JP2022011427A - Molding mold member - Google Patents

Molding mold member Download PDF

Info

Publication number
JP2022011427A
JP2022011427A JP2020112563A JP2020112563A JP2022011427A JP 2022011427 A JP2022011427 A JP 2022011427A JP 2020112563 A JP2020112563 A JP 2020112563A JP 2020112563 A JP2020112563 A JP 2020112563A JP 2022011427 A JP2022011427 A JP 2022011427A
Authority
JP
Japan
Prior art keywords
flow path
thread
cooling
molding die
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020112563A
Other languages
Japanese (ja)
Inventor
慎也 廣岡
Shinya Hirooka
基勝 山田
Motomasa Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Closures Co Ltd
Original Assignee
Nippon Closures Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Closures Co Ltd filed Critical Nippon Closures Co Ltd
Priority to JP2020112563A priority Critical patent/JP2022011427A/en
Publication of JP2022011427A publication Critical patent/JP2022011427A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a molding mold component capable of appropriately removing heat from a molded product in a molding mold for molding a container lid made of synthetic resin.SOLUTION: The inventive molding mold component is a molding mold member that consists of a male mold and a female mold that are integrally 3D-formed by sintering metal powder with laser light, and into which a molten resin for molding a sealing body in which a thread is formed and a container is sealed flows in. The molding mold component includes: a thread groove convex part 10 for forming the thread of the sealing body formed on either the male mold or the female mold; and a cooling flow path part 20 that is disposed inside the thread groove convex part 10 and through which a cooling medium is circulated to cool the thread so as to face it along a flank of the thread.SELECTED DRAWING: Figure 4

Description

本発明は、例えば加熱溶融された合成樹脂製容器蓋を成形加工するための成形金型用部材に関する。 The present invention relates to, for example, a molding die member for molding a heat-melted synthetic resin container lid.

従来より、例えば容器の封止などに用いられる、ポリエチレン又はポリプロピレン等の合成樹脂材料で形成された合成樹脂製容器蓋が知られている。かような合成樹脂製容器蓋は、例えば特許文献1に示すように、一般的には射出成形や圧縮成形などに用いられる成形金型によって大量生産される。 Conventionally, a synthetic resin container lid made of a synthetic resin material such as polyethylene or polypropylene, which is used for sealing a container, for example, has been known. As shown in Patent Document 1, for example, such a synthetic resin container lid is mass-produced by a molding die generally used for injection molding, compression molding, or the like.

このような成形加工に用いられる金型は一般的に切削加工によって製造されているが、近年ではいわゆる3Dプリンタを用いた三次元造形によって金型を製造することも提案されている。 The mold used for such molding is generally manufactured by cutting, but in recent years, it has been proposed to manufacture the mold by three-dimensional modeling using a so-called 3D printer.

例えば特許文献2では、金属粉末を用いた金属金型の3D造形を利用して、温調回路をレーザー光による金型造形の際に同時に形成することで、金型造形後に機械加工により温調回路を設ける従来の金属金型に比べて機械加工上の制約がなくなり温調回路の設計の自由度が向上することが提案されている。 For example, in Patent Document 2, by utilizing 3D modeling of a metal mold using metal powder and forming a temperature control circuit at the same time as mold molding by laser light, temperature control is performed by machining after mold molding. It has been proposed that there are no restrictions on machining as compared with conventional metal molds provided with circuits, and the degree of freedom in designing temperature control circuits is improved.

さらに例えば特許文献3では、三次元印刷機器を用いて光硬化性樹脂を3次元成形する樹脂製成形型の製造に際し、この成形型を冷却する冷却媒体が流れる冷却管は成形物と成形型とが接触する接触面に沿って屈曲し、接触面の面積を60%以上が冷却管から8mm以内の距離と設定することが提案されている。 Further, for example, in Patent Document 3, when a resin molding mold for three-dimensionally molding a photocurable resin is manufactured using a three-dimensional printing device, the cooling tube through which the cooling medium for cooling the molding mold flows is a molded product and a molding mold. It is proposed that the contact surface bends along the contact surface and the area of the contact surface is set to a distance of 60% or more from the cooling pipe within 8 mm.

特開平1-235615号公報Japanese Unexamined Patent Publication No. 1-235615 実開平11-348045号公報Jikkenhei 11-34845 Gazette 特開2017-124592号公報Japanese Unexamined Patent Publication No. 2017-124592

たしかに上記した三次元印刷機器を用いて成形金型を一体的に製造すれば、冷却流路なども同時に且つ成形物の形状に対応させて製造することが可能となる。
ところで上記した合成樹脂製容器蓋は、容器の口部に対して螺合される場合にはスカート壁の内側にねじ山が形成される。ここで、容器蓋の直径は20~30mm程度であって上記したねじ山も相対的に小さいものとなるが、成形後の除熱が過度になれば離型の際に成形品の破損を招き、上記した除熱が不十分であれば成形品の変形を招くことになる。
Certainly, if the molding die is integrally manufactured using the above-mentioned three-dimensional printing device, it is possible to simultaneously manufacture the cooling flow path and the like in accordance with the shape of the molded product.
By the way, when the synthetic resin container lid described above is screwed with respect to the mouth of the container, a thread is formed inside the skirt wall. Here, the diameter of the container lid is about 20 to 30 mm, and the above-mentioned screw thread is also relatively small, but if the heat removal after molding becomes excessive, the molded product may be damaged during mold release. If the above-mentioned heat removal is insufficient, the molded product will be deformed.

