JP2011224906A - Cooling liquid passage structure of mold and mold - Google Patents

Cooling liquid passage structure of mold and mold Download PDF

Info

Publication number
JP2011224906A
JP2011224906A JP2010097975A JP2010097975A JP2011224906A JP 2011224906 A JP2011224906 A JP 2011224906A JP 2010097975 A JP2010097975 A JP 2010097975A JP 2010097975 A JP2010097975 A JP 2010097975A JP 2011224906 A JP2011224906 A JP 2011224906A
Authority
JP
Japan
Prior art keywords
flow path
mold
pipe
inner hole
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097975A
Other languages
Japanese (ja)
Other versions
JP5540861B2 (en
Inventor
Toyohiko Nakatani
豊彦 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2010097975A priority Critical patent/JP5540861B2/en
Publication of JP2011224906A publication Critical patent/JP2011224906A/en
Application granted granted Critical
Publication of JP5540861B2 publication Critical patent/JP5540861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling structure of a mold which allows elongation of a passage for a cooling liquid and suitable modification of regulation of the flow rate of cooling water and does not cause complication of the flow rate design.SOLUTION: In the cooling structure of the mold for cooling of a molten resin, the passage 11 for the cooling liquid includes: an inside hole 14 formed within the mold and a pair of pipe-like members 21 arranged in the clearance between the outer peripheral surface of the pipe body 21c; and the inner peripheral surface of the inside hole. In the pipe-like members 21, an inner peripheral passage 11b for cooling water is arranged on the side of the inner periphery of the pipe body 21c, and an outer peripheral passage 11a communicating with the inner peripheral passage 11b is formed between the inner peripheral surface of the inside hole 14 and the outer peripheral surface of the pipe body 21c so that cooling water flows from the outer peripheral passage 11a to the inner peripheral passage 11b of the pipe body 21c.

Description

本発明は、成形金型を冷却液によって効率良く冷却できる成形金型の冷却液流路構造に関し、特に樹脂製容器のプリフォーム成形用金型の冷却液流路構造に関する。   The present invention relates to a cooling fluid channel structure of a molding die that can efficiently cool the molding die with a cooling liquid, and more particularly to a cooling fluid channel structure of a preform molding die of a resin container.

例えば、ポリエチレンテレフタレート製容器(PETボトル)の前成形体としてのプリフォームは、射出成形機や圧縮成形機などによって形成される。このようなプリフォームは、上部には容器本体の飲料の注入口となる部分である口頸(ノズル)部が形成され、口頸部の下部にはプリフォームの径方向外側に突出する環状フランジが形成され、環状フランジの下部には胴部が形成され、胴部はブロー成形によって延伸される。プリフォームの口頸部を形成する部分は、ネックハーフやネックリングハーフ、ネックリング金型、スライドインサート金型などと呼ばれる分割金型が用いられている。
プリフォームは成形時に温度が高温となり、分割金型の冷却効率が悪いと成形完了時における分割金型の離型の際に、口頸部の冷却固化が不十分のため変形や白化が生じることがある。その対策手段として分割金型の内部に冷却液の流路を形成し、冷却液として通常、冷却水を流すことによって口頸部を冷却するようにしている。
For example, a preform as a preform of a polyethylene terephthalate container (PET bottle) is formed by an injection molding machine, a compression molding machine, or the like. In such a preform, a mouth and neck (nozzle) portion which is a portion serving as a beverage inlet of the container body is formed at the upper portion, and an annular flange projecting radially outward of the preform is formed at the lower portion of the mouth and neck portion. Is formed, and a body portion is formed at a lower portion of the annular flange, and the body portion is stretched by blow molding. A part forming the neck portion of the preform uses a split mold called a neck half, a neck ring half, a neck ring mold, a slide insert mold, or the like.
Preforms are hot during molding, and if the cooling efficiency of the split mold is poor, when the split mold is released at the completion of molding, the neck and neck are not sufficiently cooled and solidified, causing deformation and whitening. There is. As a countermeasure against this, a flow path of a cooling liquid is formed inside the split mold, and the mouth and neck are usually cooled by flowing cooling water as the cooling liquid.

