication network, power supply, load, control device, etc., voltage V, current I, active power P, reactive power, etc.
  • voltage V, current I, active power P, reactive power etc.
  • power Q, power factor ⁇ , voltage V and voltage phase angle ⁇ tap value of transformers and transformers with taps, and switching information of switches between nodes, branches, transformers, SC, ShR, etc. Any one or more are stored.
  • the voltage phase angle ⁇ may be measured using another measuring device using PMU or GPS.
  • the measuring device 44 is VT, PT, CT, TM, SV information and the like.
  • the line power flow (P + jQ) can be calculated from the current I, the voltage V, and the power factor ⁇ measured by VT, PT, or CT.
  • the measurement value data D1 may be obtained from the monitoring control device, the central power feeding command center, EMS, or directly from the measurement device of the entire system.
  • set value database DB2 As set value data D2, active power P, reactive power Q, voltage V, voltage phase angle ⁇ , current I, power factor ⁇ , tap value, turning on / off of the switch as shown in FIG. Operation information, operation target value, operation upper and lower limit value, constraint condition, threshold value, margin, filter time constant, discretization condition, operation allowable set time, allowable current calculation condition, line configuration, line resistance, line type, system configuration, It includes system topology, line constants, generator constants, system data, etc.
  • FIG. 7 shows an example of the set value data D2.
  • the number is divided by "i" for each location and described without any change depending on the time zone.
  • Pdij in FIG. 7 indicates the operation allowable value of the jth stage.
  • Pdij ⁇ indicates the margin of the operation allowable value at the j-th stage.
  • the filter time constant may be saved as a part of the set value data D2.
  • the measurement value data D1 is time-series data of measurement values such as PQVF, so description thereof will be omitted.
  • the set value data D2 further includes each node obtained by power flow calculation using the system configuration, line impedance (R + jX), ground capacitance (admittance: Y), power supply data, power generation plan and load demand forecast value. It also includes time series data (predicted value) such as the voltage, active power, and reactive power.
  • the system configuration includes one or a plurality of connection relationships among a bus 120, a line 140, a power supply, a load, a transformer, and each control device of the system.
  • the measurement value data D2 may be obtained from the monitoring control device, the central power supply command station, EMS, or manually input.
  • the user inputs it using the input unit 12 and stores it in the database DB2.
  • the CPU 14 When the user manually inputs the set value data D2, the CPU 14 generates a screen for manual input and displays it on the display unit 11.
  • the set value data D2 may be semi-automatically input by using a complementary function at the time of input.
  • the operation allowance calculation result database DB4 stores operation allowance calculation result data D4 (also referred to as an operation allowance D4).
  • the calculation result data D4 of the operation allowable value includes, for example, current capacity calculation, dynamic rating calculation, heat capacity calculation, state estimation calculation, power flow calculation, optimum power flow calculation, transient stability calculation, steady state stability calculation, voltage stability calculation. , Frequency stability calculation, cascading calculation, islanding calculation, transmission rules between electric power companies, and the like, which include operation constraints calculated from any one or a plurality of them.
  • These data may be stored in the database DB4 using the input unit 12 of the power system monitoring device 10, or may be stored in the database DB4 from other monitoring devices.
  • the result calculated using the measurement value data D1 and the setting value data D2 may be set in the database DB4 as a settling value.
  • the difference calculation result database DB5 includes, as difference calculation result data D5, the result of the difference calculation between the operation allowable value D4 which is the operation allowable value candidate and the set value D2.
  • the operation allowance value selection result database DB6 includes the operation allowance value D6 to be output, which is selected based on the difference calculation result D5 as the operation allowance value selection result data D6.
  • FIG. 4 is an example of a flowchart showing the overall processing of the power system monitoring device 10. I will briefly explain the flow.
  • the power system monitoring device 10 calculates the operation allowable value D4 using the measured value data D1 and the set value data D2 (S30).
  • the operation allowable value calculation result D4 is stored in the operation allowable value calculation result database DB4.
  • the power system monitoring device 10 calculates the difference D5 using the calculated allowable operation value D4, the measured value data D1, and the set value data D2 (S40).
  • the calculated difference D5 is stored in the difference calculation result database DB5.
  • the power system monitoring device 10 executes the calculation for selecting the operation allowable value D6 to be output from the operation allowable value D4 calculated in step S30, the difference D5 calculated in step S40, and the set value data D2. Yes (S50).
  • the operation allowable value selection result D6 is stored in the operation allowable value selection result database DB6.
  • the power system monitoring device 10 causes the display unit 11 to output at least one of the measured value data D1, the set value data D2, the operation allowable value D4, the difference D5, and the operation allowable value selection result data D6 (S60). ).
  • the display unit 11 causes the display unit 11 to output at least one of the measured value data D1, the set value data D2, the operation allowable value D4, the difference D5, and the operation allowable value selection result data D6 (S60).
  • S60 operation allowable value selection result data
  • the various calculation results and the data accumulated in the memory 15 during the calculation may be sequentially displayed on the screens of other monitoring devices. As a result, the user can easily understand the operation status of the power system monitoring device 10. Details of the above steps are described below.
  • step S30 the power system monitoring device 10 uses the measured value data D1 and the set value data D2 to calculate the operation allowance value, and stores the operation allowance value D4 as the result in the operation allowance value calculation result database DB4.
  • the operation allowable value D4 is calculated using the operation restriction of the power system included in the setting value data D2.
  • the operational constraints include, for example, current capacity calculation, dynamic rating calculation, heat capacity calculation, state estimation calculation, power flow calculation, optimum power flow calculation, transient stability calculation, steady state stability calculation, voltage stability calculation, frequency stability calculation, and cascade calculation. It is set from one or more of a ding calculation, an islanding calculation, and a transmission rule between electric power companies.
  • the data D1 and D2 may be input to the power system monitoring device 10 using the input unit 12 and the display unit 11.
  • the data D1 and D2 may be input to the power system monitoring device 10 from another monitoring device through the communication network CN and the communication unit 13.
  • the power system monitoring device 10 may automatically receive and store data relating to the data D1, D2, D4, D6 held in another monitoring device or the like at a constant cycle.
  • correction may be added or the set data may be used.
  • step S30 Details of step S30 will be described with reference to FIGS. 5 and 8.
  • a case where the operation allowable value is set in a plurality of stages for example, the first stage and the second stage here
  • the number of stages is three or more, it can be dealt with by expanding the flowchart of FIG.
  • the operation allowable value calculation unit 31 of the power system monitoring device 10 reads the measured value data D1 and the setting value data D2 (S31), and calculates the operation allowable value (S32). In the flowchart, the code OT is given to the calculated operation allowable value.
  • the operation allowable value calculation unit 31 calculates the difference ⁇ P between the calculated operation allowable value OT and the set value D2 (S33), and determines whether the difference ⁇ P is 0 or more (S34). When there is a difference ⁇ P (S34: YES), the operation allowance value calculation unit 31 determines whether the operation allowance value OT calculated in step S32 is the first-stage setting value (S35).
  • the operation allowance value calculating unit 31 waits until the set time Tup elapses (S36). When the set time Tup has elapsed (S36: YES), the operation allowance value calculation unit 31 changes the operation allowance value OT (S37) and initializes the value of the counter that counts the set time (S38). If "NO" is determined in step S35, or if "NO" is determined in step S36, the process returns to step S31.
  • step S34 determines whether the difference ⁇ P calculated in step S33 is 0 or less (S34: NO).
  • the operation allowance value calculation unit 31 determines whether the operation allowance value OT calculated in step S32 is the second-stage setting value. The determination is made (S35b). Then, the operation allowable value calculation unit 31 waits until another set time Tdown elapses (S36b). When another set time Tdown has elapsed (S36b), the process proceeds to step S37. When it is determined to be "NO" in either step S35b or step S36b, the process returns to step S31.
  • step S32 the operation allowable value OT is calculated by inputting the temperature in the DR calculation, for example.
  • the operation allowable value may be calculated by calculating the system stability.
  • the operation allowable value is calculated and changed in order to maintain the system stability. The normal DR attempts to use the operation allowance up to the limit, which is different from the calculation of the operation allowance in this embodiment.
  • FIG. 8 shows an example of the calculation result of the operation allowable value selection process (S50).
  • the strict operational allowance that is, the minimum operational allowance is displayed.
  • the operation allowance is relaxed.
  • a white circle indicating the calculation result of the operation allowable value and a black circle indicating a measurement value described later are different plot points. As a result, it is possible to flexibly change the operation when the operation allowable value is relaxed.
  • FIG. 9 shows an example of the calculation result of the operation allowable value calculation process (S30).
  • a digital filter low-pass filter (LPF, moving average filter), high-pass filter (HPF, moving difference filter), or band-pass filter (BPF)
  • LPF low-pass filter
  • HPF moving difference filter
  • BPF band-pass filter
  • the limit of the operation allowable value is set to “Pd12” and displayed. You can also As a result, it is possible to avoid excessively optimistic operation.
  • FIG. 11 shows an example of the calculation result of the operation allowable value calculation process (S30). As shown in FIG. 11, the result of the filter processing described in FIG. 9 can be displayed with a coarser update period (discretized). As a result, it is possible to suppress frequent changes in the operation allowable value.
  • the roughness of the update cycle of the operation allowable value can be changed arbitrarily. As a result, it is possible to set the update cycle suitable for the user, and the usability for the user is improved.
  • the update cycle may be set to, for example, a 10-second cycle according to real-time DR calculation.
  • calculation of system stabilization that appears periodically for example, every 5 minutes
  • the methods described in FIGS. 8 to 11 can be applied as they are.
  • FIG. 12 is an example in which the difference between the measured value and the operation allowable value is calculated with respect to the selection result of the operation allowable value (using the result of FIG. 8). Only the representative three points are shown as the difference ⁇ P. Select the axes in order of increasing difference. When the difference is smaller than the threshold value Pi ⁇ , it may be forcibly displayed in multiple dimensions, or may be displayed using a plurality of two-dimensional graphs as shown in FIG. By displaying the operation allowable value by these methods, it is possible to realize monitoring without omission.
  • each evaluation axis 1P, 2P, 1Q, 2Q indicates an axis for evaluating the PQVF or the like of the operation monitoring target of each path, and they are all different.
  • an important evaluation axis for example, the axis to be monitored now
  • FIG. 15 shows an example of a system diagram screen G1 displaying a system diagram.
  • the screen G1 On the screen G1, all nodes or measurement points on the map may be connected by lines. At that time, by adopting a skeleton method, it is possible to prevent the visibility of the map from being impaired. Further, when the user uses a pointing device such as a mouse to select an element (device, path) included in the system, detailed information of the selected element can be displayed on the screen G1. The detailed information may be displayed in the screen G1 or may be displayed by opening another screen.
  • a pointing device such as a mouse
  • FIG. 16 shows an example of the system monitoring screen G2 in the first embodiment.
  • FIG. 17 shows an example in which the operation locus of the system monitoring screen G2 is displayed.
  • An important evaluation axis is assigned as a monitoring target to the vertical axis (Y axis) and horizontal axis (X axis) of the nomogram in the figure.
  • the path 1P is displayed on the Y axis and the path 2P is displayed on the X axis.
  • the user can change the axis displayed on the left side of the screen G2 by selecting a desired path name from the path names displayed on the upper right of the screen G2 by clicking or the like.
  • Screen G2 can also play back the results of past system monitoring.
  • the state of past system monitoring can be displayed on the screen G2 by tracing back a predetermined period or a period designated by the user. You may be able to trace the trajectory of change with a line. This makes it possible to represent a time series tendency on a plane.
  • the screen G2 shows one nomogram, but the present invention is not limited to this, and a plurality of nomograms may be displayed.
  • a plurality of nomograms may be displayed.
  • the time displayed on the upper right of the screen G2 may be blinked.
  • a graph for showing the change in the operation allowable value may be displayed on the screen G2 or another screen.
  • the operation constraint information is shown in a two-dimensional plan view (nomogram format), but it is not limited to this. If there is only one important axis, it may be displayed as a two-dimensional time series waveform. It can also be displayed in a three-dimensional nomogram format, or can be displayed as a one-dimensional numerical value only. Furthermore, the nomogram is not limited to the case of being represented by a rectangle.
  • the screen G2 may be managed in seconds or in hours.
  • FIG. 18 shows an example of the operation allowable value calculation result screen G3 in the first embodiment.
  • White circles in the graph on the upper side of the screen G3 indicate the calculation result of the operation allowable value.
  • the solid line on the lower side of the screen G3 shows the output result of the operation allowable value.
  • the difference calculation result of the vertical axis ⁇ P12 (t) and the time counter can also be displayed as a graph.
  • step S40 a difference is calculated using the operation allowable value calculation result data D4, the measured value data D1, and the set value data D2 stored in step S30, and the result is stored in the operation allowable value calculation result database DB4.
  • step S50 the operation allowable value to be output is selected using the operation allowable value calculation result data D4 stored in step S30, the difference calculation result data D5 and the set value data D2 stored in step S40,
  • the selection result D6 is stored in the operation allowable value selection result database DB6.
  • the difference calculation unit 32 of the power system monitoring device 10 uses the operation allowable value D4 (displayed as the operation allowable value OT in FIG. 5) that is the calculation result of the operation allowable value calculation unit 31, the measured value data D1, and the set value data D2. And are read (S41), and the difference is calculated (S42). The difference calculation unit 32 determines whether the difference calculated in step S42 is the last axis (index) of the plurality of monitoring target axes (index) included in the operation constraint information (S43). Steps S41 and S42 are repeated until the differences are calculated for all monitored axes (S43: NO).
  • the operation allowable value selection unit 33 sorts the calculated differences (S51) and outputs the sorted results based on the sorted results. A target operation allowable value is selected (S52).
  • the selected operation allowable value D6 is stored in the database DB6.
  • step S51 the differences can be sorted in ascending or descending order.
  • a portion with a small difference a portion with no margin, a severe portion
  • a portion with a large difference a portion with a margin.
  • a place where the difference is small is a place where there is no margin.
  • both a small difference part and a large difference part can be displayed on the screen of the display unit 11.
  • step S60 the measured value data D1, the set value data D2, the operation allowable value calculation result data D4 stored in step S30, the difference calculation result data D5 stored in step S40, and step S60 are used to monitor the state of the power system. At least one of the operation allowable value selection result data D6 stored in S50 is displayed on the screen of the display unit 11.
  • Each calculation result or the data accumulated in the memory during the calculation may be sequentially displayed on the screen of another monitoring device. This allows the user to easily understand the operating status of the power system monitoring device 10.
  • the present embodiment configured as described above, even if the power flow state or operation of the system changes frequently and complicatedly, it is possible to monitor in response to the change, so that reliability is maintained. At the same time, the usability for the user can be improved.
  • the operation allowable value output on the screen can be gently changed. Therefore, the user can calmly monitor and operate the system without being rushed to deal with the rapidly changing measurement value D1. As a result, the usability of the user can be improved and the system can be stabilized and economically operated.
  • Example 2 will be described with reference to FIGS. 19 to 23.
  • Each of the following embodiments including this embodiment corresponds to a modification of the first embodiment, and therefore the differences from the first embodiment will be mainly described.
  • priority data D8 is added as input data.
  • the operation allowable value selected in step S50 can be adjusted according to the priority. As a result, it is possible to provide the power system monitoring device 10A that is convenient for the user.
  • the effect of weighting can be confirmed by calculating both with and without priority weighting.
  • FIG. 19 is an overall configuration diagram of the power system monitoring device 10A of the present embodiment. Comparing the power system monitoring apparatus 10A of the present embodiment with the power system monitoring apparatus 10 described in FIG. 1, the priority data D8 is added to the input data D40 of the power system monitoring apparatus 10A, and the operation allowable value. The difference is that priority data D8 is added to the data used in the selection unit 33A.
  • FIG. 20 shows the overall configuration including the hardware configuration of the power system monitoring device 10A of this embodiment.
  • a priority database DB8 is added to the power system monitoring device 10A.
  • the priority database DB8 manages the priority data D8.
  • the priority data D8 will be described with reference to FIG.
  • the priority data D8 is a weight for the difference between the evaluation axes.
  • the priority is determined using, for example, one or more of operation information, area information, system information, weather information, operation restrictions, and the like.
  • FIG. 21 is an example of the priority data D8, and the weight of each axis in each time zone is set, but it is not necessary to set the priority data D8 for each time zone.
  • the flowchart of FIG. 22 shows the processing of the difference calculation unit 32 and the processing of the operation allowable value selection unit 33 of the power system monitoring device 10A according to the present embodiment.
  • Steps S41 to S43, S51, and S52 are the same as those in the flowchart described with reference to FIG. 6, but in the present embodiment, the difference D5 is further weighted by the priority data D8, and the rearrangement (S53) is performed.
  • the operation allowable value D6 to be output is selected based on the difference D5 weighted by D8 (S54).
  • the power system monitoring device 10A of the present embodiment allows the operation allowance D6 (S51, S52) of the output target based on the difference D5 that is not weighted and the operation allowance of the output target based on the difference D5 weighted by the priority data D8.
  • a plurality of types (two types) of operation allowable values to be output with the value D6 (S53, S54) are selected.
  • steps S51 to S54 are illustrated as if they are performed in order, but steps S51 and S52 and steps S53 and S54 can be performed in parallel.
  • FIG. 23 is an example of a system monitoring screen G2A displayed on the display unit 11. Comparing the screen G2A of FIG. 23 with the screen G2 described in FIG. 16, the screen G2A of the present embodiment is different in that the operation allowable value is displayed in consideration of the priority data D8.
  • the path 3P is weighted with “0.3” and the paths 1P and 2P are weighted with “1.0”.
  • the table shown in the upper right can sort the differences in ascending order or descending order in each of the case where the priority is considered (Yes) or the case where the priority is not considered (No).
  • the user selects either one of displaying the operation allowance in consideration of the priority D8 or displaying the operation allowance without considering the priority D8. You can therefore, according to the present embodiment, in addition to the operational effects of the first embodiment, the user can further determine whether or not to use the priority, so that the usability is further improved and stable system monitoring is performed. be able to.
  • Example 3 will be described with reference to FIGS. 24 to 31.
  • the power system monitoring device 10B according to the present embodiment not only monitors the power system but also calculates and displays improvement measures to support user operation.
  • FIG. 24 is an overall configuration diagram of the power system monitoring device 10B of the present embodiment. Comparing the power system monitoring apparatus 10B of the present embodiment with the power system monitoring apparatus 10 described in FIG. 1, the point that the improvement measure calculation unit 34 is added to the calculation unit 41 and the improvement data calculation result data in the result data D42. The difference is that a remedy calculation result database DB9 that stores D9 is added.
  • FIG. 25 is an overall configuration diagram including the hardware configuration of the power system monitoring device 10B of the present embodiment.
  • the improvement plan calculation result database DB9 is added to the power system monitoring device 10B of the present embodiment.
  • the power source 110, the transformers 130 and 131, the load 150, and the phase adjusting equipment 160 and 170, which are calculation targets are added.
  • the description will be made by omitting the alphabetical suffix from the symbols such as the power source.
  • FIG. 26 is a configuration diagram showing the contents of the program database DB 7B of the power system monitoring device 10B.
  • the program database DB7B differs from the program database DB7 described with reference to FIG. 3 in that an improvement measure calculation program P14 is added.
  • FIG. 27 is a flowchart showing the overall processing of the power system monitoring device 10B in this embodiment.
  • the flowchart of FIG. 27 differs from the flowchart of FIG. 4 in that a step S70 for calculating improvement measures is added between steps S50 and S60.
  • the improvement measure calculation unit 34 of the power system monitoring device 10B acquires the measurement value D1, the set value D2, the calculated operation allowable value D4, and the selection result D6 of the operation allowable value selection unit 33 (S71), Based on the acquired data, improvement measures for the power system are calculated (S72).
  • the improvement measure calculation unit 34 repeats steps S71 and S72 until the final case is calculated (S73: NO). When the improvement measure calculation unit 34 has calculated for all cases (S73: YES), the improvement measure calculation unit 34 presents the calculated improvement measures to the user (S75). The user can select one or a plurality of improvement measures to be executed from the presented improvement measures. The improvement measure calculation unit 34 can also select an improvement measure according to some selection criterion and inquire the user about whether or not to adopt the selected improvement measure.
  • step S73 The reason why the final case is determined in step S73 is that there may be a plurality of cases of the data D40 input to the improvement measure calculation unit 34. If there is only one improvement measure calculated in step S72, then in step S75, it is determined whether or not there is no problem with the only improvement measure.
  • a plurality of improvement measures may be presented to the user, or only one improvement measure may be presented.
  • solutions improvement measures
  • the user can select and execute a favorite solution from the presented solutions.
  • only one solution is presented, the user can easily understand the most effective solution from the calculated improvement measures.
  • FIG. 29 is an explanatory diagram showing the appearance of the decision result of the improvement measure.
  • An example of the case where the control A is executed as the first improvement measure will be described.
  • Black circles indicate operating points, and white circles indicate a state before M minutes.
  • a black triangle mark indicates a state after the control A is performed.
  • the solid line is the operation allowable value. From FIG. 29, it can be seen that the difference from each operation allowable value increases by implementing the improvement measure (control A). The calculation method of the first improvement measure will be described later.
  • FIG. 30 is an explanatory diagram showing the appearance of the decision result of the second improvement measure. An example of the case where the control B as the second improvement measure is executed will be shown. Since the control A, which is the first improvement measure, can be directly controlled, the effect when the control A is implemented can be displayed on the nomogram. Therefore, the user can easily determine which improvement measure should be implemented.
  • control B as the second improvement measure cannot be directly controlled, but can be controlled by the power system C. Therefore, if the improvement measure (control B) is executed, the system state is analyzed, and the analysis result is presented to the user as the operation target value, whereby the guideline can be shown to the user. This guide can also be communicated to the user of the power system C. By sharing the screen of FIG. 30 among users who operate each power system, common understanding can be easily fostered.
  • the first improvement measure is an improvement measure that directly controls the control target equipment within its own jurisdiction (for example, power system A).
  • a solution operation amount: control A
  • OPF optimum power flow calculation
  • the first improvement measure aims to increase the margin of the operating point.
  • the evaluation function it may be possible to target only the evaluation axis selected by the operation allowable value selection unit 33.
  • the weights of the evaluation axes that have not been selected are also reduced and included in the evaluation function. As a result, it is possible to suppress hunting in which some axis is deteriorated.
  • the equipment to be controlled (Pg, Qg, Vg, tap value, phase adjustment CB on / off, etc.) within its own jurisdiction is used as the operation variable, and the equipment operation constraint (eg tap) is used as the constraint. Moves within this value, etc.).
  • FIG. 29 shows the predictive effect of control A by calculating the power flow when control A is executed.
  • the second improvement measure is an improvement measure to indirectly control the control target equipment in another jurisdiction (for example, power system B) when the control target equipment in its own jurisdiction is insufficient or cannot be controlled.
  • the solution (operation amount: control B) as the second improvement measure is obtained by solving the optimum power flow calculation (OPF) according to the following conditions.
  • the objective function (evaluation function) is as described in the first improvement measure.
  • the controlled variable equipment Pg, Qg, Vg, tap value, phased CB on / off, etc.
  • the restrictions are as described in the first improvement measure.
  • Control B which is the second improvement measure, cannot be directly controlled because it is controlled equipment under other jurisdiction. Therefore, an ideal operational target value (range on the nomogram) with another jurisdiction area is obtained by calculating the power flow assumed when the control B is performed. Then, it is possible to indirectly control by transmitting this ideal operation allowable value to the user in another jurisdiction.
  • the operation target value is displayed as a nomogram on the screen so that the user is in control of another jurisdiction (eg, user of power system B, power generation operator of power system A, different voltage class of power system A).
  • the target can be easily communicated to the user who is doing this). As a result, it is possible to share information among related parties and appropriately grasp the status of the power system.
  • the improvement measures can also be calculated by combining the methods described in the first improvement measure and the second improvement measure described above.
  • OPF calculation it is assumed that the system models of the power system A and the power system B are known, but the power system B may be an integrated model.
  • FIG. 31 is an example of the operation support screen G4. The user can easily understand the relationship between the operation target value and the operation allowable value through the screen G4, and the usability for the user is improved.
  • the user can easily confirm the important operation allowance value, operation target value, and improvement measure, so that the power flow state and the operation form change more complicatedly and frequently. Even if you do, you can respond.
  • the screen G4 shows what improvement measures should be taken for the system monitoring result.
  • FIG. 31 shows an example of the second improvement measure. The user can confirm the details of the OPF in the calculation result column on the upper right.
  • the user can also confirm the first improvement measure. Therefore, the user can display and confirm both the first improvement measure and the second improvement measure, and can consider which improvement measure should be implemented.
  • the second improvement measure shows the result when it is assumed that the equipment of system C is operated based on the OPF. Therefore, for the users of system A, the second improvement measure is only prediction. However, there is an effect that the user can know that this target value can be presented, and the range of operation methods is expanded.
  • the user can easily compare the effects when the respective improvement measures are implemented, and the usability is improved.
  • the predicted value (calculated value) after implementing the improvement measure may be displayed on the screen G4.
  • Example 4 will be described with reference to FIGS. 32 to 35.
  • the operation of the user is supported by adding the command unit 35 to the configuration of the third embodiment.
  • FIG. 32 is an overall configuration diagram of the power system monitoring device 10C of the present embodiment. Compared with the power system monitoring device 10B described in FIG. 24, the power system monitoring device 10C according to the present embodiment is added with a command unit 35 and a command result database DB10 that stores command result data D10. different.
  • the command unit 35 has a function of selecting an improvement measure specified by the user from the calculated improvement measures.
  • the first method is a method in which the user manually selects an improvement measure that he / she likes.
  • the second method is a method of automatically selecting using a calculated effect index or the like.
  • the improvement measure candidate to be selected may be extracted from the effect index or the like, and the user may manually select from the extracted improvement measure candidates.
  • FIG. 33 is an overall configuration diagram including the hardware configuration of the power system monitoring device 10C of the present embodiment.
  • the power system monitoring device 10C of the present embodiment differs from the power system monitoring device 10B of FIG. 25 in that a command result database DB10 is added.
  • An individual control device 45a is additionally added to the power system A (100a). The individual control device 45a can be controlled only under its own control (here, the power system A).
  • FIG. 34 is a configuration diagram showing the contents of the program database DB7BC of the power system monitoring device 10C.
  • the program database DB7C is different from the database DB7B described in FIG. 26 in that a command program P15 is added.
  • FIG. 35 is a flowchart showing the overall processing of the power system monitoring device 10C according to the present embodiment. This flowchart is different from the flowchart described in FIG. 27 in that a step S80 for selecting and issuing an improvement measure is added between steps S70 and S60.
  • step S70 the first improvement measure (control A in the above example) that the user directly controls can be selected and instructed from the improvement measures displayed on the screen (not shown) of the display unit 11. ..
  • the user confirms the operation target value displayed on the screen and informs the user who operates another power system of the second improvement measure (control B in the above example). Implementation can also be instructed.
  • Example 5 will be described with reference to FIGS. 36 to 40.
  • the power system monitoring device 10D of the present embodiment not only the power system monitoring but also the operation allowable value can be evaluated and displayed.
  • this embodiment it is possible to realize the operation support of the user, improvement of stability or operability, and reduction of settling labor.
  • FIG. 36 is an overall configuration diagram of the power system monitoring device 10D of the present embodiment.
  • the power system monitoring apparatus 10D of the present embodiment is different from the power system monitoring apparatus 10 described in FIG. 1 in that the operation allowable value evaluation unit 36 is added to the calculation unit 41 and the operation allowable value evaluation is performed on the result data D42.
  • the difference is that the operation allowable value evaluation result database DB11 for managing the result data D11 is added.
  • FIG. 37 is an overall configuration diagram including the hardware configuration of the power system monitoring device 10 of the present embodiment.
  • the power system monitoring device 10D is different from the configuration described in FIG. 2 in that an operation allowable value evaluation result database DB11 is added.
  • FIG. 38 is a configuration diagram showing the contents of the program database DB 7D of the power system monitoring device 10D.
  • the program database DB7D of the present embodiment is different from the program database DB7 described in FIG. 3 in that a program P16 for evaluating the operation allowable value is added.
  • FIG. 39 is a flowchart showing the overall processing of the power system monitoring device 10D in this embodiment. Comparing the flowchart of this embodiment with the flowchart described in FIG. 4, in the flowchart of this embodiment, step S20 of setting calculation conditions, step S70D of determining whether or not it is the final case, and the operation allowable value are evaluated. The difference is that step S90 to be performed is added.
  • the power system monitoring device 10D sets a calculation condition (S20), calculates an operation allowable value D4 according to the set calculation condition (S30), and calculates a difference D5 from the calculated operation allowable value D4 and the set value D2. Calculate (S40).
  • the power system monitoring device 10D selects the operation allowable value D6 to be output based on the measured value D1, the operation allowable value D4, and the difference D5 (S50). The power system monitoring device 10D returns to step S20 until the final case is determined (S70D: NO).
  • the power system monitoring device 10D When the power system monitoring device 10D is determined to be the final case (S70D: YES), the operation allowable value is evaluated (S90), and the evaluation result and the like are output to the display unit 11 (S60).
  • the operation allowable value evaluation unit 36 uses the input data D40 and the calculation results of the calculation units (or selection units) 31 to 33 to determine what kind of operation allowable value the user should set.
  • the evaluation value that is the material of is calculated and presented to the user.
  • the operation allowable value evaluation unit 36 can analyze the calculation results of the calculation units 31 to 33 as online data, or can analyze from the past data, for example, every certain period (several months, etc.). As a result, the operation allowance value evaluation unit 36 can calculate the evaluation axis of the operation allowance value to be displayed on the nomogram in set time units, and present the user with a value obtained by statistically analyzing the calculation result as an evaluation value.
  • the user can statistically collect information such as which time zone, which season, what kind of evaluation axis is in a harsh condition, and vice versa. Can be confirmed. Therefore, when the user sets the operation allowable value, the user's judgment can be supported, and the user's usability is improved.
  • FIG. 40 is an explanatory diagram showing a manner of presenting the evaluation result of the operation allowable value and the like.
  • the power system monitoring device 10D according to the present embodiment calculates an operation allowance value for each set time and performs various statistical analyzes on the selection result of the operation allowance value. Then, the power system monitoring device 10D has the effects of the first embodiment and can output each calculation result on the screen (not shown) of the display unit 11, so that when the user sets the operation allowable value. Can reduce the labor.
  • results of statistical analysis of the operation allowable value are, for example, frequency distribution, histogram, scatter plot matrix, decision tree, etc.
  • the user can statistically confirm information such as which time zone, which season, what kind of axis is harsh, or which is easier. It is possible to improve the usability of the user.
  • the present invention has been described with respect to the past power flow state (denoted as M minutes ago in the figure) to the current power flow state (denoted as an operating point in the figure), various examples of power systems have been described.
  • the present invention is applied by predicting a future power flow state from a predicted value or a planned value (for example, a planned supply and demand value (planned value or predicted value of power generation and load) and a planned value of the interconnection power flow (P0)). It is also possible to do so.
  • the prediction calculation of the future power flow state may be performed by the device or system to which the present invention is applied, or may be received by another device or system.
  • the present invention is not limited to the above embodiment. Those skilled in the art can make various additions and changes within the scope of the present invention.
  • the above embodiment is not limited to the configuration example illustrated in the accompanying drawings.
  • the configuration and the processing method of the embodiment can be appropriately changed within the scope of achieving the object of the present invention.
  • each constituent element of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention.
  • the configurations described in the claims can be combined in addition to the combinations specified in the claims.
  • 10, 10A, 10B, 10C, 10D Power system monitoring device, 31: Operation allowable value calculation unit, 32: Difference calculation unit, 33, 33A: Operation allowable value selection unit, 34: Improvement measure calculation unit, 35: Command unit , 36: operation allowable value evaluation unit, 40: data acquisition unit, 42: result storage unit, 43: output control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