換言すれば、合成樹脂製容器蓋を成形する成形金型においては適正な成形品からの除熱が重要であるが、上記した特許文献を含む従来技術では後述する課題については到達しておらず、未だに市場のニーズに対応しているとは言い難い。
従って、本発明の目的の1つは、合成樹脂製容器蓋を成形する成形金型において成形品からの適正な除熱が可能な成形金型用部品を提供することにある。
In other words, it is important to remove heat from an appropriate molded product in a molding die for molding a synthetic resin container lid, but the prior art including the above-mentioned patent document has not reached the problem described later. It is hard to say that it still meets the needs of the market.
Therefore, one of the objects of the present invention is to provide a molding die component capable of appropriately removing heat from a molded product in a molding die for molding a synthetic resin container lid.

上記課題を解決するため、本発明の一形態における成形金型用部品は、(1)レーザー光により金属粉末を焼結させてそれぞれ一体で3D造形された雄型と雌型とからなり、ねじ山が形成されて容器を封止する封止体を成形するための溶融樹脂が流入する形成金型に用いられる成形金型用部材であって、前記雄型と前記雌型のいずれか一方に形成された、前記封止体のねじ山を形成するためのねじ溝用凸部と、前記ねじ溝用凸部の内部に配設されて、前記ねじ山のフランクに沿って対向するように冷却する冷却媒体が流通する冷却流路部と、を有することを特徴とする。 In order to solve the above problems, the molding mold component in one embodiment of the present invention is composed of (1) a male mold and a female mold integrally formed by sintering metal powder with a laser beam and integrally formed with a screw. A molding mold member used for a forming mold into which a molten resin for forming a sealing body in which a pile is formed and a sealing body for sealing a container flows, and is used in either the male mold or the female mold. The formed convex portion for a thread groove for forming a thread of the sealing body and the convex portion for the thread groove are arranged inside the convex portion and cooled so as to face each other along the flank of the thread. It is characterized by having a cooling flow path portion through which a cooling medium is circulated.

なお上記(1)に記載の成形金型用部品においては、(2)前記冷却流路部は、前記フランクに沿って周方向に連続し且つ前記ねじ山の上下軸方向に関して連続して形成されてなることが好ましい。 In the molding die component according to (1) above, (2) the cooling flow path portion is formed continuously along the flank in the circumferential direction and continuously in the vertical axis direction of the screw thread. It is preferable to be.

また、上記(1)又は(2)に記載の成形金型用部品においては、(3)前記冷却流路部は、前記溶融樹脂を冷却する冷却媒体が流入するインレットポートから前記冷却媒体が排出されるアウトレットポートまで分岐せず螺旋状の流路となっていることが好ましい。 Further, in the molding die component according to the above (1) or (2), (3) the cooling medium is discharged from the inlet port into which the cooling medium for cooling the molten resin flows into the cooling flow path portion. It is preferable that the flow path is spiral without branching to the outlet port.

また、上記(1)~(3)のいずれかに記載の成形金型用部品においては、(4)前記封止体は、前記容器の口部に螺合するキャップであって、前記雄型によって、前記キャップにおける天面壁の内面、前記天面壁から垂下するスカート壁の内面、および前記スカート壁の内面に形成され前記ねじ山がそれぞれ規定され、前記雌型によって、前記天面壁の外面および前記スカート壁の外面がそれぞれ規定されることが好ましい。 Further, in the molding die component according to any one of (1) to (3), (4) the sealing body is a cap screwed into the mouth of the container, and the male mold. The inner surface of the top wall in the cap, the inner surface of the skirt wall hanging from the top wall, and the thread formed on the inner surface of the skirt wall are defined by the female mold, respectively, and the outer surface of the top wall and the said It is preferable that the outer surface of the skirt wall is defined respectively.

また、上記(1)~(4)のいずれかに記載の成形金型用部品においては、(5)前記冷却流路部は、成形される前記封止体において上下軸方向に関して隣り合う前記ねじ山の間のねじ溝内に少なくとも一部が収容されるように設けられてなることが好ましい。 Further, in the molding die component according to any one of (1) to (4), (5) the cooling flow path portion is the screw adjacent to each other in the vertical axis direction in the sealed body to be molded. It is preferably provided so that at least a part thereof is accommodated in the thread groove between the ridges.

本発明によれば、不適正な除熱による合成樹脂製容器蓋の破損や変形を抑制可能な成形金型用部品を実現できる。 According to the present invention, it is possible to realize a part for a molding die capable of suppressing damage or deformation of a synthetic resin container lid due to improper heat removal.

実施形態の成形金型用部品の外観を示す正面図である。It is a front view which shows the appearance of the part for a molding die of an embodiment. 実施形態の成形金型用部品の外観斜視図である。It is an external perspective view of the part for a molding die of an embodiment. 実施形態の成形金型用部品内の冷媒流路の構造を示す断面図(その1)である。It is sectional drawing (the 1) which shows the structure of the refrigerant flow path in the part for a molding die of an embodiment. 実施形態の成形金型用部品内の冷媒流路の構造を示す断面図(その2)である。FIG. 2 is a cross-sectional view (No. 2) showing the structure of the refrigerant flow path in the molding die component of the embodiment. 実施形態の成形金型用部品を含む成形金型と成形品をそれぞれ示す模式図である。It is a schematic diagram which shows the molding die and the molded article including the molding die component of an embodiment, respectively. 比較例としての従来構造の成形金型を示す模式図である。It is a schematic diagram which shows the molding die of the conventional structure as a comparative example.