下記の特許文献1は、分割金型を径方向の内外に分割して内層ブロックと外層ブロックとによって形成し、内層ブロックと外層ブロックとの接合面に冷却水の流路となる溝を形成している。そして、外層ブロック側の外面から溝の一端に冷却水の供給路を連通し、溝の他端に冷却水の排水路を連通して冷却水の流路を各割金型に形成している。
下記の特許文献2では、分割金型に冷却水の流路となる貫通孔(チャネルセグメント)を形成し、貫通孔の両端にある各々の開口には、閉塞部材である蓋部材と、蓋部材に取付けられ流路内に差し込まれるに仕切り板を設けたプラグを設けている。冷却水の流路には、冷却水の供給路と排水路が形成されている。このような、分割金型の冷却水の流路は、一方の仕切り板の表面から裏面へ、次いで仕切り板の裏面から表面へ迂回させることによって、冷却液の流路を長くすることができる。
In Patent Document 1 below, a split mold is divided into inner and outer portions in the radial direction and formed by inner layer blocks and outer layer blocks, and grooves serving as cooling water flow paths are formed on the joint surfaces of the inner layer blocks and outer layer blocks. ing. Then, a cooling water supply path is communicated from the outer surface on the outer layer block side to one end of the groove, and a cooling water drainage path is communicated to the other end of the groove to form a cooling water flow path in each split mold. .
In the following Patent Document 2, through holes (channel segments) that serve as cooling water flow paths are formed in a split mold, and a lid member that is a closing member and a lid member are formed in each opening at both ends of the through hole. And a plug provided with a partition plate to be inserted into the flow path. A cooling water supply channel and a drain channel are formed in the cooling water channel. The flow path of the cooling liquid can be lengthened by diverting the flow path of the cooling water of the split mold from the front surface to the back surface of one partition plate and then from the back surface to the front surface of the partition plate.

特開2007−326241号公報JP 2007-326241 A 特開2008−542066号公報JP 2008-542066 A

しかしながら、特許文献1によると、内層材と外層材と異なる材料が使用できるなどの利点があるが、2つのブロック部材から構成されており組み付け精度など構成が複雑となり高価な物となる。また、冷却液の流路の長さを長くとりにくく、他にも冷却液の流路を適宜変更できないなどの不都合な点もある。
特許文献2によると、冷却水を仕切り板の表側と裏側に流すことによって長くする利点がある。この特許文献2には、孔の開口をプラグの蓋部材で閉塞するときに、ろう付けやねじによって閉塞する例が開示されているが、ろう付けで蓋部材を固定したときには、蓋部材の交換が困難となり、冷却液の流路断面積を適宜変更することができない。また、蓋部材をねじで螺着させた場合には、仕切り板の取付角度が規定角度にくるよう固定できなかったり、一対の仕切り板の取付角度が一致しなかったりする欠点がある。このような場合は、金型が所望とする冷却性能を十分発揮できないおそれもある。
本発明は、このような事情に鑑みてなされたものであって、冷却水の流路を簡便に長くすることができ、冷却液の流路断面積を適宜変更したり、流路断面積設計も複雑になることのない成形金型の冷却液流路構造を提供することを目的とする。
However, according to Patent Document 1, there is an advantage that different materials can be used for the inner layer material and the outer layer material. However, the structure is composed of two block members, and the configuration such as assembly accuracy is complicated and expensive. In addition, it is difficult to increase the length of the flow path of the cooling liquid, and there are other disadvantages such that the flow path of the cooling liquid cannot be appropriately changed.
According to Patent Document 2, there is an advantage that the cooling water is lengthened by flowing it on the front side and the back side of the partition plate. This patent document 2 discloses an example in which the opening of the hole is closed by brazing or a screw when closing the opening of the plug by the lid member of the plug. However, when the lid member is fixed by brazing, the lid member is replaced. This makes it difficult to change the flow path cross-sectional area of the coolant as appropriate. Further, when the lid member is screwed with a screw, there is a drawback that the mounting angle of the partition plate cannot be fixed so as to reach a specified angle, or the mounting angles of the pair of partition plates do not match. In such a case, there is a possibility that the cooling performance desired by the mold cannot be exhibited sufficiently.
The present invention has been made in view of such circumstances, and the flow path of the cooling water can be easily lengthened, and the flow path cross-sectional area of the cooling liquid can be appropriately changed or the flow path cross-sectional area can be designed. Another object of the present invention is to provide a coolant flow path structure for a molding die that does not become complicated.