The present invention provides a power system monitoring device which can monitor a power system, even when a power flow state or an operation mode of the power system changes. The power system monitoring system 10 includes: an operation tolerance value calculation unit 31 which calculates at least one operation tolerance value D4 from one or more among a measurement value D1 and a setting value D2; a difference calculation unit 32 which calculates the difference D5 from one or more among the operation tolerance value calculated by the operation tolerance value calculation unit, the measurement value, and the setting value; an operation tolerance value selection unit 33 which selects an operation tolerance value D6 to be output from one or more among the operation tolerance value calculated by the operation tolerance value calculation unit, the difference calculated by the difference calculation unit, and the setting value; and an output unit 43 which allows one or more among the measurement value, the setting value, the operation tolerance value, and the difference to be displayed with respect to the selected operation tolerance value to be output.

Description

電力系統監視装置および方法Power system monitoring apparatus and method
 本発明は、電力系統監視装置および方法に関する。 The present invention relates to a power system monitoring device and method.
 特許文献1には、「電力系統に複数の監視点候補を設定しておき、その監視点候補における系統状態量をコンピュータに入力して系統状態量の変化を監視し、その変化量が設定範囲を越えている監視点候補と、系統状態量が設定範囲内の上下限近傍に保持されている時間が設定値を越えている監視点候補のいずれか一方あるいは双方を監視点として設定する」と記載されている(特許文献1要約参照)。 Japanese Patent Application Laid-Open No. 2004-242242 describes that "a plurality of monitoring point candidates are set in the power system, the system state quantity at the monitoring point candidates is input to a computer, and changes in the system state quantity are monitored. Either one or both of the monitoring point candidates that exceed the set value and the monitoring point candidate that the system state quantity is kept near the upper and lower limits within the setting range are set as the monitoring points. " It is described (see Patent Document 1 abstract).
 特許文献2には、「計測値取り込み手段2は遠方監視制御装置1を経由して電力系統の潮流値を取り込む。潮流許容値算出手段5は系統運用条件に基づいて複数の潮流許容値を算出し、最小許容値判定手段6はそのうちの最小の潮流許容値を選択する。そして、潮流逸脱検出手段3は、計測値取り込み手段2で取り込んだ潮流値が最小許容値判定手段6で選択された最小潮流許容値を越えるか否かを判定し、計測された潮流値が最小潮流許容値を逸脱するときはアラーム出力手段4で警報を発生する。」と記載されている(特許文献2要約参照)。 In Patent Document 2, "Measurement value fetching means 2 fetches a power flow value of a power system via a distant monitoring control device 1. A power flow allowable value calculating means 5 calculates a plurality of power flow allowable values based on system operating conditions. Then, the minimum permissible value determining means 6 selects the minimum power flow allowable value, and the power flow deviation detecting means 3 selects the power flow value captured by the measured value capturing means 2 by the minimum allowable value determining means 6. It is determined whether or not the minimum power flow allowable value is exceeded, and if the measured power flow value deviates from the minimum power flow allowable value, an alarm is output by the alarm output means 4 "(see Patent Document 2 Abstract). ).
 なお、電流容量計算、ダイナミックレーティング計算、熱容量計算は、非特許文献1,2に記載されている。状態推定計算は、非特許文献3に記載されている。潮流計算は、非特許文献4に記載されている。最適潮流計算は、非特許文献5に記載されている。過渡安定性計算は、非特許文献6,7に記載されている。定態安定性計算は、前記過渡安定性計算と同様の計算である定態安定性計算の方法を用いてもよいし、非特許文献8,9に記載の方法を用いてもよい。電圧安定性計算は、非特許文献10,11に記載されている。周波数安定性計算は、非特許文献12に記載されている。送電ルールは、非特許文献13に記載されている。 Note that current capacity calculation, dynamic rating calculation, and heat capacity calculation are described in Non-Patent Documents 1 and 2. The state estimation calculation is described in Non-Patent Document 3. The power flow calculation is described in Non-Patent Document 4. The optimum power flow calculation is described in Non-Patent Document 5. The transient stability calculation is described in Non-Patent Documents 6 and 7. The steady-state stability calculation may use a method of the steady-state stability calculation that is the same calculation as the transient stability calculation, or the method described in Non-Patent Documents 8 and 9. The voltage stability calculation is described in Non-Patent Documents 10 and 11. The frequency stability calculation is described in Non-Patent Document 12. The power transmission rule is described in Non-Patent Document 13.
特開平10-164756号公報Japanese Patent Laid-Open No. 10-164756 特開平9-182319号公報JP-A-9-182319
 将来、電力系統においては、再生可能エネルギーの電力系統への導入や、電力市場をベースにした電力取引が進展(活発化)することが考えられる。太陽光発電または風力発電などの再生可能エネルギーは、天候によって出力が変動する出力変動型の電源であるため、再生可能エネルギーの電力系統への導入が進むと、電圧階級および業者間(発電事業者、送配電事業者など)での潮流変化量が増加する。また、電力取引の活発化すると電力系統の潮流状態または運用形態は、複雑かつ頻繁に変化する。したがって、潮流状態または運用形態は、現在よりも複雑かつ頻繁に変化するため、現行の系統計画、運用および制御では電力系統を安定的かつ経済的に運用できない恐れがある。 In the future, it is conceivable that renewable energy will be introduced into the power system and that power trading based on the power market will progress (activate) in the future. Renewable energy such as solar power generation or wind power generation is an output fluctuation type power source whose output fluctuates depending on the weather, so if the introduction of renewable energy into the power system progresses, voltage classes and inter-operator (power generation , Power transmission and distribution companies, etc.) In addition, when the power trade becomes active, the power flow state or the operation form of the power system changes in a complicated and frequent manner. Therefore, the power flow state or the operation mode changes more complicatedly and more frequently than the present time, and the current system planning, operation and control may not be able to operate the power system stably and economically.
 今後、潮流状態または運用形態がより複雑かつ頻繁に変化すると、監視点の設定を多頻度で変更することになる。したがって、特許文献1の技術では、系統安定と経済的運用との実現が困難になると考えられる。 -In the future, if the power flow status or operation mode changes more complicatedly and frequently, the setting of monitoring points will be changed frequently. Therefore, it is considered that the technology of Patent Document 1 makes it difficult to realize system stability and economical operation.
 なお、特許文献1には「上記の監視点の設定は、制御対象の系統状態量を制御するタイミングごとに行うようにしてもよく、これによれば電力需要の急変する時間帯に適用することにより、電圧変動の少ない高品質の電力を供給できる。一方、夜間等のように電力需要の変化が少ない時間帯は、監視点設定の処理周期を長くすることができ、これによれば監視点設定のための冗長な演算処理を低減できる。」とも記載されているが、監視点を設定する周期についての具体的な開示は存在しない。 It should be noted that in Patent Document 1, "the setting of the above-mentioned monitoring point may be performed at each timing of controlling the system state quantity of the control target, and according to this, it is applied to the time zone when the power demand changes abruptly. This enables high-quality power with less voltage fluctuation to be supplied.On the other hand, the processing cycle for setting monitoring points can be lengthened during times when power demand changes little, such as at night. However, there is no specific disclosure about the cycle of setting the monitoring points.
 また、今後、潮流状態または運用形態がより複雑かつ頻繁に変化すると、最小潮流許容値を多頻度で選択し直す必要が生じるため、特許文献2の技術では、運用者の使い勝手が低下し、系統安定と経済的運用との実現が困難となる。 Further, in the future, if the power flow state or the operation form changes more complicatedly and frequently, it is necessary to reselect the minimum power flow allowable value at a high frequency. Therefore, the technique of Patent Document 2 reduces the usability of the operator and It will be difficult to achieve stability and economic operation.
 なお、DR(Dynamic Rating、ダイナミックレーティング)という技術も従来から知られている。DRでは、気温などの外部環境データを一定として算出する送変電設備の送電可能容量(潮流の運用許容値)を、リアルタイムまたは一定周期で収集した外部環境データを用いて算出する。DRを用いて電力系統を運用する場合、運用許容値が多頻度で変化すると、運用者の手間が繁雑となり、系統安定と経済的運用との実現も困難となる。 Note that the technology called DR (Dynamic Rating, Dynamic Rating) is also known in the past. In the DR, the transmittable capacity (power operation allowable value) of the power transmission and transformation equipment, which is calculated by keeping the external environment data such as the temperature constant, is calculated by using the external environment data collected in real time or in a constant cycle. When the power system is operated using DR, if the operation allowable value changes frequently, the operator's labor becomes complicated, and it becomes difficult to realize system stability and economical operation.
 そこで、本発明の目的は、電力系統の潮流状態または運用形態が変化した場合でも、電力系統を監視することのできる電力系統監視装置および方法を提供することにある。 Therefore, an object of the present invention is to provide an electric power system monitoring device and method capable of monitoring the electric power system even when the power flow state or the operation form of the electric power system changes.
 上記課題を解決すべく、本発明に従う電力系統監視装置は、計測値と設定値のうち一つ以上から少なくとも一つの運用許容値を計算する運用許容値計算部と、運用許容値計算部により計算された運用許容値と計測値と設定値のうち一つ以上から差異を計算する差異計算部と、運用許容値計算部により計算された運用許容値と差異計算部により計算された差異と設定値のうち一つ以上から、所定の条件にしたがって出力対象の運用許容値を選択する運用許容値選択部と、選択された出力対象の運用許容値について、計測値と設定値と運用許容値と差異のうち一つ以上を出力させる出力部と、を備える。 In order to solve the above problems, the power system monitoring device according to the present invention includes an operation allowance calculator that calculates at least one operation allowance from one or more of a measured value and a set value, and an operation allowance calculator. Difference calculation unit that calculates the difference from one or more of the operation allowance value, the measured value, and the set value that have been calculated, and the operation allowance value calculated by the operation allowance value calculation unit and the difference and the setting value calculated by the difference calculation unit The operation allowance value selection unit that selects the operation allowance value for the output target from one or more of the above, and the difference between the measured value, the set value, and the operation allowance value for the selected operation allowance value for the output target. An output unit for outputting one or more of the above.
 本発明によれば、選択された出力対象の運用許容値について、計測値と設定値と運用許容値と差異のうち一つ以上を所定の表示方法にしたがって表示させることができる。 According to the present invention, it is possible to display one or more of the measured value, the set value, the operation allowable value, and the difference for the selected operation allowable value of the output target according to a predetermined display method.
実施例1における電力系統監視装置の全体構成図である。1 is an overall configuration diagram of a power system monitoring device according to a first embodiment. FIG. 電力系統監視装置のハードウェア構成を含む全体構成図である。1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. プログラムデータベースの内容を示す構成図である。It is a block diagram which shows the content of a program database. 電力系統監視処理のフローチャートである。It is a flowchart of a power system monitoring process. 運用許容値計算処理のフローチャートである。It is a flow chart of operation allowable value calculation processing. 差異計算処理および運用許容値選択処理のフローチャートである。It is a flow chart of difference calculation processing and operation permissible value selection processing. 設定値データを示す図である。It is a figure which shows setting value data. 運用許容値選択処理の計算結果の一例を示す。An example of the calculation result of the operation allowable value selection process is shown. 運用許容値計算処理の計算結果の一例を示す。An example of the calculation result of the operation allowable value calculation process is shown. 運用許容値計算処理の計算結果の一例である。It is an example of a calculation result of the operation allowable value calculation process. 運用許容値計算処理の計算結果の一例である。It is an example of a calculation result of the operation allowable value calculation process. 運用許容値選択処理の計算結果の一例である。It is an example of a calculation result of the operation allowable value selection process. 運用許容値選択処理の計算結果の一例である。It is an example of a calculation result of the operation allowable value selection process. 運用許容値選択処理の計算結果の一例である。It is an example of a calculation result of the operation allowable value selection process. 系統図を表示する系統図画面の一例を示す。An example of the system diagram screen which displays a system diagram is shown. 系統監視画面の一例を示す。An example of a system monitoring screen is shown. 系統監視画面の運転軌跡を表示した例を示す。The example which displayed the driving | running trajectory of the system monitoring screen is shown. 運用許容値の計算結果画面の一例を示す。An example of the calculation result screen of the operation allowable value is shown. 実施例2における電力系統監視装置の全体構成図である。FIG. 7 is an overall configuration diagram of a power system monitoring device according to a second embodiment. 電力系統監視装置のハードウェア構成を含む全体構成図である。1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. 優先度データの一例を示す。An example of priority data is shown. 差異計算処理および運用許容値選択処理のフローチャートである。It is a flow chart of difference calculation processing and operation permissible value selection processing. 系統監視画面の一例を示す。An example of a system monitoring screen is shown. 実施例3における電力系統監視装置の全体構成図である。FIG. 7 is an overall configuration diagram of a power system monitoring device according to a third embodiment. 電力系統監視装置のハードウェア構成を含む全体構成図である。1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. プログラムデータベースの内容を示す構成図である。It is a block diagram which shows the content of a program database. 実施例3における電力系統監視処理のフローチャートである。9 is a flowchart of a power system monitoring process in the third embodiment. 差異計算処理および運用許容値選択処理および運用許容値指令選択処理のフローチャートである。It is a flow chart of difference calculation processing, operation allowable value selection processing, and operation allowable value command selection processing. 改善策の決定結果を示す説明図である。It is explanatory drawing which shows the determination result of the improvement measure. 他の改善策の決定結果を示す説明図である。It is explanatory drawing which shows the determination result of another improvement measure. 運用支援画面の一例である。It is an example of an operation support screen. 実施例4における電力系統監視装置の全体構成図である。It is a whole block diagram of the electric power system monitoring apparatus in Example 4. 電力系統監視装置のハードウェア構成を含む全体構成図である。1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. プログラムデータベースの内容を示す構成図である。It is a block diagram which shows the content of a program database. 電力系統監視処理を示すフローチャートである。It is a flow chart which shows electric power system monitoring processing. 実施例5における電力系統監視装置の全体構成図である。It is a whole block diagram of the electric power system monitoring apparatus in Example 5. 電力系統監視装置のハードウェア構成を含む全体構成図である。1 is an overall configuration diagram including a hardware configuration of a power system monitoring device. プログラムデータベースの内容を示す構成図である。It is a block diagram which shows the content of a program database. 電力系統監視処理を示すフローチャートである。It is a flow chart which shows electric power system monitoring processing. 運用許容値の評価を示す説明図である。It is an explanatory view showing evaluation of an operation allowance.
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態に係る電力系統監視装置は、電力系統を自動、手動または半自動で監視することができる。本実施形態に係る電力系統監視装置は、電力系統を監視するユーザの判断を支援できるため、電力系統監視支援装置と呼ぶこともできる。ここで、「ユーザの判断を支援」とは、例えば、制御の判断、違反度合いの判断、問題箇所の判断、改善策をどれにするかという判断、整定値をどれにするかという判断のいずれか一つまたは複数または全てを含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The power system monitoring device according to the present embodiment can monitor the power system automatically, manually, or semi-automatically. The power system monitoring device according to the present embodiment can support the judgment of the user who monitors the power system, and thus can also be called a power system monitoring support device. Here, "supporting the user's judgment" means, for example, judgment of control, judgment of degree of violation, judgment of problem area, judgment of improvement measures, and judgment of settling value. Including one or more or all.
 本実施形態では、一つの例として、電力系統を監視するために使用される運用制約を示す運用制約情報(例えば、運用範囲、運用の上限値または下限値、ノモグラムなど)の表示内容(出力内容)および表示方法(出力方法)を、電力系統の潮流状態または運用形態にしたがって動的に変更させる。運用制約情報は、運用許容値を含む情報である。電力系統監視装置は、出力対象の運用許容値を、ディスプレイ装置などに表示させることもできるし、他の装置へ送信したり出力したりすることもできる。以下では、出力とは表示出力である場合を例に挙げて説明する。 In the present embodiment, as one example, display contents (output contents) of operation constraint information (for example, operation range, operation upper limit value or lower limit value, nomogram, etc.) indicating operation constraints used for monitoring the power system. ) And the display method (output method) are dynamically changed according to the power flow state or operation mode of the power system. The operation constraint information is information including an operation allowable value. The power system monitoring device can display the operation allowable value of the output target on a display device or the like, and can also transmit or output to another device. Hereinafter, the case where the output is the display output will be described as an example.
 本実施形態に係る電力系統監視装置は、複数の評価軸(監視対象の変数(PQVF等)の運用許容値を評価する軸)について、運用許容値を計算する。そして、本実施形態に係る電力系統監視装置は、計算された運用許容値の中から所定の条件にしたがって、出力対象の運用許容値を選択し、出力部から表示させる。すなわち、電力系統監視装置は、選択された評価軸においてそれぞれ計算された運用許容値(運用許容値の候補とも呼ぶことができる)の中から、所定の頻度で更新されるように出力対象の運用許容値を選択する。 The power system monitoring device according to the present embodiment calculates operation allowable values for a plurality of evaluation axes (axis that evaluates operation allowable values of monitored variables (PQVF etc.)). Then, the power system monitoring device according to the present embodiment selects an operation allowable value to be output from the calculated operation allowable values according to a predetermined condition and causes the output unit to display it. That is, the power system monitoring device operates the output target so as to be updated at a predetermined frequency from the operation allowable values (which can also be called the operation allowable value candidates) calculated on the selected evaluation axis. Select an acceptable value.
 本実施形態では、各事業者間に跨がって電力が供給される一つまたは複数のパス(送電ルート)における監視対象(例えば、P(フェンス潮流)、Q、V、F、など)について多次元の運用制約情報をそれぞれ作成することができる。本実施形態では、全ての運用制約情報または選択された一部の運用制約情報をユーザへ提供することができる。運用制約情報の提供先は、ユーザの使用するコンピュータ端末でもよいし、外部の制御システムでもよい。本実施形態では、運用制約情報を提供する際に、その提供方法を制御することもできる。例えば、運用制約情報に含まれる情報の全部または一部について更新頻度を低下させることができる。 In the present embodiment, monitoring targets (for example, P (fence power flow), Q, V, F, etc.) in one or a plurality of paths (power transmission routes) to which power is supplied across each business operator are provided. Multi-dimensional operational constraint information can be created respectively. In this embodiment, it is possible to provide the user with all the operation constraint information or a part of the selected operation constraint information. The operation constraint information may be provided to a computer terminal used by the user or an external control system. In this embodiment, when providing the operation constraint information, the providing method can be controlled. For example, the update frequency can be reduced for all or part of the information included in the operation restriction information.
 本実施形態では、後述のように、計算条件と計測値を基に運用許容値を計算し、計算結果と設定値を基に運用許容値の出力内容と頻度を変更する。これにより、本実施形態に係る電力系統監視装置は、監視対象の電力系統の潮流状態または運用形態が複雑かつ頻繁に変化した場においても、系統安定または経済的運用の少なくともいずれか一つまたは両方を実現することができる。 In this embodiment, as will be described later, the operation allowable value is calculated based on the calculation condition and the measured value, and the output content and frequency of the operation allowable value are changed based on the calculation result and the set value. Thus, the power system monitoring device according to the present embodiment, at least one or both of system stability or economical operation, even when the power flow state of the power system to be monitored or the operation mode is complicated and changes frequently. Can be realized.
 すなわち本実施形態に係る電力系統監視装置は、例えば、計算条件と計測値の一つ以上から運用許容値を計算する運用許容値計算部31と、前記運用許容値計算部31の計算結果D4(運用許容値)と計測値D1と設定値D2の一つ以上から差異(例えば、差分または割合など)D5を計算する差異計算部32と、前記運用許容値計算部31の計算結果D4と前記差異計算部32の計算結果D5(差異)と設定値D2の一つ以上から運用許容値を選択する運用許容値選択部33と、計算条件と計測値D1と設定値D2と前記運用許容値計算結果D4と前記差異計算結果D5と運用許容値選択結果D6の一つ以上を表示する出力部43と、を備える。 That is, the power system monitoring apparatus according to the present embodiment includes, for example, an operation allowance value calculation unit 31 that calculates an operation allowance value from one or more of calculation conditions and measured values, and a calculation result D4 ( (Operation allowance value), a measurement value D1 and a set value D2, and a difference calculation unit 32 that calculates a difference (for example, a difference or a ratio) D5, and a calculation result D4 of the operation allowance value calculation unit 31 and the difference. An operation allowance value selection unit 33 that selects an operation allowance value from one or more of the calculation result D5 (difference) and the setting value D2 of the calculation unit 32, a calculation condition, a measurement value D1, a setting value D2, and the operation allowance value calculation result. The output unit 43 displays one or more of D4, the difference calculation result D5, and the operation allowable value selection result D6.
 このように構成される電力系統監視装置によれば、設定値と計測値に基づいて運用許容値の内容または頻度を変更することができる。したがって、本実施形態の電力系統監視装置は、監視対象の電力系統の潮流状態または運用形態が現行の構成よりも複雑かつ頻繁に変化する場合であっても、系統安定や経済的運用の少なくともいずれか一つまたは両方を実現することができる。さらに、本実施形態によれば、電力系統監視装置の運用に対して、ユーザ(運用者)は頻繁に設定値を変更する必要がなくなるため、ユーザの労力を低減することができ、ユーザの使い勝手が向上する。 According to the power system monitoring device configured as described above, the content or frequency of the operation allowable value can be changed based on the set value and the measured value. Therefore, the power system monitoring device of the present embodiment, at least one of system stability and economical operation, even when the power flow state or operation mode of the monitored power system changes more complexly and frequently than the current configuration. Either one or both can be realized. Further, according to the present embodiment, the user (operator) does not need to change the setting value frequently for the operation of the power system monitoring device, so that the labor of the user can be reduced and the usability of the user can be improved. Is improved.
 本実施形態には、以下の構成を持つ電力監視装置または電力監視方法が開示される。それらの電力系統監視装置または電力監視方法は、一つまたは複数の計算機上で動作するコンピュータプログラムにより実現されてもよい。さらに、そのコンピュータプログラムは、通信ネットワーク上を流通することもできるし、記憶媒体に記憶された状態で流通することもできる。 In the present embodiment, a power monitoring device or power monitoring method having the following configuration is disclosed. The power system monitoring device or the power monitoring method may be realized by a computer program running on one or more computers. Further, the computer program can be distributed on a communication network or can be distributed in a state of being stored in a storage medium.
 (構成1)
 電力系統における電力系統監視装置10において、
 計測値D1と設定値D2のうち一つ以上から少なくとも一つの運用許容値D4を計算する運用許容値計算部31と、
 前記運用許容値計算部31により計算された前記運用許容値D4と前記計測値D1と前記設定値D2のうち一つ以上から差異を計算する差異計算部32と、
 前記運用許容値計算部31により計算された前記運用許容値D4と前記差異計算部32により計算された差異D5と前記設定値D2のうち一つ以上から、所定の条件にしたがって出力対象の運用許容値D6を選択する運用許容値選択部33と、
 前記選択された出力対象の運用許容値D6について、前記計測値D1と前記設定値D2と前記運用許容値D6と前記差異D5のうち一つ以上を出力させる出力部43と、
を備える電力系統監視装置。
(Structure 1)
In the power system monitoring device 10 in the power system,
An operation allowance value calculation unit 31 for calculating at least one operation allowance value D4 from one or more of the measurement value D1 and the set value D2,
A difference calculation unit 32 that calculates a difference from one or more of the operation allowable value D4 calculated by the operation allowable value calculation unit 31, the measured value D1, and the set value D2;
From the operation allowable value D4 calculated by the operation allowable value calculating unit 31, the difference D5 calculated by the difference calculating unit 32, and the set value D2, one or more of the operation allowable value of the output target according to a predetermined condition. An operation allowable value selection unit 33 for selecting the value D6,
An output unit 43 that outputs one or more of the measured value D1, the set value D2, the operation allowable value D6, and the difference D5 with respect to the selected operation allowable value D6 of the output target.
An electric power system monitoring device.
 (構成2)
 構成1に記載の電力系統監視装置において、
 前記所定の条件は、複数の評価軸の中から選択される一つ以上の所定の評価軸に含まれる運用許容値の中から、所定の更新頻度を満たす運用許容値を抽出することである、
電力系統監視装置。
(Configuration 2)
In the power system monitoring device according to configuration 1,
The predetermined condition is to extract an operation allowance value satisfying a predetermined update frequency from operation allowance values included in one or more predetermined evaluation axes selected from a plurality of evaluation axes,
Power system monitoring device.
 (構成3)
 構成1に記載の電力系統監視装置おいて、
 前記設定値D2は、運用目標値、運用上下限値、制約条件、閾値、マージン、フィルタ時定数、離散化条件、運用許容設定時間、許容電流算出条件、線路構成、線路抵抗、線種、系統構成、系統トポロジー、線路定数、発電機定数、系統データ、の一つ以上である、電力系統監視装置。
(Structure 3)
In the power system monitoring device according to configuration 1,
The set value D2 is an operation target value, an operation upper / lower limit value, a constraint condition, a threshold value, a margin, a filter time constant, a discretization condition, an operation allowable set time, an allowable current calculation condition, a line configuration, a line resistance, a line type, and a system. A power system monitoring device that is one or more of a configuration, a system topology, a line constant, a generator constant, and system data.
 (構成4)
 構成1に記載の電力系統監視装置おいて、
 前記計測値D1は、有効電力、無効電力、皮相電力、電圧、周波数、力率、気象条件、気温、風速、風向、日射量、負荷電流値、電線温度、周囲温度、テレメータ情報、スーパービジョン情報、の一つ以上である、電力系統監視装置。