以下、本発明を好適に実施するための実施形態について説明する。なお本実施形態においては、説明の便宜上、図を用いた説明においてX、Y及びZ方向を適宜設定したが、説明の便宜上であって本発明を何ら過度に限定するものではない。また、以下で詳述する構成以外の機構については、上記した特許文献1を含む公知の合成樹脂製容器蓋に用いられる成形金型の構造を適宜適用してもよい。 Hereinafter, embodiments for preferably carrying out the present invention will be described. In the present embodiment, the X, Y, and Z directions are appropriately set in the explanation using figures for convenience of explanation, but the present invention is not excessively limited for convenience of explanation. Further, for a mechanism other than the configuration described in detail below, the structure of the molding die used for the known synthetic resin container lid including the above-mentioned Patent Document 1 may be appropriately applied.

[成形金型1000]
まず図5などに示すとおり、本実施形態における成形金型1000は、レーザー光により金属粉末を焼結させてそれぞれ一体で3D造形された雄型LDM(コア)と雌型UDM(キャビティ)とから構成されている。
[Molding mold 1000]
First, as shown in FIG. 5 and the like, the molding die 1000 in the present embodiment is composed of a male LDM (core) and a female UDM (cavity), each of which is integrally formed in 3D by sintering metal powder with a laser beam. It is configured.

かような成形金型1000内には、成形金型1000におけるランナーRNとゲートGTを介して、ねじ山3が形成されて容器(不図示)を封止する封止体CAPを成形するための溶融樹脂が流入する。一例として、本実施形態では、150℃~200℃程度に加熱された溶融樹脂が成形金型1000内に射出されるとともに、概ね10℃~30℃程度の公知の冷媒(水など)によって冷却される。 A thread 3 is formed in such a molding die 1000 via a runner RN and a gate GT in the molding die 1000 to form a sealed body CAP for sealing a container (not shown). The molten resin flows in. As an example, in the present embodiment, the molten resin heated to about 150 ° C. to 200 ° C. is injected into the molding die 1000 and cooled by a known refrigerant (water or the like) of about 10 ° C. to 30 ° C. To.

なお本実施形態で適用可能な樹脂材は、射出成形または圧縮成形に用いられる溶融可能な樹脂であれば特に制限はなく、例えばポリプロピレンやポリエチレンなどの公知の合成樹脂材が適用できる。また、本実施形態では、成形金型の適用例として射出成形を説明するが、例えば上記の圧縮成形や押出成形など他の成形手法に対しても本発明は適用が可能である。 The resin material applicable in this embodiment is not particularly limited as long as it is a meltable resin used for injection molding or compression molding, and a known synthetic resin material such as polypropylene or polyethylene can be applied. Further, in the present embodiment, injection molding will be described as an application example of the molding die, but the present invention can also be applied to other molding methods such as the above-mentioned compression molding and extrusion molding.

より具体的に本実施形態における成形金型1000は、成形品(封止体CAP)の内側に挿入されるスクリューコアとしての成形金型用部品100、成形品(封止体CAP)の天面壁およびスカート壁の外側と接するキャビティ200、いわゆる無理抜き時に用いられるストリッパーブッシング300、冷媒流路CWの1つが形成されるクーリングコア400、およびクーリングコア400内に挿入されて冷媒の流れを制御するクーリングバー500などを含んで構成されている。 More specifically, the molding die 1000 in the present embodiment is a molding die component 100 as a screw core inserted inside the molded product (sealed body CAP), and the top wall of the molded product (sealed body CAP). And the cavity 200 in contact with the outside of the skirt wall, the stripper bushing 300 used for so-called forcible removal, the cooling core 400 in which one of the refrigerant flow paths CW is formed, and the cooling inserted into the cooling core 400 to control the flow of the refrigerant. It is configured to include a bar 500 and the like.

[成形金型用部品100]
図1~4に示すように、本実施形態の成形金型用部品100は、上記した成形金型1000内に組み込み可能であって、ねじ溝用凸部10、ねじ山用溝部11、断続壁12、TE形成部13、端部形成部14および冷却流路部20を含んで構成されている。
なお本実施形態の成形金型用部品100は、いわゆる3Dプリンターなどの上記した公知の三次元造形装置を用いて一体的に製造される。また、本実施形態の成形金型用部品100の材質については、特に制限はなく、三次元造形が可能な公知の種々の金属粉末を適用できる。
[Parts for molding dies 100]
As shown in FIGS. 1 to 4, the molding die component 100 of the present embodiment can be incorporated into the molding die 1000 described above, and has a thread groove convex portion 10, a thread groove portion 11, and an intermittent wall. 12, TE forming portion 13, end forming portion 14, and cooling flow path portion 20 are included.
The molding die component 100 of the present embodiment is integrally manufactured by using the above-mentioned known three-dimensional modeling apparatus such as a so-called 3D printer. Further, the material of the molding die component 100 of the present embodiment is not particularly limited, and various known metal powders capable of three-dimensional modeling can be applied.

