JP2022011910A - Regeneration method of activated carbon and regenerator of activated carbon - Google Patents

Regeneration method of activated carbon and regenerator of activated carbon Download PDF

Info

Publication number
JP2022011910A
JP2022011910A JP2020113334A JP2020113334A JP2022011910A JP 2022011910 A JP2022011910 A JP 2022011910A JP 2020113334 A JP2020113334 A JP 2020113334A JP 2020113334 A JP2020113334 A JP 2020113334A JP 2022011910 A JP2022011910 A JP 2022011910A
Authority
JP
Japan
Prior art keywords
activated carbon
inert gas
tower
heated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020113334A
Other languages
Japanese (ja)
Other versions
JP7481928B2 (en
Inventor
和隆 大崎
Kazutaka Osaki
伸司 松友
Shinji Matsutomo
慎一郎 手嶋
Shinichiro Tejima
治一 仲喜
Haruichi Nakaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
J Top Co Ltd
Original Assignee
Miura Co Ltd
J Top Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, J Top Co Ltd filed Critical Miura Co Ltd
Priority to JP2020113334A priority Critical patent/JP7481928B2/en
Publication of JP2022011910A publication Critical patent/JP2022011910A/en
Application granted granted Critical
Publication of JP7481928B2 publication Critical patent/JP7481928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a regeneration method of activated carbon capable of reducing more than ever a use amount of inert gas used when regenerating activated carbon and an activated carbon regenerator.SOLUTION: A regeneration method of activated carbon in which inert gas is heated and supplied to the activated carbon tower filled with the activated carbon to which an organic substance is absorbed, followed by flowing the heated inert gas into the activated carbon tower, or, the activated carbon is directly heated, the inert gas is flown into the heated activated carbon tower to heat the activated carbon to regenerate the activated carbon, in which a step of executing a treatment that inhales at least a part of the inert gas exhausted from the activated carbon tower, by an ejector that makes the inert gas supplied from the inert gas supply source into a driving fluid and circulates to the activated carbon tower to reuse to heat the activated carbon.SELECTED DRAWING: Figure 1

Description

本発明は、活性炭の再生方法及び活性炭の再生装置に関する。 The present invention relates to a method for regenerating activated carbon and an apparatus for regenerating activated carbon.

従来、有機物が吸着した活性炭を再生させる方法として、活性炭を収容した活性炭塔に蒸気等の加熱ガスを供給して活性炭を加熱し、吸着した有機物を脱着したり活性炭を再賦活したりする方法が用いられている。 Conventionally, as a method of regenerating activated carbon on which an organic substance is adsorbed, a method of supplying a heating gas such as steam to an activated carbon tower containing the activated carbon to heat the activated carbon to desorb the adsorbed organic substance or reactivate the activated carbon. It is used.

例えば、特許文献1は、吸着材として活性炭を含む吸着素子に吸着された有機物質を脱着するため、吸着素子に高温の加熱ガスを通流させる水処理装置を開示している。 For example, Patent Document 1 discloses a water treatment apparatus that allows a high-temperature heating gas to flow through an adsorbent element in order to desorb an organic substance adsorbed on the adsorbent element containing activated carbon as an adsorbent.

特開2006-55712号公報Japanese Unexamined Patent Publication No. 2006-55712

しかし、加熱ガスとして不活性ガスを用いて活性炭を再生する場合、当該活性炭の再生装置のランニングコストのうちガス代が占める割合が大きく、その使用量の削減が望まれている。 However, when the activated carbon is regenerated using an inert gas as the heating gas, the gas cost accounts for a large proportion of the running cost of the activated carbon regenerating device, and it is desired to reduce the amount used.

本発明は、活性炭を再生する際に用いる不活性ガスの使用量を従来よりも削減することが可能な活性炭の再生方法及び活性炭再生装置を提供することを目的とする。 An object of the present invention is to provide an activated carbon regeneration method and an activated carbon regeneration apparatus capable of reducing the amount of the inert gas used when regenerating activated carbon as compared with the conventional case.

本発明は、有機物が吸着した活性炭が充填された活性炭塔に不活性ガスを加熱して供給し、該加熱した前記不活性ガスを前記活性炭塔内に流通させるか、または、前記活性炭塔を直接加熱し、該加熱した前記活性炭塔内に前記不活性ガスを流通させて、前記活性炭を加熱し、再生する活性炭の再生方法であって、不活性ガス供給源から供給される不活性ガスを駆動流体とするエゼクタにより、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで、前記活性炭塔に循環し、前記活性炭の加熱に再利用する処理を実行する工程を有する、活性炭の再生方法に関する。 In the present invention, an inert gas is heated and supplied to an activated carbon tower filled with activated carbon adsorbed with an organic substance, and the heated inert gas is circulated in the activated carbon tower, or the activated carbon tower is directly connected. It is a method of regenerating activated carbon that is heated and the activated carbon is circulated in the heated activated carbon tower to heat and regenerate the activated carbon, and drives the activated gas supplied from the inert gas supply source. An activated carbon having a step of sucking at least a part of the inert gas discharged from the activated carbon tower by an ejector as a fluid, circulating the activated carbon in the activated carbon tower, and executing a process of reusing the activated carbon for heating. Regarding the playback method.

また、前記活性炭を加熱し、再生する工程において、前記エゼクタに吸い込まれる前記不活性ガスに対し、前記エゼクタに吸い込まれる前段で、気体と液体とを分離する気液分離操作を施し、前記気体として分離された前記不活性ガスのみを前記エゼクタに吸い込んで、前記活性炭塔に循環し、前記活性炭の加熱に再利用することが好ましい。 Further, in the step of heating and regenerating the activated carbon, the inert gas sucked into the ejector is subjected to a gas-liquid separation operation for separating the gas and the liquid before being sucked into the ejector, and the activated carbon is used as the gas. It is preferable that only the separated inert gas is sucked into the ejector, circulated in the activated carbon column, and reused for heating the activated carbon.

また、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで循環し、前記活性炭の加熱に再利用する処理の後に、前記エゼクタによる前記不活性ガスの循環を停止すると共に、前記不活性ガス供給源から供給される不活性ガスのみを前記活性炭塔に対して供給する処理を実行することが好ましい。 Further, after a treatment in which at least a part of the inert gas discharged from the activated carbon tower is sucked and circulated and reused for heating the activated carbon, the circulation of the inert gas by the ejector is stopped, and the circulation of the inert gas is stopped. It is preferable to carry out the treatment of supplying only the inert gas supplied from the inert gas supply source to the activated carbon column.

また、本発明は、有機物が吸着した活性炭が充填された活性炭塔に不活性ガスを加熱して供給し、該加熱した前記不活性ガスを前記活性炭塔内に流通させて、前記活性炭を加熱し、再生する活性炭の再生方法であって、前記不活性ガスの噴射部が前記活性炭の充填層の内部に位置する不活性ガス供給配管によって、前記不活性ガスが、前記活性炭の充填層の内部に直接供給される加熱工程を有し、前記不活性ガス供給配管は、前記噴射部として、前記不活性ガスが前記活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管を有し、前記不活性ガスは前記不活性ガス噴射管において前記活性炭塔の不活性ガス排出口のある方向に噴射される活性炭の再生方法に関する。 Further, in the present invention, the inert gas is heated and supplied to the activated charcoal tower filled with the activated charcoal on which the organic substance is adsorbed, and the heated inert gas is circulated in the activated charcoal tower to heat the activated charcoal. In a method for regenerating activated charcoal, the inert gas is brought into the inside of the filled layer of the activated charcoal by an inert gas supply pipe in which the injection portion of the inert gas is located inside the filled layer of the activated charcoal. The inert gas supply pipe has a heating step of being directly supplied, and has an inert gas injection pipe as the injection portion, which extends in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed bed of the activated charcoal. However, the inert gas relates to a method for regenerating activated charcoal, which is injected in the inert gas injection pipe in a certain direction of the inert gas discharge port of the activated coal tower.

また、前記不活性ガス噴射管は、前記活性炭塔の不活性ガス排出口と反対側に位置する前記活性炭の充填層の端面から不活性ガス排出口に向かって10%以内に位置することが好ましい。 Further, the inert gas injection pipe is preferably located within 10% from the end face of the packed layer of the activated carbon located on the opposite side of the inert gas discharge port of the activated carbon tower toward the inert gas discharge port. ..

また、本発明は、有機物が吸着した活性炭が充填された活性炭塔に不活性ガスを加熱して供給し、該加熱した前記不活性ガスを前記活性炭塔内に流通させるか、または、前記活性炭塔を直接加熱し、該加熱した前記活性炭塔内に前記不活性ガスを流通させて、前記活性炭を加熱し、再生する活性炭の再生方法であって、不活性ガス供給源から供給される不活性ガスを駆動流体とするエゼクタにより、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで、前記活性炭塔に循環し、前記活性炭の加熱に再利用すると共に、前記不活性ガスの噴射部が前記活性炭の充填層の内部に位置する不活性ガス供給配管によって、前記不活性ガスが、前記活性炭の充填層の内部に直接供給される加熱工程を有し、前記不活性ガス供給配管は、前記噴射部として、前記不活性ガスが前記活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管を有し、前記不活性ガスは前記不活性ガス噴射管において前記活性炭塔の不活性ガス排出口のある方向に噴射される活性炭の再生方法に関する。 Further, in the present invention, an inert gas is heated and supplied to an activated carbon tower filled with activated carbon adsorbed with an organic substance, and the heated inert gas is circulated in the activated carbon tower, or the activated carbon tower is used. Is a method for regenerating activated carbon by directly heating the activated carbon and circulating the activated carbon in the heated activated carbon tower to heat and regenerate the activated carbon. The activated carbon supplied from the activated carbon supply source. At least a part of the activated carbon discharged from the activated carbon tower is sucked by an ejector using The inert gas supply pipe has a heating step in which the inert gas is directly supplied to the inside of the activated carbon packed bed by an inert gas supply pipe whose portion is located inside the activated carbon packed bed. As the injection unit, the activated carbon injection pipe has an inert gas injection pipe extending in a direction substantially perpendicular to the direction in which the activated carbon flows inside the packed layer of the activated carbon, and the activated carbon is the activated carbon tower in the activated carbon injection pipe. The present invention relates to a method for regenerating activated carbon injected in a certain direction of an inert gas discharge port.

また、前記不活性ガスは水蒸気であることが好ましい。 Further, the inert gas is preferably water vapor.

また、前記加熱工程において、前記活性炭に供給される不活性ガスの温度が、100℃以上600℃以下となるように、前記不活性ガスが加熱されることが好ましい。 Further, in the heating step, it is preferable that the inert gas is heated so that the temperature of the inert gas supplied to the activated carbon is 100 ° C. or higher and 600 ° C. or lower.

また、本発明は、活性炭を収容する活性炭塔と、前記活性炭塔に不活性ガスを供給する供給ラインと、前記供給ラインに配置され、前記活性炭塔に供給される不活性ガスを加熱する加熱手段、または、前記活性炭塔を直接加熱する加熱手段と、前記活性炭塔から不活性ガスを排出する排出ラインと、前記排出ラインから排出される前記不活性ガスの少なくとも一部を前記供給ラインに循環させる循環ラインと、不活性ガス供給源から供給される不活性ガスを駆動流体とすると共に、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで、前記活性炭塔に循環するエゼクタと、を備える、活性炭の再生装置に関する。 Further, according to the present invention, an activated carbon tower accommodating activated carbon, a supply line for supplying the activated carbon tower with an inert gas, and a heating means arranged in the supply line to heat the inert gas supplied to the activated carbon tower. Or, a heating means for directly heating the activated carbon tower, a discharge line for discharging the inert gas from the activated carbon tower, and at least a part of the inert gas discharged from the discharge line are circulated to the supply line. A circulation line and an ejector that uses an inert gas supplied from an inert gas supply source as a driving fluid and sucks at least a part of the inert gas discharged from the activated carbon tower to circulate in the activated carbon tower. The present invention relates to an activated carbon regeneration device.

また、本発明は、活性炭を収容する活性炭塔と、前記活性炭塔に不活性ガスを供給する供給ラインと、前記供給ラインに配置され、前記活性炭塔に供給される不活性ガスを加熱する加熱手段と、前記活性炭塔から不活性ガスを排出する排出ラインと、前記不活性ガスの噴射部が前記活性炭の充填層の内部に位置する、不活性ガス供給配管と、を備え、前記不活性ガス供給配管は、前記噴射部として、前記不活性ガスが前記活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管を有し、前記不活性ガスは前記不活性ガス噴射管において前記活性炭塔の不活性ガス排出口のある方向に噴射される、活性炭の再生装置に関する。 Further, according to the present invention, an activated carbon tower accommodating activated carbon, a supply line for supplying the activated carbon tower with an inert gas, and a heating means arranged in the supply line to heat the inert gas supplied to the activated carbon tower. The activated carbon supply is provided with a discharge line for discharging the inert gas from the activated carbon tower, and an inert gas supply pipe in which the injection portion of the activated carbon is located inside the packed layer of the activated carbon. The pipe has, as the injection portion, an inert gas injection pipe extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed layer of the activated carbon, and the inert gas is said in the inert gas injection pipe. The present invention relates to an activated carbon regeneration device that is injected in a certain direction of an activated carbon discharge port of an activated carbon tower.

本発明によれば、活性炭を再生する際に用いる不活性ガスの使用量を従来よりも削減することが可能となる。 According to the present invention, the amount of the inert gas used when regenerating activated carbon can be reduced as compared with the conventional case.