(Structure 4)
In the power system monitoring device according to configuration 1,
The measured value D1 is active power, reactive power, apparent power, voltage, frequency, power factor, weather condition, temperature, wind speed, wind direction, solar radiation, load current value, wire temperature, ambient temperature, telemeter information, supervision information. , A power system monitoring device.
 (構成5)
 構成1に記載の電力系統監視装置において、
 前記運用許容値選択部33Aは、前記運用許容値計算部により計算される少なくとも一つの運用許容値についてあらかじめ設定された優先度D8に基づいて、前記出力対象の運用許容値を選択する、電力系統監視装置。
(Structure 5)
In the power system monitoring device according to configuration 1,
The operation allowance value selection unit 33A selects the operation allowance value of the output target based on the priority D8 preset for at least one operation allowance value calculated by the operation allowance value calculation unit. Monitoring equipment.
 (構成6)
 構成1に記載の電力系統監視装置おいて、
 前記運用許容値計算部31は、運用許容値候補を、電流容量計算、ダイナミックレーティング計算、熱容量計算、潮流計算、過渡安定性計算、定態安定性計算、電圧安定性計算、周波数安定性計算、カスケーディング計算、アイランディング計算、電力事業者間の送電ルール、の一つ以上から求めることを特徴とする、電力系統監視装置。
(Structure 6)
In the power system monitoring device according to configuration 1,
The operation allowance value calculation unit 31 uses the operation allowance value candidates as current capacity calculation, dynamic rating calculation, heat capacity calculation, power flow calculation, transient stability calculation, stationary stability calculation, voltage stability calculation, frequency stability calculation, An electric power system monitoring device characterized by being obtained from one or more of cascading calculation, islanding calculation, and transmission rules between electric power companies.
 (構成7)
 構成6に記載の電力系統監視装置おいて、
 前記差異計算部32は、前記運用許容値候補と前記設定値とから差異を計算し、前記差異の計算結果と前記設定値とに基づいて、前記出力対象の運用許容値を決定する、電力系統監視装置。
(Structure 7)
In the power system monitoring device according to configuration 6,
The difference calculation unit 32 calculates a difference from the operation allowable value candidate and the setting value, and determines an operation allowable value of the output target based on the calculation result of the difference and the setting value. Monitoring equipment.
 (構成8)
 構成6に記載の電力系統監視装置おいて、
 前記運用許容値選択部33は、前記設定値を用いて、前記運用許容値候補をローパスフィルタ、移動平均フィルタ、ハイパスフィルタ、移動差分フィルタ、バンドパスフィルタ、の一つ以上に通すこと、あるいは離散化することにより、前記出力対象の運用許容値を決定する、電力系統監視装置。
(Structure 8)
In the power system monitoring device according to configuration 6,
The operation allowance value selection unit 33 uses the set value to pass the operation allowance value candidate through one or more of a low pass filter, a moving average filter, a high pass filter, a moving difference filter, a band pass filter, or a discrete value. The power system monitoring apparatus determines the operation allowable value of the output target by converting the output power into a power system.
 (構成9)
 構成1に記載の電力系統監視装置おいて、
 前記運用許容値選択部33は、前記運用許容値計算部により計算された運用許容値と前記計測値との差異から、前記出力対象の運用許容値を選択する、電力系統監視装置。
(Configuration 9)
In the power system monitoring device according to configuration 1,
The operation allowance value selection unit 33 is a power system monitoring device that selects the operation allowance value to be output from the difference between the operation allowance value calculated by the operation allowance value calculation unit and the measured value.
 (構成10)
 構成1に記載の電力系統監視装置おいて、
 前記出力部43は、一つ以上の前記出力対象の運用許容値を、一次元の数値、二次元の数値表、二次元の平面図、二次元のノモグラム図、三次元のノモグラム図、多次元図、多次元のノモグラム図、の少なくともいずれか一つとして出力する、電力系統監視装置。
(Configuration 10)
In the power system monitoring device according to configuration 1,
The output unit 43, one or more operation allowable values of the output target, a one-dimensional numerical value, a two-dimensional numerical table, a two-dimensional plan view, a two-dimensional nomogram diagram, a three-dimensional nomogram diagram, multidimensional A power system monitoring device that outputs at least one of a diagram and a multidimensional nomogram diagram.
 (構成11)
 構成10に記載の電力系統監視装置おいて、
 前記出力部43は、前記出力対象の運用許容値の時間遷移を通知するための通知手段をさらに備え、前記通知手段は、一次元の数値、コロンもしくは時刻の一つ以上の点滅、二次元の時系列波形、二次元平面図もしくはノモグラム図における運転点の軌跡、三次元ノモグラム図における運転点の軌跡もしくは多次元ノモグラム図における運転点の軌跡、の少なくともいずれか一つ以上を出力することにより前記運用許容値の時間遷移を通知する、電力系統監視装置。
(Configuration 11)
In the power system monitoring device according to configuration 10,
The output unit 43 further includes notifying means for notifying a time transition of the operation allowable value of the output target, and the notifying means is one-dimensional numerical value, one or more blinks of colon or time, two-dimensional By outputting at least one or more of a time-series waveform, a trajectory of a driving point in a two-dimensional plan view or a nomogram diagram, a trajectory of a driving point in a three-dimensional nomogram diagram, or a trajectory of a driving point in a multidimensional nomogram diagram, A power system monitoring device that notifies the time transition of the operation allowable value.
 (構成12)
 構成11に記載の電力系統監視装置おいて、
 前記出力部43は、入力される指示に基づき、前記出力対象の運用許容値の時間遷移について、再生、巻戻し、早送り、一時停止、一定時間のスキップ、リピートなど、の少なくともいずれか一つ以上で出力させる、電力系統監視装置。
(Configuration 12)
In the power system monitoring device according to configuration 11,
The output unit 43, based on the input instruction, at least one or more of reproduction, rewind, fast forward, pause, skip for a fixed time, repeat, and the like regarding time transition of the operation allowable value of the output target. A power system monitoring device that outputs at.
 (構成13)
 構成5に記載の電力系統監視装置おいて、
 前記優先度D8は、系統情報、運用情報、天候情報、運用制約、の少なくともいずれか一つ以上に基づいて設定される重み係数である、電力系統監視装置。
(Configuration 13)
In the power system monitoring device according to configuration 5,
The priority D8 is a power system monitoring device that is a weighting factor set based on at least one of system information, operation information, weather information, and operation constraints.
 (構成14)
 構成13に記載の電力系統監視装置おいて、
 前記運用許容値選択部33Aは、前記運用許容値計算部により計算された前記運用許容値と前記計測値との差異を計算し、前記差異に基づいて前記出力対象の運用許容値を選択する場合と、前記優先度により重み付けされた前記差異に基づいて、前記出力対象の運用許容値を選択する場合との、少なくともいずれか一方または両方を実行する、
電力系統監視装置。
(Configuration 14)
In the power system monitoring device according to configuration 13,
When the operation allowance value selection unit 33A calculates a difference between the operation allowance value calculated by the operation allowance value calculation unit and the measurement value, and selects the operation allowance value of the output target based on the difference. And, based on the difference weighted by the priority, at least one or both of the case of selecting the operation allowable value of the output target,
Power system monitoring device.
 (構成15) 
 電力系統を計算機により監視する電力系統監視方法において、
 前記計算機は、
 計測値と設定値のうち一つ以上から少なくとも一つの運用許容値を計算する運用許容値計算ステップと、
 前記運用許容値計算ステップにより計算された前記運用許容値と前記計測値と前記設定値のうち一つ以上から差異を計算する差異計算ステップと、
 前記運用許容値計算ステップにより計算された前記運用許容値と前記差異計算ステップにより計算された前記差異と前記設定値のうち一つ以上から、出力対象の運用許容値を選択する運用許容値選択ステップと、
 前記選択された出力対象の運用許容値について、前記計測値と前記設定値と前記運用許容値と前記差異のうち一つ以上を所定の出力方法に基づき出力させる出力ステップと、
を実行する、電力系統監視方法。
(Configuration 15)
In the power system monitoring method of monitoring the power system with a computer,
The calculator is
An operation allowance calculation step of calculating at least one operation allowance from one or more of the measured value and the set value,
A difference calculation step of calculating a difference from one or more of the operation allowable value, the measured value, and the setting value calculated by the operation allowable value calculating step,
Operation allowance value selecting step of selecting an operation allowance value to be output from one or more of the operation allowance value calculated in the operation allowance value calculating step, the difference calculated in the difference calculating step, and the setting value When,
An output step of outputting one or more of the measured value, the set value, the operation allowable value, and the difference based on a predetermined output method for the selected operation allowable value of the output target,
The power system monitoring method for executing.
 (構成16)
 構成13に記載の電力系統監視装置おいて、
 前記運用許容値選択部33Aは、前記運用許容値計算結果と前記計測値の差異計算をして、前記差異計算結果から、出力対象の運用許容値を選択する場合と、前記差異計算結果に前記優先度の重み付けをしてから、出力対象の運用許容値を選択する場合の両方または片方を計算することを特徴とする、電力系統監視装置。
(Configuration 16)
In the power system monitoring device according to configuration 13,
The operation allowance value selection unit 33A calculates the difference between the operation allowance value calculation result and the measurement value, and selects the operation allowance value to be output from the difference calculation result, and the difference calculation result. An electric power system monitoring device characterized by calculating both or one of the cases where an operation allowable value of an output target is selected after weighting priorities.
 (構成17)
 構成16に記載の電力系統監視装置おいて、
 前記出力部43は、前記優先度の重み付けをせずに出力する運用許容値を選択する場合と、前記優先度の重み付けをしてから出力対象の運用許容値を選択する場合の差異値を出力し、両者の切替えができることを特徴とする、電力系統監視装置。
(Configuration 17)
In the power system monitoring device according to configuration 16,
The output unit 43 outputs a difference value when selecting an operation allowance value to be output without weighting the priority and when selecting an operation allowance value to be output after weighting the priority. However, the power system monitoring device is characterized in that both can be switched.
 上述した構成以外の他の構成も、後述する実施例の記載および図面の記載に基づいて得ることができる。 Other configurations than those described above can be obtained based on the description of the embodiments and the drawings described later.
 図1~図18を用いて実施例1を説明する。以下の説明は、本発明の内容の一例を示すものである。本発明は以下の説明に限定されず、本明細書に開示される技術的思想の範囲内において、当業者による様々な変更および修正が可能である。 Example 1 will be described with reference to FIGS. 1 to 18. The following description shows an example of the content of the present invention. The present invention is not limited to the following description, and various changes and modifications can be made by those skilled in the art within the scope of the technical idea disclosed in this specification.
 本実施例に係る電力系統監視装置10は、計測値データD1と設定値データD2とを用いて運用許容値D4を計算し、運用許容値の計算結果データD4と計測値データD1と設定値データD2との一つ以上から差異D5を計算し、運用許容値計算結果データD4と差異計算結果データD5と設定値データD2との一つ以上から運用許容値D6を選択し、計測値データD1と設定値データD2と運用許容値計算結果データD4と差異計算結果データD5と運用許容値選択結果データD6の一つ以上を表示する。 The power system monitoring device 10 according to the present embodiment calculates the operation allowable value D4 using the measured value data D1 and the set value data D2, and calculates the operation allowable value calculation result data D4, the measured value data D1, and the set value data. The difference D5 is calculated from at least one of D2, the operation allowable value D6 is selected from at least one of the operation allowable value calculation result data D4, the difference calculation result data D5, and the set value data D2, and the measured value data D1 is obtained. One or more of the set value data D2, the operation allowable value calculation result data D4, the difference calculation result data D5, and the operation allowable value selection result data D6 are displayed.
 電力系統監視装置10の機能は、例えば、データ取得部40と、計算部41と、結果格納部42と、表示出力制御部43とに大別できる。データ取得部40は、入力データD40を取得する。入力データD40は、データD1(計測値D1)とデータD2(設定値D2)とを含む。データD1は、計測値データベースDB1で管理される。データD2は、設定値データベースDB2で管理される。計算部41は、運用許容値計算部31と、差異計算部32と、運用許容値選択部33とを備える。以下、これら各機能31~33を計算部31~33と呼ぶことがある。 The functions of the power system monitoring device 10 can be roughly divided into, for example, a data acquisition unit 40, a calculation unit 41, a result storage unit 42, and a display output control unit 43. The data acquisition unit 40 acquires the input data D40. The input data D40 includes data D1 (measured value D1) and data D2 (set value D2). The data D1 is managed by the measurement value database DB1. The data D2 is managed by the setting value database DB2. The calculation unit 41 includes an operation allowance value calculation unit 31, a difference calculation unit 32, and an operation allowance value selection unit 33. Hereinafter, these respective functions 31 to 33 may be referred to as calculation units 31 to 33.
 結果格納部42は、結果データD42を格納する。結果データD42は、データD4(運用許容値の計算結果)と、データD5(差異の計算結果)と、データD6(運用許容値の選択結果)とを含む。データD4は、運用許容値計算結果データベースDB4で管理される。データD5は、差異計算結果データベースDB5で管理される。データD6は、運用許容値選択結果データベースDB6で管理される。以下、計測値データベースDB1をデータベースDB1と簡素化して示すように、各データベースDB1~DB6の名称を簡略化して表現する場合がある。 The result storage unit 42 stores the result data D42. The result data D42 includes data D4 (calculation result of operation allowable value), data D5 (calculation result of difference), and data D6 (selection result of operation allowable value). The data D4 is managed in the operation allowable value calculation result database DB4. The data D5 is managed by the difference calculation result database DB5. The data D6 is managed in the operation allowable value selection result database DB6. Hereinafter, the names of the databases DB1 to DB6 may be simplified and expressed, as the measurement value database DB1 is simplified and shown as the database DB1.
 以下、計測値データD1、設定値データD2を計測値D1、設定値D2と簡略化して呼ぶ場合がある。他のデータD4~D6等についても適宜簡略化することがある。 Hereinafter, the measured value data D1 and the set value data D2 may be simply referred to as the measured value D1 and the set value D2. Other data D4 to D6 may be simplified as appropriate.
 計測値D1は、運用許容値計算部31と差異計算部32とに入力される。設定値D2は、各計算部31~33に入力される。 The measured value D1 is input to the operation allowable value calculation unit 31 and the difference calculation unit 32. The set value D2 is input to each of the calculation units 31 to 33.
 計測値D1は、例えば、潮流のPQVF(有効電力値、無効電力値、電圧値、周波数)である。計測値D1は時系列データでもよい。設定値D2は、例えば、予め設定された一つ以上の運用許容値(時系列データでもよい)と、要否を判定するための閾値等である。運用許容値は、運用範囲を示す値であってもよいし、運用の上限値または下限値でもよいし、ノモグラムであってもよい。運用許容値は、計測値D1および系統の構成を示すデータ(系統データ)から算出することもできる。 The measurement value D1 is, for example, PQVF (active power value, reactive power value, voltage value, frequency) of the tidal current. The measurement value D1 may be time-series data. The set value D2 is, for example, one or more preset operation allowable values (may be time series data), a threshold value for determining necessity, and the like. The operation allowable value may be a value indicating an operation range, an upper limit value or a lower limit value of operation, or a nomogram. The operation allowable value can also be calculated from the measured value D1 and data indicating the system configuration (system data).
 運用許容値計算部31の計算結果である運用許容値D4は、データベースDB4と差異計算部32に入力される。差異計算部32の計算結果である差異D5は、データベースDB5と運用許容値選択部33とに入力される。運用許容値選択部33は、設定値D1と運用許容値D4と差異D5に基づいて、出力対象の運用許容値D6を選択する。選択された運用許容値D6は、データベースD6に入力される。 The operation allowance D4, which is the calculation result of the operation allowance calculator 31, is input to the database DB4 and the difference calculator 32. The difference D5, which is the calculation result of the difference calculation unit 32, is input to the database DB5 and the operation allowable value selection unit 33. The operation allowance value selection unit 33 selects the operation allowance value D6 to be output based on the set value D1, the operation allowance value D4, and the difference D5. The selected operation allowable value D6 is input to the database D6.
 「出力部」としての出力制御部43は、ユーザへ提供する情報の内容とタイミングを制御する。 The output control unit 43 as an “output unit” controls the content and timing of information provided to the user.
 図2は、電力系統監視装置10のハードウェア構成と電力系統100の全体構成とを示している。図2は、複数の電力系統100a,100b,100cの間をまたがって電力が融通される状況を示す。電力系統100a,100b,100cを区別しない場合、電力系統100と呼ぶ。図2には、例えば、電源、母線、線路、負荷、電力用コンデンサ、分路リアクトル、計測装置、発電機、変圧器、位相調整装置などが含まれるが、図中では適宜省略している。 FIG. 2 shows the hardware configuration of the power system monitoring device 10 and the overall configuration of the power system 100. FIG. 2 shows a situation in which electric power is exchanged across a plurality of electric power systems 100a, 100b, 100c. When the power systems 100a, 100b, 100c are not distinguished, they are referred to as the power system 100. FIG. 2 includes, for example, a power supply, a bus bar, a line, a load, a power capacitor, a shunt reactor, a measuring device, a generator, a transformer, a phase adjusting device, etc., but they are omitted as appropriate in the drawing.
 電力系統100では、線路(ブランチ)と母線(ノード)と変圧器(不図示)とタップ付き変圧器(不図示)とを介して、複数の装置が接続されている。線路141ab,142ab,141cb,142cb,141sc,142acを区別せずに、線路140と呼ぶことがある。母線120a,120b,120c,121a,121b,121cを区別せずに、母線120と呼ぶことがある。 In the power system 100, a plurality of devices are connected via a line (branch), a bus (node), a transformer (not shown), and a transformer with taps (not shown). The lines 141ab, 142ab, 141cb, 142cb, 141sc, 142ac may be referred to as the line 140 without distinction. The busbars 120a, 120b, 120c, 121a, 121b, 121c may be called the busbar 120 without distinguishing them.
 電力系統100に含まれる装置としては、例えば、電源、負荷、電力用コンデンサ(SC:Static Condenser)、分路リアクトル(ShR:Shunt Reactor)、計測装置(例えば装置44)、制御可能なその他の装置がある。 The devices included in the power system 100 include, for example, a power supply, a load, a power capacitor (SC: Static Condenser), a shunt reactor (ShR: Shunt Reactor), a measuring device (for example, the device 44), and other controllable devices. There is.
 制御可能なその他の装置には、例えば、バッテリー、充放電可能な二次電池、EVの蓄電池、フライホイール、その他の調相設備(SVC(Static Var Compensator:静止型無効電力補償装置)、SVG(Static C Var Generator:静止型無効電力発生装置)、LPC(Loop Power Controller:位相調整器付き変圧器)等)がある。各電力系統が上述の装置を全て備えている必要はない。 Other devices that can be controlled include, for example, batteries, rechargeable secondary batteries, EV storage batteries, flywheels, and other phase adjusting equipment (SVC (Static Var Compensator), SVG (static var compensator). Static C Var Generator: static reactive power generator), LPC (Loop Power Controller: transformer with phase adjuster), etc.). It is not necessary for each power system to be equipped with all of the above devices.
 計測装置44a,44bは、図2では電力系統100aのみに設けられているかのように示すが、他の電力系統100b,100cにも計測装置を設けることもできる。区別しない場合、計測装置44と呼ぶ。各電力系統100a~100cに含まれる計測装置44は、通信ネットワークCNを介して、電力系統監視装置10の通信部13に接続されている。通信ネットワークCNは、送配電線を利用した通信ネットワークでもよいし、光ファイバーなどを用いた通信ネットワークでもよいし、無線通信ネットワークでもよい。 The measuring devices 44a and 44b are illustrated as if they are provided only in the power system 100a in FIG. 2, but the measuring devices may be provided in the other power systems 100b and 100c. When no distinction is made, it is referred to as a measuring device 44. The measuring devices 44 included in each of the power systems 100a to 100c are connected to the communication unit 13 of the power system monitoring device 10 via the communication network CN. The communication network CN may be a communication network using transmission and distribution lines, a communication network using optical fibers, or a wireless communication network.
 電力系統100に含まれる電源としては、例えば、回転系電源、分散型電源、インバータ連系電源がある。回転系電源は、例えば、火力発電機、水力発電機、原子力発電機などである。分散型電源は、例えば、太陽光発電装置、風力発電装置などである。インバータ連系電源とは、インバータを介して電力系統100に接続する電源である。 The power sources included in the power system 100 include, for example, a rotary power source, a distributed power source, and an inverter interconnection power source. The rotary power source is, for example, a thermal power generator, a hydraulic power generator, a nuclear power generator, or the like. The distributed power source is, for example, a solar power generation device, a wind power generation device, or the like. The inverter interconnection power supply is a power supply connected to the power system 100 via an inverter.
 ここで、計測値データD1の例は、上述の通り、ノード電圧V、ブランチ電流I、有効電力P、無効電力Q、力率Φ、タップ値、ノードやブランチや変圧器やSCやShRなどの開閉器の入り切り情報などのいずれか一つまたは複数である。計測値データD1は、通信ネットワークCNを介して計測値データベースDB1へ送信されて記憶される。 Here, the example of the measurement value data D1 is, as described above, the node voltage V, the branch current I, the active power P, the reactive power Q, the power factor Φ, the tap value, the node, the branch, the transformer, the SC, the ShR, and the like. It is any one or a plurality of information such as opening / closing information of the switch. The measurement value data D1 is transmitted to and stored in the measurement value database DB1 via the communication network CN.
 計測装置44は、例えば、上述の各計測値データD1のいずれか一つまたは複数を計測する、計器用変圧器(VT:Voltage Transformer)または計器用変圧器(PT:Potential Transformer)または計器用変流器(CT:Current Transformer))である。計測装置44は、例えば、データを計測した箇所を識別する識別子(ID)、計測装置の内蔵タイムスタンプなどを含む計測値データD1を作成する機能と、作成した計測値データD1を電力系統監視装置10へ送信する機能を有する。計測値データD1は、例えば、テレメータ(TM:Telemeter)またはスーパービジョン(SV:Super Vision)などのように生成することもできる。 The measuring device 44 measures, for example, one or more of each of the above-mentioned measured value data D1 by a voltage transformer (VT: Voltage Transformer) or a voltage transformer (PT: Potential Transformer) or a voltage transformer. It is a flow device (CT: Current Transformer). The measuring device 44 has a function of creating measured value data D1 including, for example, an identifier (ID) for identifying a location where the data is measured, a built-in time stamp of the measuring device, and the created measured value data D1. It has a function of transmitting to 10. The measurement value data D1 can also be generated as, for example, a telemeter (TM: Telemeter) or a supervision (SV: Super Vision).
 計測装置44は、GPSを利用した絶対時刻付きの電力情報(電圧のフェーザ情報)を計測する装置、または、位相計測装置(PMU:Phasor Measurement Units)、または他の種類の計測機器でもよい。さらに計測装置44は、電力系統100内に設けられる必要はなく、母線120または線路140に設置されてもよい。すなわち、計測装置44は、電源と変圧器とタップ付き変圧器と負荷と電力用コンデンサと分路リアクトルと計測装置44に接続する、母線や線路などに設置されてもよい。 The measuring device 44 may be a device that measures electric power information (voltage phasor information) with absolute time using GPS, a phase measuring device (PMU: Phase Measurement Units), or another type of measuring device. Furthermore, the measuring device 44 does not need to be provided in the power system 100, and may be installed on the bus 120 or the line 140. That is, the measuring device 44 may be installed on a bus, a line, or the like, which is connected to the power supply, the transformer, the tapped transformer, the load, the power capacitor, the shunt reactor, and the measuring device 44.
 図2では、計測値データD1は、電力系統100aのデータを計測しており、電力系統100bや電力系統100cからはデータを計測していないように図面に記載したが、電力系統Aの運用において、電力系統監視装置10が使用される場合を想定した一例であり、実際には、電力系統100bや電力系統100cからのデータを受信してもよい。 In FIG. 2, the measured value data D1 is measured as the data of the electric power system 100a and is not illustrated as being measured from the electric power system 100b or the electric power system 100c, but in the operation of the electric power system A, This is an example assuming that the power system monitoring device 10 is used, and in reality, data from the power system 100b or the power system 100c may be received.
 電力系統監視装置10の計測値データベースDB1は、通信ネットワークCNを介して各計測装置44から計測値データD1を直接受信することもできるし、他の装置を経由して間接的に受信することもできる。例えば、計測値データD1は、他の監視装置に一端集約されてから、通信ネットワークCNを介して設定値データベースDB2へ送られてもよい。または、計測値データD1は、計測装置44や他の監視装置から通信ネットワークCNを介して計測値データベースDB1に受信されてもよい。他の監視装置とは、例えば、中央給電指令所、系統給電指令所、基幹系統給電指令所、地方給電所または系統安定性監視サーバ(いずれも不図示)などである。 The measurement value database DB1 of the power system monitoring device 10 can directly receive the measurement value data D1 from each measurement device 44 via the communication network CN, or can indirectly receive the measurement value data D1 via another device. it can. For example, the measurement value data D1 may be sent to the setting value database DB2 via the communication network CN after being once collected by another monitoring device. Alternatively, the measurement value data D1 may be received by the measurement value database DB1 from the measurement device 44 or another monitoring device via the communication network CN. The other monitoring device is, for example, a central power supply command station, a system power supply command station, a backbone system power supply command station, a local power station, or a system stability monitoring server (all not shown).
 電力系統監視装置10の構成について説明する。電力系統監視装置10は、例えば、表示部11、入力部12、通信部13、マイクロプロセッサ(CPU:Central Processing Unit)14、メモリ15、計測値データベースDB1、設定値データベースDB2、運用許容値計算結果データベースDB4、差異計算結果データベースDB5、運用許容値選択結果データベースDB6、プログラムデータベースDB7を含んでおり、各構成要素11~15,DB1~DB7はバスBLにより接続されている。マイクロプロセッサ14は、コンピュータまたは計算機サーバとして構成されてもよい。 The configuration of the power system monitoring device 10 will be described. The power system monitoring device 10 includes, for example, a display unit 11, an input unit 12, a communication unit 13, a microprocessor (CPU: Central Processing Unit) 14, a memory 15, a measurement value database DB1, a set value database DB2, and an operation allowable value calculation result. It includes a database DB4, a difference calculation result database DB5, an operation allowable value selection result database DB6, and a program database DB7, and the respective constituent elements 11 to 15 and DB1 to DB7 are connected by a bus BL. The microprocessor 14 may be configured as a computer or a computer server.