ねじ溝用凸部10は、前記した封止体CAPのねじ山3を形成するために用いられる。なお、ねじ溝は封止体CAPの形態によって雄型と雌型のいずれにも形成され得る。したがって本実施形態のねじ溝用凸部10は、上記に対応して雄型と雌型のいずれ一方に形成される。このねじ溝用凸部10によって、成形後の封止体CAPにねじ溝が形成される。 The thread groove convex portion 10 is used to form the thread 3 of the sealing body CAP described above. The thread groove can be formed in either a male type or a female type depending on the form of the sealing body CAP. Therefore, the convex portion 10 for the thread groove of the present embodiment is formed in either a male type or a female type in accordance with the above. The threaded groove 10 is formed on the sealed body CAP after molding.

なお本実施形態における封止体CAPとしては、例えばPETボトルなど公知の容器の口部に螺合される合成樹脂製キャップが好適である。しかしながら本発明に好適な封止体CAPとしては、ねじ構造を有していれば上記した容器蓋(キャップ)に限られず、例えばスパウトなどねじ構造を備えた他の公知の封止部材であってもよい。 As the sealed body CAP in the present embodiment, a synthetic resin cap screwed into the mouth of a known container such as a PET bottle is suitable. However, the sealing body CAP suitable for the present invention is not limited to the above-mentioned container lid (cap) as long as it has a screw structure, and is another known sealing member having a screw structure such as a spout. May be good.

本実施形態においては、この封止体CAPは、上述したとおり容器の口部に螺合するキャップ(図5(b)も適宜参照されたい)であって、前記した雄型LDMによってキャップにおける天面壁1の内面、天面壁1から垂下するスカート壁2の内面、およびスカート壁2の内面に形成されたねじ山3がそれぞれ規定される。同様に、同図に示すとおり、前記した雌型UDMによって天面壁1の外面およびスカート壁2の外面がそれぞれ規定される。 In the present embodiment, the sealing body CAP is a cap screwed to the mouth of the container as described above (see also FIG. 5 (b) as appropriate), and the cap is heavenly by the above-mentioned male LDM. Threads 3 formed on the inner surface of the face wall 1, the inner surface of the skirt wall 2 hanging from the top wall 1, and the inner surface of the skirt wall 2 are defined. Similarly, as shown in the figure, the outer surface of the top wall 1 and the outer surface of the skirt wall 2 are defined by the female UDM described above, respectively.

図1及び2などから理解されるとおり、ねじ山用溝部11は、成形後の封止体CAPに螺旋状のねじ山3が形成されるように、上下軸方向(Z方向)におけるねじ溝用凸部10の上下に配設されている。 As can be understood from FIGS. 1 and 2, the thread groove portion 11 is for a thread groove in the vertical axis direction (Z direction) so that the spiral thread 3 is formed in the sealed body CAP after molding. It is arranged above and below the convex portion 10.

断続壁12は、上記した封止体CAPのねじ山3およびねじ溝が周方向(θz方向)に沿って断続的となるように、周方向において所定の間隙をもって配設されている。なお、封止体CAPのねじ山3などを連続した螺旋状とする場合には、かような断続壁12は省略される。 The intermittent wall 12 is arranged with a predetermined gap in the circumferential direction so that the thread 3 and the thread groove of the sealing body CAP described above are intermittent along the circumferential direction (θz direction). When the thread 3 of the sealing body CAP has a continuous spiral shape, such an intermittent wall 12 is omitted.

TE形成部13は、成形後の封止体CAPに開封されたことを示すタンパーエビデントを形成するための溝部である。かようなタンパーエビデントの構造としては、特に制限はなく公知のタンパーエビデント構造を適用できる。 The TE forming portion 13 is a groove portion for forming a tamper evidence indicating that the sealed body CAP after molding has been opened. The structure of such a tamper evidence is not particularly limited, and a known tamper evidence structure can be applied.

端部形成部14は、成形後の封止体CAPの下端が位置する部位である。本実施形態の成形金型用部品100においては、一例として、この端部形成部14を境にしてその下側は徐々に拡径されたテーパー状となっている。 The end forming portion 14 is a portion where the lower end of the sealed body CAP after molding is located. In the molding die component 100 of the present embodiment, as an example, the lower side of the end forming portion 14 as a boundary has a tapered shape whose diameter is gradually increased.

冷却流路部20は、前記したねじ溝用凸部10の内部に配設されて、図5(b)に示すCAPのネジ山3のフランクfに沿って成形される封止体CAPのねじ山3のフランクfに沿って対向するように冷却する冷却媒体が流通される。なお本実施形態の冷却媒体としては、例えば上述のとおり温度調整された水など公知の液体や気体などが適用できる。 The cooling flow path portion 20 is arranged inside the screw groove convex portion 10 described above, and is formed along the flank f of the thread 3 of the CAP shown in FIG. 5 (b). A cooling medium for cooling along the flank f of the mountain 3 so as to face each other is distributed. As the cooling medium of the present embodiment, for example, a known liquid or gas such as water whose temperature has been adjusted as described above can be applied.