本発明の第1実施形態に係る活性炭の再生装置の構成を示す図である。It is a figure which shows the structure of the activated carbon regeneration apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る活性炭の再生装置において、活性炭塔内の温度センサの設置個所を示す図である。It is a figure which shows the place where the temperature sensor is installed in the activated carbon tower in the activated carbon regeneration apparatus which concerns on 1st Embodiment of this invention. 従来技術に係る活性炭の再生装置での加熱試験における使用蒸気量と温度変化との関係を示すグラフである。It is a graph which shows the relationship between the amount of steam used and the temperature change in the heating test in the activated carbon regeneration apparatus which concerns on the prior art. 本発明の第1実施形態に係る活性炭の再生装置での加熱試験における使用蒸気量と温度変化との関係を示すグラフである。It is a graph which shows the relationship between the amount of steam used in the heating test in the activated carbon regeneration apparatus which concerns on 1st Embodiment of this invention, and a temperature change. 本発明の第2実施形態に係る活性炭の再生装置に含まれる活性炭塔の構成を示す図である。It is a figure which shows the structure of the activated carbon tower included in the activated carbon regeneration apparatus which concerns on 2nd Embodiment of this invention. 従来技術に係る活性炭の再生装置に含まれる活性炭塔の構成を示す図である。It is a figure which shows the structure of the activated carbon tower included in the activated carbon regeneration apparatus which concerns on the prior art. 本発明の第2実施形態に係る活性炭の再生装置での加熱シミュレーションにおける使用蒸気量と温度変化との関係を示すグラフである。It is a graph which shows the relationship between the amount of steam used and the temperature change in the heating simulation in the activated carbon regeneration apparatus which concerns on 2nd Embodiment of this invention. 従来技術に係る活性炭の再生装置での加熱シミュレーションにおける使用蒸気量と温度変化との関係を示すグラフである。It is a graph which shows the relationship between the amount of steam used and the temperature change in the heating simulation in the activated carbon regeneration apparatus which concerns on the prior art. 本発明の実施形態に係る活性炭塔の加熱手段の構成を示す図である。It is a figure which shows the structure of the heating means of the activated carbon tower which concerns on embodiment of this invention. 本発明の実施形態に係る活性炭塔の加熱手段の構成を示す図である。It is a figure which shows the structure of the heating means of the activated carbon tower which concerns on embodiment of this invention. 本発明の実施形態に係る活性炭塔の加熱手段の構成を示す図である。It is a figure which shows the structure of the heating means of the activated carbon tower which concerns on embodiment of this invention.

〔1 第1実施形態〕
以下、本発明の第1実施形態である活性炭再生装置1について、図1~図4を参照しながら説明する。
[1 First Embodiment]
Hereinafter, the activated carbon regeneration device 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.

〔1.1 実施形態の構成〕
図1は、本実施形態に係る活性炭再生装置1の構成を示す。活性炭再生装置1は、活性炭を収容する活性炭塔2と、上流側が不活性ガス供給源に接続され、活性炭塔2に不活性ガスを供給する不活性ガス供給ラインL1と、活性炭塔2から排出される不活性ガスが流通する不活性ガス排出ラインL2と、不活性ガス排出ラインL2を流通する不活性ガスの一部を不活性ガス供給ラインL1に循環させる循環ラインL3と、循環ラインL3と不活性ガス供給ラインL1との接続部分に配置され、循環ラインL3を流通する不活性ガスを吸込流体とし、不活性ガス供給源から供給される不活性ガスを駆動流体とするエゼクタ3と、上流側が循環ラインL3に接続される凝縮液排出ラインL4と、を備える。
[1.1 Configuration of Embodiment]
FIG. 1 shows the configuration of the activated carbon regeneration device 1 according to the present embodiment. The activated charcoal regenerating device 1 is discharged from the activated charcoal tower 2 accommodating the activated charcoal, the inert gas supply line L1 whose upstream side is connected to the inert gas supply source and supplies the inert gas to the activated charcoal tower 2, and the activated charcoal tower 2. The inert gas discharge line L2 through which the inert gas flows, the circulation line L3 that circulates a part of the inert gas flowing through the inert gas discharge line L2 to the inert gas supply line L1, and the circulation line L3. The ejector 3 which is arranged at the connection portion with the active gas supply line L1 and uses the inert gas flowing through the circulation line L3 as the suction fluid and the inert gas supplied from the inert gas supply source as the driving fluid, and the upstream side A condensate discharge line L4 connected to the circulation line L3 is provided.

活性炭塔2は、活性炭を収容し、当該活性炭を用いたろ過により、原水に含まれる有機物を吸着ろ過する。なお、以降では、活性炭塔2を「ろ過塔2」とも呼称する。 The activated carbon tower 2 accommodates activated carbon and adsorbs and filters organic substances contained in raw water by filtration using the activated carbon. Hereinafter, the activated carbon tower 2 will also be referred to as a “filtration tower 2”.

なお、この活性炭塔2としては、活性炭を収容でき、水や200℃以上の流体を流通させることができるものであれば特に限定されないが、活性炭の加熱効率を上げるため、ヒータ等の加熱機器や熱流体の供給配管、或いは金属棒等の熱伝導体を内包した固定床式でもよいし、ロータリーキルン等の流動床式であってもよい。或いは、複数の細管に活性炭を分割収容してモジュール化して一つのろ過塔とし、細管の外部からヒータや熱流体で活性炭を間接加熱できるようにしてもよい。また、当該活性炭塔2は、逆洗機構や通水方向の切替機能を備えているとよい。更に、このような活性炭塔2を並列又は直列で2塔以上設置した上でその他の構成部品を共通化し、適宜ラインを切替えて通水や再生のタイミングにおいて、メリーゴーランド方式等の時間差を設けて運用してもよい。 The activated carbon tower 2 is not particularly limited as long as it can accommodate activated carbon and can flow water or a fluid having a temperature of 200 ° C. or higher, but in order to improve the heating efficiency of the activated carbon, a heating device such as a heater or the like can be used. It may be a fixed bed type including a heat fluid supply pipe or a heat conductor such as a metal rod, or a fluid bed type such as a rotary kiln. Alternatively, the activated carbon may be divided and housed in a plurality of thin tubes to be modularized into one filtration tower, and the activated carbon may be indirectly heated by a heater or a thermal fluid from the outside of the thin tubes. Further, the activated carbon tower 2 may have a backwashing mechanism and a function of switching the water flow direction. Furthermore, after installing two or more such activated carbon towers 2 in parallel or in series, other components are shared, and the lines are switched as appropriate to operate with a time difference such as the merry-go-round method at the timing of water flow and regeneration. You may.

図9A~図9Cは、上記のように、活性炭塔2を直接加熱する方法の例を示す図である。例えば、図9Aに示すように、活性炭塔2の中に、枝分かれした加熱管23とスーパーヒータ24を設置し、当該スーパーヒータ24で、枝分かれした加熱管23を介して活性炭塔2の中に充填された活性炭25を加熱してもよい。 9A-9C are diagrams showing an example of a method of directly heating the activated carbon tower 2 as described above. For example, as shown in FIG. 9A, a branched heating pipe 23 and a super heater 24 are installed in the activated carbon tower 2, and the super heater 24 fills the activated carbon tower 2 via the branched heating pipe 23. The activated carbon 25 may be heated.

或いは、図9Bに示すように、活性炭塔2の中に、セラミックヒータ、ハロゲンヒータ等の赤外線ヒータ26を設置すると共に、活性炭25の周囲を、アルミ等の赤外線反射材27で包囲することにより、活性炭塔2の中に充填された活性炭25を加熱してもよい。 Alternatively, as shown in FIG. 9B, an infrared heater 26 such as a ceramic heater or a halogen heater is installed in the activated carbon tower 2, and the activated carbon 25 is surrounded by an infrared reflective material 27 such as aluminum. The activated carbon 25 filled in the activated carbon tower 2 may be heated.

或いは、図9Cに示すように、活性炭25が充填された細管28に面ヒータ29を巻き付けたものをモジュール化し、このモジュール30と、給水・蒸気・処理水・廃蒸気の分配/集水部31とで活性炭塔2を構成することにより、活性炭25を加熱してもよい。 Alternatively, as shown in FIG. 9C, a thin tube 28 filled with activated carbon 25 wound with a surface heater 29 is modularized, and this module 30 and the water supply / steam / treated water / waste steam distribution / water collection unit 31 are modularized. The activated carbon 25 may be heated by forming the activated carbon tower 2 with the above.

或いは、図示はしないが、マイクロ波加熱や高周波誘電加熱により、活性炭塔2に充填された活性炭を加熱してもよい。 Alternatively, although not shown, the activated carbon filled in the activated carbon tower 2 may be heated by microwave heating or high-frequency dielectric heating.

活性炭塔2が、ヒータ等の加熱機器や金属棒等の熱伝導体を内包する場合、或いは、モジュール化した細管の外部からヒータや熱流体で活性炭を間接加熱する場合には、活性炭塔2を直接加熱することになり、不活性ガスの供給において不活性ガスを予め加熱しておかなくてもよく、不活性ガス供給ラインL1上に、後述のヒータ5等の不活性ガスを加熱する加熱手段を設置しなくてもよい。 When the activated carbon tower 2 contains a heating device such as a heater or a heat conductor such as a metal rod, or when the activated carbon is indirectly heated by a heater or a thermal fluid from the outside of a modularized thin tube, the activated carbon tower 2 is used. Since it is directly heated, it is not necessary to heat the inert gas in advance in the supply of the inert gas, and the heating means for heating the inert gas such as the heater 5 described later on the inert gas supply line L1. It is not necessary to install.

更に、当該活性炭塔2は、吸光度やpH、電気伝導度、温度、色度、濁度、臭気、表面張力、TOC、トレーサー等の監視システムを備えることにより、給水や処理水、排蒸気や凝縮液を継続又は断続的に監視しながら、各処理に移行するタイミングや、各処理の温度や時間等の処理条件をフィードバック制御できるようにしてもよい。 Further, the activated coal tower 2 is provided with a monitoring system for absorbance, pH, electrical conductivity, temperature, chromaticity, turbidity, odor, surface tension, TOC, tracer, etc., so that water supply, treated water, exhaust steam and condensation can be achieved. While continuously or intermittently monitoring the liquid, it may be possible to feedback-control the timing of transition to each treatment and the treatment conditions such as the temperature and time of each treatment.

また、この「活性炭」の種類としては特に限定されることはないが、比較的大きい細孔を多く有する活性炭は、有機物の吸脱着が容易となる。例えば、JIS K 1474 に規定されているメチレンブルー吸着能が250mL/g以上、更により好ましくは300mL/g以上の活性炭であることがより好ましい。 Further, the type of this "activated carbon" is not particularly limited, but activated carbon having many relatively large pores facilitates desorption of organic substances. For example, it is more preferable that the activated carbon has a methylene blue adsorption capacity of 250 mL / g or more, more preferably 300 mL / g or more, as defined in JIS K 1474.

この「活性炭」の原材料としては、流通性や汎用性の観点から、石炭、ヤシガラ、木材、繊維、樹脂が好ましく、再生後の微粉炭発生を極力抑えられる観点から、靱性の高い石炭を原材料としたコール炭とヤシガラを原材料としたヤシガラ炭がより適している。 As the raw material of this "activated carbon", coal, coconut husk, wood, fiber, and resin are preferable from the viewpoint of distribution and versatility, and from the viewpoint of suppressing the generation of pulverized coal after regeneration as much as possible, coal with high toughness is used as the raw material. Coal charcoal and coconut husk charcoal made from coconut husk are more suitable.

この「活性炭」の形状としては、活性炭塔2での通水や再生ガスの圧損を抑え、逆洗時の良好な展開性や流出防止効果を得られる観点から、粒状活性炭が好ましく、平均粒径が0.5mm以上の粒状活性炭であることがより好ましい。 As the shape of this "activated carbon", granular activated carbon is preferable from the viewpoint of suppressing water flow in the activated carbon tower 2 and pressure loss of the regenerated gas, and obtaining good expandability and outflow prevention effect during backwashing, and the average particle size is preferable. It is more preferable that the amount is 0.5 mm or more of granular activated carbon.

また、2種類以上の活性炭や、アルミナやシリカゲル、ゼオライト等の活性炭以外の吸着体を多段に充填、或いは混合して、活性炭塔2に収容してもよい。 Further, two or more types of activated carbon and an adsorbent other than activated carbon such as alumina, silica gel, and zeolite may be filled or mixed in multiple stages and accommodated in the activated carbon tower 2.

不活性ガス供給ラインL1は、第1不活性ガス供給ラインL11と、第2不活性ガス供給ラインL12とを備え、第1不活性ガス供給ラインL11と、第2不活性ガス供給ラインL12との間にはエゼクタ3が配置される。 The inert gas supply line L1 includes a first inert gas supply line L11 and a second inert gas supply line L12, and the first inert gas supply line L11 and the second inert gas supply line L12. The ejector 3 is arranged between them.

第1不活性ガス供給ラインL11には、上流から順に、圧力調整弁4と、第1流量計FM1と、第1圧力センサPS1とが配置されるとよい。 The pressure regulating valve 4, the first flow meter FM1, and the first pressure sensor PS1 may be arranged in order from the upstream on the first inert gas supply line L11.