 表示部11は、管理者または運用者といったユーザへ電力系統監視装置10から情報を提供するための装置である。表示部11は、例えば、ディスプレイ装置として構成することができる。ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置または音声出力装置等を用いて表示部11を構成してもよい。あるいは、表示部11は、図外の他の装置へ情報を出力するインターフェースを備えてもよい。表示部11を「情報提供部」と呼ぶこともできる。 The display unit 11 is a device for providing information from the power system monitoring device 10 to a user such as an administrator or an operator. The display unit 11 can be configured as a display device, for example. Instead of the display device or together with the display device, the display unit 11 may be configured by using a printer device, a voice output device, or the like. Alternatively, the display unit 11 may include an interface that outputs information to another device (not shown). The display unit 11 can also be called an “information providing unit”.
 入力部12は、ユーザからの情報または指示を電力系統監視装置10へ入力するための装置である。入力部12は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等の少なくともいずれか一つを備えて構成できる。 The input unit 12 is a device for inputting information or instructions from the user to the power system monitoring device 10. The input unit 12 can be configured to include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
 通信部13は、通信ネットワークCNに接続するための回路と通信プロトコルとを備える装置である。 The communication unit 13 is a device including a circuit for connecting to the communication network CN and a communication protocol.
 CPU14は、プログラムデータベースDB7から所定のコンピュータプログラムを読み込んで実行する。CPU14は、一つまたは複数の半導体チップとして構成してもよいし、または、計算サーバのようなコンピュータ装置として構成してもよい。 The CPU 14 reads and executes a predetermined computer program from the program database DB7. The CPU 14 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server.
 メモリ15は、例えば、RAM(Random Access Memory)として構成される。メモリ15は、プログラムデータベースDB7から読み出されたコンピュータプログラムを記憶したり、各処理に必要な計算結果データおよび画像データ等を記憶したりする。メモリ14に格納された画面データは、表示部11に送られて表示される。表示される画面の例は後述する。 The memory 15 is configured as a RAM (Random Access Memory), for example. The memory 15 stores a computer program read from the program database DB7 and stores calculation result data and image data necessary for each process. The screen data stored in the memory 14 is sent to the display unit 11 and displayed. An example of the displayed screen will be described later.
 図3を参照して、プログラムデータベースDB7の記憶内容を説明する。図3は、プログラムデータベースDB7には、例えば、運用許容値計算プログラムP10、差異計算プログラムP11、運用許容値選択プログラムP12、出力プログラムP13が格納されている。 The storage contents of the program database DB7 will be described with reference to FIG. In FIG. 3, the program database DB7 stores, for example, an operation allowable value calculation program P10, a difference calculation program P11, an operation allowable value selection program P12, and an output program P13.
 図2に戻る。CPU14は、プログラムデータベースDB7からメモリ14に読み出された計算プログラム(運用許容値計算プログラムP10、差異計算プログラムP11、運用許容値選択プログラムP12、出力プログラムP13)を実行することにより、運用許容値計算、差異計算、運用許容値選択、出力すべき画像データの指示、および各データベースのデータ検索等を行う。 Return to Figure 2. The CPU 14 executes the calculation program (operation allowable value calculation program P10, difference calculation program P11, operation allowable value selection program P12, output program P13) read from the program database DB7 to the memory 14 to calculate the operation allowable value. , Difference calculation, operation allowable value selection, instruction of image data to be output, and data search of each database.
 メモリ14は、出力用(表示用)の画像データ、計測値データD1、設定値データD2、各計算で使用する一時データ、および各計算での計算結果データを一旦格納するメモリである。CPU14は、出力させるために必要な画像データを生成して、表示部11(例えばディスプレイ画面)に表示させる。 The memory 14 is a memory for temporarily storing output (display) image data, measurement value data D1, setting value data D2, temporary data used in each calculation, and calculation result data in each calculation. The CPU 14 generates image data necessary for output and displays it on the display unit 11 (for example, a display screen).
 ユーザへ情報(運用許容値を管理するための画像データなど)をするための出力部と、電力系統監視装置10の保守などを行うための出力部とを分けてもよい。すなわち、電力系統監視装置10とは別体に構成されたコンピュータ端末に、ユーザへ提供する情報を表示させてもよい。電力系統監視装置10には、各コンピュータプログラムまたはデータベースの書き換えを行うための出力部を設ければよい。ユーザへ情報を提供するコンピュータ端末は、デスクトップ型、ノート型、またはタブレット型のパーソナルコンピュータでもよいし、携帯情報端末(いわゆるスマートフォンを含む)であってもよい。通常の二次元画面に代えて、VR(仮想現実:Virtual Reality)、AR(拡張現実:Augmented Reality)、MR(複合現実:Mixed Reality)を用いてもよい。 An output unit for providing information to the user (image data for managing the operation allowable value) and an output unit for performing maintenance of the power system monitoring device 10 may be separated. That is, the information to be provided to the user may be displayed on a computer terminal that is configured separately from the power system monitoring device 10. The power system monitoring device 10 may be provided with an output unit for rewriting each computer program or database. The computer terminal that provides information to the user may be a desktop, notebook, or tablet personal computer, or a personal digital assistant (including a so-called smartphone). Instead of a normal two-dimensional screen, VR (Virtual Reality: Virtual Reality), AR (Augmented Reality), MR (Mixed Reality: Mixed Reality) may be used.
 電力系統監視装置10には、大きく分けて6個のデータベースが格納される。プログラムデータベースDB7を除く、計測値データベースDB1と設定値データベースDB2と運用許容値計算結果データベースDB4と差異計算結果データベースDB5と運用許容値選択結果データベースDB6と、について説明する。 The power system monitoring device 10 roughly stores six databases. Except for the program database DB7, the measurement value database DB1, the setting value database DB2, the operation allowable value calculation result database DB4, the difference calculation result database DB5, and the operation allowable value selection result database DB6 will be described.
 計測値データベースDB1 には、計測値データD1が含まれる。計測値データD1には、上述の通り、有効電力P、無効電力Q、電圧V、周波数、電圧位相角δ、電流I、力率Φ、タップ値、電力系統とノードまたはブランチまたは変圧器またはSCまたはShRなどとの間に設けられた開閉器の入り切り情報、時刻情報、気象条件、気温、風速、日射量、負荷電流値、電線温度、周囲温度、テレメータ情報、スーパービジョン情報などが含まれる。 The measurement value database DB1 includes measurement value data D1. As described above, the measured value data D1 includes active power P, reactive power Q, voltage V, frequency, voltage phase angle δ, current I, power factor Φ, tap value, power system and node or branch or transformer or SC. It also includes switching information of switches provided between the switch and ShR, time information, weather conditions, air temperature, wind speed, solar radiation amount, load current value, electric wire temperature, ambient temperature, telemeter information, supervision information, and the like.
 計測値データD1は、時刻スタンプ付きデータやPMUデータでもよい。例えば、電力系統100に接続するノード120における電圧および電圧位相角と、電力系統100に接続するノード120に接続するブランチ140の線路電流(I)または線路潮流(P+jQ)と、電力系統100に接続するノード120に接続する変圧器やタップ付き変圧器の線路電流(I)または線路潮流(P+jQ)と、変圧器に接続するノード121の電圧Vおよび電圧位相角δと、ノード121に接続する電源の電圧Vや電流Iや有効電力Pや無効電力Qや力率Φや、負荷の電圧Vや電流Iや有効電力Pや無効電力Qや力率Φと、計測装置44やその他の監視装置などから通信ネットワークを介して計測する電力系統100に接続するその他のノードやブランチや電源や負荷や制御装置などの電圧Vや電流Iや有効電力Pや無効電力Qや力率Φや電圧Vおよび電圧位相角δや、変圧器やタップ付き変圧器のタップ値や、ノードやブランチや変圧器やSCやShRなどの間の開閉器の入り切り情報などの、いずれか一つまたは複数が記憶されている。電圧位相角δは、PMUやGPSを利用した他の計測機器を利用して計測されてもよい。 The measurement value data D1 may be time stamped data or PMU data. For example, the voltage and the voltage phase angle at the node 120 connected to the power system 100, the line current (I) or the line flow (P + jQ) of the branch 140 connected to the node 120 connected to the power system 100, and the connection to the power system 100. Line current (I) or line current (P + jQ) of a transformer or a transformer with a tap connected to the node 120, the voltage V and the voltage phase angle δ of the node 121 connected to the transformer, and the power supply connected to the node 121. Voltage V and current I, active power P, reactive power Q and power factor Φ, load voltage V and current I, active power P, reactive power Q and power factor Φ, measuring device 44 and other monitoring devices From other nodes or branches connected to the power system 100 to be measured via the communication network, power supply, load, control device, etc., voltage V, current I, active power P, reactive power, etc. Such as power Q, power factor Φ, voltage V and voltage phase angle δ, tap value of transformers and transformers with taps, and switching information of switches between nodes, branches, transformers, SC, ShR, etc. Any one or more are stored. The voltage phase angle δ may be measured using another measuring device using PMU or GPS.
 計測装置44は、VTやPTやCTやTMやSV情報などである。VTやPTやCTなどで計測した、電流Iと電圧Vと力率Φとから、線路潮流(P+jQ)を計算することができる。計測値データD1は、監視制御装置や中央給電指令所やEMSから入手してもよいし、系統全体の計測装置から直接入手してもよい The measuring device 44 is VT, PT, CT, TM, SV information and the like. The line power flow (P + jQ) can be calculated from the current I, the voltage V, and the power factor Φ measured by VT, PT, or CT. The measurement value data D1 may be obtained from the monitoring control device, the central power feeding command center, EMS, or directly from the measurement device of the entire system.
 設定値データベースDB2には、設定値データD2として、図7に示すような有効電力P、無効電力Q、電圧V、電圧位相角δ、電流I、力率Φ、タップ値、前記開閉器の入り切りの運用情報、運用目標値、運用上下限値、制約条件、閾値、マージン、フィルタ時定数、離散化条件、運用許容設定時間、許容電流算出条件、線路構成、線路抵抗、線種、系統構成、系統トポロジー、線路定数、発電機定数、系統データ、などが含まれる。 In the set value database DB2, as set value data D2, active power P, reactive power Q, voltage V, voltage phase angle δ, current I, power factor Φ, tap value, turning on / off of the switch as shown in FIG. Operation information, operation target value, operation upper and lower limit value, constraint condition, threshold value, margin, filter time constant, discretization condition, operation allowable set time, allowable current calculation condition, line configuration, line resistance, line type, system configuration, It includes system topology, line constants, generator constants, system data, etc.
 図7は、設定値データD2の一例を示す。図7に示す設定値データD2は、箇所毎に「i」で番号をわけて、時間帯による変化なく記載している。i=1は、電力系統A(符号100a)-B(符号100b)間を例に記載しており、i=2は、電力系統A(符号100a)-C(符号100c)間を例に記載している。これに代えて、時間毎や季節毎に変化させてもよい。図7中のPdijは、第j段の運用許容値を示す。Pdijεは、第j段の運用許容値のマージンを示す。 FIG. 7 shows an example of the set value data D2. In the set value data D2 shown in FIG. 7, the number is divided by "i" for each location and described without any change depending on the time zone. i = 1 is described as an example between the power systems A (reference numeral 100a) and B (reference numeral 100b), and i = 1 is described as an example between the power systems A (reference numeral 100a) and C (reference numeral 100c). is doing. Instead of this, it may be changed every hour or every season. Pdij in FIG. 7 indicates the operation allowable value of the jth stage. Pdijε indicates the margin of the operation allowable value at the j-th stage.
 設定値D2の設定に際してフィルタを用いる場合、フィルタ時定数も設定値データD2の一部として保存すればよい。なお、計測値データD1は、PQVFなどの計測値の時系列データであるため、説明を割愛する。 When using a filter for setting the set value D2, the filter time constant may be saved as a part of the set value data D2. Note that the measurement value data D1 is time-series data of measurement values such as PQVF, so description thereof will be omitted.
 設定値データD2には、さらに、系統構成、線路インピーダンス(R+jX)、対地静電容量(アドミタンス:Y)、電源データ、発電計画と負荷需要予測値などを用いて潮流計算により求められた各ノードの電圧と有効電力と無効電力などの時系列データ(予測値)、なども含まれる。系統構成には、系統の母線120と線路140と電源と負荷と変圧器と各制御装置のうち、一つまたは複数の接続関係が含まれる。 The set value data D2 further includes each node obtained by power flow calculation using the system configuration, line impedance (R + jX), ground capacitance (admittance: Y), power supply data, power generation plan and load demand forecast value. It also includes time series data (predicted value) such as the voltage, active power, and reactive power. The system configuration includes one or a plurality of connection relationships among a bus 120, a line 140, a power supply, a load, a transformer, and each control device of the system.
 計測値データD2は、監視制御装置や中央給電指令所やEMSから入手してもよいし、手動で入力されてもよい。計測値データD2を電力系統監視装置10へ手動で入力する際には、ユーザが入力部12を用いて入力し、データベースDB2へ記憶させる。ユーザが手動で設定値データD2を入力する場合、CPU14は、手動入力用の画面を生成して表示部11に表示させる。設定値データD2を多量に設定する場合、入力時の補完機能を用いることにより、半自動的に設定値データD2を入力できるようにしてもよい。 The measurement value data D2 may be obtained from the monitoring control device, the central power supply command station, EMS, or manually input. When manually inputting the measured value data D2 to the power system monitoring device 10, the user inputs it using the input unit 12 and stores it in the database DB2. When the user manually inputs the set value data D2, the CPU 14 generates a screen for manual input and displays it on the display unit 11. When setting a large amount of the set value data D2, the set value data D2 may be semi-automatically input by using a complementary function at the time of input.
 運用許容値計算結果データベースDB4には、運用許容値の計算結果データD4(運用許容値D4とも呼ぶ)が格納される。運用許容値の計算結果データD4には、例えば、電流容量計算、ダイナミックレーティング計算、熱容量計算、状態推定計算、潮流計算、最適潮流計算、過渡安定性計算、定態安定性計算、電圧安定性計算、周波数安定性計算、カスケーディング計算、アイランディング計算、電力事業者間の送電ルール、などの、いずれかまたは複数から算出された運用制約が含まれる。これらのデータは、電力系統監視装置10の入力部12を用いてデータベースDB4へ記憶されてもよいし、その他の監視装置からデータベースDB4へ記憶されてもよい。あるいは、計測値データD1および設定値データD2を用いて計算された結果を、整定値としてデータベースDB4へ設定してもよい。 The operation allowance calculation result database DB4 stores operation allowance calculation result data D4 (also referred to as an operation allowance D4). The calculation result data D4 of the operation allowable value includes, for example, current capacity calculation, dynamic rating calculation, heat capacity calculation, state estimation calculation, power flow calculation, optimum power flow calculation, transient stability calculation, steady state stability calculation, voltage stability calculation. , Frequency stability calculation, cascading calculation, islanding calculation, transmission rules between electric power companies, and the like, which include operation constraints calculated from any one or a plurality of them. These data may be stored in the database DB4 using the input unit 12 of the power system monitoring device 10, or may be stored in the database DB4 from other monitoring devices. Alternatively, the result calculated using the measurement value data D1 and the setting value data D2 may be set in the database DB4 as a settling value.
 差異計算結果データベースDB5には、差異計算結果データD5として、運用許容値候補である運用許容値D4と設定値D2との差異計算の結果が含まれる。 The difference calculation result database DB5 includes, as difference calculation result data D5, the result of the difference calculation between the operation allowable value D4 which is the operation allowable value candidate and the set value D2.
 運用許容値選択結果データベースDB6には、運用許容値選択結果データD6として、差異計算の結果D5に基づいて選択された、出力対象の運用許容値D6が含まれる。 The operation allowance value selection result database DB6 includes the operation allowance value D6 to be output, which is selected based on the difference calculation result D5 as the operation allowance value selection result data D6.
 図4を用いて、電力系統監視装置10の計算処理内容を説明する。図4は、電力系統監視装置10の処理の全体を示すフローチャートの例である。簡単に流れを説明する。 The calculation processing contents of the power system monitoring device 10 will be described with reference to FIG. FIG. 4 is an example of a flowchart showing the overall processing of the power system monitoring device 10. I will briefly explain the flow.
 電力系統監視装置10は、計測値データD1と設定値データD2とを用いて、運用許容値D4を計算する(S30)。運用許容値の計算結果D4は、運用許容値計算結果データベースDB4に格納される。 The power system monitoring device 10 calculates the operation allowable value D4 using the measured value data D1 and the set value data D2 (S30). The operation allowable value calculation result D4 is stored in the operation allowable value calculation result database DB4.
 電力系統監視装置10は、計算された運用許容値D4と計測値データD1と設定値データD2とを用いて、差異D5を計算する(S40)。計算された差異D5は、差異計算結果データベースDB5に格納される。 The power system monitoring device 10 calculates the difference D5 using the calculated allowable operation value D4, the measured value data D1, and the set value data D2 (S40). The calculated difference D5 is stored in the difference calculation result database DB5.
 電力系統監視装置10は、ステップS30で計算された運用許容値D4とステップS40で計算された差異D5と設定値データD2とから、出力対象となる運用許容値D6を選択するための計算を実行する(S50)。運用許容値の選択結果D6は、運用許容値選択結果データベースDB6に格納される。 The power system monitoring device 10 executes the calculation for selecting the operation allowable value D6 to be output from the operation allowable value D4 calculated in step S30, the difference D5 calculated in step S40, and the set value data D2. Yes (S50). The operation allowable value selection result D6 is stored in the operation allowable value selection result database DB6.
 電力系統監視装置10は、計測値データD1と設定値データD2と運用許容値D4と差異D5と運用許容値選択結果データD6とのうちいずれか一つ以上を、表示部11から出力させる(S60)。本実施例では、データD1,D2,D4,D5のいずれか一つもしくは複数もしくは全てを画面表示させる場合を例に説明する。 The power system monitoring device 10 causes the display unit 11 to output at least one of the measured value data D1, the set value data D2, the operation allowable value D4, the difference D5, and the operation allowable value selection result data D6 (S60). ). In the present embodiment, a case will be described as an example where any one or more or all or all of the data D1, D2, D4 and D5 are displayed on the screen.
 各種計算結果および計算途中でメモリ15に蓄積されるデータは、他の監視装置の画面に逐次表示されてもよい。これにより、ユーザは、電力系統監視装置10の運用状況を容易に把握できる。上述のステップの詳細を以下に述べる。 The various calculation results and the data accumulated in the memory 15 during the calculation may be sequentially displayed on the screens of other monitoring devices. As a result, the user can easily understand the operation status of the power system monitoring device 10. Details of the above steps are described below.
 ステップS30において、電力系統監視装置10は、計測値データD1と設定値データD2とを用いて、運用許容値を計算し、その結果である運用許容値D4を運用許容値計算結果データベースDB4に記憶する。運用許容値D4は、設定値データD2に含まれる電力系統の運用制約を用いて計算される。運用制約は、例えば、電流容量計算、ダイナミックレーティング計算、熱容量計算、状態推定計算、潮流計算、最適潮流計算、過渡安定性計算、定態安定性計算、電圧安定性計算、周波数安定性計算、カスケーディング計算、アイランディング計算、電力事業者間の送電ルール、の内1つ以上から設定される。 In step S30, the power system monitoring device 10 uses the measured value data D1 and the set value data D2 to calculate the operation allowance value, and stores the operation allowance value D4 as the result in the operation allowance value calculation result database DB4. To do. The operation allowable value D4 is calculated using the operation restriction of the power system included in the setting value data D2. The operational constraints include, for example, current capacity calculation, dynamic rating calculation, heat capacity calculation, state estimation calculation, power flow calculation, optimum power flow calculation, transient stability calculation, steady state stability calculation, voltage stability calculation, frequency stability calculation, and cascade calculation. It is set from one or more of a ding calculation, an islanding calculation, and a transmission rule between electric power companies.
 計測値データD1と設定値データD2が予め設定されていない場合、入力部12や表示部11を用いてデータD1,D2を電力系統監視装置10へ入力してもよい。他の監視装置から通信ネットワークCNおよび通信部13を通して、電力系統監視装置10へデータD1,D2を入力してもよい。電力系統監視装置10は、他の監視装置などに保持されているデータD1,D2,D4,D6に関するデータを一定周期で自動受信し、記憶してもよい。データD1,D2,D4,D6が予め設定されている場合は、修正を加えてもよいし、設定されたままのデータを用いてもよい。 When the measured value data D1 and the set value data D2 are not preset, the data D1 and D2 may be input to the power system monitoring device 10 using the input unit 12 and the display unit 11. The data D1 and D2 may be input to the power system monitoring device 10 from another monitoring device through the communication network CN and the communication unit 13. The power system monitoring device 10 may automatically receive and store data relating to the data D1, D2, D4, D6 held in another monitoring device or the like at a constant cycle. When the data D1, D2, D4, D6 are set in advance, correction may be added or the set data may be used.
 図5と図8を用いて、ステップS30の詳細を説明する。この例では、運用許容値が複数の段(例えばここでは第1段、第2段)に設定されている場合を説明する。段数が3以上の場合も、図5のフローチャートを拡張することで対応することができる。 Details of step S30 will be described with reference to FIGS. 5 and 8. In this example, a case where the operation allowable value is set in a plurality of stages (for example, the first stage and the second stage here) will be described. Even when the number of stages is three or more, it can be dealt with by expanding the flowchart of FIG.
 電力系統監視装置10の運用許容値計算部31は、計測値データD1と設定値データD2を読込み(S31)、運用許容値を計算する(S32)。フローチャートでは、計算された運用許容値に符号OTを与えている。 The operation allowable value calculation unit 31 of the power system monitoring device 10 reads the measured value data D1 and the setting value data D2 (S31), and calculates the operation allowable value (S32). In the flowchart, the code OT is given to the calculated operation allowable value.
 運用許容値計算部31は、計算された運用許容値OTと設定値D2との差異ΔPを計算し(S33)、差異ΔPが0以上であるか判定する(S34)。差異ΔPがある場合(S34:YES)、運用許容値計算部31は、ステップS32で計算された運用許容値OTが第1段の設定値であるか判定する(S35)。 The operation allowable value calculation unit 31 calculates the difference ΔP between the calculated operation allowable value OT and the set value D2 (S33), and determines whether the difference ΔP is 0 or more (S34). When there is a difference ΔP (S34: YES), the operation allowance value calculation unit 31 determines whether the operation allowance value OT calculated in step S32 is the first-stage setting value (S35).
 運用許容値OTが第1段の設定値である場合(S35:YES)、運用許容値計算部31は、設定時間Tupが経過するまで待機する(S36)。設定時間Tupが経過すると(S36:YES)、運用許容値計算部31は、運用許容値OTを変更し(S37)、設定時間をカウントするカウンタの値を初期化する(S38)。ステップS35で「NO」と判定された場合、またはステップS36で「NO」と判定された場合は、ステップS31へ戻る。 When the operation allowance value OT is the setting value of the first stage (S35: YES), the operation allowance value calculating unit 31 waits until the set time Tup elapses (S36). When the set time Tup has elapsed (S36: YES), the operation allowance value calculation unit 31 changes the operation allowance value OT (S37) and initializes the value of the counter that counts the set time (S38). If "NO" is determined in step S35, or if "NO" is determined in step S36, the process returns to step S31.
 一方、ステップS33で計算された差異ΔPが0以下である場合(S34:NO)、運用許容値計算部31は、ステップS32で計算された運用許容値OTが第2段の設定値であるか判定する(S35b)。そして、運用許容値計算部31は、他の設定時間Tdownが経過するまで待機する(S36b)。他の設定時間Tdownが経過すると(S36b)、ステップS37へ移る。ステップS35bまたはステップS36bのいずれかで「NO」と判定された場合、ステップS31へ戻る。 On the other hand, when the difference ΔP calculated in step S33 is 0 or less (S34: NO), the operation allowance value calculation unit 31 determines whether the operation allowance value OT calculated in step S32 is the second-stage setting value. The determination is made (S35b). Then, the operation allowable value calculation unit 31 waits until another set time Tdown elapses (S36b). When another set time Tdown has elapsed (S36b), the process proceeds to step S37. When it is determined to be "NO" in either step S35b or step S36b, the process returns to step S31.
 ステップS32では、例えばDRの計算において気温を入力することにより、運用許容値OTを計算する。これに限らず、ステップS32では、系統安定度を計算することにより、運用許容値を計算してもよい。本実施例では、系統安定性の維持のために、運用許容値を計算して変更する。通常のDRでは、運用許容値を限界まで使用しようとするものであり、本実施例における運用許容値の算出とは異なる。 In step S32, the operation allowable value OT is calculated by inputting the temperature in the DR calculation, for example. Not limited to this, in step S32, the operation allowable value may be calculated by calculating the system stability. In this embodiment, the operation allowable value is calculated and changed in order to maintain the system stability. The normal DR attempts to use the operation allowance up to the limit, which is different from the calculation of the operation allowance in this embodiment.
 ここで、グラフおよび画面の例について先に説明する。図8は、運用許容値選択処理(S50)の計算結果の一例を示す。基本的には、厳しい運用許容値、すなわち最小の運用許容値を表示させる。余裕が生じたと判断された場合には、運用許容値を緩和する。ここで、運用許容値の計算結果を示す白丸印と後述する計測値を示す黒丸印とは、別のプロット点である。これにより、運用許容値が緩和されたときの運転を柔軟に変更できる。 Here, an example of graphs and screens will be explained first. FIG. 8 shows an example of the calculation result of the operation allowable value selection process (S50). Basically, the strict operational allowance, that is, the minimum operational allowance is displayed. When it is determined that there is a margin, the operation allowance is relaxed. Here, a white circle indicating the calculation result of the operation allowable value and a black circle indicating a measurement value described later are different plot points. As a result, it is possible to flexibly change the operation when the operation allowable value is relaxed.
 実施例1では、一つのルートについて動的に算出される運用許容値に対して、予め設定されているj段の運用許容値(Pd11,Pd12)のうちどの運用許容値を表示すべきかを選択して出力する。 In the first embodiment, with respect to the operation allowance value dynamically calculated for one route, which operation allowance value should be displayed among the preset j operation allowance values (Pd11, Pd12) is selected. And output.
 図8の上側に示すように、運用許容値には、「Pd12ε」が設定されているため、余裕をもって運用許容値を選択できる。図8の上側にΔP12(t6)として示すように、多少の変化では、運用許容値を変化させないための時間Tup1が設定されている。一方で、運用許容値を厳しくして感度を高めるために、時間Tdown1(<Tup1)のように、すぐに変化させる時間を設定することも可能である。 As shown in the upper part of FIG. 8, since “Pd12ε” is set as the operation allowance, it is possible to select the operation allowance with a margin. As indicated by ΔP12 (t6) on the upper side of FIG. 8, the time Tup1 is set so as not to change the operation allowable value with a slight change. On the other hand, in order to increase the sensitivity by tightening the operation allowable value, it is possible to set a time to change immediately, such as time Tdown1 (<Tup1).
 図9は、運用許容値計算処理(S30)の計算結果の一例を示す。図8で述べた手段とは別の手段として、デジタルフィルタ(ローパスフィルタ(LPF、移動平均フィルタ)、ハイパスフィルタ(HPF、移動差分フィルタ)、またはバンドパスフィルタ(BPF))を用いてもよい。これらフィルタを用いて運用許容値を出力することにより、瞬時変動分を除去することもできる。 FIG. 9 shows an example of the calculation result of the operation allowable value calculation process (S30). As a means different from the means described in FIG. 8, a digital filter (low-pass filter (LPF, moving average filter), high-pass filter (HPF, moving difference filter), or band-pass filter (BPF)) may be used. By outputting the operation allowable value using these filters, it is possible to remove the instantaneous variation.