なお図5に示すとおり、本実施形態の冷却流路部20は、第1冷却流路CW、第2冷却流路CWおよび第3冷却流路CWの3つの冷却流路で構成されている。このうち、第1冷却流路CWは、上記したキャビティ200側に配設されて、封止体CAPのスカート壁2の外周面に向けた溶融樹脂の冷却を担っている。 As shown in FIG. 5, the cooling flow path portion 20 of the present embodiment is composed of three cooling flow paths, a first cooling flow path CW 1 , a second cooling flow path CW 2 , and a third cooling flow path CW 3 . ing. Of these, the first cooling flow path CW 1 is disposed on the cavity 200 side described above, and is responsible for cooling the molten resin toward the outer peripheral surface of the skirt wall 2 of the sealing body CAP.

また、本実施形態の冷却流路部20を構成する第2冷却流路CWは、上記したねじ溝用凸部10の内部に配設されて、成形される封止体CAPのねじ山3のフランクfに沿って対向するように冷却媒体が流通する。
また、冷却流路部20を構成する残りの第3冷却流路CWは、上記したクーリングコア400内に配設されて、封止体CAPのスカート壁2の内側(例えばインナーリング4やアウターリング5あるいは天面壁1の内面など)に向けた溶融樹脂の冷却を担っている。
Further, the second cooling flow path CW 2 constituting the cooling flow path portion 20 of the present embodiment is arranged inside the above-mentioned thread groove convex portion 10 and is formed into a thread 3 of the sealing body CAP. The cooling medium circulates so as to face each other along the flank f of.
Further, the remaining third cooling flow path CW 3 constituting the cooling flow path portion 20 is arranged in the cooling core 400 described above, and is arranged inside the skirt wall 2 of the sealing body CAP (for example, the inner ring 4 or the outer). It is responsible for cooling the molten resin toward the ring 5 or the inner surface of the top wall 1).

なお本実施形態では、上記した合計3つの冷却流路によって冷却流路部20が構成されているが、この例に限られず少なくとも第2冷却流路CWが配設される限りにおいて、単一の流路となっていたり、2つあるいは4つ以上の流路で構成された形態であってもよい。 In the present embodiment, the cooling flow path portion 20 is configured by the above-mentioned total of three cooling flow paths, but the present invention is not limited to this example, and is single as long as at least the second cooling flow path CW 2 is arranged. It may be a flow path of the above, or may be a form composed of two or four or more flow paths.

また、図3および4から理解されるとおり、本実施形態における冷却流路部20は、前記した封止体CAPのねじ山3の斜面(フランクf)に沿って周方向に連続し且つこのねじ山3の上下軸方向(同図におけるZ方向)に関して連続するように形成されてなることが好ましい。これにより、適正な除熱が難しいねじ山3のフランクfに対しても冷却流路部20を接近させて配設させることができ、成形後の溶融樹脂からの必要十分な除熱が実現できる。 Further, as can be understood from FIGS. 3 and 4, the cooling flow path portion 20 in the present embodiment is continuous in the circumferential direction along the slope (frank f) of the thread 3 of the sealed body CAP and the screw. It is preferable that the mountain 3 is formed so as to be continuous with respect to the vertical axis direction (Z direction in the figure). As a result, the cooling flow path portion 20 can be arranged close to the flank f of the screw thread 3 where proper heat removal is difficult, and necessary and sufficient heat removal from the molten resin after molding can be realized. ..

また、図5(a)に示すように、本実施形態の冷却流路部20のうち少なくとも第2冷却流路CWにおいては、前記した溶融樹脂を冷却する冷却媒体(冷却水など)が流入するインレットポートCW2INから冷却媒体が排出されるアウトレットポートCW2OUTまで分岐せず螺旋状の流路となっていることが好ましい。これにより、装置構成を複雑化せずに効率的に封止体CAPの適正な除熱が実現できる。 Further, as shown in FIG. 5A, a cooling medium (cooling water or the like) for cooling the molten resin flows in at least in the second cooling flow path CW 2 of the cooling flow path portions 20 of the present embodiment. It is preferable that the flow path is a spiral without branching from the inlet port CW 2IN to the outlet port CW 2OUT from which the cooling medium is discharged. As a result, proper heat removal of the sealed body CAP can be efficiently realized without complicating the device configuration.

また、図3および4に示すとおり、本実施形態の冷却流路部20(第2冷却流路CW)は、成形される封止体CAPから見た観点においては、当該封止体CAPの上下軸方向(図中のZ方向)に関して隣り合うねじ山3の間のねじ溝内に少なくとも一部が収容されるように設けられてなることが好ましいと言える。これにより、隣り合うねじ山3の双方における斜面(フランクf)に対して1つの冷却流路を効率的に割り当てることができる。 Further, as shown in FIGS. 3 and 4, the cooling flow path portion 20 (second cooling flow path CW 2 ) of the present embodiment is the sealed body CAP from the viewpoint of the molded sealed body CAP. It can be said that it is preferable that at least a part thereof is accommodated in the thread groove between the adjacent threads 3 in the vertical axis direction (Z direction in the drawing). As a result, one cooling flow path can be efficiently assigned to the slope (frank f) on both of the adjacent threads 3.