圧力調整弁4は、不活性ガス供給源から供給される不活性ガスG1の、エゼクタ3への供給圧力を調整する弁である。圧力調整弁4には、不活性ガス供給源の圧力が変動してもエゼクタ3への供給圧力を一定にできる機構が備わることが好ましく、具体的には、減圧弁や、第1圧力センサPS1や第1流量計FM1の値を読み込みながら自動で開度を調節する比例弁等が挙げられる。 The pressure regulating valve 4 is a valve that regulates the supply pressure of the inert gas G1 supplied from the inert gas supply source to the ejector 3. The pressure regulating valve 4 is preferably provided with a mechanism capable of keeping the supply pressure to the ejector 3 constant even if the pressure of the inert gas supply source fluctuates. Specifically, the pressure reducing valve and the first pressure sensor PS1 And a proportional valve that automatically adjusts the opening while reading the value of the first flow meter FM1.

なお、この「不活性ガス」としては、600℃未満で活性炭を分解させないものであればよく、水蒸気や窒素、二酸化炭素、希ガス、ボイラや焼却施設等から排出される排ガス等が挙げられるが、ガス単価やガス純度の観点から水蒸気がより適している。 The "inert gas" may be any gas that does not decompose activated carbon at a temperature lower than 600 ° C., and examples thereof include steam, nitrogen, carbon dioxide, noble gas, exhaust gas discharged from a boiler, an incineration facility, and the like. , Steam is more suitable from the viewpoint of gas unit price and gas purity.

第1流量計FM1は、第1不活性ガス供給ラインL11を流通する不活性ガスG1の流量を測定する装置である。第1流量計FM1は、制御装置(不図示)に電気的に接続されている。制御装置は第1流量計FM1の測定値に基づいて不活性ガスG1の流量情報を取得するとよい。 The first flow meter FM1 is a device for measuring the flow rate of the inert gas G1 flowing through the first inert gas supply line L11. The first flow meter FM1 is electrically connected to a control device (not shown). The control device may acquire the flow rate information of the inert gas G1 based on the measured value of the first flow meter FM1.

第1圧力センサPS1は、エゼクタ3の駆動側圧力として、駆動流体である不活性ガスG1のエゼクタ3への供給圧力を測定する装置である。第1圧力センサPS1は、制御装置に電気的に接続されているとよい。制御装置は第1圧力センサPS1の測定値に基づいて、エゼクタ3の駆動側圧力情報を取得するとよい。 The first pressure sensor PS1 is a device that measures the supply pressure of the inert gas G1, which is the driving fluid, to the ejector 3 as the driving side pressure of the ejector 3. The first pressure sensor PS1 may be electrically connected to the control device. The control device may acquire drive-side pressure information of the ejector 3 based on the measured value of the first pressure sensor PS1.

エゼクタ3は、循環ラインL3を流通する不活性ガスG6を吸込流体とし、第1不活性ガス供給ラインL11を流通する不活性ガスG1を駆動流体として、不活性ガスG2を、第2不活性ガス供給ラインL12に吐出するエゼクタである。より詳細には、エゼクタ3は、圧力調整弁4により、エゼクタ3への供給圧力が調整されて、第1不活性ガス供給ラインL11を流通する不活性ガスG1の流れにより、循環ラインL3を流通する不活性ガスG6を吸い込み、両者を混合して、不活性ガスG2として第2不活性ガス供給ラインL12に吐出する。 In the ejector 3, the inert gas G6 flowing through the circulation line L3 is used as a suction fluid, the inert gas G1 flowing through the first inert gas supply line L11 is used as a driving fluid, and the inert gas G2 is used as a second inert gas. It is an ejector that discharges to the supply line L12. More specifically, the ejector 3 flows through the circulation line L3 by the flow of the inert gas G1 flowing through the first inert gas supply line L11 after the supply pressure to the ejector 3 is adjusted by the pressure regulating valve 4. The inert gas G6 is sucked in, mixed with each other, and discharged as the inert gas G2 to the second inert gas supply line L12.

なお、エゼクタ3に吸い込まれる不活性ガスG6に対し、エゼクタ3に吸い込まれる前段で、気体と液体とを分離する気液分離操作を施し、気体として分離された不活性ガスのみをエゼクタ3に吸い込んでもよい。 The inert gas G6 sucked into the ejector 3 is subjected to a gas-liquid separation operation for separating the gas and the liquid before being sucked into the ejector 3, and only the inert gas separated as a gas is sucked into the ejector 3. It may be.

第2不活性ガス供給ラインL12には、上流から順に、第2圧力センサPS2と、第2流量計FM2と、ヒータ5とが配置されるとよい。 The second pressure sensor PS2, the second flow meter FM2, and the heater 5 may be arranged in order from the upstream on the second inert gas supply line L12.

第2圧力センサPS2は、エゼクタ3の吐出側圧力として、吐出流体である不活性ガスG2のエゼクタ3からの吐出圧力を測定する装置である。第2圧力センサPS2は、制御装置に電気的に接続されているとよい。制御装置は第2圧力センサPS2の測定値に基づいて、エゼクタ3の吐出側圧力情報を取得するとよい。 The second pressure sensor PS2 is a device that measures the discharge pressure of the inert gas G2, which is the discharge fluid, from the ejector 3 as the discharge side pressure of the ejector 3. The second pressure sensor PS2 may be electrically connected to the control device. The control device may acquire the discharge side pressure information of the ejector 3 based on the measured value of the second pressure sensor PS2.

第2流量計FM2は、第2不活性ガス供給ラインL12を流通する不活性ガスG2の流量を測定する装置である。第2流量計FM2は、制御装置に電気的に接続されているとよい。制御装置は第2流量計FM2の測定値に基づいて不活性ガスG2の流量情報を取得するとよい。 The second flow meter FM2 is a device for measuring the flow rate of the inert gas G2 flowing through the second inert gas supply line L12. The second flow meter FM2 may be electrically connected to the control device. The control device may acquire the flow rate information of the inert gas G2 based on the measured value of the second flow meter FM2.

ヒータ5は、第2不活性ガス供給ラインL12を流通する不活性ガスG2を加熱する装置である。ヒータ5は、好ましくは、不活性ガスG2の温度が、100℃以上600℃以下となるように、加熱する。 The heater 5 is a device for heating the inert gas G2 flowing through the second inert gas supply line L12. The heater 5 is preferably heated so that the temperature of the inert gas G2 is 100 ° C. or higher and 600 ° C. or lower.

ヒータ5として、具体的には、カートリッジヒータ、フランジヒータ、赤外線ヒータ、テープヒーター、セラミックヒータ等の直接加熱装置、又は、誘導加熱装置、誘電加熱装置、マイクロ波加熱装置等の間接加熱装置が挙げられる。また、ヒータ5に対し、過加熱を防止するための温度センサや温度ヒューズ等の安全装置を取り付けてもよい。ヒータ5の取付位置は、不活性ガスを加熱でき、且つ、不活性ガスの循環流路内であればどこでもよいが、放熱を少なくするため活性炭塔2の上流側でより近い位置、或いは活性炭塔2の内部であることが好ましい。また、ヒータ5として、複数の加熱器を設置してもよい。 Specific examples of the heater 5 include direct heating devices such as cartridge heaters, flange heaters, infrared heaters, tape heaters, and ceramic heaters, or indirect heating devices such as induction heating devices, dielectric heating devices, and microwave heating devices. Be done. Further, a safety device such as a temperature sensor or a temperature fuse may be attached to the heater 5 to prevent overheating. The heater 5 may be attached anywhere as long as it can heat the inert gas and is in the circulation flow path of the inert gas, but in order to reduce heat dissipation, it is located closer to the upstream side of the activated carbon tower 2 or the activated carbon tower. It is preferably inside 2. Further, a plurality of heaters may be installed as the heater 5.

循環ラインL3は、接続部J1において、不活性ガス排出ラインL2に接続される。不活性ガス排出ラインL2を流通する不活性ガスの一部である不活性ガスG3が循環ラインL3を流通する。また、残部の不活性ガスG4が、不活性ガス排出ラインL2において、接続部J1よりも下流側を流通した後、系外に排出される。循環ラインL3には、上流から順に、開閉弁6と、逆止弁7と、第3圧力センサPS3とが配置されるとよいが、開閉弁6と逆止弁7の順序は逆でもよい。 The circulation line L3 is connected to the inert gas discharge line L2 at the connection portion J1. The inert gas G3, which is a part of the inert gas flowing through the inert gas discharge line L2, circulates through the circulation line L3. Further, the remaining inert gas G4 is discharged to the outside of the system after flowing on the downstream side of the connection portion J1 in the inert gas discharge line L2. The on-off valve 6, the check valve 7, and the third pressure sensor PS3 may be arranged on the circulation line L3 in order from the upstream, but the order of the on-off valve 6 and the check valve 7 may be reversed.

循環ラインL3の開閉弁6よりも上流の接続部J2において、循環ラインL3に対し、凝縮液排出ラインL4が接続される。活性炭再生装置1で循環する不活性ガスには、不活性ガスとして使用した水蒸気、或いは加熱によって活性炭上から気化した水分や有機成分が含まれ、循環する不活性ガスが放熱などによって冷やされると、これら水分や有機成分の一部は凝縮液として液化する。凝縮液排出ラインL4は、当該凝縮液を排出するラインである。凝縮液排出ラインL4には、気液分離操作を施す装置としての気液分離装置8が配置されるとよい。 At the connection portion J2 upstream of the on-off valve 6 of the circulation line L3, the condensate discharge line L4 is connected to the circulation line L3. The inert gas circulated in the activated charcoal regenerator 1 contains steam used as the inert gas, or water and organic components vaporized from the activated charcoal by heating, and when the circulated inert gas is cooled by heat dissipation or the like, Some of these water and organic components are liquefied as a condensate. The condensate discharge line L4 is a line for discharging the condensate. A gas-liquid separation device 8 as a device for performing a gas-liquid separation operation may be arranged on the condensate discharge line L4.

気液分離装置8は、循環ラインL3を流通する不活性ガスG3に含まれる低沸点成分が凝縮して生じた凝縮液G5を排出し、かつ気体としての不活性ガスの排出を防ぐ装置である。気液分離装置8としては、気液分離操作を施す装置として重力式や遠心式、表面張力式などの各種セパレータやスチームトラップを使用してもよい。
なお、気液分離装置8は凝縮液排出ラインL4と一体化されていてもよい。
The gas-liquid separation device 8 is a device that discharges the condensed liquid G5 generated by condensing the low boiling point component contained in the inert gas G3 flowing through the circulation line L3, and prevents the discharge of the inert gas as a gas. .. As the gas-liquid separation device 8, various separators such as gravity type, centrifugal type, and surface tension type, and steam traps may be used as the device for performing the gas-liquid separation operation.
The gas-liquid separation device 8 may be integrated with the condensate discharge line L4.

開閉弁6は、循環ラインL3での不活性ガスG6の流通を制御するために開閉される弁である。より詳細には、循環ラインL3を流通する不活性ガスG3のうちの一部は凝縮液G5として排出されるが、開閉弁6は、その残部である不活性ガスG6の流通を制御するために開閉される弁である。開閉弁6を開くことにより、不活性ガス排出ラインL2を流通する不活性ガスの一部である不活性ガスG6が、循環ラインL3を流通し、活性炭再生装置1の系内で不活性ガスが循環する。一方で、開閉弁6を閉じることにより、不活性ガスG6は、循環ラインL3を流通せず、活性炭再生装置1の系内での不活性ガスの循環は停止する。 The on-off valve 6 is a valve that is opened and closed to control the flow of the inert gas G6 on the circulation line L3. More specifically, a part of the inert gas G3 flowing through the circulation line L3 is discharged as the condensed liquid G5, but the on-off valve 6 is used to control the flow of the remaining inert gas G6. It is a valve that opens and closes. By opening the on-off valve 6, the inert gas G6, which is a part of the inert gas flowing through the inert gas discharge line L2, flows through the circulation line L3, and the inert gas is generated in the system of the activated carbon regeneration device 1. It circulates. On the other hand, by closing the on-off valve 6, the inert gas G6 does not flow through the circulation line L3, and the circulation of the inert gas in the system of the activated carbon regeneration device 1 is stopped.

逆止弁7は、循環ラインL3での不活性ガスG6の逆流を防ぐ弁である。 The check valve 7 is a valve that prevents the backflow of the inert gas G6 on the circulation line L3.

第3圧力センサPS3は、循環ラインL3において、逆止弁7よりも後段に配置される。第3圧力センサPS3は、不活性ガスG6のエゼクタ3への吸込圧力を、エゼクタ3の吸込側圧力として測定する装置である。第3圧力センサPS3は、制御装置に電気的に接続されているとよい。制御装置は第3圧力センサPS3の測定値に基づいて、エゼクタ3の吸込側圧力情報を取得するとよい。 The third pressure sensor PS3 is arranged after the check valve 7 in the circulation line L3. The third pressure sensor PS3 is a device that measures the suction pressure of the inert gas G6 into the ejector 3 as the suction side pressure of the ejector 3. The third pressure sensor PS3 may be electrically connected to the control device. The control device may acquire the suction side pressure information of the ejector 3 based on the measured value of the third pressure sensor PS3.

〔1.2 実施形態の動作〕
活性炭再生装置1においては、有機物が付着された活性炭が充填された活性炭塔2に不活性ガスを加熱して供給し、加熱した不活性ガスを活性炭塔2内に流通させるか、または、活性炭塔2を直接加熱し、加熱した活性炭塔2内に不活性ガスを流通させて活性炭を加熱することにより、活性炭を再生する。
[1.2 Operation of the embodiment]
In the activated carbon regeneration device 1, an activated carbon is heated and supplied to an activated carbon tower 2 filled with activated carbon to which an organic substance is attached, and the heated inert gas is circulated in the activated carbon tower 2 or the activated carbon tower 2 is used. Activated carbon is regenerated by directly heating 2 and circulating an inert gas in the heated activated carbon tower 2 to heat the activated carbon.