 図9で述べる方法と図8で述べた方法とを組合せることにより、図10の運用許容値の計算結果のグラフに示すように、運用許容値の限界を「Pd12」に設定して表示させることもできる。これにより、過度に楽観的な運用が行われるのを回避できる。 By combining the method described in FIG. 9 and the method described in FIG. 8, as shown in the graph of the calculation result of the operation allowable value in FIG. 10, the limit of the operation allowable value is set to “Pd12” and displayed. You can also As a result, it is possible to avoid excessively optimistic operation.
 図11は、運用許容値計算処理(S30)の計算結果の一例である。図11に示すように、図9で述べたフィルタ処理の結果を、更新周期を粗くして(離散化して)、表示させることもできる。これにより、運用許容値の頻繁な変化を抑制できる。 FIG. 11 shows an example of the calculation result of the operation allowable value calculation process (S30). As shown in FIG. 11, the result of the filter processing described in FIG. 9 can be displayed with a coarser update period (discretized). As a result, it is possible to suppress frequent changes in the operation allowable value.
 運用許容値の更新周期の粗さは任意に変更できる。これにより、ユーザに合った更新周期に設定することができ、ユーザの使い勝手が向上する。更新周期は、リアルタイムのDR計算に応じて、例えば10秒周期等に設定してもよい。更新周期の算出に際しては、周期的(例えば5分毎)に出る系統安定化の計算を考慮してもよい。運用許容値の計算周期が遅くなったとしても、図8~図11で述べた方法はそのまま適用できる。 The roughness of the update cycle of the operation allowable value can be changed arbitrarily. As a result, it is possible to set the update cycle suitable for the user, and the usability for the user is improved. The update cycle may be set to, for example, a 10-second cycle according to real-time DR calculation. When calculating the update cycle, calculation of system stabilization that appears periodically (for example, every 5 minutes) may be taken into consideration. Even if the operation allowable value calculation cycle is delayed, the methods described in FIGS. 8 to 11 can be applied as they are.
 図12~図14は、運用許容値選択処理(S50)の計算結果の一例である。図12は、運用許容値の選択結果(図8の結果を使用)に対して、計測値と運用許容値との差異を算出した例である。差異ΔPは、代表の3点だけ示している。差異の小さい順に、軸を選定する。差異が閾値Piεよりも小さい場合には、強制的に多次元で表示してもよいし、あるいは、図14に示すように、複数の2次元グラフを用いて表示してもよい。これらの方法で運用許容値を表示することにより、漏れのない監視を実現できる。 12 to 14 are examples of calculation results of the operation allowable value selection process (S50). FIG. 12 is an example in which the difference between the measured value and the operation allowable value is calculated with respect to the selection result of the operation allowable value (using the result of FIG. 8). Only the representative three points are shown as the difference ΔP. Select the axes in order of increasing difference. When the difference is smaller than the threshold value Piε, it may be forcibly displayed in multiple dimensions, or may be displayed using a plurality of two-dimensional graphs as shown in FIG. By displaying the operation allowable value by these methods, it is possible to realize monitoring without omission.
 図13では、電力系統Aから電力系統Bへのパスと電力系統Aから電力系統Cへのパスとについて、符号1P,2P,1Q,2Qで示している。各評価軸1P,2P,1Q,2Qは、各パスの運用監視対象のPQVFなどを評価する軸を示しており、全て異なる。図12の処理によって、これらの軸1P,2P,1Q,2Qの中から、重要な評価軸(例えば今監視すべき軸)を出力対象の運用許容値を評価する軸として選択できる。 In FIG. 13, the paths from the electric power system A to the electric power system B and the paths from the electric power system A to the electric power system C are indicated by reference numerals 1P, 2P, 1Q, and 2Q. Each evaluation axis 1P, 2P, 1Q, 2Q indicates an axis for evaluating the PQVF or the like of the operation monitoring target of each path, and they are all different. By the processing of FIG. 12, an important evaluation axis (for example, the axis to be monitored now) can be selected as an axis for evaluating the operation allowable value of the output target from among these axes 1P, 2P, 1Q, 2Q.
 図15は、系統図を表示する系統図画面G1の一例を示す。画面G1では、全てのノードまたはマップの計測点を線で接続してもよい。その際、スケルトン方式を採用することにより、マップの視認性を損なわないようにすることもできる。さらに、ユーザが、マウス等のポインティングデバイスを用いて、系統に含まれる要素(装置、パス)を選択した場合には、選択された要素の詳細な情報を画面G1に表示させることもできる。詳細な情報は、画面G1内に表示させてもよいし、別の画面を開いて表示させてもよい。 FIG. 15 shows an example of a system diagram screen G1 displaying a system diagram. On the screen G1, all nodes or measurement points on the map may be connected by lines. At that time, by adopting a skeleton method, it is possible to prevent the visibility of the map from being impaired. Further, when the user uses a pointing device such as a mouse to select an element (device, path) included in the system, detailed information of the selected element can be displayed on the screen G1. The detailed information may be displayed in the screen G1 or may be displayed by opening another screen.
 図16は、実施例1における系統監視画面G2の一例を示す。図17は、系統監視画面G2の運転軌跡を表示した例を示す。 FIG. 16 shows an example of the system monitoring screen G2 in the first embodiment. FIG. 17 shows an example in which the operation locus of the system monitoring screen G2 is displayed.
 図中のノモグラムの縦軸(Y軸)と横軸(X軸)とには、それぞれ監視対象として重要な評価軸が割り当てられている。図示の例では、Y軸にパス1Pが表示されており、X軸にパス2Pが表示されている。ユーザは、画面G2の右上に表示されたパス名の中から所望のパス名をクリック操作などで選択することにより、画面G2の左側に表示された軸を変更することができる。 An important evaluation axis is assigned as a monitoring target to the vertical axis (Y axis) and horizontal axis (X axis) of the nomogram in the figure. In the illustrated example, the path 1P is displayed on the Y axis and the path 2P is displayed on the X axis. The user can change the axis displayed on the left side of the screen G2 by selecting a desired path name from the path names displayed on the upper right of the screen G2 by clicking or the like.
 画面G2は、過去の系統監視の結果を再生することもできる。例えば、所定の期間あるいはユーザの指定した期間だけ遡って、過去の系統監視の様子を画面G2に表示させることもできる。変化の軌跡を線でなぞることができてもよい。これにより、時系列の傾向を平面上に表現することができる。 Screen G2 can also play back the results of past system monitoring. For example, the state of past system monitoring can be displayed on the screen G2 by tracing back a predetermined period or a period designated by the user. You may be able to trace the trajectory of change with a line. This makes it possible to represent a time series tendency on a plane.
 画面G2では、一つのノモグラムを示しているが、これに限らず、複数のノモグラムを表示させてもよい。ノモグラムが所定の方法にしたがって更新されていることをユーザに示すために、例えば、画面G2の右上に表示された時刻などを点滅させてもよい。運用許容値の変化を示すためのグラフを画面G2または別の画面に表示させてもよい。 The screen G2 shows one nomogram, but the present invention is not limited to this, and a plurality of nomograms may be displayed. In order to indicate to the user that the nomogram is updated according to a predetermined method, for example, the time displayed on the upper right of the screen G2 may be blinked. A graph for showing the change in the operation allowable value may be displayed on the screen G2 or another screen.
 図16では、運用制約情報を二次元の平面図(ノモグラム形式)で表記したが、これに限定されない。重要な軸が一つの場合は、二次元の時系列波形で表示してもよい。三次元のノモグラム形式で表示したり、1次元の数値だけで表示したりすることもできる。さらに、ノモグラムは四角形で表現する例に限らない。 In FIG. 16, the operation constraint information is shown in a two-dimensional plan view (nomogram format), but it is not limited to this. If there is only one important axis, it may be displayed as a two-dimensional time series waveform. It can also be displayed in a three-dimensional nomogram format, or can be displayed as a one-dimensional numerical value only. Furthermore, the nomogram is not limited to the case of being represented by a rectangle.
 画面G2の右下に「M分前」と記載されているが、画面G2は秒単位で管理可能でもよいし、あるいは、時間単位で管理可能でもよい。 Although “M minutes ago” is written in the lower right corner of the screen G2, the screen G2 may be managed in seconds or in hours.
 図18は、実施例1における運用許容値の計算結果画面G3の一例を示す。画面G3の上側のグラフ中の白丸印は、運用許容値の計算結果を示す。画面G3の下側のグラフの実線は、運用許容値の出力結果を示す。なお、図示を省略しているが、縦軸ΔP12(t)の差異計算結果と時間カウンタについてもグラフ表示することができる。 FIG. 18 shows an example of the operation allowable value calculation result screen G3 in the first embodiment. White circles in the graph on the upper side of the screen G3 indicate the calculation result of the operation allowable value. The solid line on the lower side of the screen G3 shows the output result of the operation allowable value. Although not shown, the difference calculation result of the vertical axis ΔP12 (t) and the time counter can also be displayed as a graph.
 図4に戻る。ステップS40では、ステップS30で記憶した運用許容値の計算結果データD4と計測値データD1と設定値データD2とを用いて差異を計算し、その結果を運用許容値計算結果データベースDB4に記憶する。 Return to Figure 4. In step S40, a difference is calculated using the operation allowable value calculation result data D4, the measured value data D1, and the set value data D2 stored in step S30, and the result is stored in the operation allowable value calculation result database DB4.
 ステップS50では、ステップS30で記憶された運用許容値の計算結果データD4とステップS40で記憶した差異計算結果データD5と設定値データD2とを用いて、出力対象となる運用許容値を選択し、その選択結果D6を運用許容値選択結果データベースDB6に記憶させる。 In step S50, the operation allowable value to be output is selected using the operation allowable value calculation result data D4 stored in step S30, the difference calculation result data D5 and the set value data D2 stored in step S40, The selection result D6 is stored in the operation allowable value selection result database DB6.
 図6を用いて、ステップS40とS50の詳細を説明する。電力系統監視装置10の差異計算部32は、運用許容値計算部31の計算結果である運用許容値D4(図5では運用許容値OTと表示)と、計測値データD1と、設定値データD2とを読込み(S41)、差異を計算する(S42)。差異計算部32は、ステップS42で計算された差異が、運用制約情報に含まれる複数の監視対象の軸(指標)のうち最後の軸(指標)であるか判定する(S43)。全ての監視対象軸について差異を計算するまで(S43:NO)、ステップS41,S42が繰り返される。 Details of steps S40 and S50 will be described with reference to FIG. The difference calculation unit 32 of the power system monitoring device 10 uses the operation allowable value D4 (displayed as the operation allowable value OT in FIG. 5) that is the calculation result of the operation allowable value calculation unit 31, the measured value data D1, and the set value data D2. And are read (S41), and the difference is calculated (S42). The difference calculation unit 32 determines whether the difference calculated in step S42 is the last axis (index) of the plurality of monitoring target axes (index) included in the operation constraint information (S43). Steps S41 and S42 are repeated until the differences are calculated for all monitored axes (S43: NO).
 差異計算部32が全ての監視対象軸について差異を計算すると(S43:YES)、運用許容値選択部33は、計算された差異を並び替え(S51)、その並び替えた結果に基づいて、出力対象の運用許容値を選択する(S52)。選択された運用許容値D6は、データベースDB6に記憶される。 When the difference calculation unit 32 calculates the differences for all monitored axes (S43: YES), the operation allowable value selection unit 33 sorts the calculated differences (S51) and outputs the sorted results based on the sorted results. A target operation allowable value is selected (S52). The selected operation allowable value D6 is stored in the database DB6.
 ステップS51では、差異を昇順または降順で並び替えることができる。並び替えることにより、差異の小さい箇所(余裕のない箇所、過酷な箇所)と差異の大きい箇所(余裕のある箇所)とを容易に検知することができる。差異が小さい箇所は、余裕の無い箇所である。所定の設定値εよりも差異が小さい箇所は、その旨を表示部11の画面に表示させる。これにより、ユーザによる過酷箇所の監視を支援することができる。 In step S51, the differences can be sorted in ascending or descending order. By rearranging, it is possible to easily detect a portion with a small difference (a portion with no margin, a severe portion) and a portion with a large difference (a portion with a margin). A place where the difference is small is a place where there is no margin. For a portion where the difference is smaller than the predetermined set value ε, that effect is displayed on the screen of the display unit 11. As a result, it is possible to assist the user in monitoring the severe location.
 本実施例では、差異の小さい箇所と差異の大きい箇所との両方を表示部11の画面に表示させることができる。これにより、ユーザに対して、余裕のない厳しい箇所の認識度と、余裕がある箇所の認識度との両方を向上させることができる。 In this embodiment, both a small difference part and a large difference part can be displayed on the screen of the display unit 11. As a result, it is possible to improve both the degree of recognition of a strict location with no margin and the degree of recognition of a location with margin for the user.
 図4に戻る。ステップS60では、電力系統の状態監視として、計測値データD1と設定値データD2とステップS30で記憶された運用許容値の計算結果データD4とステップS40で記憶された差異計算の結果データD5とステップS50で記憶された運用許容値の選択結果データD6とのうち一つ以上を、表示部11の画面に表示させる。 Return to Figure 4. In step S60, the measured value data D1, the set value data D2, the operation allowable value calculation result data D4 stored in step S30, the difference calculation result data D5 stored in step S40, and step S60 are used to monitor the state of the power system. At least one of the operation allowable value selection result data D6 stored in S50 is displayed on the screen of the display unit 11.
 各計算結果または計算途中でメモリに蓄積されるデータは、他の監視装置の画面に逐次表示されてもよい。これにより、ユーザが電力系統監視装置10の運用状況を容易に把握できる。 Each calculation result or the data accumulated in the memory during the calculation may be sequentially displayed on the screen of another monitoring device. This allows the user to easily understand the operating status of the power system monitoring device 10.
 このように構成される本実施例によれば、頻繁かつ複雑に系統の潮流状態や運用が変化する場合であっても、その変化に対応して監視することができるため、信頼性を維持しつつ、ユーザの使い勝手を向上させることができる。 According to the present embodiment configured as described above, even if the power flow state or operation of the system changes frequently and complicatedly, it is possible to monitor in response to the change, so that reliability is maintained. At the same time, the usability for the user can be improved.
 本実施例では、計測値D1がノイズのように瞬間的に変化する場合であっても、画面に出力する運用許容値は穏やかに変化させることができる。したがって、ユーザは、めまぐるしく変化する計測値D1への対応に追われることがなく、落ち着いて系統を監視し、運用することができる。これにより、ユーザの使い勝手を向上させることができ、系統の安定と経済的運用を実現することができる。 In the present embodiment, even if the measured value D1 changes momentarily like noise, the operation allowable value output on the screen can be gently changed. Therefore, the user can calmly monitor and operate the system without being rushed to deal with the rapidly changing measurement value D1. As a result, the usability of the user can be improved and the system can be stabilized and economically operated.
 図19~図23を用いて実施例2を説明する。本実施例を含む以下の各実施例は、実施例1の変形例に相当するため、実施例1との差異を中心に述べる。 Example 2 will be described with reference to FIGS. 19 to 23. Each of the following embodiments including this embodiment corresponds to a modification of the first embodiment, and therefore the differences from the first embodiment will be mainly described.
 本実施例では、実施例1において、計測値データD1および設定値データD2のほかに、優先度データD8を入力データとして加える。これにより、本実施例では、ステップS50で選択される運用許容値を優先度に応じて調整することができる。この結果、ユーザにとって使い勝手の良い電力系統監視装置10Aを提供することができる。 In this embodiment, in addition to the measured value data D1 and the set value data D2 in the first embodiment, priority data D8 is added as input data. As a result, in this embodiment, the operation allowable value selected in step S50 can be adjusted according to the priority. As a result, it is possible to provide the power system monitoring device 10A that is convenient for the user.
 本実施例では、優先度の重み付けのあり、なしの両方を計算することにより、重み付けの効果を確認することができる。 In the present embodiment, the effect of weighting can be confirmed by calculating both with and without priority weighting.
 図19は、本実施例の電力系統監視装置10Aの全体構成図である。本実施例の電力系統監視装置10Aと図1で述べた電力系統監視装置10とを比較すると、電力系統監視装置10Aの入力データD40に優先度データD8が追加されている点と、運用許容値選択部33Aで用いるデータに優先度データD8が追加されている点とで異なる。 FIG. 19 is an overall configuration diagram of the power system monitoring device 10A of the present embodiment. Comparing the power system monitoring apparatus 10A of the present embodiment with the power system monitoring apparatus 10 described in FIG. 1, the priority data D8 is added to the input data D40 of the power system monitoring apparatus 10A, and the operation allowable value. The difference is that priority data D8 is added to the data used in the selection unit 33A.
 図20は、本実施例の電力系統監視装置10Aのハードウェア構成を含む全体構成を示す。電力系統監視装置10Aには、優先度データベースDB8が追加されている。優先度データベースDB8は、優先度データD8を管理する。 FIG. 20 shows the overall configuration including the hardware configuration of the power system monitoring device 10A of this embodiment. A priority database DB8 is added to the power system monitoring device 10A. The priority database DB8 manages the priority data D8.
 図21を用いて、優先度データD8について説明する。優先度データD8は、各評価軸の差異に対する重みである。優先順位は、例えば、運用情報、地域情報、系統情報、天候情報、運用制約などのうちの一つ以上を用いて決定される。図21は、優先度データD8の一例であり、各時間帯における各軸の重みが設定されているが、時間帯別に優先度データD8を設定する必要はない。 The priority data D8 will be described with reference to FIG. The priority data D8 is a weight for the difference between the evaluation axes. The priority is determined using, for example, one or more of operation information, area information, system information, weather information, operation restrictions, and the like. FIG. 21 is an example of the priority data D8, and the weight of each axis in each time zone is set, but it is not necessary to set the priority data D8 for each time zone.
 図22のフローチャートは、本実施例に係る電力系統監視装置10Aの、差異計算部32の処理と運用許容値選択部33の処理とを示す。 The flowchart of FIG. 22 shows the processing of the difference calculation unit 32 and the processing of the operation allowable value selection unit 33 of the power system monitoring device 10A according to the present embodiment.
 ステップS41~S43,S51,S52は、図6で述べたフローチャートと同一であるが、本実施例では、さらに、優先度データD8で差異D5に重み付けしてから並べ替え(S53)、優先度データD8で重み付けされた差異D5に基づいて出力対象の運用許容値D6を選択する(S54)。 Steps S41 to S43, S51, and S52 are the same as those in the flowchart described with reference to FIG. 6, but in the present embodiment, the difference D5 is further weighted by the priority data D8, and the rearrangement (S53) is performed. The operation allowable value D6 to be output is selected based on the difference D5 weighted by D8 (S54).
 すなわち、本実施例の電力系統監視装置10Aは、重み付けしない差異D5に基づく出力対象の運用許容値D6(S51,S52)と、優先度データD8で重み付けされた差異D5に基づく出力対象の運用許容値D6(S53,S54)との複数種類の(二種類の)出力対象の運用許容値を選択する。 That is, the power system monitoring device 10A of the present embodiment allows the operation allowance D6 (S51, S52) of the output target based on the difference D5 that is not weighted and the operation allowance of the output target based on the difference D5 weighted by the priority data D8. A plurality of types (two types) of operation allowable values to be output with the value D6 (S53, S54) are selected.
 なお、図22では、便宜上、ステップS51~S54を順番に実施するかのように示しているが、ステップS51,S52とステップS53,S54とを並列に実行することができる。 Note that, in FIG. 22, for convenience, steps S51 to S54 are illustrated as if they are performed in order, but steps S51 and S52 and steps S53 and S54 can be performed in parallel.
 図23は、表示部11に表示される系統監視画面G2Aの例である。図23の画面G2Aと図16で述べた画面G2とを比較すると、本実施例の画面G2Aでは、優先度データD8を考慮して運用許容値を表示させる点で異なる。 FIG. 23 is an example of a system monitoring screen G2A displayed on the display unit 11. Comparing the screen G2A of FIG. 23 with the screen G2 described in FIG. 16, the screen G2A of the present embodiment is different in that the operation allowable value is displayed in consideration of the priority data D8.
 画面G2Aの例では、パス3Pに対して「0.3」の重みをつけ、パス1P,2Pに対して「1.0」の重みをつけている。画面G2Aでは、右上に示す表は、優先度を考慮する(有)、または、優先度を考慮しない(無)のそれぞれにおいて、差異を昇順または降順で並び替えることができる。 In the example of the screen G2A, the path 3P is weighted with “0.3” and the paths 1P and 2P are weighted with “1.0”. In the screen G2A, the table shown in the upper right can sort the differences in ascending order or descending order in each of the case where the priority is considered (Yes) or the case where the priority is not considered (No).
 さらに、画面G2Aでは、ユーザが優先度情報ボタンG2A1を操作すると、例えば天候情報等の、優先度D8の根拠となる情報が表示される。 Furthermore, when the user operates the priority information button G2A1 on the screen G2A, information that is the basis of the priority D8, such as weather information, is displayed.
 本実施例では、ユーザは、優先度D8を考慮して運用許容値を表示させるか、あるいは、優先度D8を考慮せずに運用許容値を表示させるか、のいずれか一つを選択することができる。したがって、本実施例によれば、実施例1の作用効果を得ることができる上に、さらにユーザは優先度の利用の有無を決定できるため、より一層使い勝手が向上し、安定した系統監視を行うことができる。 In the present embodiment, the user selects either one of displaying the operation allowance in consideration of the priority D8 or displaying the operation allowance without considering the priority D8. You can Therefore, according to the present embodiment, in addition to the operational effects of the first embodiment, the user can further determine whether or not to use the priority, so that the usability is further improved and stable system monitoring is performed. be able to.
 図24~図31を用いて、実施例3を説明する。本実施例の電力系統監視装置10Bは、電力系統を監視するだけでなく、改善策の計算と表示も行うことにより、ユーザの運用を支援する。 Example 3 will be described with reference to FIGS. 24 to 31. The power system monitoring device 10B according to the present embodiment not only monitors the power system but also calculates and displays improvement measures to support user operation.
 図24は、本実施例の電力系統監視装置10Bの全体構成図である。本実施例の電力系統監視装置10Bと図1で述べた電力系統監視装置10とを比較すると、計算部41に改善策計算部34が追加された点と、結果データD42に改善策計算結果データD9を記憶する改善策計算結果データベースDB9が追加された点とで異なる。 FIG. 24 is an overall configuration diagram of the power system monitoring device 10B of the present embodiment. Comparing the power system monitoring apparatus 10B of the present embodiment with the power system monitoring apparatus 10 described in FIG. 1, the point that the improvement measure calculation unit 34 is added to the calculation unit 41 and the improvement data calculation result data in the result data D42. The difference is that a remedy calculation result database DB9 that stores D9 is added.
 図25は、本実施例の電力系統監視装置10Bのハードウェア構成を含む全体構成図である。本実施例の電力系統監視装置10Bには、改善策計算結果データベースDB9が追加されている。さらに、電力系統100a,100cには、演算対象である、電源110と、変圧器130,131と、負荷150と、調相設備160,170とが追記されている。ここでは、電源等の符号からアルファベットの添え字を除いて説明する。 FIG. 25 is an overall configuration diagram including the hardware configuration of the power system monitoring device 10B of the present embodiment. The improvement plan calculation result database DB9 is added to the power system monitoring device 10B of the present embodiment. Further, in the power systems 100a and 100c, the power source 110, the transformers 130 and 131, the load 150, and the phase adjusting equipment 160 and 170, which are calculation targets, are added. Here, the description will be made by omitting the alphabetical suffix from the symbols such as the power source.
 図26は、電力系統監視装置10BのプログラムデータベースDB7Bの内容を示す構成図である。プログラムデータベースDB7Bは、図3で述べたプログラムデータベースDB7に比べて、改善策計算プログラムP14が追加されている点で異なる。 FIG. 26 is a configuration diagram showing the contents of the program database DB 7B of the power system monitoring device 10B. The program database DB7B differs from the program database DB7 described with reference to FIG. 3 in that an improvement measure calculation program P14 is added.
 図27は、本実施例における、電力系統監視装置10Bの処理の全体を示すフローチャートである。図27のフローチャートは、図4のフローチャートに比べて、ステップS50とステップS60との間に、改善策を計算するステップS70が追加されている点で異なる。 FIG. 27 is a flowchart showing the overall processing of the power system monitoring device 10B in this embodiment. The flowchart of FIG. 27 differs from the flowchart of FIG. 4 in that a step S70 for calculating improvement measures is added between steps S50 and S60.
 図28のフローチャートを用いて、改善策計算処理(S70)の詳細を説明する。電力系統監視装置10Bの改善策計算部34は、計測値D1と、設定値D2と、計算された運用許容値D4と、運用許容値選択部33の選択結果D6とを取得し(S71)、それら取得されたデータに基づいて電力系統についての改善策を計算する(S72)。 Details of the improvement measure calculation processing (S70) will be described using the flowchart of FIG. The improvement measure calculation unit 34 of the power system monitoring device 10B acquires the measurement value D1, the set value D2, the calculated operation allowable value D4, and the selection result D6 of the operation allowable value selection unit 33 (S71), Based on the acquired data, improvement measures for the power system are calculated (S72).
 改善策計算部34は、最終ケースを計算するまで(S73:NO)、ステップS71,S72を繰り返す。改善策計算部34は、全てのケースについて計算すると(S73:YES)、算出された改善策をユーザへ提示する(S75)。ユーザは、提示された改善策の中から、実行対象の改善策を一つまたは複数選択することができる。改善策計算部34は、何らかの選択基準にしたがって改善策を選択し、その選択された改善策の採否についてユーザに問い合わせることもできる。 The improvement measure calculation unit 34 repeats steps S71 and S72 until the final case is calculated (S73: NO). When the improvement measure calculation unit 34 has calculated for all cases (S73: YES), the improvement measure calculation unit 34 presents the calculated improvement measures to the user (S75). The user can select one or a plurality of improvement measures to be executed from the presented improvement measures. The improvement measure calculation unit 34 can also select an improvement measure according to some selection criterion and inquire the user about whether or not to adopt the selected improvement measure.
 ステップS73で最終ケースであるか否かを判定するのは、改善策計算部34へ入力されるデータD40のケースが複数存在する場合があるためである。ステップS72で計算された改善策が一つだけの場合、ステップS75では、その唯一の改善策に問題がないか否かだけを判定する。 The reason why the final case is determined in step S73 is that there may be a plurality of cases of the data D40 input to the improvement measure calculation unit 34. If there is only one improvement measure calculated in step S72, then in step S75, it is determined whether or not there is no problem with the only improvement measure.
 改善策が複数ある場合には、各改善策を実行した場合の改善効果指標(制御対象機器の操作量が最も少ない、他者の現在の設定との偏差が少ないなど)でソートすることにより、改善策の決定に役立てることができる。 If there are multiple improvement measures, by sorting by the improvement effect index (the amount of operation of the controlled device is the smallest, the deviation from the other person's current setting, etc.) when each improvement measure is executed, It can be useful in determining improvement measures.
 ステップS75では、ユーザに対して複数の改善策を提示してもよいし、一つの改善策だけを提示してもよい。複数の解(改善策)が提示される場合、ユーザは、提示された中から、好みの解を選択して実行することができる。1つの解だけが提示される場合、ユーザは、算出された改善策の中から最も効果的な解を簡単に把握することができる。 In step S75, a plurality of improvement measures may be presented to the user, or only one improvement measure may be presented. When a plurality of solutions (improvement measures) are presented, the user can select and execute a favorite solution from the presented solutions. When only one solution is presented, the user can easily understand the most effective solution from the calculated improvement measures.