上記目的を達成するために、本発明の成形金型の冷却流路構造は、成形金型に冷却液を通すための流路構造であって、前記金型内に設けられた内孔と前記内孔内に挿入されるパイプ本体とで形成された、前記パイプ本体の内周面側の内周流路と、前記内孔の内周面とパイプ本体の外周面との間に形成される外周流路からなる二重孔を二本備え、前記内周流路と外周流路とは、先端部側では連通し、後端部側では連通不能となるよう前記外周流路が閉塞部によって閉塞され、前記二本の二重孔の内周流路は互いに後端部側で連通路によって接続され、前記外周流路の前記閉塞部近傍と、前記金型外部とを通液可能にする内孔通液路が設けられるようにした。
また、上記目的を達成するために、本発明の成形金型の冷却液流路構造は、成形金型の内部に向かって交差させて形成される2本の内孔と、前記内孔内の装着部によって取付けられる、中空のパイプ本体と中空の取付部とからなるパイプ状部材2本と、前記内孔開口端を閉塞する2つの蓋部材と、前記金型外部から前記内孔に達する2つの内孔通液路と、からなり、前記内孔同士の交差箇所を連通路とし、前記パイプ状部材は、前記取付部によって取付部外周と前記内孔装着部の内周とを封じ、前記内孔の連通路より奥側に配設され、前記内孔通液路は、前記装着部近傍と金型外部とを連通させ、前記連通路と前記内孔の先端部とが前記パイプ状部材の孔によって連通し、前記パイプ状部材の孔からなる内周流路と、前記内孔内周面と前記パイプ本体の外周面とからなる外周流路と、を備えている。
上記成形金型の冷却液流路構造は、前記内孔通液路の一方から前記外周流路の一方を通り、以下該一方の外周流路側の内周流路、他方の内周流路、他方の外周流路、他方の内孔通液路の順に冷却液が流れるように構成することができる。
上記成形金型の冷却液流路構造は、前記パイプ本体が円筒状であり、前記パイプ本体が配設される箇所の前記内孔内周面の形状が円形断面であることが好ましい。
上記成形金型の冷却液流路構造の前記パイプ状部材の取付部は雄ねじが形成され、該雄ねじを前記内孔の装着部に形成された雌ねじに螺着させて、取付けするとともに、前記雄ねじの頭部には、冷却液を流通可能にし、且つパイプ状部材の取付け取外しの際に、前記雄ねじを回転させる着脱器具を係止させる、流通孔が形成されていることが好ましい。
上記成形金型の冷却液流路構造の前記成形金型は樹脂製容器のプリフォームを形成するための成形金型であって、前記冷却液通構造が前記プリフォームの口頸部を実質的に成形する分割金型に設けることができる。
本発明の上記各成形金型の冷却液流路構造は、冷却液流路構造を備えた成形金型にも適用が可能である。
In order to achieve the above object, a cooling flow path structure for a molding die of the present invention is a flow path structure for passing a cooling liquid through a molding die, and includes an inner hole provided in the mold and the An outer peripheral flow formed between the inner peripheral flow path on the inner peripheral surface side of the pipe main body and the inner peripheral surface of the inner hole and the outer peripheral surface of the pipe main body formed by the pipe main body inserted into the inner hole. Two double holes made of a path are provided, and the inner peripheral flow path and the outer peripheral flow path are communicated on the front end side, and the outer peripheral flow path is blocked by a closing portion so as not to communicate on the rear end side, The inner peripheral flow paths of the two double holes are connected to each other by a communication path on the rear end side, and an inner hole flow path that allows liquid to pass through the vicinity of the closed portion of the outer peripheral flow path and the outside of the mold. It was set up.
In order to achieve the above object, the cooling fluid flow path structure of the molding die of the present invention includes two inner holes formed so as to cross toward the inside of the molding die, Two pipe-shaped members each having a hollow pipe main body and a hollow mounting portion, which are attached by the mounting portion, two lid members for closing the inner hole opening end, and 2 reaching the inner hole from the outside of the mold. And the pipe-like member seals the outer periphery of the mounting portion and the inner periphery of the inner hole mounting portion with the mounting portion, The inner hole fluid passage is disposed on the inner side of the communication path of the inner hole, and the vicinity of the mounting portion communicates with the outside of the mold, and the communication path and the tip of the inner hole are connected to the pipe-shaped member. The inner circumferential flow path comprising the holes of the pipe-shaped member, the inner circumferential surface of the inner hole, and the path. It includes a peripheral channels comprising a peripheral surface of the flop body.
The cooling liquid flow path structure of the molding die passes from one of the inner hole liquid passages to one of the outer peripheral flow paths, and hereinafter, the inner peripheral flow path on the one outer peripheral flow path side, the other inner peripheral flow path, and the other outer peripheral flow path. The cooling liquid can be configured to flow in the order of the passage and the other inner hole passage.
In the coolant flow path structure of the molding die, it is preferable that the pipe body is cylindrical and the shape of the inner peripheral surface of the inner hole where the pipe body is disposed has a circular cross section.
A mounting portion of the pipe-shaped member of the cooling fluid flow path structure of the molding die is formed with a male screw, and the male screw is screwed onto a female screw formed in the mounting portion of the inner hole, and the male screw is attached. It is preferable that a flow hole is formed in the head portion of the head so as to allow the coolant to flow and to lock the attachment / detachment device for rotating the male screw when the pipe-shaped member is attached and detached.
The molding die having the cooling fluid flow path structure of the molding die is a molding die for forming a preform of a resin container, and the cooling fluid passage structure substantially covers the mouth and neck of the preform. It can be provided in a split mold to be molded.
The cooling fluid channel structure of each of the molding dies according to the present invention can be applied to a molding die having a cooling fluid channel structure.