とりわけ、活性炭再生装置1は、循環ラインL3を備え、循環ラインL3には、活性炭塔2から排出される不活性ガスの一部が、不活性ガスG3として流通する。更に、循環ラインL3と、不活性ガス供給源から供給される不活性ガスG1が流通する第1不活性ガス供給ラインL11との接続箇所にエゼクタ3が配置され、エゼクタ3は、不活性ガスG1を駆動流体とすることで、循環ラインL3を流通する不活性ガスG6を吸い込み、両者を混合して、不活性ガスG2として第2不活性ガス供給ラインL12に吐出する。不活性ガスG2は、第2不活性ガス供給ラインL12を経由して、活性炭塔2に供給される。 In particular, the activated carbon regeneration device 1 includes a circulation line L3, and a part of the inert gas discharged from the activated carbon tower 2 is circulated as the inert gas G3 in the circulation line L3. Further, an ejector 3 is arranged at a connection point between the circulation line L3 and the first inert gas supply line L11 through which the inert gas G1 supplied from the inert gas supply source flows, and the ejector 3 is the inert gas G1. Is used as a driving fluid, the inert gas G6 flowing through the circulation line L3 is sucked in, the two are mixed, and the inert gas G2 is discharged to the second inert gas supply line L12. The inert gas G2 is supplied to the activated carbon tower 2 via the second inert gas supply line L12.

これにより、活性炭の加熱に用いられた不活性ガスの一部を循環させて再度活性炭の加熱に用いることで、活性炭を再生する際に用いる不活性ガスの使用量を削減することが可能となる。また、不活性ガスの一部を循環させる手段として、エゼクタ3を用いることにより、電気的に作動させるブロワやポンプなどによって不活性ガスを循環させる場合に比べて電源装置や電気代が不要となる。 This makes it possible to reduce the amount of the inert gas used when regenerating the activated carbon by circulating a part of the inert gas used for heating the activated carbon and using it again for heating the activated carbon. .. Further, by using the ejector 3 as a means for circulating a part of the inert gas, a power supply device and an electricity bill are not required as compared with the case where the inert gas is circulated by an electrically operated blower or a pump. ..

なお、活性炭塔2を直接加熱する場合には、不活性ガスの供給において不活性ガスを予め加熱しておかなくてもよく、第2不活性ガス供給ラインL12上に不活性ガスを加熱する加熱手段(ヒータ5)は設置しなくてもよい。 When the activated coal tower 2 is directly heated, the inert gas does not have to be heated in advance in the supply of the inert gas, and the inert gas is heated on the second inert gas supply line L12. The means (heater 5) does not have to be installed.

また、活性炭塔2から排出される不活性ガスの少なくとも一部を吸込んで循環し、活性炭の加熱に再利用する処理の後に、エゼクタ3による不活性ガスの循環を停止すると共に、不活性ガス供給源から供給される不活性ガスのみを活性炭塔2に対して供給する処理を実行してもよい。また、エゼクタ3による不活性ガスの循環による加熱と不活性ガス供給源から供給される不活性ガスのみによる加熱の操作を複数回繰り返してもよい。 Further, after the treatment of sucking and circulating at least a part of the inert gas discharged from the activated carbon tower 2 and reusing it for heating the activated carbon, the circulation of the inert gas by the ejector 3 is stopped and the inert gas is supplied. The process of supplying only the inert gas supplied from the source to the activated carbon tower 2 may be executed. Further, the operation of heating by the circulation of the inert gas by the ejector 3 and the heating by only the inert gas supplied from the inert gas supply source may be repeated a plurality of times.

〔1.3 加熱試験〕
以下の試験条件で活性炭再生装置1の加熱試験を行った。
すなわち、活性炭塔2にろ材としての活性炭を400L充填し、活性炭の充填箇所に温度センサ(熱電対)TC1~TC14を設置した。図2は、温度センサの設置個所を示す。図2に示すように、活性炭塔2内において、活性炭の充填箇所のうち、水平方向中央部の浅い位置から深い位置まで等間隔に、温度センサTC1、TC3、TC5、TC7、TC9、TC11、TC13を設置した。また、活性炭の充填箇所のうち、活性炭塔2の外周部近傍の浅い位置から深い位置まで等間隔に、温度センサTC2、TC4、TC6、TC8、TC10、TC12、TC14を設置した。
[1.3 Heating test]
A heating test of the activated carbon regeneration device 1 was performed under the following test conditions.
That is, 400 L of activated carbon as a filter medium was filled in the activated carbon tower 2, and temperature sensors (thermocouples) TC1 to TC14 were installed at the filled points of the activated carbon. FIG. 2 shows the location where the temperature sensor is installed. As shown in FIG. 2, in the activated carbon tower 2, the temperature sensors TC1, TC3, TC5, TC7, TC9, TC11, TC13 are equally spaced from the shallow position to the deep position in the central part in the horizontal direction among the filled points of the activated carbon. Was installed. Further, the temperature sensors TC2, TC4, TC6, TC8, TC10, TC12, and TC14 were installed at equal intervals from the shallow position to the deep position near the outer peripheral portion of the activated carbon tower 2 among the filling points of the activated carbon.

その後、活性炭塔2の所定の高さまで水を補水し、活性炭塔2内の水を自然落下させた。 After that, water was replenished to a predetermined height of the activated carbon tower 2, and the water in the activated carbon tower 2 was naturally dropped.

その上で、開閉弁6を閉じた状態で、駆動蒸気、すなわち図1の不活性ガス(蒸気)G1の供給量を50kg/hとするとともに、ヒータ5で、不活性ガス(蒸気)G2を400℃まで加熱し、温度センサ(熱電対)TC1~TC14で活性炭塔2内の温度を測定した。
温度センサ(熱電対)TC13と14の温度が100℃を示すと、排蒸気が活性炭塔2から排出され始め、この段階で開閉弁6を開き、循環蒸気、すなわち図1の不活性ガス(蒸気)G6の供給量を50kg/hとした。
なお、この場合、ヒータ5を経由して、活性炭塔2に供給される不活性ガス(蒸気)G2の供給量は100kg/hとなり、不活性ガス排出ラインL2から系外に排出される不活性ガス(蒸気)G4の排出量は、50kg/hとなる。
Then, with the on-off valve 6 closed, the supply amount of the driving steam, that is, the inert gas (steam) G1 in FIG. 1 is set to 50 kg / h, and the inert gas (steam) G2 is supplied by the heater 5. It was heated to 400 ° C., and the temperature inside the activated coal tower 2 was measured by temperature sensors (thermocouples) TC1 to TC14.
When the temperature of the temperature sensors (thermocouples) TC 13 and 14 indicates 100 ° C., the exhaust steam starts to be discharged from the activated coal tower 2, and at this stage, the on-off valve 6 is opened and the circulating steam, that is, the inert gas (steam) of FIG. 1 is opened. ) The supply amount of G6 was set to 50 kg / h.
In this case, the amount of the inert gas (steam) G2 supplied to the activated coal tower 2 via the heater 5 is 100 kg / h, and the inert gas is discharged from the inert gas discharge line L2 to the outside of the system. The emission amount of gas (steam) G4 is 50 kg / h.

一方、従来技術を示す比較例として、開閉弁6を閉じた状態で、図1の不活性ガス(蒸気)G1の供給量を100kg/hとするとともに、ヒータ5で、不活性ガス(蒸気)G2を400℃まで加熱し、温度センサ(熱電対)TC1~TC14で活性炭塔2内の温度を測定した。なお、この場合、ヒータ5を経由して、活性炭塔2に供給される不活性ガス(蒸気)G2の供給量は100kg/hとなり、不活性ガス排出ラインL2から系外に排出される不活性ガス(蒸気)G4の排出量も、100kg/hとなる。 On the other hand, as a comparative example showing the prior art, the supply amount of the inert gas (steam) G1 in FIG. 1 is set to 100 kg / h with the on-off valve 6 closed, and the inert gas (steam) is used in the heater 5. G2 was heated to 400 ° C., and the temperature inside the activated coal tower 2 was measured by temperature sensors (thermocouples) TC1 to TC14. In this case, the amount of the inert gas (steam) G2 supplied to the activated coal tower 2 via the heater 5 is 100 kg / h, and the inert gas is discharged from the inert gas discharge line L2 to the outside of the system. The emission amount of gas (steam) G4 is also 100 kg / h.

図3は、従来技術における使用蒸気量と各温度センサで測定された温度との関係を示す。なお、ここで「使用蒸気量」とは、第1流量センサFM1で測定される、不活性ガス(蒸気)G1の蒸気量の累積値である。 FIG. 3 shows the relationship between the amount of steam used in the prior art and the temperature measured by each temperature sensor. Here, the "steam amount used" is a cumulative value of the steam amount of the inert gas (steam) G1 measured by the first flow rate sensor FM1.

図3に示すように、使用蒸気量が増加すると共に、活性炭塔2に堆積する活性炭の上層に設置した温度センサから順に、各温度センサで測定される温度が、略350℃まで上昇した後、グラフは略350℃のまま横ばいとなる。また、図3のグラフにおいては、使用蒸気量が略660kgになった時点で、活性炭塔2に設置された温度センサのうち、最下層に設置された温度センサである、TC13、TC14の温度が、略350℃に達する。 As shown in FIG. 3, as the amount of steam used increases, the temperature measured by each temperature sensor rises to about 350 ° C. in order from the temperature sensor installed on the upper layer of the activated carbon deposited on the activated carbon tower 2, and then. The graph remains flat at approximately 350 ° C. Further, in the graph of FIG. 3, when the amount of steam used reaches about 660 kg, the temperatures of TC13 and TC14, which are the temperature sensors installed in the lowest layer among the temperature sensors installed in the activated carbon tower 2, are measured. , Approximately 350 ° C.

一方、図4は、本実施形態における使用蒸気量と各温度センサで測定された温度との関係を示す。なお、図4において、「使用蒸気量」とは、図3と同様、第1流量センサFM1で測定される、不活性ガス(蒸気)G1の蒸気量の累積値であるが、これは、エゼクタ3の駆動側における積算蒸気量のことである。 On the other hand, FIG. 4 shows the relationship between the amount of steam used in this embodiment and the temperature measured by each temperature sensor. In addition, in FIG. 4, "the amount of steam used" is the cumulative value of the amount of steam of the inert gas (steam) G1 measured by the first flow rate sensor FM1 as in FIG. 3, but this is an ejector. It is the integrated steam amount on the drive side of 3.

図4においても、図3と同様に、使用蒸気量が増加すると共に、活性炭塔2に堆積する活性炭の上層に設置した温度センサから順に、各温度センサで測定される温度が、略350℃まで上昇した後、グラフは略350℃のまま横ばいとなる。ただし、図4のグラフにおいては、使用蒸気量が略330kgとなった時点で、活性炭塔2に設置された温度センサのうち、最下層に設置された温度センサである、TC13、TC14の温度が、略350℃に達する。 Also in FIG. 4, as in FIG. 3, the amount of steam used increases, and the temperature measured by each temperature sensor reaches approximately 350 ° C. in order from the temperature sensor installed on the upper layer of the activated carbon deposited on the activated carbon tower 2. After rising, the graph remains flat at approximately 350 ° C. However, in the graph of FIG. 4, when the amount of steam used reaches approximately 330 kg, the temperatures of TC13 and TC14, which are the temperature sensors installed in the lowest layer among the temperature sensors installed in the activated carbon tower 2, are measured. , Approximately 350 ° C.

すなわち、本実施形態においては、活性炭塔2全体の温度が上がり切るために必要な使用蒸気量が、従来技術において必要な使用蒸気量の約半分であることが示された。 That is, in the present embodiment, it was shown that the amount of steam used for the temperature of the entire activated carbon tower 2 to rise completely is about half of the amount of steam used in the prior art.

〔1.4 第1実施形態が奏する効果〕
本実施形態に係る活性炭の再生方法は、有機物が吸着した活性炭が充填された活性炭塔2に不活性ガスを加熱して供給し、該加熱した不活性ガスを活性炭塔2内に流通させるか、または、活性炭塔2を直接加熱し、該加熱した活性炭塔2内に不活性ガスを流通させて、活性炭を加熱し、再生する活性炭の再生方法であって、不活性ガス供給源から供給される不活性ガスを駆動流体とするエゼクタ3により、活性炭塔2から排出される不活性ガスの少なくとも一部を吸込んで、活性炭塔2に循環し、活性炭の加熱に再利用する処理を実行する工程を有する。
[1.4 Effects of the first embodiment]
In the method for regenerating activated carbon according to the present embodiment, an activated carbon is heated and supplied to an activated carbon tower 2 filled with activated carbon adsorbed with an organic substance, and the heated inert gas is distributed in the activated carbon tower 2. Alternatively, it is a method for directly heating the activated carbon tower 2 and circulating an inert gas in the heated activated carbon tower 2 to heat the activated carbon and regenerate the activated carbon, which is supplied from the activated carbon supply source. A step of sucking at least a part of the inert gas discharged from the activated carbon tower 2 by the ejector 3 using the inert gas as a driving fluid, circulating it in the activated carbon tower 2, and executing a process of reusing it for heating the activated carbon. Have.