 図29は、改善策の決定結果の様子を示す説明図である。第1の改善策としての制御Aを実施した場合の例を示す。黒丸印は運転点を示し、白丸印はM分前の状態を示す。黒三角印は、制御Aの実施後の状態を示す。実線は運用許容値である。図29から、改善策(制御A)を実施することにより、各運用許容値との差異が大きくなることがわかる。第1の改善策の計算方法については後述する。 FIG. 29 is an explanatory diagram showing the appearance of the decision result of the improvement measure. An example of the case where the control A is executed as the first improvement measure will be described. Black circles indicate operating points, and white circles indicate a state before M minutes. A black triangle mark indicates a state after the control A is performed. The solid line is the operation allowable value. From FIG. 29, it can be seen that the difference from each operation allowable value increases by implementing the improvement measure (control A). The calculation method of the first improvement measure will be described later.
 図30は、第2の改善策の決定結果の様子を示す説明図である。第2の改善策としての制御Bを実施した場合の例を示す。第1の改善策である制御Aは、直接制御することができるため、制御Aを実施した場合の効果をノモグラムに表示することができる。したがって、ユーザは、どの改善策を実行すべきか容易に判断することができる。 FIG. 30 is an explanatory diagram showing the appearance of the decision result of the second improvement measure. An example of the case where the control B as the second improvement measure is executed will be shown. Since the control A, which is the first improvement measure, can be directly controlled, the effect when the control A is implemented can be displayed on the nomogram. Therefore, the user can easily determine which improvement measure should be implemented.
 これに対し、第2の改善策としての制御Bは、直接制御することができないが、電力系統Cで制御できる。したがって、仮にその改善策(制御B)が実行された場合の系統状態を解析して、その解析結果を運用目標値としてユーザへ提示することにより、ユーザへ指針を示すことができる。この指針は電力系統Cのユーザへ連絡することもできる。各電力系統を運用するユーザ同士が、図30の画面を共有することにより、共通の理解を容易に醸成することができる。 On the other hand, the control B as the second improvement measure cannot be directly controlled, but can be controlled by the power system C. Therefore, if the improvement measure (control B) is executed, the system state is analyzed, and the analysis result is presented to the user as the operation target value, whereby the guideline can be shown to the user. This guide can also be communicated to the user of the power system C. By sharing the screen of FIG. 30 among users who operate each power system, common understanding can be easily fostered.
 改善策の計算について説明する。改善策の基本形は以下の2つである。 Explain the calculation of improvement measures. There are two basic forms of improvement measures.
 (1)第1の改善策 (1) First improvement measure
 第1の改善策は、自管轄(例えば電力系統A)内の制御対象設備を直接制御する改善策である。ステップS72では、以下の条件で最適潮流計算(OPF)を解くことで解(操作量:制御A)を得る。目的関数(評価関数):maxΣwi*(ΔPi) ここで、wiは重み、ΔPは運転点と運用許容値の偏差である。 The first improvement measure is an improvement measure that directly controls the control target equipment within its own jurisdiction (for example, power system A). In step S72, a solution (operation amount: control A) is obtained by solving the optimum power flow calculation (OPF) under the following conditions. Objective function (evaluation function): max Σwi * (ΔPi) where wi is the weight and ΔP is the deviation between the operating point and the operation allowable value.
 第1の改善策では、運転点の余裕を高めることを目的とする。評価関数では、運用許容値選択部33で選択された評価軸だけを対象にすることも考えられる。しかし、選択されなかった評価軸の運転点が悪化する恐れもあるため、選択されなかった評価軸についても重みを小さくして評価関数に入れる。これにより、どこかの軸が悪化するというハンチングを抑制できる。 The first improvement measure aims to increase the margin of the operating point. In the evaluation function, it may be possible to target only the evaluation axis selected by the operation allowable value selection unit 33. However, since the operating points of the evaluation axes that have not been selected may deteriorate, the weights of the evaluation axes that have not been selected are also reduced and included in the evaluation function. As a result, it is possible to suppress hunting in which some axis is deteriorated.
 第1の改善策では、操作変数として、自管轄内の制御対象設備(Pg,Qg,Vg、タップ値、調相CB入切、など)を用い、制約として、機器の動作制約(例:タップはこの値の中で動く、など)を用いる。 In the first improvement measure, the equipment to be controlled (Pg, Qg, Vg, tap value, phase adjustment CB on / off, etc.) within its own jurisdiction is used as the operation variable, and the equipment operation constraint (eg tap) is used as the constraint. Moves within this value, etc.).
 図29では、制御Aを実行した場合の潮流を計算することにより、制御Aの予測効果を示している。図29に示すように改善効果を画面上に表示させることで、ユーザは改善効果を容易に把握できる。 FIG. 29 shows the predictive effect of control A by calculating the power flow when control A is executed. By displaying the improvement effect on the screen as shown in FIG. 29, the user can easily understand the improvement effect.
 (2)第2の改善策 (2) Second improvement measure
 第2の改善策は、自管轄内の制御対象設備では足りない場合または制御できない場合に、他管轄(例えば電力系統B)内の制御対象設備を、間接制御する改善策である。ステップS72では、以下の条件にしたがって最適潮流計算(OPF)を解くことにより、第2の改善策としての解(操作量:制御B)を得る。 The second improvement measure is an improvement measure to indirectly control the control target equipment in another jurisdiction (for example, power system B) when the control target equipment in its own jurisdiction is insufficient or cannot be controlled. In step S72, the solution (operation amount: control B) as the second improvement measure is obtained by solving the optimum power flow calculation (OPF) according to the following conditions.
 目的関数(評価関数)は、第1の改善策で述べた通りである。操作変数には、他管轄内の制御対象設備(Pg,Qg,Vg、タップ値、調相CB入切、など)を用いる。制約は、第1の改善策で述べた通りである。 The objective function (evaluation function) is as described in the first improvement measure. The controlled variable equipment (Pg, Qg, Vg, tap value, phased CB on / off, etc.) in other jurisdiction is used as the manipulated variable. The restrictions are as described in the first improvement measure.
 ここで、第2の改善策である制御Bは、他管轄の制御対象設備であるため、直接制御することはできない。そこで、制御Bを実施した場合に想定される潮流を計算することにより、他管轄エリアとの理想的な運用目標値(ノモグラム上の範囲)を得る。そして、この理想的な運用許容値を他管轄のユーザに送信することにより、間接的に制御することができる。 ▽ Here, Control B, which is the second improvement measure, cannot be directly controlled because it is controlled equipment under other jurisdiction. Therefore, an ideal operational target value (range on the nomogram) with another jurisdiction area is obtained by calculating the power flow assumed when the control B is performed. Then, it is possible to indirectly control by transmitting this ideal operation allowable value to the user in another jurisdiction.
 図30では、運用目標値をノモグラムとして画面上で表示することで、ユーザが他管轄のユーザ(例:電力系統Bのユーザ、電力系統Aの発電事業者、電力系統Aの別電圧階級を管轄しているユーザ、など)に対して容易に目標を伝えることができる。これにより、関係者同士で情報を共有することができ、電力系統の状況を適切に把握できる。 In FIG. 30, the operation target value is displayed as a nomogram on the screen so that the user is in control of another jurisdiction (eg, user of power system B, power generation operator of power system A, different voltage class of power system A). The target can be easily communicated to the user who is doing this). As a result, it is possible to share information among related parties and appropriately grasp the status of the power system.
 以上の第1の改善策、第2の改善策で述べた方法を組み合わせることにより、改善策を算出することもできる。なお、上述のOPF計算では、電力系統Aと電力Bの系統モデルがそれぞれ既知であることを前提としているが、電力系統Bについては、集約したモデルであってもよい。 The improvement measures can also be calculated by combining the methods described in the first improvement measure and the second improvement measure described above. In the above OPF calculation, it is assumed that the system models of the power system A and the power system B are known, but the power system B may be an integrated model.
 図31は、運用支援画面G4の例である。ユーザは、画面G4を通じて、運用目標値と運用許容値との関係を容易に把握することができ、ユーザの使い勝手が向上する。 FIG. 31 is an example of the operation support screen G4. The user can easily understand the relationship between the operation target value and the operation allowable value through the screen G4, and the usability for the user is improved.
 本実施例によれば、実施例1で述べたと同様に、ユーザは、重要な運用許容値と運用目標値および改善策を容易に確認できるため、潮流状態や運用形態がより複雑かつ頻繁に変化する場合でも対応することができる。 According to the present embodiment, as described in the first embodiment, the user can easily confirm the important operation allowance value, operation target value, and improvement measure, so that the power flow state and the operation form change more complicatedly and frequently. Even if you do, you can respond.
 ここで、画面G4に示すように、ユーザが「運用支援」タブメニューを選択すると、系統の監視結果に対して、どのような改善策を実施すべきかが画面G4に表示される。図31は、第2の改善策の例を示している。ユーザは、右上の計算結果欄にて、OPFの詳細を確認することできる。 Here, as shown in the screen G4, when the user selects the "operation support" tab menu, the screen G4 shows what improvement measures should be taken for the system monitoring result. FIG. 31 shows an example of the second improvement measure. The user can confirm the details of the OPF in the calculation result column on the upper right.
 ユーザは、第1の改善策についても確認することができる。したがって、ユーザは、第1の改善策と第2の改善策の両方を表示させて確認することができ、どちらの改善策を実施すべきか検討することができる。
なお、第2の改善策は、OPFに基づいて、系統Cの機器が操作されると仮定した場合の結果を示している。したがって、系統Aのユーザにとっては、第2の改善策は予測でしかない。しかし、この目標値の提示が可能であることがユーザには分かるという効果があり、運用方法の幅が広がる。
The user can also confirm the first improvement measure. Therefore, the user can display and confirm both the first improvement measure and the second improvement measure, and can consider which improvement measure should be implemented.
The second improvement measure shows the result when it is assumed that the equipment of system C is operated based on the OPF. Therefore, for the users of system A, the second improvement measure is only prediction. However, there is an effect that the user can know that this target value can be presented, and the range of operation methods is expanded.
 画面G4に、図28のフローチャートで算出される効果指標を表示させることにより、ユーザは、各改善策を実施した場合の効果を容易に比較することができ、使い勝手が向上する。画面G4に、改善策を実施した後の予測値(計算値)を表示してもよい。 By displaying the effect index calculated in the flowchart of FIG. 28 on the screen G4, the user can easily compare the effects when the respective improvement measures are implemented, and the usability is improved. The predicted value (calculated value) after implementing the improvement measure may be displayed on the screen G4.
 図32~図35を用いて、実施例4を説明する。本実施例では、実施例3の構成に指令部35を加えることにより、ユーザの運用を支援する。 Example 4 will be described with reference to FIGS. 32 to 35. In the present embodiment, the operation of the user is supported by adding the command unit 35 to the configuration of the third embodiment.
 図32は、本実施例の電力系統監視装置10Cの全体構成図である。本実施例に係る電力系統監視装置10Cは、図24で述べた電力系統監視装置10Bと比べると、指令部35と、指令結果データD10を記憶する指令結果データベースDB10とが追加されている点で異なる。 FIG. 32 is an overall configuration diagram of the power system monitoring device 10C of the present embodiment. Compared with the power system monitoring device 10B described in FIG. 24, the power system monitoring device 10C according to the present embodiment is added with a command unit 35 and a command result database DB10 that stores command result data D10. different.
 指令部35は、算出された改善策の中から、ユーザの指定した改善策を選択する機能である。指令方法(選択方法)には、以下の複数がある。第1の方法は、ユーザが好みの改善策を手動で選択する方法である。第2の方法は、計算された効果指標などを用いて自動的に選択する方法である。効果指標などから選択対象の改善策候補を抽出し、抽出された改善策候補の中からユーザが手動で選択できるようにしてもよい。 The command unit 35 has a function of selecting an improvement measure specified by the user from the calculated improvement measures. There are the following plural command methods (selection methods). The first method is a method in which the user manually selects an improvement measure that he / she likes. The second method is a method of automatically selecting using a calculated effect index or the like. The improvement measure candidate to be selected may be extracted from the effect index or the like, and the user may manually select from the extracted improvement measure candidates.
 図33は、本実施例の電力系統監視装置10Cのハードウェア構成を含む全体構成図である。本実施例の電力系統監視装置10Cは、図25の電力系統監視装置10Bと比べると、指令結果データベースDB10が追加された点で異なる。なお、電力系統A(100a)には、個別制御装置45aが追記されている。個別制御装置45aは、自管轄(ここでは電力系統A)でのみ制御可能である。 FIG. 33 is an overall configuration diagram including the hardware configuration of the power system monitoring device 10C of the present embodiment. The power system monitoring device 10C of the present embodiment differs from the power system monitoring device 10B of FIG. 25 in that a command result database DB10 is added. An individual control device 45a is additionally added to the power system A (100a). The individual control device 45a can be controlled only under its own control (here, the power system A).
 図34は、電力系統監視装置10CのプログラムデータベースDB7BCの内容を示す構成図である。プログラムデータベースDB7Cは、図26で述べたデータベースDB7Bに比べて、指令プログラムP15が追加された点で異なる。 FIG. 34 is a configuration diagram showing the contents of the program database DB7BC of the power system monitoring device 10C. The program database DB7C is different from the database DB7B described in FIG. 26 in that a command program P15 is added.
 図35は、本実施例に係る電力系統監視装置10Cの処理の全体を示すフローチャートである。このフローチャートは、図27で述べたフローチャートと比較して、ステップS70とステップS60との間に、改善策を選択して指令するステップS80が追加されている点で異なる。 FIG. 35 is a flowchart showing the overall processing of the power system monitoring device 10C according to the present embodiment. This flowchart is different from the flowchart described in FIG. 27 in that a step S80 for selecting and issuing an improvement measure is added between steps S70 and S60.
 ステップS70では、表示部11の画面(不図示)に表示された改善策の中から、ユーザが直接制御する第1の改善策(上述の例では制御A)を選択して指令することができる。あるいは、ステップS70では、ユーザが前記画面に表示された運用目標値を確認して、他の電力系統を運用するユーザへ連絡することにより、第2の改善策(上述の例では制御B)の実施を指示することもできる。 In step S70, the first improvement measure (control A in the above example) that the user directly controls can be selected and instructed from the improvement measures displayed on the screen (not shown) of the display unit 11. .. Alternatively, in step S70, the user confirms the operation target value displayed on the screen and informs the user who operates another power system of the second improvement measure (control B in the above example). Implementation can also be instructed.
 図示は省略するが、例えば、指令画面と、指令結果を確認する画面とを表示できるようにすることで、ユーザは、、機器操作、他ユーザへの連絡、指令結果の確認、などを容易に行うことができ、使い勝手が向上する。このように構成される本実施例も実施例3と同様の作用効果を奏する上に、改善策を容易に選択して指令することができる。 Although illustration is omitted, for example, by making it possible to display a command screen and a screen for checking the command result, the user can easily operate the device, contact other users, check the command result, etc. It can be done and the usability is improved. This embodiment, which is configured in this way, has the same effects as the third embodiment, and in addition, an improvement measure can be easily selected and commanded.
 図36~図40を用いて、実施例5を説明する。本実施例の電力系統監視装置10Dでは、電力系統の監視だけでなく、運用許容値の評価および表示を行えるようにした。これにより、本実施例では、ユーザの運用支援、安定性または操作性の向上、整定労力の削減を実現できる。 Example 5 will be described with reference to FIGS. 36 to 40. In the power system monitoring device 10D of the present embodiment, not only the power system monitoring but also the operation allowable value can be evaluated and displayed. As a result, in this embodiment, it is possible to realize the operation support of the user, improvement of stability or operability, and reduction of settling labor.
 図36は、本実施例の電力系統監視装置10Dの全体構成図である。本実施例の電力系統監視装置10Dは、図1で述べた電力系統監視装置10と比べると、計算部41に運用許容値評価部36が追加された点と、結果データD42に運用許容値評価結果データD11を管理する運用許容値評価結果データベースDB11が追加された点とで異なる。 FIG. 36 is an overall configuration diagram of the power system monitoring device 10D of the present embodiment. The power system monitoring apparatus 10D of the present embodiment is different from the power system monitoring apparatus 10 described in FIG. 1 in that the operation allowable value evaluation unit 36 is added to the calculation unit 41 and the operation allowable value evaluation is performed on the result data D42. The difference is that the operation allowable value evaluation result database DB11 for managing the result data D11 is added.
 図37は、本実施例の電力系統監視装置10のハードウェア構成を含む全体構成図である。電力系統監視装置10Dは、図2で述べた構成と比較すると、運用許容値評価結果データベースDB11が追加された点で異なる。 FIG. 37 is an overall configuration diagram including the hardware configuration of the power system monitoring device 10 of the present embodiment. The power system monitoring device 10D is different from the configuration described in FIG. 2 in that an operation allowable value evaluation result database DB11 is added.
 図38は、電力系統監視装置10DのプログラムデータベースDB7Dの内容を示す構成図である。本実施例のプログラムデータベースDB7Dは、図3で述べたプログラムデータベースDB7と比較して、運用許容値を評価するプログラムP16が追加された点で相違する。 FIG. 38 is a configuration diagram showing the contents of the program database DB 7D of the power system monitoring device 10D. The program database DB7D of the present embodiment is different from the program database DB7 described in FIG. 3 in that a program P16 for evaluating the operation allowable value is added.
 図39は、本実施例における電力系統監視装置10Dの処理の全体を示すフローチャートである。本実施例のフローチャートと図4で述べたフローチャートとを比較すると、本実施例のフローチャートには、計算条件を設定するステップS20と、最終ケースであるか判定するステップS70Dと、運用許容値を評価するステップS90とが追加された点で相違する。 FIG. 39 is a flowchart showing the overall processing of the power system monitoring device 10D in this embodiment. Comparing the flowchart of this embodiment with the flowchart described in FIG. 4, in the flowchart of this embodiment, step S20 of setting calculation conditions, step S70D of determining whether or not it is the final case, and the operation allowable value are evaluated. The difference is that step S90 to be performed is added.
 電力系統監視装置10Dは、計算条件を設定し(S20)、設定された計算条件にしたがって運用許容値D4を算出し(S30)、算出された運用許容値D4と設定値D2とから差異D5を計算する(S40)。 The power system monitoring device 10D sets a calculation condition (S20), calculates an operation allowable value D4 according to the set calculation condition (S30), and calculates a difference D5 from the calculated operation allowable value D4 and the set value D2. Calculate (S40).
 電力系統監視装置10Dは、計測値D1と運用許容値D4と差異D5とに基づいて、出力対象の運用許容値D6を選択する(S50)。電力系統監視装置10Dは、最終ケースと判定されるまで(S70D:NO)、ステップS20へ戻る。 The power system monitoring device 10D selects the operation allowable value D6 to be output based on the measured value D1, the operation allowable value D4, and the difference D5 (S50). The power system monitoring device 10D returns to step S20 until the final case is determined (S70D: NO).
 電力系統監視装置10Dは、最終ケースと判定されると(S70D:YES)、運用許容値を評価し(S90)、評価結果などを表示部11に出力させる(S60)。 When the power system monitoring device 10D is determined to be the final case (S70D: YES), the operation allowable value is evaluated (S90), and the evaluation result and the like are output to the display unit 11 (S60).
 上述の通り、運用許容値評価部36は、入力データD40と各計算部(または選択部)31~33の計算結果とを用いて、ユーザがどのような運用許容値を設定すべきか判断するための材料となる評価値を計算して、ユーザへ提示する。 As described above, the operation allowable value evaluation unit 36 uses the input data D40 and the calculation results of the calculation units (or selection units) 31 to 33 to determine what kind of operation allowable value the user should set. The evaluation value that is the material of is calculated and presented to the user.
 運用許容値評価部36は、例えば、一定期間(数ヶ月など)毎に、各計算部31~33の計算結果をオンラインデータとして解析するか、もしくは過去データから解析することができる。これにより、運用許容値評価部36は、ノモグラムに表示させる運用許容値の評価軸を設定時間単位で算出し、その算出結果を統計解析した値を評価値としてユーザへ提示することができる。 The operation allowable value evaluation unit 36 can analyze the calculation results of the calculation units 31 to 33 as online data, or can analyze from the past data, for example, every certain period (several months, etc.). As a result, the operation allowance value evaluation unit 36 can calculate the evaluation axis of the operation allowance value to be displayed on the nomogram in set time units, and present the user with a value obtained by statistically analyzing the calculation result as an evaluation value.
 ユーザは、提示された評価結果を視認することにより、例えば、どの時間帯の、どの季節には、どのような評価軸が過酷な状況となるか、あるいは逆に楽になるか、といった情報を統計的に確認することができる。したがって、ユーザが運用許容値を整定する場合に、ユーザの判断を支援することができ、ユーザの使い勝手が向上する。 By visually recognizing the presented evaluation result, the user can statistically collect information such as which time zone, which season, what kind of evaluation axis is in a harsh condition, and vice versa. Can be confirmed. Therefore, when the user sets the operation allowable value, the user's judgment can be supported, and the user's usability is improved.
 本実施例では、統計的に±σ、±2σ、±3σ、といった値だけに着目するのではなく、はずれ値に関しても蓄積しておくことができる。これにより、どのような系統状況の場合には、通常と異なる運用許容値が算出されるか、あるいは選択されるかといったことを、電力系統監視装置10Dまたは各電力系統のシステムに対してフィードバックすることもできる。 In the present embodiment, not only statistically focused values such as ± σ, ± 2σ, and ± 3σ, but also outliers can be accumulated. Thus, in what kind of system status, whether or not an operation allowable value different from usual is calculated or selected is fed back to the power system monitoring device 10D or the system of each power system. You can also
 なお、運用許容値を評価する方法として、計測値データD1をオンラインで演算していく方法と、蓄積された過去データから演算する方法との2つの方法を例示したが、これらに代えて、例えばデュレーションカーブなどから系統の断面を想定し、擬似断面データを作成してもよい。この場合も前記各方法と同様の計算および評価が可能である。 As a method of evaluating the operation allowable value, two methods, that is, a method of calculating the measured value data D1 online and a method of calculating from the accumulated past data have been exemplified, but instead of these, for example, Pseudo-section data may be created by assuming a system section from a duration curve or the like. Also in this case, the same calculation and evaluation as those of the above-mentioned methods are possible.
 図40は、運用許容値の評価結果の提示方法などの様子を示す説明図である。本実施例の電力系統監視装置10Dは、設定時間毎に運用許容値を計算し、運用許容値の選択結果に対して、各種統計分析を実施する。そして、電力系統監視装置10Dは、実施例1の作用効果を奏する上に、各計算結果を表示部11の画面(不図示)に出力させることができるため、ユーザが運用許容値を整定する際の労力を削減できる。 FIG. 40 is an explanatory diagram showing a manner of presenting the evaluation result of the operation allowable value and the like. The power system monitoring device 10D according to the present embodiment calculates an operation allowance value for each set time and performs various statistical analyzes on the selection result of the operation allowance value. Then, the power system monitoring device 10D has the effects of the first embodiment and can output each calculation result on the screen (not shown) of the display unit 11, so that when the user sets the operation allowable value. Can reduce the labor.
 なお、運用許容値を統計解析した結果とは、例えば、度数分布、ヒストグラム、散布図行列、決定木、などである。これら統計解析の結果を画面に表示させることにより、ユーザは例えば、どの時間帯、どの季節には、どのような軸が過酷となるか、あるいは楽となるか、といった情報を統計的に確認することができ、ユーザの使い勝手が向上する。 Note that the results of statistical analysis of the operation allowable value are, for example, frequency distribution, histogram, scatter plot matrix, decision tree, etc. By displaying the results of these statistical analyzes on the screen, the user can statistically confirm information such as which time zone, which season, what kind of axis is harsh, or which is easier. It is possible to improve the usability of the user.
 なお、本発明は、過去の潮流状態(図中ではM分前などと表記)から現在の潮流状態(図中では運転点などと表記)に関して、適用する例を記載したが、電力系統の各種予測値や計画値など(例えば、需給計画値(発電と負荷の計画値や予測値)と、連系線潮流計画値(P0)など)から、将来の潮流状態を予測し、本発明を適用することも可能である。この場合、将来の潮流状態を予測計算は、本発明を適用する装置やシステムにおいて、実施してもよいし、他装置やシステムにて実施されたものを受信してもよい。将来の潮流状態に対して、本発明を適用することで、将来的にどのような軸がボトルネックとなるかということが予めわかり、運用者が予め対策を考えられるようになり、監視対象の電力系統の潮流状態または運用形態が複雑かつ頻繁に変化した場においても、系統安定または経済的運用の少なくともいずれか一つまたは両方を実現することができる。  Although the present invention has been described with respect to the past power flow state (denoted as M minutes ago in the figure) to the current power flow state (denoted as an operating point in the figure), various examples of power systems have been described. The present invention is applied by predicting a future power flow state from a predicted value or a planned value (for example, a planned supply and demand value (planned value or predicted value of power generation and load) and a planned value of the interconnection power flow (P0)). It is also possible to do so. In this case, the prediction calculation of the future power flow state may be performed by the device or system to which the present invention is applied, or may be received by another device or system. By applying the present invention to future power flow conditions, it is possible to know in advance what axis will become the bottleneck in the future, and the operator will be able to consider measures in advance. It is possible to realize at least one or both of system stability and economical operation even in a situation where the power flow state or operation form of the power system changes in a complicated and frequent manner. ‥
 なお、本発明は、上述した実施形態に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。上述の実施形態において、添付図面に図示した構成例に限定されない。本発明の目的を達成する範囲内で、実施形態の構成や処理方法は適宜変更することが可能である。 The present invention is not limited to the above embodiment. Those skilled in the art can make various additions and changes within the scope of the present invention. The above embodiment is not limited to the configuration example illustrated in the accompanying drawings. The configuration and the processing method of the embodiment can be appropriately changed within the scope of achieving the object of the present invention.
 また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれる。さらに特許請求の範囲に記載された構成は、特許請求の範囲で明示している組合せ以外にも組み合わせることができる。 Further, each constituent element of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention. Furthermore, the configurations described in the claims can be combined in addition to the combinations specified in the claims.
 10,10A,10B,10C,10D:電力系統監視装置、31:運用許容値計算部、32:差異計算部、33,33A:運用許容値選択部、34:改善策計算部、35:指令部、36:運用許容値評価部、40:データ取得部、42:結果格納部、43:出力制御部 10, 10A, 10B, 10C, 10D: Power system monitoring device, 31: Operation allowable value calculation unit, 32: Difference calculation unit, 33, 33A: Operation allowable value selection unit, 34: Improvement measure calculation unit, 35: Command unit , 36: operation allowable value evaluation unit, 40: data acquisition unit, 42: result storage unit, 43: output control unit