なお図4に示すとおり、本実施形態においては、ねじ山用溝部11の底部(封止体CAPのねじ山3の頂上となる部位)から中心軸Oまでの距離R3は、第2冷却流路CWにおける最も外周側に位置する冷媒流路の中心軸Oまでの距離R1によりも大きくなっている。しかしながら本実施形態は上記に限定されず、例えばR1=R3であってもよいし、R1>R3と設定されていてもよい。このときR1≧R3のときは、封止体CAPのねじ山3(特にフランクf部分)をより効率的に冷却できる。 As shown in FIG. 4, in the present embodiment, the distance R3 from the bottom of the thread groove portion 11 (the portion that becomes the top of the thread 3 of the sealing body CAP) to the central axis O is the second cooling flow path. It is also larger than the distance R1 to the central axis O of the refrigerant flow path located on the outermost peripheral side in CW 2 . However, the present embodiment is not limited to the above, and may be set to, for example, R1 = R3 or R1> R3. At this time, when R1 ≧ R3, the thread 3 (particularly the flank f portion) of the sealing body CAP can be cooled more efficiently.

<従来の金型構造に対する利点>
上述のとおり金属粉末や樹脂粉末を用いて三次元造形する技術は知られていたものの、封止体CAPの製造分野においては、図6に示すごとき切削/研削加工などによって成形された成形金型が用いられることも多い。この場合、例えば封止体CAPがキャップやスパウトであるときには、金型内に配置される流路は相対的に小さくなることから、2ピースなど複数のピースによって成形部品が加工される。
<Advantages over conventional mold structure>
As described above, although the technique of three-dimensional molding using metal powder or resin powder has been known, in the field of manufacturing a sealed body CAP, a molding die formed by cutting / grinding as shown in FIG. 6 is performed. Is often used. In this case, for example, when the sealing body CAP is a cap or a spout, the flow path arranged in the mold is relatively small, so that the molded part is processed by a plurality of pieces such as two pieces.

このように成形部品は複数のピースによって構成されるため、特に冷媒流路からの漏液を防止するために特別なパッキンP(一例として図6参照)が必要となる。ところが上述のとおり金型内に配置される流路の径は小さいため、かようなパッキンも特注対応となってコスト増を招いてしまう。 Since the molded part is composed of a plurality of pieces as described above, a special packing P (see FIG. 6 as an example) is particularly required to prevent liquid leakage from the refrigerant flow path. However, as described above, since the diameter of the flow path arranged in the mold is small, such packing is also custom-made and causes an increase in cost.

また、図6からも理解されるとおり、従来における冷媒流路は金型の強度維持のために封止体CAPのねじ山3付近に近づけることは容易ではなく、ねじ山3の頂上から相対的に離間した位置に配置せざるを得なかった。このため、本実施形態の成形金型1000(図5参照)に比してねじ山3から離れた位置から冷却媒体によって溶融樹脂の温度を管理せねばならず、特にねじ山3のフランクfまで冷却が十分に行われているとは言えなかった。 Further, as can be understood from FIG. 6, it is not easy to bring the conventional refrigerant flow path close to the vicinity of the thread 3 of the sealing body CAP in order to maintain the strength of the mold, and it is relative from the top of the thread 3. I had no choice but to place it in a position separated from it. Therefore, compared to the molding die 1000 (see FIG. 5) of the present embodiment, the temperature of the molten resin must be controlled by a cooling medium from a position farther from the thread 3, especially up to the flank f of the thread 3. It could not be said that the cooling was sufficient.

これに対して本実施形態の成形金型用部品100によれば、ねじ溝用凸部10の内部に配設されてねじ山3のフランクfに沿って対向するように冷却する冷却媒体が流通する冷却流路部20を有するため、この成形金型に射出された溶融樹脂が上記した無理抜きにも耐える程度の弾性を維持しつつ、除熱が不十分なことに起因する変形をも抑制することが可能となっている。 On the other hand, according to the molding die component 100 of the present embodiment, a cooling medium disposed inside the thread groove convex portion 10 and cooling along the flank f of the thread 3 so as to face each other is distributed. Since the cooling flow path portion 20 is provided, the molten resin injected into the molding die maintains elasticity to the extent that it can withstand the above-mentioned forcible removal, and also suppresses deformation due to insufficient heat removal. It is possible to do.

すなわち、封止体CAPの成形分野においては過冷却も冷却不足も許されないシビアな温度管理が必要であるが、本実施形態によれば不適正な除熱による合成樹脂製容器蓋の破損や変形を抑制可能な成形金型用部品を実現できる。さらに本実施形態によれば、上記したとおり三次元造形技術を用いて一体的な造形が可能であることから、金型製造に必要なコストを低減することができるとともに、高価なパッキンによる漏液防止対策も不要となる。 That is, in the field of molding of the sealed body CAP, severe temperature control that neither supercooling nor insufficient cooling is allowed is required, but according to this embodiment, the synthetic resin container lid is damaged or deformed due to improper heat removal. It is possible to realize a part for a molding die that can suppress the above. Further, according to the present embodiment, since the integrated molding can be performed by using the three-dimensional molding technology as described above, the cost required for mold manufacturing can be reduced and the liquid leaks due to the expensive packing. No preventive measures are required.

なお上記の実施形態は、本発明を実施するのに好適な一例であって、本願の趣旨を逸脱しない限りにおいて実施形態の各要素を適宜変形または組み合わせて新たな成形金型又は成形金型用部品を構成してもよい。 The above embodiment is a suitable example for carrying out the present invention, and is used for a new molding die or a molding die by appropriately modifying or combining each element of the embodiment as long as it does not deviate from the gist of the present application. Parts may be configured.