活性炭の加熱に用いられた不活性ガスの一部を循環させて再度活性炭の加熱に用いることにより、活性炭を再生する際に用いる不活性ガスの使用量を削減することが可能となる。また、不活性ガスを用いることにより、活性炭が発火点以上に加熱されても、活性炭が燃焼する事象は発生しない。また、不活性ガスを循環させる手段として電気的に作動させるブロアやポンプ等を利用する場合と比較すると、エゼクタ3を用いることにより、不活性ガスを循環させるための電源装置や電気代が不要となる。さらに、ブロアやポンプ等を用いる場合は摺動部の固着や電気部品の熱損傷などの故障リスク、漏電や過電流などの危険性が常に存在するが、エゼクタによる循環の場合はこれらのリスクは全く存在しない。また、循環ガスは加熱媒体や脱着有機物のキャリアとしての役割を担っているため、循環流路内で循環ガスが放熱したり、構成部材に熱を奪われたりすると、エネルギー効率の低下や脱着有機物の付着リスクを招く。そのため、循環流路内では放熱を抑制することが望ましいが、ブロアやポンプは構造が複雑で、且つ、電気部品の保護のため吸気や冷却が必要なため、断熱材を巻きにくく、寧ろ、無理に断熱してしまうと熱による電気部品の故障を招くが、エゼクタの場合は断熱も施すこともできるし、面ヒータなどで加熱を施すこともできる。 By circulating a part of the inert gas used for heating the activated carbon and using it for heating the activated carbon again, it is possible to reduce the amount of the inert gas used when regenerating the activated carbon. Further, by using the inert gas, even if the activated carbon is heated above the ignition point, the event that the activated carbon burns does not occur. In addition, compared to the case of using an electrically operated blower, pump, or the like as a means for circulating the inert gas, the use of the ejector 3 eliminates the need for a power supply device or an electricity bill for circulating the inert gas. Become. Furthermore, when using a blower or pump, there is always a risk of failure such as sticking of sliding parts and thermal damage of electrical parts, and a risk of electric leakage and overcurrent, but in the case of circulation by an ejector, these risks are It doesn't exist at all. In addition, since the circulating gas plays a role as a carrier for the heating medium and the desorbed organic matter, if the circulating gas dissipates heat in the circulation flow path or the heat is taken away by the constituent members, the energy efficiency is lowered and the desorbed organic matter is desorbed. Invites the risk of adhesion. Therefore, it is desirable to suppress heat dissipation in the circulation flow path, but since the structure of blowers and pumps is complicated and intake and cooling are required to protect electrical parts, it is difficult to wind heat insulating material, rather it is impossible. If heat is insulated, the electrical parts will be damaged due to heat, but in the case of an ejector, heat insulation can be applied, or heating can be performed with a surface heater or the like.

なお、活性炭塔2を直接加熱する場合には、不活性ガス供給ラインL1上での放熱はほぼないため加熱効率を上げることができる。また、直接加熱された活性炭塔2に不活性ガスを流通させることで、加熱により脱着した有機物をろ過塔2の系外に排出することができる。 When the activated carbon tower 2 is directly heated, the heating efficiency can be improved because there is almost no heat dissipation on the inert gas supply line L1. Further, by passing the inert gas through the directly heated activated carbon tower 2, the organic matter desorbed by heating can be discharged to the outside of the filtration tower 2.

また、活性炭を加熱し、再生する工程において、エゼクタ3に吸い込まれる不活性ガスG6に対し、エゼクタ3に吸い込まれる前段で、気体と液体とを分離する気液分離操作を施し、気体として分離された不活性ガスのみをエゼクタ3に吸い込んで、活性炭塔2に循環し、活性炭の加熱に再利用してもよい。 Further, in the step of heating and regenerating the activated carbon, the inert gas G6 sucked into the ejector 3 is separated as a gas by performing a gas-liquid separation operation for separating the gas and the liquid before being sucked into the ejector 3. Only the inert gas may be sucked into the ejector 3 and circulated in the activated carbon tower 2 to be reused for heating the activated carbon.

不活性ガスによる活性炭の加熱において、活性炭に吸着していた水分や有機物が気化することで、活性炭塔2から排出される不活性ガスには水蒸気やガス状の有機物が含まれる。すなわち、仮に気液分離操作をしなかった場合、不活性ガスと一緒にガス状の有機物も循環してしまうことになり、活性炭から脱着させた有機物が再度活性炭塔2に導入され、活性炭へ再付着したり、エゼクタ3を含む循環配管系へ付着したりするリスクが生じる可能性がある。活性炭への有機物の再付着は脱着効率の低下につながり、循環配管系への有機物の付着は、活性炭再生装置1の長期運用への障害につながる。
また、エゼクタ3に吸い込まれる前に、循環ガスが放熱したり、構成部材に熱を奪われたりすることで、水蒸気やガス状有機物の一部は冷やされて凝縮・混合液となるが、ガス状のままの有機物もその混合液に一部溶け込ませることができる。
そこで、この現象を利用して、さらに気液分離操作を施すことにより、この混合液を分離・排出した上で不活性ガスを循環することで、不活性ガス中に含まれる有機物量を低減でき、上記のリスクを低減できる。
When the activated carbon is heated by the inert gas, the water and organic substances adsorbed on the activated carbon are vaporized, and the inert gas discharged from the activated carbon tower 2 contains water vapor and gaseous organic substances. That is, if the gas-liquid separation operation is not performed, the gaseous organic matter will circulate together with the inert gas, and the organic matter desorbed from the activated carbon will be introduced into the activated carbon tower 2 again and re-introduced into the activated carbon. There is a possibility that it may adhere or adhere to the circulation piping system including the ejector 3. The reattachment of organic matter to the activated carbon leads to a decrease in desorption efficiency, and the adhesion of organic matter to the circulation piping system leads to an obstacle to the long-term operation of the activated carbon regeneration device 1.
Further, before being sucked into the ejector 3, the circulating gas dissipates heat or the heat is taken away by the constituent members, so that water vapor and a part of the gaseous organic matter are cooled to become a condensed / mixed liquid. The organic substance in the state can be partially dissolved in the mixed solution.
Therefore, by utilizing this phenomenon and further performing a gas-liquid separation operation, the amount of organic substances contained in the inert gas can be reduced by circulating the inert gas after separating and discharging this mixed liquid. , The above risks can be reduced.

また、活性炭塔2から排出される不活性ガスの少なくとも一部を吸込んで循環し、活性炭の加熱に再利用する処理の後に、エゼクタ3による不活性ガスの循環を停止すると共に、不活性ガス供給源から供給される不活性ガスのみを活性炭塔2に対して供給する処理を実行してもよい。 Further, after the treatment of sucking and circulating at least a part of the inert gas discharged from the activated carbon tower 2 and reusing it for heating the activated carbon, the circulation of the inert gas by the ejector 3 is stopped and the inert gas is supplied. The process of supplying only the inert gas supplied from the source to the activated carbon tower 2 may be executed.

不活性ガスを循環している間は、活性炭から脱着した有機物の一部も気化状態で循環することになるため、循環加熱のみで再生工程を終了し、活性炭塔2が冷却されてしまうと、活性炭塔2の中で気化している有機物が活性炭に再付着してしまう。
この点、不活性ガス供給源から供給される、純度の高い不活性ガスのみでろ過塔内のガスを置換することで、この問題を解決できる。さらにこの置換操作は、加熱途中でも複数回繰り返してもよく、そうすることで循環ガス中の有機物濃度を都度低減することができ、加熱途中での脱着有機物の再付着を抑制できる。
この純度の高い不活性ガスのみの供給は、不活性ガス供給源から供給するのではなく、高温状態にある活性炭に対して液体状態の水を噴霧して、不活性ガスとしての水蒸気を活性炭塔2内で発生させて供給してもよい。この場合、不活性ガス使用量をさらに低減できるとともに、噴霧された水が蒸発する際に蒸発潜熱を活性炭から奪うことで、活性炭の冷却を早めることで、ろ過処理に移行できる時間が早まり、ろ過塔の稼働性向上にも大きく寄与する。
更に、活性炭の発火温度(約250℃)を超えた加熱条件で再生を行なった場合、活性炭が冷えるにつれて負圧になることで、ろ過塔2内に空気が混入してしまうと、活性炭の発火を招く。一方、活性炭の発火温度以下で加熱した場合でも、不活性ガスを活性炭塔2に供給せずに自然冷却した際には、通常の吸着処理が可能となるまでの活性炭の冷却に時間を要する。
この点、不活性ガス供給源から供給される常温の不活性ガスのみを活性炭塔2に供給することによって、空気の混入を回避しつつ、活性炭の迅速な冷却を行うことが可能となる。
While the inert gas is circulated, a part of the organic matter desorbed from the activated carbon is also circulated in the vaporized state. Therefore, if the regeneration process is completed only by circulating heating and the activated carbon tower 2 is cooled, The organic matter vaporized in the activated carbon tower 2 reattaches to the activated carbon.
In this respect, this problem can be solved by replacing the gas in the filtration column with only the high-purity inert gas supplied from the inert gas supply source. Further, this replacement operation may be repeated a plurality of times during heating, whereby the concentration of organic matter in the circulating gas can be reduced each time, and the reattachment of desorbed organic matter during heating can be suppressed.
The supply of only this high-purity inert gas is not supplied from the inert gas source, but the liquid water is sprayed on the activated charcoal in a high temperature state, and the steam as the inert gas is supplied to the activated coal tower. It may be generated and supplied within 2. In this case, the amount of inert gas used can be further reduced, and the latent heat of vaporization is removed from the activated carbon when the sprayed water evaporates, thereby accelerating the cooling of the activated carbon, thereby accelerating the time required for the filtration process and filtering. It also greatly contributes to improving the operability of the tower.
Furthermore, when regeneration is performed under heating conditions that exceed the ignition temperature of the activated carbon (about 250 ° C.), the pressure becomes negative as the activated carbon cools, and when air is mixed in the filtration tower 2, the activated carbon ignites. Invite. On the other hand, even when the activated carbon is heated below the ignition temperature, when the inert gas is naturally cooled without being supplied to the activated carbon tower 2, it takes time to cool the activated carbon until the normal adsorption treatment becomes possible.
In this respect, by supplying only the inert gas at room temperature supplied from the inert gas supply source to the activated carbon tower 2, it is possible to quickly cool the activated carbon while avoiding the mixing of air.

また、不活性ガスは水蒸気であってよい。 Further, the inert gas may be water vapor.

水蒸気を用いた加水分解により、活性炭に吸着している有機物を低分子化することが可能となり、低分子化により低沸点化、ひいては脱着効率の向上が可能となる。また、排蒸気や、排蒸気を凝縮した凝縮液中の有機物が低分子化されるため、微生物も有機物を栄養化しやすくなり、排蒸気や凝縮液の生分解性も向上して、生物処理が簡単になる。更には、処理に時間がかかり、管理も面倒で、広大な敷地が必要な生物処理の負荷低減が可能となる等、大型の排水処理設備は不要となる。 Hydrolysis using water vapor makes it possible to reduce the molecular weight of organic substances adsorbed on activated carbon, and lowering the molecular weight makes it possible to lower the boiling point and improve the desorption efficiency. In addition, since the organic matter in the exhaust vapor and the condensed liquid in which the exhaust vapor is condensed is reduced in molecular weight, it becomes easier for microorganisms to nourish the organic matter, and the biodegradability of the exhaust vapor and the condensed liquid is improved, so that biological treatment can be performed. It will be easy. Furthermore, large-scale wastewater treatment equipment is not required because the treatment takes time, management is troublesome, and the load of biological treatment that requires a large site can be reduced.

また、加熱工程において、活性炭に供給される不活性ガスの温度が、100℃以上600℃以下となるように、不活性ガスが加熱されてもよい。 Further, in the heating step, the inert gas may be heated so that the temperature of the inert gas supplied to the activated carbon is 100 ° C. or higher and 600 ° C. or lower.

不活性ガスが蒸気の場合、不活性ガスの温度を100℃未満とすると、水蒸気が凝縮する際に得られる凝縮熱伝達による加熱効果が得られないばかりか、一部液体状態の水が活性炭塔に導入されることとなり、活性炭の加熱効率低下を招く。不活性ガスの温度を100℃以上とすることにより、このような事象の発生を抑制することが可能となる。また、活性炭の加熱温度を600℃以下とすることにより、賦活化反応による活性炭の細孔特性の変化や消耗を抑制できる。 When the inert gas is steam, if the temperature of the inert gas is less than 100 ° C, not only the heating effect due to the heat transfer of condensation obtained when the steam condenses cannot be obtained, but also water in a partially liquid state is used in the activated carbon tower. It will be introduced in the above, and the heating efficiency of activated carbon will decrease. By setting the temperature of the inert gas to 100 ° C. or higher, it is possible to suppress the occurrence of such an event. Further, by setting the heating temperature of the activated carbon to 600 ° C. or lower, it is possible to suppress the change and consumption of the pore characteristics of the activated carbon due to the activation reaction.

本実施形態に係る活性炭の再生装置は、活性炭を収容する活性炭塔2と、活性炭塔2に不活性ガスを供給する不活性ガス供給ラインL1と、不活性ガス供給ラインL1に配置され、活性炭塔2に供給される不活性ガスを加熱するヒータ5、または、活性炭塔2を直接加熱する加熱手段と、活性炭塔2から不活性ガスを排出する不活性ガス排出ラインL2と、不活性ガス排出ラインL2から排出される不活性ガスの少なくとも一部を不活性ガス供給ラインL1に循環させる循環ラインL3と、不活性ガス供給源から供給される不活性ガスを駆動流体とすると共に、活性炭塔2から排出される不活性ガスの少なくとも一部を吸込んで、活性炭塔に循環するエゼクタ3と、を備える。 The activated carbon regeneration device according to the present embodiment is arranged in the activated carbon tower 2 for accommodating the activated carbon, the inert gas supply line L1 for supplying the activated carbon to the activated carbon tower 2, and the activated carbon supply line L1. A heater 5 that heats the inert gas supplied to 2, a heating means that directly heats the activated carbon tower 2, an inert gas discharge line L2 that discharges the inert gas from the activated carbon tower 2, and an inert gas discharge line. A circulation line L3 that circulates at least a part of the inert gas discharged from L2 to the activated carbon supply line L1 and an activated carbon supplied from the inert gas supply source as a driving fluid, and from the activated carbon tower 2. It is provided with an ejector 3 that sucks in at least a part of the discharged inert gas and circulates in the activated carbon tower.