本発明の成形金型の冷却液流路構造は、パイプ本体の内周側を通る内周流路と外周側を通る外周流路とからなる2重構造の冷却液の流路を採用しているので、冷却液の流路を長くすることができる。
また内孔の交差箇所を連通路とすることで簡単な構造となる。
さらにまた、形成された冷却液の流路に順に冷却液を流れるように構成することで冷却液の流路を長くとることができる。
さらにまた、パイプ本体が円筒状であり、その箇所で内孔内周面も円筒状であるので、この2重構造となる箇所での冷却液の流路断面積の設計が容易である。
また、取付部により、パイプ状部材を成形金型の装着部に着脱自在にすることによって、パイプ状部材の交換により冷却液による冷却能力を適宜変更することができる。
The cooling liquid flow path structure of the molding die of the present invention employs a dual-structured cooling liquid flow path comprising an inner peripheral flow path passing through the inner peripheral side of the pipe body and an outer peripheral flow path passing through the outer peripheral side. The flow path of the coolant can be lengthened.
Moreover, it becomes a simple structure by making the intersection location of an inner hole into a communicating path.
Furthermore, it is possible to make the flow path of the cooling liquid longer by configuring the cooling liquid to sequentially flow through the formed flow path of the cooling liquid.
Furthermore, since the pipe body is cylindrical and the inner peripheral surface of the inner hole is also cylindrical at that location, it is easy to design the flow path cross-sectional area of the coolant at the location where this double structure is formed.
In addition, by making the pipe member detachable from the mounting portion of the molding die by the attachment portion, the cooling capacity by the coolant can be changed as appropriate by replacing the pipe member.

プリフォーム成形金型の型締め状態における断面図である。It is sectional drawing in the mold clamping state of a preform mold. 図1に示すインサートスライド金型を上下逆さまに置いたときの(図1のキャビティ金型側から見た)斜視図である。FIG. 2 is a perspective view when the insert slide mold shown in FIG. 1 is placed upside down (viewed from the cavity mold side in FIG. 1). 図2に示すインサートスライド金型を水平方向へ切断した断面図である。It is sectional drawing which cut | disconnected the insert slide metal mold | die shown in FIG. 2 to the horizontal direction. 図2に示すインサートスライド金型の一方の分割金型における冷却液の流路を上方から見た平面図である。It is the top view which looked at the flow path of the cooling fluid in one division mold of the insert slide mold shown in FIG. 2 from upper direction. インサートスライド金型の冷却路に配設されるパイプ状部材であり、Aは斜視図、Bは側面図、Cは断面図である。It is a pipe-shaped member arrange | positioned in the cooling path of an insert slide metal mold | die, A is a perspective view, B is a side view, C is sectional drawing. 図2に示すインサートスライド金型を下方(図1のスライド対側)から見た底面図である。It is the bottom view which looked at the insert slide metal mold shown in Drawing 2 from the lower part (the slide opposite side of Drawing 1). スライドインサート金型の別形態を示す左半分の断面図と側面図である。It is sectional drawing and the side view of the left half which show another form of a slide insert metal mold | die.