例えば図4に示すように、上下軸方向(Z方向)に沿って複数配置される冷却流路部20(第2冷却流路CW)の中心軸Oからのそれぞれの距離Rは、本実施形態では一様としたが互いに異ならせてもよい。より具体的に、例えば封止体CAPの天面壁1に相対的に近い側の冷却流路部20の中心軸Oからの距離R2は、天面壁1から相対的に遠い側の冷却流路部20の中心軸Oからの距離R1よりも大きく設定してもよい。 For example, as shown in FIG. 4, each distance R from the central axis O of the cooling flow path portions 20 (second cooling flow path CW 2 ) arranged a plurality along the vertical axis direction (Z direction) is the present implementation. The morphology is uniform, but they may be different from each other. More specifically, for example, the distance R2 from the central axis O of the cooling flow path portion 20 on the side relatively close to the top surface wall 1 of the sealing body CAP is the cooling flow path portion on the side relatively far from the top surface wall 1. It may be set larger than the distance R1 from the central axis O of 20.

また、同図に示すように、上下軸方向(Z方向)に沿って複数配置される冷却流路部20(第2冷却流路CW)のそれぞれの流路の孔径は、本実施形態では一様としたが互いに異ならせてもよい。より具体的に、例えば封止体CAPの天面壁1に相対的に近い側の冷却流路部20の孔径(直径)は、天面壁1から相対的に遠い側の冷却流路部20の孔径(直径)よりも大きく設定してもよい。これにより、封止体CAPのうち天面壁1となる部位における冷却効率をさらに向上させることができる。 Further, as shown in the figure, the hole diameters of the respective flow paths of the cooling flow path portions 20 (second cooling flow path CW 2 ) arranged a plurality along the vertical axis direction (Z direction) are set in the present embodiment. It is uniform but may be different from each other. More specifically, for example, the hole diameter (diameter) of the cooling flow path portion 20 on the side relatively close to the top surface wall 1 of the sealing body CAP is the hole diameter (diameter) of the cooling flow path portion 20 on the side relatively far from the top surface wall 1. It may be set larger than (diameter). As a result, the cooling efficiency at the portion of the sealed body CAP that becomes the top wall 1 can be further improved.

また、同図に示すように、上下軸方向(Z方向)に沿って複数配置される冷却流路部20(第2冷却流路CW)のそれぞれの流路の形状は、本実施形態では周方向に沿って丸孔の一様としたが冷却流路部20は断面形状は円状でもあっても非円状でもよい。さらには、この第2冷却流路CWにおける螺旋状の流路における形状は、周方向の位置に応じて異なる形状(例えば周方向における流路の一部の断面形状が円状であり他部が矩形状とするなど)であってもよい。 Further, as shown in the figure, the shape of each of the plurality of cooling flow paths 20 (second cooling flow path CW 2 ) arranged along the vertical axis direction (Z direction) is the shape of each flow path in the present embodiment. Although the round holes are uniform along the circumferential direction, the cooling flow path portion 20 may have a circular or non-circular cross-sectional shape. Further, the shape of the spiral flow path in the second cooling flow path CW 2 differs depending on the position in the circumferential direction (for example, the cross-sectional shape of a part of the flow path in the circumferential direction is circular and the other portion. May be rectangular, etc.).

また、本実施形態においては、冷却流路部20(第2冷却流路CW)は、インレットポートCW2INからアウトレットポートCW2OUTまで分岐せず螺旋状の流路となっていたが、必ずしも螺旋状でなくともよい。すなわち、例えば封止体CAPのねじ山3に対応して環状の冷却流路を複数設け、上下軸方向(Z方向)に隣り合う環状の冷却流路同士を連結する上下軸方向に沿った連絡流路をさらに形成してもよい。また、この第2冷却流路CWは、必ずしも分岐せず単一の流路とする必要はなく、例えば封止体CAPのねじ山3に対応して環状の冷却流路を互いに独立させて複数だけ設けてもよい。 Further, in the present embodiment, the cooling flow path portion 20 (second cooling flow path CW 2 ) is a spiral flow path that does not branch from the inlet port CW 2IN to the outlet port CW 2OUT , but is not necessarily spiral. It does not have to be a shape. That is, for example, a plurality of annular cooling channels are provided corresponding to the threads 3 of the sealing body CAP, and the annular cooling channels adjacent to each other in the vertical axis direction (Z direction) are connected to each other along the vertical axis direction. Further channels may be formed. Further, the second cooling flow path CW 2 does not necessarily branch and does not necessarily have to be a single flow path. For example, the annular cooling flow paths are made independent of each other corresponding to the thread 3 of the sealing body CAP. Only a plurality may be provided.

本発明は、ねじ山を備えた成形品を成形する成形金型における優れた除熱性を有する成形金型用部品を提供するのに適している。 INDUSTRIAL APPLICABILITY The present invention is suitable for providing a part for a molding die having excellent heat removing properties in a molding die for molding a molded product having a thread.