活性炭の加熱に用いられた不活性ガスの一部を循環させて再度活性炭の加熱に用いることにより、活性炭を再生する際に用いる不活性ガスの使用量を削減することが可能となる。また、不活性ガスを用いることにより、活性炭が発火点以上に加熱されても、活性炭が燃焼する事象は発生しない。また、不活性ガスを循環させる手段として電気的に作動させるブロアやポンプ等を利用する場合と比較すると、エゼクタ3を用いることにより、不活性ガスを循環させるための電源装置や電気代が不要となる。さらに、ブロアやポンプ等を用いる場合は摺動部の固着や電気部品の熱損傷などの故障リスク、漏電や過電流などの危険性が常に存在するが、エゼクタによる循環の場合はこれらのリスクは全く存在しない。また、ブロアやポンプは構造が複雑で、且つ、電気部品の保護のため吸気や冷却が必要なため、断熱材を巻きにくく、寧ろ、無理に断熱してしまうと熱による電気部品の故障を招くが、エゼクタの場合は断熱も施すこともできるし、面ヒータなどで加熱を施すこともできる。 By circulating a part of the inert gas used for heating the activated carbon and using it for heating the activated carbon again, it is possible to reduce the amount of the inert gas used when regenerating the activated carbon. Further, by using the inert gas, even if the activated carbon is heated above the ignition point, the event that the activated carbon burns does not occur. In addition, compared to the case of using an electrically operated blower, pump, or the like as a means for circulating the inert gas, the use of the ejector 3 eliminates the need for a power supply device or an electricity bill for circulating the inert gas. Become. Furthermore, when using a blower or pump, there is always a risk of failure such as sticking of sliding parts and thermal damage of electrical parts, and a risk of electric leakage and overcurrent, but in the case of circulation by an ejector, these risks are It doesn't exist at all. In addition, blowers and pumps have a complicated structure and require intake and cooling to protect electrical parts, so it is difficult to wind heat insulating material. Rather, if heat is forcibly insulated, electrical parts will fail due to heat. However, in the case of an ejector, heat insulation can be provided, or heating can be performed with a surface heater or the like.

〔2 第2実施形態〕
以下、本発明の第2実施形態である活性炭再生装置1Aについて、図5~図8を参照しながら説明する。なお、以下の説明では、説明の簡略化のため、第2実施形態に係る活性炭再生装置1Aを構成する要素のうち、第1実施形態に係る活性炭再生装置1と同一の構成要素については、同一の符号を用いて示し、その説明を省略する。
[2 Second Embodiment]
Hereinafter, the activated carbon regeneration device 1A according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 8. In the following description, for the sake of simplification of the description, among the elements constituting the activated carbon regeneration device 1A according to the second embodiment, the same components as the activated carbon regeneration device 1 according to the first embodiment are the same. It is shown by the reference numeral of, and the description thereof will be omitted.

〔2.1 実施形態の構成〕
図5は、本実施形態に係る活性炭再生装置1Aの構成を示す。活性炭再生装置1Aは、活性炭再生装置1と異なり、循環ラインL3、循環ラインL3に設置される開閉弁6、逆止弁7、凝縮液排出ラインL4、凝縮液排出ラインL4に設置される気液分離装置8、エゼクタ3、第2流量計FM2、第2圧力センサPS2、第3圧力センサPS3を備えない。その代わりに、活性炭再生装置1Aは、活性炭塔2の中に、不活性ガス供給配管21を備える。
[2.1 Configuration of Embodiment]
FIG. 5 shows the configuration of the activated carbon regeneration device 1A according to the present embodiment. Unlike the activated charcoal regenerating device 1, the activated charcoal regenerating device 1A has a circulation line L3, an on-off valve 6 installed in the circulation line L3, a check valve 7, a condensate discharge line L4, and a gas / liquid installed in the condensate discharge line L4. It does not include a separator 8, an ejector 3, a second flow meter FM2, a second pressure sensor PS2, and a third pressure sensor PS3. Instead, the activated carbon regeneration device 1A includes an inert gas supply pipe 21 in the activated carbon tower 2.

不活性ガス供給配管21は、第2不活性ガス供給ラインL12に接続され、活性炭塔2の内部に向けて延びる延伸部21aと、延伸部21aの先に設置され、不活性ガスが活性炭の充填層を流れる方向と略垂直方向に延びる不活性ガス噴射管21bとを備える。 The inert gas supply pipe 21 is connected to the second inert gas supply line L12 and is installed at the end of the stretched portion 21a extending toward the inside of the activated carbon tower 2 and the stretched portion 21a, and the inert gas is filled with the activated carbon. It is provided with an inert gas injection pipe 21b extending in a direction substantially perpendicular to the direction in which the layer flows.

不活性ガス噴射管21bは、活性炭の充填層の内部に位置すると共に、好ましくは、活性炭塔2の不活性ガス排出口と反対側に位置する活性炭の充填層の端面から不活性ガス排出口に向かって10%以内の位置に位置する。 The inert gas injection pipe 21b is located inside the packed bed of activated carbon, and is preferably from the end face of the packed bed of activated carbon located on the opposite side of the inert gas discharge port of the activated carbon tower 2 to the inert gas discharge port. It is located within 10% of the direction.

また、不活性ガス噴射管21bは、活性炭の充填層を流れる方向と略垂直方向に延びる形状であれば、どのような形状でもよく、例えば、管状、十字状、円盤状、任意の多角形の板状であってもよい。 Further, the inert gas injection pipe 21b may have any shape as long as it extends in a direction substantially perpendicular to the direction in which the activated carbon packed bed flows, for example, a tubular shape, a cross shape, a disk shape, or an arbitrary polygonal shape. It may be plate-shaped.

不活性ガス噴射管21bには、活性炭塔2の不活性ガス排出口方向に向けて、複数の穴が開いており、これらの穴から活性炭の充填層に向けて、不活性ガスが噴射される。ここで、「活性炭塔2の不活性ガス排出口方向に向けて」とは、不活性ガス噴射管21bに形成された複数の穴が、不活性ガス排出口に向かって真っすぐ開口する場合のみならず、おおよそ不活性ガス排出口に向かって開口することを含む。本実施形態においては、不活性ガス噴射管21bに形成された複数の穴は、不活性ガス噴射管21bが配置された位置から、不活性ガス排出口が形成された下方に向かって開口している。 The inert gas injection pipe 21b has a plurality of holes toward the inert gas discharge port of the activated carbon tower 2, and the inert gas is injected from these holes toward the packed layer of activated carbon. .. Here, "toward the inert gas discharge port of the activated coal tower 2" means only when the plurality of holes formed in the Mactive gas injection pipe 21b open straight toward the Mactive gas discharge port. It does not include opening approximately toward the inert gas outlet. In the present embodiment, the plurality of holes formed in the inert gas injection pipe 21b are opened from the position where the inert gas injection pipe 21b is arranged toward the lower side where the inert gas discharge port is formed. There is.

〔2.2 実施形態の動作〕
活性炭再生装置1Aにおいては、有機物が付着された活性炭が充填された活性炭塔2に不活性ガスを加熱して供給し、加熱した不活性ガスを活性炭塔2内に流通させるか、または、活性炭塔2を直接加熱し、加熱した活性炭塔2内に不活性ガスを流通させて活性炭を加熱することにより、活性炭を再生する。
[2.2 Operation of the embodiment]
In the activated carbon regeneration device 1A, the activated carbon is heated and supplied to the activated carbon tower 2 filled with the activated carbon to which the organic substance is attached, and the heated inert gas is circulated in the activated carbon tower 2 or the activated carbon tower 2 is used. Activated carbon is regenerated by directly heating 2 and circulating an inert gas in the heated activated carbon tower 2 to heat the activated carbon.

とりわけ、活性炭再生装置1Aにおいては、不活性ガス供給源から供給される不活性ガスが、ヒータ5で加熱された後、第2不活性ガス供給ラインL12により、不活性ガス供給配管21に供給される。不活性ガス供給配管21に供給された不活性ガスは、延伸部21aを経由した後、不活性ガス噴射管21bにより、活性炭の充填層の内部に噴射される。 In particular, in the activated charcoal regenerating device 1A, the inert gas supplied from the inert gas supply source is heated by the heater 5 and then supplied to the inert gas supply pipe 21 by the second inert gas supply line L12. To. The inert gas supplied to the inert gas supply pipe 21 passes through the stretched portion 21a and then is injected into the inside of the packed layer of activated carbon by the inert gas injection pipe 21b.

〔1.3 加熱シミュレーション〕
以下の条件で活性炭再生装置1Aの加熱シミュレーションを行った。
すなわち、第1実施形態に係る活性炭再生装置1と同様に、活性炭塔2にろ材としての活性炭を400L充填し、活性炭の充填箇所に温度センサ(熱電対)TC1~TC14を設置したことを想定する。
[1.3 Heating simulation]
A heating simulation of the activated carbon regeneration device 1A was performed under the following conditions.
That is, it is assumed that 400 L of activated carbon as a filter medium is filled in the activated carbon tower 2 and temperature sensors (thermocouples) TC1 to TC14 are installed at the filled points of the activated carbon as in the activated carbon regeneration device 1 according to the first embodiment. ..

その後、活性炭塔2の所定の高さまで水を補水し、活性炭塔2内の水を自然落下させたことを想定する。 After that, it is assumed that water is replenished to a predetermined height of the activated carbon tower 2 and the water in the activated carbon tower 2 is naturally dropped.

その上で、図5の不活性ガス(蒸気)G1の供給量を50kg/hとするとともに、ヒータ5で、不活性ガス(蒸気)G2を430℃まで加熱し、温度センサ(熱電対)TC1~TC14で活性炭塔2内の温度を測定することを想定する。なお、不活性ガス排出ラインL2から系外に排出される不活性ガス(蒸気)G4の排出量も、50kg/hとなる。 Then, the supply amount of the inert gas (steam) G1 in FIG. 5 is set to 50 kg / h, and the inert gas (steam) G2 is heated to 430 ° C. by the heater 5, and the temperature sensor (thermocouple) TC1 is used. It is assumed that the temperature inside the activated coal tower 2 is measured by TC14. The amount of the inert gas (steam) G4 discharged from the inert gas discharge line L2 to the outside of the system is also 50 kg / h.

図6は、活性炭再生装置1Aの比較例としての、従来技術に係る不活性ガス供給配管22を示す。不活性ガス供給配管22は、不活性ガス供給配管21と異なり、活性炭の充填層を流れる方向と略垂直方向に延びる不活性ガス噴射管21bを備えない。また、不活性ガス供給配管の端部は、活性炭塔2において、活性炭の充填層よりも上部の中空部分に位置する。更に、活性炭端面の局所的な部分に集中して不活性ガスが噴霧されないように不活性ガス供給配管22の側面に設けられた穴から、活性炭充填層上部の空間部に噴射される。 FIG. 6 shows the inert gas supply pipe 22 according to the prior art as a comparative example of the activated carbon regeneration device 1A. Unlike the inert gas supply pipe 21, the inert gas supply pipe 22 does not include the inert gas injection pipe 21b extending in a direction substantially perpendicular to the direction in which the activated carbon filling layer flows. Further, the end of the inert gas supply pipe is located in the hollow portion above the packed bed of activated carbon in the activated carbon tower 2. Further, the inert gas is sprayed into the space above the activated carbon filling layer from the holes provided on the side surface of the inert gas supply pipe 22 so as not to concentrate on the local portion of the activated carbon end surface and spray the inert gas.

図6に示す比較例においても、活性炭再生装置1Aと同様の加熱シミュレーションを行った。 In the comparative example shown in FIG. 6, the same heating simulation as that of the activated carbon regeneration device 1A was performed.

図7は、比較例における加熱シミュレーションの結果を示す。第1実施形態に係る加熱試験の結果と同様に、使用蒸気量が増加すると共に、活性炭塔2に堆積する活性炭の上層に設置した温度センサから順に、各温度センサで測定される温度が、略350℃まで上昇した後、グラフは略350℃のまま横ばいとなる。また、図7のグラフにおいては、使用蒸気量が略750kgになった時点で、活性炭塔2に設置された温度センサのうち、最下層に設置された温度センサである、TC13、TC14の温度が、略350℃に達する。すなわち、不活性ガス(蒸気)G2の温度(430℃)との差が80℃となっており、放熱による熱量の損失を示している。 FIG. 7 shows the result of the heating simulation in the comparative example. Similar to the result of the heating test according to the first embodiment, as the amount of steam used increases, the temperature measured by each temperature sensor is substantially reduced in order from the temperature sensor installed on the upper layer of the activated carbon deposited on the activated carbon tower 2. After rising to 350 ° C, the graph remains flat at approximately 350 ° C. Further, in the graph of FIG. 7, when the amount of steam used reaches about 750 kg, the temperatures of TC13 and TC14, which are the temperature sensors installed in the lowest layer among the temperature sensors installed in the activated carbon tower 2, are measured. , Approximately 350 ° C. That is, the difference from the temperature (430 ° C.) of the inert gas (steam) G2 is 80 ° C., indicating a loss of heat due to heat dissipation.