Claims (15)

  1.  電力系統における電力系統監視装置において、
     計測値と設定値のうち一つ以上から少なくとも一つの運用許容値を計算する運用許容値計算部と、
     前記運用許容値計算部により計算された前記運用許容値と前記計測値と前記設定値のうち一つ以上から差異を計算する差異分計算部と、
     前記運用許容値計算部により計算された前記運用許容値と前記差異計算部により計算された差異と前記設定値のうち一つ以上から、所定の条件にしたがって出力対象の運用許容値を選択する運用許容値選択部と、
     前記選択された出力対象の運用許容値について、前記計測値と前記設定値と前記運用許容値と前記差異のうち一つ以上を出力させる出力部と、
    を備える電力系統監視装置。
    In the power system monitoring device in the power system,
    An operation allowance value calculation unit that calculates at least one operation allowance value from one or more of measured values and set values,
    A difference calculation unit that calculates a difference from one or more of the operation allowable value, the measured value, and the setting value calculated by the operation allowable value calculation unit,
    Operation for selecting an operation allowance value to be output according to a predetermined condition from one or more of the operation allowance value calculated by the operation allowance value calculation unit, the difference calculated by the difference calculation unit, and the set value Allowable value selection section,
    An output unit that outputs one or more of the measured value, the set value, the operation allowable value, and the difference for the selected operation target allowable value of the output,
    An electric power system monitoring device.
  2.  請求項1に記載の電力系統監視装置において、
     前記所定の条件は、複数の評価軸の中から選択される一つ以上の所定の評価軸に含まれる運用許容値の中から、所定の更新頻度を満たす運用許容値を抽出することである、
    電力系統監視装置。
    The power system monitoring device according to claim 1,
    The predetermined condition is to extract an operation allowance value satisfying a predetermined update frequency from operation allowance values included in one or more predetermined evaluation axes selected from a plurality of evaluation axes,
    Power system monitoring device.
  3.  請求項1に記載の電力系統監視装置おいて、
     前記設定値は、運用目標値、運用上下限値、制約条件、閾値、マージン、フィルタ時定数、離散化条件、運用許容設定時間、許容電流算出条件、線路構成、線路抵抗、線種、系統構成、系統トポロジー、線路定数、発電機定数、系統データ、需給情報、の一つ以上である、電力系統監視装置。
    In the power system monitoring device according to claim 1,
    The set values are operation target values, operation upper and lower limit values, constraint conditions, threshold values, margins, filter time constants, discretization conditions, operation allowable set times, allowable current calculation conditions, line configurations, line resistances, line types, and system configurations. , A system topology, a line constant, a generator constant, system data, supply and demand information, and a power system monitoring device.
  4.  請求項1に記載の電力系統監視装置おいて、
     前記計測値は、有効電力、無効電力、皮相電力、電圧、周波数、力率、気象条件、気温、風速、風向、日射量、負荷電流値、電線温度、周囲温度、テレメータ情報、スーパービジョン情報、の一つ以上である、電力系統監視装置。
    In the power system monitoring device according to claim 1,
    The measured value, active power, reactive power, apparent power, voltage, frequency, power factor, weather conditions, temperature, wind speed, wind direction, solar radiation, load current value, wire temperature, ambient temperature, telemeter information, supervision information, One or more of the power system monitoring devices.
  5.  請求項1に記載の電力系統監視装置において、
     前記運用許容値選択部は、前記運用許容値計算部により計算される少なくとも一つの運用許容値についてあらかじめ設定された優先度に基づいて、前記出力対象の運用許容値を選択する、電力系統監視装置。
    The power system monitoring device according to claim 1,
    The operation allowable value selecting unit selects the operation allowable value of the output target based on a priority set in advance for at least one operation allowable value calculated by the operation allowable value calculating unit, a power system monitoring device ..
  6.  請求項1に記載の電力系統監視装置おいて、
     前記運用許容値計算部は、運用許容値候補を、電流容量計算、ダイナミックレーティング計算、熱容量計算、状態推定計算、潮流計算、最適潮流計算、過渡安定性計算、定態安定性計算、電圧安定性計算、周波数安定性計算、カスケーディング計算、アイランディング計算、電力事業者間の送電ルール、の一つ以上から求めることを特徴とする、電力系統監視装置。
    In the power system monitoring device according to claim 1,
    The operation allowance value calculation unit selects operation allowance value candidates from current capacity calculation, dynamic rating calculation, heat capacity calculation, state estimation calculation, power flow calculation, optimum power flow calculation, transient stability calculation, steady state stability calculation, voltage stability. An electric power system monitoring device characterized by being obtained from one or more of calculation, frequency stability calculation, cascading calculation, islanding calculation, transmission rule between electric power companies.
  7.  請求項6に記載の電力系統監視装置おいて、
     前記差異計算部は、前記運用許容値候補と前記設定値とから差異を計算し、前記差異の計算結果と前記設定値とに基づいて、前記出力対象の運用許容値を決定する、電力系統監視装置。
    In the power system monitoring device according to claim 6,
    The difference calculation unit calculates a difference from the operation allowable value candidate and the setting value, and determines an operation allowable value of the output target based on the calculation result of the difference and the setting value. apparatus.
  8.  請求項6に記載の電力系統監視装置おいて、
     前記運用許容値選択部は、前記設定値を用いて、前記運用許容値候補をローパスフィルタ、移動平均フィルタ、ハイパスフィルタ、移動差分フィルタ、バンドパスフィルタ、の一つ以上に通すこと、あるいは離散化することにより、前記出力対象の運用許容値を決定する、電力系統監視装置。
    In the power system monitoring device according to claim 6,
    The operation allowance value selection unit uses the set value to pass the operation allowance value candidate through one or more of a low pass filter, a moving average filter, a high pass filter, a moving difference filter, a band pass filter, or a discretization. By doing so, a power system monitoring device that determines the operation allowable value of the output target.
  9.  請求項1に記載の電力系統監視装置おいて、
     前記運用許容値選択部は、前記運用許容値計算部により計算された運用許容値と前記計測値との差異から、前記出力対象の運用許容値を選択する、電力系統監視装置。
    In the power system monitoring device according to claim 1,
    The operation allowable value selecting unit selects the operation allowable value to be output from the difference between the operation allowable value calculated by the operation allowable value calculating unit and the measured value.
  10.  請求項1に記載の電力系統監視装置おいて、
     前記出力部は、一つ以上の前記出力対象の運用許容値を、一次元の数値、二次元の数値表、二次元の平面図、二次元のノモグラム図、三次元のノモグラム図、多次元図、多次元のノモグラム図、の少なくともいずれか一つとして出力する、電力系統監視装置。
    In the power system monitoring device according to claim 1,
    The output unit, one or more operation allowable value of the output target, one-dimensional numerical value, two-dimensional numerical table, two-dimensional plan view, two-dimensional nomogram diagram, three-dimensional nomogram diagram, multidimensional diagram , A multidimensional nomogram diagram, which outputs as at least one of them.
  11.  請求項10に記載の電力系統監視装置おいて、
     前記出力部は、前記出力対象の運用許容値の時間遷移を通知するための通知手段をさらに備え、
     前記通知手段は、
      一次元の数値、コロンもしくは時刻の一つ以上の点滅、
      二次元の時系列波形、二次元平面図もしくはノモグラム図における運転点の軌跡、
      三次元ノモグラム図における運転点の軌跡もしくは多次元ノモグラム図における運転点の軌跡、
    の少なくともいずれか一つ以上を出力することにより前記運用許容値の時間遷移を通知する、電力系統監視装置。
    In the power system monitoring device according to claim 10,
    The output unit further includes a notification unit for notifying a time transition of the operation allowable value of the output target,
    The notification means is
    One-dimensional numerical value, one or more blinking colons or times,
    Two-dimensional time-series waveform, operating point trajectory in two-dimensional plan or nomogram,
    Trajectory of driving point in 3D nomogram or trajectory of driving point in multidimensional nomogram,
    An electric power system monitoring device that outputs a time transition of the operation allowable value by outputting at least one or more of the above.
  12.  請求項11に記載の電力系統監視装置おいて、
     前記出力部は、入力される指示に基づき、前記出力対象の運用許容値の時間遷移について、再生、巻戻し、早送り、一時停止、一定時間のスキップ、リピートの少なくともいずれか一つ以上で出力させる、電力系統監視装置。
    The power system monitoring device according to claim 11,
    The output unit outputs at least one or more of reproduction, rewinding, fast-forwarding, pausing, skipping for a certain period of time, and repeat for the time transition of the operation allowable value of the output target based on the input instruction. , Power system monitoring equipment.
  13.  請求項5に記載の電力系統監視装置おいて、
     前記優先度は、系統情報、運用情報、天候情報、運用制約、の少なくともいずれか一つ以上に基づいて設定される重み係数である、電力系統監視装置。
    In the power system monitoring device according to claim 5,
    The power system monitoring device, wherein the priority is a weighting coefficient set based on at least one of system information, operation information, weather information, and operation constraints.
  14.  請求項13に記載の電力系統監視装置おいて、
     前記運用許容値選択部は、前記運用許容値計算部により計算された前記運用許容値と前記計測値との差異を計算し、前記差異に基づいて前記出力対象の運用許容値を選択する場合と、前記優先度により重み付けされた前記差異に基づいて、前記出力対象の運用許容値を選択する場合との、少なくともいずれか一方または両方を実行する、
    電力系統監視装置。
    In the power system monitoring device according to claim 13,
    The operation allowable value selecting unit calculates a difference between the operation allowable value calculated by the operation allowable value calculating unit and the measured value, and selects the operation allowable value of the output target based on the difference. And, based on the difference weighted by the priority, executing at least one or both of the case of selecting the operation allowable value of the output target,
    Power system monitoring device.
  15.  電力系統を計算機により監視する電力系統監視方法において、
     前記計算機は、
     計測値と設定値のうち一つ以上から少なくとも一つの運用許容値を計算する運用許容値計算ステップと、
     前記運用許容値計算ステップにより計算された前記運用許容値と前記計測値と前記設定値のうち一つ以上から差異を計算する差異計算ステップと、
     前記運用許容値計算ステップにより計算された前記運用許容値と前記差異計算ステップにより計算された前記差異と前記設定値のうち一つ以上から、所定の条件にしたがって出力対象の運用許容値を選択する運用許容値選択ステップと、
     前記選択された出力対象の運用許容値について、前記計測値と前記設定値と前記運用許容値と前記差異のうち一つ以上を出力させる出力ステップと、
    を実行する、電力系統監視方法。
    In the power system monitoring method of monitoring the power system with a computer,
    The calculator is
    An operation allowance calculation step of calculating at least one operation allowance from one or more of the measured value and the set value,
    A difference calculation step of calculating a difference from one or more of the operation allowable value, the measured value, and the setting value calculated by the operation allowable value calculating step,
    An operation allowable value to be output is selected according to a predetermined condition from one or more of the operation allowable value calculated in the operation allowable value calculating step, the difference calculated in the difference calculating step, and the set value. Operation allowable value selection step,
    An output step of outputting one or more of the measured value, the set value, the operation allowable value, and the difference for the selected operation allowable value of the output target;
    The power system monitoring method for executing.
PCT/JP2018/040443 2018-10-31 2018-10-31 Power system monitoring device and method WO2020090021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/040443 WO2020090021A1 (en) 2018-10-31 2018-10-31 Power system monitoring device and method
JP2020554658A JPWO2020090021A1 (en) 2018-10-31 2018-10-31 Power system monitoring equipment and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040443 WO2020090021A1 (en) 2018-10-31 2018-10-31 Power system monitoring device and method