1000:成形金型
100:成形金型用部品
10:ねじ溝用凸部
11:ねじ山用溝部
12:断続壁
13:TE形成部
14:端部形成部
20:冷却流路部
CW:第1冷却流路
CW:第2冷却流路
CW:第3冷却流路
200:キャビティ
300:ストリッパーブッシング
400:クーリングコア
500:クーリングバー
1000: Molding mold 100: Molding mold parts 10: Convex part for thread groove 11: Groove part for thread thread 12: Intermittent wall 13: TE forming part 14: End forming part 20: Cooling flow path part CW 1 : No. 1 cooling flow path CW 2 : 2nd cooling flow path CW 3 : 3rd cooling flow path 200: cavity 300: stripper bushing 400: cooling core 500: cooling bar

Claims (5)

レーザー光により金属粉末を焼結させてそれぞれ一体で3D造形された雄型と雌型とからなり、ねじ山が形成されて容器を封止する封止体を成形するための溶融樹脂が流入する成形金型に用いられる成形金型用部材であって、
前記雄型と前記雌型のいずれか一方に形成された、前記封止体のねじ山を形成するためのねじ溝用凸部と、
前記ねじ溝用凸部の内部に配設されて、前記ねじ山のフランクに沿って対向するように冷却する冷却媒体が流通する冷却流路部と、
を有することを特徴とする成形金型用部材。
It consists of a male mold and a female mold that are integrally molded in 3D by sintering metal powder with laser light, and a molten resin for forming a sealing body that forms a screw thread and seals a container flows in. A member for a molding die used for a molding die.
A thread groove convex portion formed on either the male mold or the female mold for forming a thread of the sealed body, and
A cooling flow path portion that is disposed inside the convex portion for the thread groove and through which a cooling medium for cooling along the flank of the thread thread is circulated.
A member for a molding die, characterized by having.
前記冷却流路部は、前記フランクに沿って周方向に連続し且つ前記ねじ山の上下軸方向に関して連続して形成されてなる、請求項1に記載の成形金型用部材。 The molding die member according to claim 1, wherein the cooling flow path portion is formed continuously along the flank in the circumferential direction and continuously in the vertical axis direction of the screw thread. 前記冷却流路部は、前記溶融樹脂を冷却する冷却媒体が流入するインレットポートから前記冷却媒体が排出されるアウトレットポートまで分岐せず螺旋状の流路となっている、請求項1又は2に記載の成形金型用部材。 The cooling flow path portion is a spiral flow path that does not branch from the inlet port into which the cooling medium for cooling the molten resin flows to the outlet port from which the cooling medium is discharged, according to claim 1 or 2. The described molding die member. 前記封止体は、前記容器の口部に螺合するキャップであって、
前記雄型によって、前記キャップにおける天面壁の内面、前記天面壁から垂下するスカート壁の内面、および前記スカート壁の内面に形成され前記ねじ山がそれぞれ規定され、
前記雌型によって、前記天面壁の外面および前記スカート壁の外面がそれぞれ規定される、請求項1~3のいずれか一項に記載の成形金型用部材。
The sealant is a cap that is screwed into the mouth of the container.
The male mold defines the threads formed on the inner surface of the top wall of the cap, the inner surface of the skirt wall hanging from the top wall, and the inner surface of the skirt wall.
The molding die member according to any one of claims 1 to 3, wherein the outer surface of the top wall and the outer surface of the skirt wall are defined by the female mold.
前記冷却流路部は、成形される前記封止体において上下軸方向に関して隣り合う前記ねじ山の間のねじ溝内に少なくとも一部が収容されるように設けられてなる、請求項1~4のいずれか一項に記載の成形金型用部材。 Claims 1 to 4 are provided such that the cooling flow path portion is provided so that at least a part of the cooling flow path portion is accommodated in a thread groove between the threads adjacent to each other in the vertical axis direction in the sealed body to be molded. The member for a molding die according to any one of the above items.
JP2020112563A 2020-06-30 2020-06-30 Molding mold member Pending JP2022011427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020112563A JP2022011427A (en) 2020-06-30 2020-06-30 Molding mold member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020112563A JP2022011427A (en) 2020-06-30 2020-06-30 Molding mold member

Publications (1)

Publication Number Publication Date
JP2022011427A true JP2022011427A (en) 2022-01-17

Family

ID=80148231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112563A Pending JP2022011427A (en) 2020-06-30 2020-06-30 Molding mold member

Country Status (1)

Country Link
JP (1) JP2022011427A (en)

Similar Documents

Publication Publication Date Title
RU2427464C2 (en) Mould for moulding plastic articles and method of producing mould components
US9738012B2 (en) Mold component
US5423670A (en) Enhanced thermal transfer injection molding apparatus
US6737007B2 (en) Cooling tube with porous insert
CN108189318B (en) Mold stack for preforms
JP2000043095A (en) Manufacture of insert for thread part split mold
CA2838804C (en) An injection mould component for preforms made of plastic material
CA2525078C (en) A gate cooling structure in a molding stack
JP7018052B2 (en) Molding mold
JP2022011427A (en) Molding mold member
JP6462373B2 (en) Mold cooling structure
US11045993B2 (en) One-piece mould bottom with optimised fluid circulation
WO2021007677A1 (en) Molding process for forming thermoplastic articles
WO2009117805A1 (en) A preform and a mold stack for producing the preform
JP7317700B2 (en) mold equipment
JP2011224906A (en) Cooling liquid passage structure of mold and mold
JP2010089390A (en) Molding die
CA2794580A1 (en) A retaining member for use with a molding system and the molding system incorporating same
KR101487442B1 (en) Method for blocking flow path of cooling water in mold
CN111867804A (en) Injection molding mold
JP2009160799A (en) Thin walled solid molded article and its mold assembly
JP2012214656A (en) Molding die

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20230515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319