図8は、活性炭再生装置1Aにおける加熱シミュレーションの結果を示す。図8のグラフにおいては、使用蒸気量が略610kgとなった時点で、活性炭塔2に設置された温度センサのうち、最下層に設置された温度センサである、TC13、TC14の温度が、略430℃に達する。 FIG. 8 shows the result of the heating simulation in the activated carbon regeneration device 1A. In the graph of FIG. 8, when the amount of steam used reaches approximately 610 kg, the temperatures of TC13 and TC14, which are the temperature sensors installed in the lowest layer among the temperature sensors installed in the activated carbon tower 2, are approximately. It reaches 430 ° C.

すなわち、本実施形態においては、比較例に比較して、活性炭塔2全体の温度が上がり切るために必要な使用蒸気量が、比較例において必要な使用蒸気量よりも少ないのみならず、活性炭塔2が達する温度は、比較例よりも高い。 That is, in the present embodiment, as compared with the comparative example, the amount of steam used for the temperature of the entire activated carbon tower 2 to rise completely is not only smaller than the amount of steam used required in the comparative example, but also the activated carbon tower 2 is used. The temperature reached by 2 is higher than that of the comparative example.

〔2.4 第2実施形態が奏する効果〕
本実施形態に係る活性炭の再生方法は、有機物が吸着した活性炭が充填された活性炭塔2に不活性ガスを加熱して供給し、該加熱した不活性ガスを活性炭塔2内に流通させて、活性炭を加熱し、再生する工程活性炭の再生方法であって、不活性ガスの噴射部が活性炭の充填層の内部に位置する不活性ガス供給配管21によって、不活性ガスが、活性炭の充填層の内部に直接供給される加熱工程を有し、不活性ガス供給配管21は、噴射部として、不活性ガスが活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管21bを有し、不活性ガスは不活性ガス噴射管21bにおいて活性炭塔2の不活性ガス排出口のある方向に噴射される。
[2.4 Effects of the second embodiment]
In the method for regenerating activated carbon according to the present embodiment, an inert gas is heated and supplied to an activated carbon tower 2 filled with activated carbon adsorbed with an organic substance, and the heated inert gas is circulated in the activated carbon tower 2. A process of heating and regenerating activated carbon In a method for regenerating activated carbon, an inert gas injection portion is located inside an activated carbon filling layer, and an inert gas supply pipe 21 allows the inert gas to be transferred to the activated carbon filling layer. The inert gas supply pipe 21 has a heating step of being directly supplied to the inside, and has an inert gas injection pipe 21b as an injection unit extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed layer of activated carbon. Then, the inert gas is injected in the activated carbon injection pipe 21b in the direction of the activated carbon discharge port of the activated carbon tower 2.

活性炭塔2の内側に不活性ガス供給配管21が配置されることで不活性ガスの供給流路が二層構造となって保温効果が得られる。これに加え、不活性ガスを活性炭層の内部に直接供給することにより、活性炭自身の断熱効果が得られる。
一方、従来技術に係る図6において、活性炭充填層上部の空間部に高温の不活性ガスが噴射されると、一層構造となっている空間部に高温の不活性ガスが滞留することになり、外気への放熱ロスが大きくなる。
放熱ロスが大きい従来技術に比較して、本実施形態に係る活性炭の再生方法は、不活性ガスからの放熱量を削減することが可能となる。すなわち、不活性ガスに与えられた熱量を活性炭に最大限に供給することで、活性炭を効率よく加熱できるため、活性炭を再生する際の不活性ガスの供給時間、延いては用いる不活性ガスの使用量を削減することが可能となる。また、不活性ガスを用いることにより、活性炭が発火点以上に加熱されても、活性炭が燃焼する事象は発生しない。また、不活性ガス供給配管21の先端部を不活性ガスが活性炭充填層内部を流れる方向と略垂直方向に延伸した構造とすると共に、不活性ガス噴射管21bから不活性ガス排出口のある方向に向かって不活性ガスを噴射することにより、前述した一層構造となっている空間部に高温の不活性ガスが流れることを抑制し活性炭を満遍なく加熱することが可能となる。加えて、活性炭がより高温となることで、有機物の脱着効率も上昇する。
By arranging the inert gas supply pipe 21 inside the activated carbon tower 2, the supply flow path of the inert gas has a two-layer structure, and a heat retaining effect can be obtained. In addition to this, by directly supplying the inert gas to the inside of the activated carbon layer, the heat insulating effect of the activated carbon itself can be obtained.
On the other hand, in FIG. 6 according to the prior art, when the high-temperature inert gas is injected into the space above the activated carbon packed bed, the high-temperature inert gas stays in the space having a one-layer structure. The heat dissipation loss to the outside air increases.
Compared with the conventional technique having a large heat dissipation loss, the method for regenerating activated carbon according to the present embodiment can reduce the amount of heat released from the inert gas. That is, since the activated carbon can be efficiently heated by supplying the activated carbon with the maximum amount of heat given to the inert gas, the supply time of the inert gas when regenerating the activated carbon, and eventually the inert gas used It is possible to reduce the amount used. Further, by using the inert gas, even if the activated carbon is heated above the ignition point, the event that the activated carbon burns does not occur. Further, the tip of the inert gas supply pipe 21 has a structure extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the activated carbon filling layer, and the direction in which the inert gas discharge port is located from the inert gas injection pipe 21b. By injecting the inert gas toward the above-mentioned space, it is possible to suppress the flow of the high-temperature inert gas into the space having the above-mentioned one-layer structure and to heat the activated carbon evenly. In addition, the higher the temperature of activated carbon, the higher the desorption efficiency of organic matter.

また、不活性ガス噴射管21bは、活性炭塔2の不活性ガス排出口と反対側に位置する活性炭の充填層の端面から不活性ガス排出口に向かって10%以内に位置するとよい。 Further, the inert gas injection pipe 21b is preferably located within 10% from the end face of the packed layer of activated carbon located on the opposite side of the inert gas discharge port of the activated carbon tower 2 toward the inert gas discharge port.

不活性ガス供給配管21の先端部を、不活性ガス排出口の反対側に位置させることにより、不活性ガス排出口に近い位置に設置した場合に比較して、活性炭の全体を加熱された不活性ガスが通過することで効率的に加熱することが可能となる。
また、不活性ガス噴射管21bが活性炭充填層の外に設置されると、前述の通りその外部空間に高温の不活性ガスが滞留し、放熱ロスが大きくなって加熱の非効率化が起こる。一方、不活性ガス噴射管21bが充填層の深部に設置されると、加熱された不活性ガスが通過しない活性炭層の領域が増えて加熱の非効率化が起こる。不活性ガス噴射管21bが、活性炭塔2の不活性ガス排出口と反対側に位置する活性炭充填層の端面から不活性ガス排出口に向かって10%以内に位置することで、加熱の非効率化が抑えられる。
By locating the tip of the inert gas supply pipe 21 on the opposite side of the inert gas discharge port, the entire activated charcoal is heated as compared with the case where it is installed near the inert gas discharge port. The passage of the active gas makes it possible to heat efficiently.
Further, when the inert gas injection pipe 21b is installed outside the activated carbon filling layer, the high-temperature inert gas stays in the external space as described above, the heat dissipation loss becomes large, and the heating becomes inefficient. On the other hand, when the inert gas injection pipe 21b is installed in the deep part of the packed bed, the region of the activated carbon layer through which the heated inert gas does not pass increases, resulting in inefficiency in heating. The inert gas injection pipe 21b is located within 10% from the end face of the activated carbon filling layer located on the opposite side of the activated carbon tower 2 to the inert gas discharge port toward the inert gas discharge port, so that the heating efficiency is inefficient. The conversion is suppressed.

本実施形態に係る活性炭の再生装置は、活性炭を収容する活性炭塔2と、活性炭塔2に不活性ガスを供給する不活性ガス供給ラインL1と、不活性ガス供給ラインL1に配置され、活性炭塔2に供給される不活性ガスを加熱するヒータ5と、活性炭塔2から不活性ガスを排出する不活性ガス排出ラインL2と、不活性ガスの噴射部が活性炭の充填層の内部に位置する、不活性ガス供給配管21と、を備え、不活性ガス供給配管21は、噴射部として、不活性ガスが活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管21bを有し、不活性ガスは不活性ガス噴射管21bにおいて活性炭塔の不活性ガス排出口のある方向に噴射される。 The activated charcoal regenerating device according to the present embodiment is arranged in the activated charcoal tower 2 for accommodating the activated charcoal, the inert gas supply line L1 for supplying the activated gas to the activated charcoal tower 2, and the inert gas supply line L1. The heater 5 that heats the inert gas supplied to 2, the inert gas discharge line L2 that discharges the inert gas from the active coal tower 2, and the inert gas injection portion are located inside the packed layer of the active charcoal. The inert gas supply pipe 21 includes an inert gas supply pipe 21, and the inert gas supply pipe 21 has an inert gas injection pipe 21b as an injection unit extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed bed of the activated carbon. , The inert gas is injected in the inert gas injection pipe 21b in the direction of the inert gas discharge port of the active coal tower.

活性炭塔2の内側に不活性ガス供給配管21が配置されることで不活性ガスの供給流路が二層構造となって保温効果が得られる。これに加え、不活性ガスを活性炭層の内部に直接供給することにより、活性炭自身の断熱効果が得られ、活性炭塔2の上部や下部から不活性ガスを供給したために、上部や下部にある空間に高温の不活性ガスが滞留し、放熱ロスが大きい場合に比較して、不活性ガスからの放熱量を削減することが可能となる。また、不活性ガスに与えられた熱量を活性炭に最大限に供給することで、活性炭を効率よく加熱できるため、活性炭を再生する際の不活性ガスの供給時間、延いては用いる不活性ガスの使用量を削減することが可能となる。また、不活性ガスを用いることにより、活性炭が発火点以上に加熱されても、活性炭が燃焼する事象は発生しない。また、不活性ガス供給配管21の先端部を不活性ガスが活性炭充填層内部を流れる方向と略垂直方向に延伸した構造とすると共に、不活性ガス噴射管21bから、おおよそ不活性ガス排出口のある方向に向かって不活性ガスを噴射することにより、活性炭を満遍なく加熱することが可能となる。 By arranging the inert gas supply pipe 21 inside the activated carbon tower 2, the supply flow path of the inert gas has a two-layer structure, and a heat retaining effect can be obtained. In addition to this, by directly supplying the inert gas to the inside of the activated carbon layer, the heat insulating effect of the activated carbon itself can be obtained, and since the inert gas is supplied from the upper or lower part of the activated carbon tower 2, the space in the upper part or the lower part is obtained. It is possible to reduce the amount of heat radiated from the inert gas as compared with the case where the high temperature inert gas stays in the slab and the heat dissipation loss is large. In addition, by supplying the maximum amount of heat given to the inert gas to the activated carbon, the activated carbon can be heated efficiently, so that the supply time of the inert gas when regenerating the activated carbon, and eventually the inert gas used It is possible to reduce the amount used. Further, by using the inert gas, even if the activated carbon is heated above the ignition point, the event that the activated carbon burns does not occur. Further, the tip of the inert gas supply pipe 21 has a structure extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the activated carbon filling layer, and from the inert gas injection pipe 21b, approximately the inert gas discharge port. By injecting an inert gas in a certain direction, the activated charcoal can be heated evenly.

〔3 変形例〕
以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、本実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。
[3 Modification example]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. Moreover, the effects described in the present embodiment are merely a list of the most preferable effects resulting from the present invention, and the effects according to the present invention are not limited to those described in the present embodiment.

例えば、上記の第1実施形態において、活性炭再生装置1は、エゼクタ3と循環ラインL3とを備える構成を有する。一方、上記の第2実施形態において、活性炭再生装置1Aは、活性炭塔2の内部に、不活性ガス供給配管21を備える構成を有する。変形例として、これらの双方、すなわち、エゼクタ3、循環ラインL3、及び不活性ガス供給配管21の全てを備える構成としてもよい。また、不活性ガスが活性炭塔内を流れる方向も、図1や図5では活性炭塔上部から下方向に流れるように示したが、下部から上方向でも良いし、横方向や斜め方向でもよい。また、図1や図5では活性炭の再生に関わる構成のみ示したが、活性炭塔2は活性炭の再生処理専用装置であっても良いし、通水ラインや処理水ライン、逆洗ライン、各種水質監視センサ等を設けることで、活性炭の吸着作用による水の浄化処理と活性炭の再生処理の両方を実施できる装置としてもよい。 For example, in the first embodiment described above, the activated carbon regeneration device 1 has a configuration including an ejector 3 and a circulation line L3. On the other hand, in the above-mentioned second embodiment, the activated carbon regeneration device 1A has a configuration in which the inert gas supply pipe 21 is provided inside the activated carbon tower 2. As a modification, the configuration may include both of these, that is, the ejector 3, the circulation line L3, and the inert gas supply pipe 21. Further, the direction in which the inert gas flows in the activated carbon tower is also shown to flow downward from the upper part of the activated carbon tower in FIGS. 1 and 5, but it may be from the lower part to the upper direction, or may be lateral or diagonal. Further, although only the configuration related to the regeneration of activated carbon is shown in FIGS. 1 and 5, the activated carbon tower 2 may be a dedicated device for regeneration treatment of activated carbon, and a water flow line, a treated water line, a backwash line, and various water qualities. By providing a monitoring sensor or the like, the device may be capable of performing both water purification treatment and activated carbon regeneration treatment by the adsorption action of activated carbon.