Publications (1)

Publication Number Publication Date
WO2020090021A1 true WO2020090021A1 (en) 2020-05-07

Family

ID=70462954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040443 WO2020090021A1 (en) 2018-10-31 2018-10-31 Power system monitoring device and method

Country Status (2)

Country Link
JP (1) JPWO2020090021A1 (en)
WO (1) WO2020090021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792052A (en) * 2022-04-27 2022-07-26 湖南大学 Motor full-working-condition efficiency optimization design method based on load cycle characteristic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172737A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Power system recovery method
JP2015061455A (en) * 2013-09-20 2015-03-30 株式会社日立製作所 Power system management device, and method
JP2016208654A (en) * 2015-04-22 2016-12-08 株式会社日立製作所 Reactive power monitoring control apparatus and method for power system voltage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172737A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Power system recovery method
JP2015061455A (en) * 2013-09-20 2015-03-30 株式会社日立製作所 Power system management device, and method
JP2016208654A (en) * 2015-04-22 2016-12-08 株式会社日立製作所 Reactive power monitoring control apparatus and method for power system voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792052A (en) * 2022-04-27 2022-07-26 湖南大学 Motor full-working-condition efficiency optimization design method based on load cycle characteristic
CN114792052B (en) * 2022-04-27 2024-07-26 湖南大学 Motor all-condition efficiency optimization design method based on load cycle characteristics

Also Published As

Publication number Publication date
JPWO2020090021A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN110687366B (en) System and method for managing voltage event alerts in an electrical system
JP5452613B2 (en) Power grid supply interruption and failure status management
JP5616330B2 (en) Method and system for managing a power grid
CN110687367B (en) System and method for characterizing power quality events in an electrical system
CN110690697B (en) System and method for managing power quality events in an electrical system
JP7098411B2 (en) Power system supply and demand adjustment monitoring device
Hajforoosh et al. Coordinated aggregated-based particle swarm optimisation algorithm for congestion management in restructured power market by placement and sizing of unified power flow controller
JP5923454B2 (en) Power system management apparatus and method
Madadi et al. Application of big data analysis to operation of smart power systems
CN115511656A (en) Demand planning auxiliary decision system based on mining power grid data value
WO2020090021A1 (en) Power system monitoring device and method
US20140180663A1 (en) System and Method For Accelerated Assessment of Operational Uncertainties In Electrical Power Distribution Systems
Deckmann et al. About voltage sags and swells analysis
Eckstrom et al. Outing power outages: real-time and predictive socio-demographic analytics for New York City
Loud et al. Hydro-Québec's challenges and experiences in on-line DSA applications
WO2021020012A1 (en) Power system control device
KR102531072B1 (en) System and method for hierarchical visualization of power system
Shukla et al. Cost-benefit analysis of conservation voltage reduction incorporated in open modeling framework
CN116485445A (en) New energy power spot transaction auxiliary system based on data automatic acquisition and processing
WO2023074058A1 (en) Power system control device and method
von Meier et al. Monitoring for impacts of distributed resources: Initial planning considerations
US20210083475A1 (en) System operation support device and method in power system, and wide-area monitoring protection control system
JP2019201505A (en) Power system monitoring system, power system monitoring method, and program
WO2017155047A1 (en) Power distribution monitoring control system
JP2023063152A (en) Transformer load prediction system and transformer load prediction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938528

Country of ref document: EP

Kind code of ref document: A1