1、1A 活性炭再生装置
2 活性炭塔
3 エゼクタ
4 圧力調整弁
5 ヒータ
6 開閉弁
7 逆止弁
8 気液分離装置
L1 不活性ガス供給ライン
L2 不活性ガス排出ライン
L3 循環ライン
L4 凝縮液排出ライン
L11 第1不活性ガス供給ライン
L12 第2不活性ガス供給ライン
FM1 第1流量計
FM2 第2流量計
1, 1A Activated charcoal regeneration device 2 Activated coal tower 3 Ejector 4 Pressure control valve 5 Heater 6 On-off valve 7 Check valve 8 Gas-liquid separation device L1 Inert gas supply line L2 Inert gas discharge line L3 Circulation line L4 Condensate discharge line L11 1st inert gas supply line L12 2nd inert gas supply line FM1 1st flow meter FM2 2nd flow meter

Claims (10)

有機物が吸着した活性炭が充填された活性炭塔に不活性ガスを加熱して供給し、該加熱した前記不活性ガスを前記活性炭塔内に流通させるか、または、前記活性炭塔を直接加熱し、該加熱した前記活性炭塔内に前記不活性ガスを流通させて、前記活性炭を加熱し、再生する活性炭の再生方法であって、
不活性ガス供給源から供給される不活性ガスを駆動流体とするエゼクタにより、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで、前記活性炭塔に循環し、前記活性炭の加熱に再利用する処理を実行する工程を有する、
活性炭の再生方法。
An inert gas is heated and supplied to an activated carbon column filled with activated carbon adsorbed with an organic substance, and the heated inert gas is circulated in the activated carbon column, or the activated carbon column is directly heated and the operation is performed. A method for regenerating activated carbon by circulating the inert gas in the heated activated carbon tower to heat and regenerate the activated carbon.
An ejector using the inert gas supplied from the inert gas supply source as a driving fluid sucks at least a part of the inert gas discharged from the activated carbon tower, circulates it in the activated carbon tower, and heats the activated carbon. Has a step of performing a process of reuse in
How to regenerate activated carbon.
前記活性炭を加熱し、再生する工程において、前記エゼクタに吸い込まれる前記不活性ガスに対し、前記エゼクタに吸い込まれる前段で、気体と液体とを分離する気液分離操作を施し、前記気体として分離された前記不活性ガスのみを前記エゼクタに吸い込んで、前記活性炭塔に循環し、前記活性炭の加熱に再利用する、
請求項1に記載の活性炭の再生方法。
In the step of heating and regenerating the activated carbon, the inert gas sucked into the ejector is separated as the gas by performing a gas-liquid separation operation for separating the gas and the liquid before being sucked into the ejector. Only the inert gas is sucked into the ejector, circulated in the activated carbon tower, and reused for heating the activated carbon.
The method for regenerating activated carbon according to claim 1.
前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで循環し、前記活性炭の加熱に再利用する処理の後に、
前記エゼクタによる前記不活性ガスの循環を停止すると共に、前記不活性ガス供給源から供給される不活性ガスのみを前記活性炭塔に対して供給する処理を実行する、
請求項1又は請求項2に記載の活性炭の再生方法。
After the treatment of sucking and circulating at least a part of the inert gas discharged from the activated carbon tower and reusing it for heating the activated carbon.
The process of stopping the circulation of the inert gas by the ejector and supplying only the inert gas supplied from the inert gas supply source to the activated carbon tower is executed.
The method for regenerating activated carbon according to claim 1 or 2.
有機物が吸着した活性炭が充填された活性炭塔に不活性ガスを加熱して供給し、該加熱した前記不活性ガスを前記活性炭塔内に流通させて、前記活性炭を加熱し、再生する活性炭の再生方法であって、
前記不活性ガスの噴射部が前記活性炭の充填層の内部に位置する不活性ガス供給配管によって、前記不活性ガスが、前記活性炭の充填層の内部に直接供給される加熱工程を有し、
前記不活性ガス供給配管は、前記噴射部として、前記不活性ガスが前記活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管を有し、前記不活性ガスは前記不活性ガス噴射管において前記活性炭塔の不活性ガス排出口のある方向に噴射される活性炭の再生方法。
The activated carbon is heated and supplied to an activated carbon tower filled with activated carbon adsorbed with organic substances, and the heated inert gas is circulated in the activated carbon tower to heat the activated carbon and regenerate the activated carbon. It ’s a method,
It has a heating step in which the inert gas is directly supplied to the inside of the packed layer of the activated carbon by the inert gas supply pipe in which the injection portion of the inert gas is located inside the packed layer of the activated carbon.
The inert gas supply pipe has, as the injection portion, an inert gas injection pipe extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed bed of the activated charcoal, and the inert gas is the inert gas. A method for regenerating activated carbon that is injected in a direction of an inert gas discharge port of the activated coal tower in a gas injection pipe.
前記不活性ガス噴射管は、前記活性炭塔の不活性ガス排出口と反対側に位置する前記活性炭の充填層の端面から不活性ガス排出口に向かって10%以内に位置する、請求項4に記載の活性炭の再生方法。 According to claim 4, the inert gas injection pipe is located within 10% from the end face of the packed layer of the activated carbon located on the side opposite to the inert gas discharge port of the activated carbon tower toward the inert gas discharge port. The method for regenerating activated carbon according to the description. 有機物が吸着した活性炭が充填された活性炭塔に不活性ガスを加熱して供給し、該加熱した前記不活性ガスを前記活性炭塔内に流通させるか、または、前記活性炭塔を直接加熱し、該加熱した前記活性炭塔内に前記不活性ガスを流通させて、前記活性炭を加熱し、再生する活性炭の再生方法であって、
不活性ガス供給源から供給される不活性ガスを駆動流体とするエゼクタにより、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで、前記活性炭塔に循環し、前記活性炭の加熱に再利用すると共に、
前記不活性ガスの噴射部が前記活性炭の充填層の内部に位置する不活性ガス供給配管によって、前記不活性ガスが、前記活性炭の充填層の内部に直接供給される加熱工程を有し、
前記不活性ガス供給配管は、前記噴射部として、前記不活性ガスが前記活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管を有し、前記不活性ガスは前記不活性ガス噴射管において前記活性炭塔の不活性ガス排出口のある方向に噴射される活性炭の再生方法。
An inert gas is heated and supplied to an activated carbon column filled with activated carbon adsorbed with an organic substance, and the heated inert gas is circulated in the activated carbon column, or the activated carbon column is directly heated and the operation is performed. A method for regenerating activated carbon by circulating the inert gas in the heated activated carbon tower to heat and regenerate the activated carbon.
An ejector using the inert gas supplied from the inert gas supply source as a driving fluid sucks at least a part of the inert gas discharged from the activated carbon tower, circulates it in the activated carbon tower, and heats the activated carbon. While reusing it
It has a heating step in which the inert gas is directly supplied to the inside of the packed layer of the activated carbon by the inert gas supply pipe in which the injection portion of the inert gas is located inside the packed layer of the activated carbon.
The inert gas supply pipe has, as the injection portion, an inert gas injection pipe extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed bed of the activated charcoal, and the inert gas is the inert gas. A method for regenerating activated carbon that is injected in a direction of an inert gas discharge port of the activated coal tower in a gas injection pipe.
前記不活性ガスは水蒸気である、請求項1から請求項6のいずれか1項に記載の再生方法。 The regeneration method according to any one of claims 1 to 6, wherein the inert gas is water vapor. 前記加熱工程において、前記活性炭に供給される不活性ガスの温度が、100℃以上600℃以下となるように、前記不活性ガスが加熱される、請求項7に記載の再生方法。 The regeneration method according to claim 7, wherein in the heating step, the inert gas is heated so that the temperature of the inert gas supplied to the activated carbon is 100 ° C. or higher and 600 ° C. or lower. 活性炭を収容する活性炭塔と、
前記活性炭塔に不活性ガスを供給する供給ラインと、
前記供給ラインに配置され、前記活性炭塔に供給される不活性ガスを加熱する加熱手段、または、前記活性炭塔を直接加熱する加熱手段と、
前記活性炭塔から不活性ガスを排出する排出ラインと、
前記排出ラインから排出される前記不活性ガスの少なくとも一部を前記供給ラインに循環させる循環ラインと、
不活性ガス供給源から供給される不活性ガスを駆動流体とすると共に、前記活性炭塔から排出される前記不活性ガスの少なくとも一部を吸込んで、前記活性炭塔に循環するエゼクタと、を備える、活性炭の再生装置。
An activated carbon tower that houses activated carbon,
A supply line that supplies the inert gas to the activated carbon tower,
A heating means arranged in the supply line and heating the inert gas supplied to the activated carbon tower, or a heating means for directly heating the activated carbon tower.
A discharge line that discharges the inert gas from the activated carbon tower,
A circulation line that circulates at least a part of the inert gas discharged from the discharge line to the supply line.
An inert gas supplied from the inert gas supply source is used as a driving fluid, and an ejector that sucks at least a part of the inert gas discharged from the activated carbon tower and circulates in the activated carbon tower is provided. Activated carbon regeneration device.
活性炭を収容する活性炭塔と、
前記活性炭塔に不活性ガスを供給する供給ラインと、
前記供給ラインに配置され、前記活性炭塔に供給される不活性ガスを加熱する加熱手段と、
前記活性炭塔から不活性ガスを排出する排出ラインと、
前記不活性ガスの噴射部が前記活性炭の充填層の内部に位置する、不活性ガス供給配管と、を備え、
前記不活性ガス供給配管は、前記噴射部として、前記不活性ガスが前記活性炭の充填層内部を流れる方向と略垂直方向に延びる不活性ガス噴射管を有し、前記不活性ガスは前記不活性ガス噴射管において前記活性炭塔の不活性ガス排出口のある方向に噴射される、活性炭の再生装置。
An activated carbon tower that houses activated carbon,
A supply line that supplies the inert gas to the activated carbon tower,
A heating means arranged in the supply line and heating the inert gas supplied to the activated carbon tower,
A discharge line that discharges the inert gas from the activated carbon tower,
The inert gas supply pipe is provided, wherein the injection portion of the inert gas is located inside the packed bed of the activated carbon.
The inert gas supply pipe has, as the injection portion, an inert gas injection pipe extending in a direction substantially perpendicular to the direction in which the inert gas flows inside the packed bed of the activated charcoal, and the inert gas is the inert gas. A regenerating device for activated charcoal, which is injected in a gas injection pipe in a direction of an inert gas discharge port of the activated charcoal tower.
JP2020113334A 2020-06-30 2020-06-30 Method and apparatus for regenerating activated carbon Active JP7481928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020113334A JP7481928B2 (en) 2020-06-30 2020-06-30 Method and apparatus for regenerating activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020113334A JP7481928B2 (en) 2020-06-30 2020-06-30 Method and apparatus for regenerating activated carbon

Publications (2)

Publication Number Publication Date
JP2022011910A true JP2022011910A (en) 2022-01-17
JP7481928B2 JP7481928B2 (en) 2024-05-13

Family

ID=80149103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020113334A Active JP7481928B2 (en) 2020-06-30 2020-06-30 Method and apparatus for regenerating activated carbon

Country Status (1)

Country Link
JP (1) JP7481928B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262239B2 (en) 2008-03-28 2013-08-14 株式会社Ihi Volatile organic compound treatment system
JP5709057B2 (en) 2011-11-09 2015-04-30 株式会社栗本鐵工所 Steam distribution duct
JP2014014783A (en) 2012-07-10 2014-01-30 Hitachi Ltd Method and apparatus for regenerating adsorbing material and water purification system using the apparatus

Also Published As

Publication number Publication date
JP7481928B2 (en) 2024-05-13

Similar Documents

Publication Publication Date Title
JP6622302B2 (en) Steam assisted vacuum desorption process for carbon dioxide recovery
JP6107695B2 (en) Carbon dioxide recovery device and carbon dioxide recovery method
US9079134B2 (en) Carbon dioxide separating and capturing apparatus
JP2011152526A (en) Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower
KR101565033B1 (en) NMP recovery purification system
JP2010540243A5 (en)
KR20110074335A (en) Concentration control type device for adsorbing and desorbing activated-carbon
JP6443714B2 (en) Steam generating apparatus, adsorbent container, and steam generating method
JP2022011910A (en) Regeneration method of activated carbon and regenerator of activated carbon
CN104258686A (en) Molecular sieve control system
US8016570B2 (en) Gas compressor with drier and radio emission controls
KR101271557B1 (en) Volatile organic compound concentration device with vacuum and heat exchange desorption method and volatile organic compound concentration method with vacuum and heat exchange desorption method
JP6823615B2 (en) Hydrogen gas production method and hydrogen gas production equipment
JP2014181162A (en) Carbon dioxide recovery apparatus
KR101483628B1 (en) Absorptive dehumidifier and control method thereof
JP2011104547A (en) Waste gas treatment apparatus and waste gas treatment method
JP2021130080A (en) Regeneration method of active carbon
CN105944517B (en) A kind of zero gas consumption residual heat regenerating compressed air drying system
JP2004036523A (en) Exhaust gas treatment apparatus
JP5600048B2 (en) Solvent recovery device
BR0315044B1 (en) gas compression system.
KR200340079Y1 (en) Transformation Desorber by Hot Air for Desorption & Catalistic Cleaning of VOC
CN116603350B (en) Waste gas recovery heat energy recycling system and method
KR100683196B1 (en) Vocs and odor removal apparatus
CN216125419U (en) VOCS adsorbs clean system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240426

R150 Certificate of patent or registration of utility model

Ref document number: 7481928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150