本発明の実施形態としてプリフォームの成形金型について説明する。
図1は、プリフォーム成形金型の例として射出成形用プリフォーム金型を示し、成形金型が閉じられた状態の断面図である。
プリフォーム成形金型33は、雌型であるキャビティ金型34、雄型であるコア金型35、分割金型であるスライドインサート金型36(上述のように、ネックハーフやネックリングハーフ、ネックリング金型とも呼ばれる)を備えている。
なお、本実施形態のような射出成形用プリフォーム金型の場合は、通常は図1の金型上下方向を水平方向に向け寝かせて使用する。
A preform mold will be described as an embodiment of the present invention.
FIG. 1 is a cross-sectional view showing a preform mold for injection molding as an example of a preform mold, and the mold is closed.
The preform mold 33 includes a cavity mold 34 as a female mold, a core mold 35 as a male mold, and a slide insert mold 36 as a split mold (as described above, a neck half, a neck ring half, a neck It is also called a ring mold.
In the case of the injection mold for injection molding as in the present embodiment, the mold is usually used with its vertical direction in FIG.

次に、スライドインサート金型36の冷却構造について説明する。
図2は図1のスライドインサート金型36を上下逆さまに置いたときの斜視図であるが、以下の説明では図2の向きに倣ってスライドインサート金型36の上下など位置関係を説明する。
スライドインサート金型36は左右に2分割された面対称の半円環状であり、両者が一体となって環状になる。スライドインサート金型36は、分割金型が組み付けられた状態で中央を上下に貫通するノズル形成孔36aが形成され、ノズル形成孔36aはプリフォームのノズル部の外周面及びノズル本体部の上側一部を形成し、雄ねじやフランジ部を形成するノズル形成部となる。
Next, the cooling structure of the slide insert mold 36 will be described.
FIG. 2 is a perspective view when the slide insert mold 36 of FIG. 1 is placed upside down. In the following description, the positional relationship such as up and down of the slide insert mold 36 will be described according to the direction of FIG.
The slide insert mold 36 is a plane-symmetrical semicircular ring divided into two parts on the left and right sides, and both are integrated into a ring shape. The slide insert mold 36 is formed with a nozzle forming hole 36a penetrating the center up and down in a state where the divided mold is assembled. The nozzle forming hole 36a is formed on the outer peripheral surface of the nozzle portion of the preform and on the upper side of the nozzle main body portion. Forming a part, and forming a male thread and a flange part.

図3及び図4を参照にして、スライドインサート金型36を構成する分割金型36A,36Bの各々の内部には、冷却液、好適には冷却水の流路11,11が形成されている。分割金型36A,36Bの冷却水の流路11,11は、同じ構造(点対称)であるので、主として一方の分割金型36Aの冷却液流路構造について説明するが、分割金型36Bも適宜用いて説明する。
図3及び図4を参照にして、分割金型36Aには、冷却液の流路を斜めの孔として穴開け形成しやすくするための、構造孔12が形成されている。構造孔12より奥には、分割金型36Aの外側面に対し斜め直線方向(本実施形態ではより好適例な例として側面に対し傾斜角45度)に形成される第1の内孔14と、同じく分割金型36Aの外側面に対し斜め直線方向(本実施形態ではより好適例な例として側面に対し傾斜角135度)に形成される第2の内孔15とが形成され、第1の内孔14と第2の内孔15とが交差(本実施形態ではより好適な例として直交)して形成されている。なお、外側面に対する傾斜角や内孔14,15の交差角は適宜設定してよいし、構造孔12は省略することも可能である。
With reference to FIG. 3 and FIG. 4, cooling liquid, preferably cooling water flow paths 11, 11 are formed in each of the divided molds 36 </ b> A, 36 </ b> B constituting the slide insert mold 36. . Since the flow paths 11 and 11 of the split molds 36A and 36B have the same structure (point symmetry), the coolant flow path structure of one split mold 36A will be mainly described. The description will be given using as appropriate.
With reference to FIGS. 3 and 4, the divided mold 36 </ b> A is provided with a structural hole 12 for facilitating the formation of a hole with an oblique flow path for the coolant. Behind the structure hole 12, a first inner hole 14 formed in an oblique linear direction with respect to the outer side surface of the split mold 36A (in this embodiment, as a more preferable example, an inclination angle of 45 degrees with respect to the side surface) Similarly, a second inner hole 15 formed in an oblique linear direction with respect to the outer surface of the split mold 36A (in the present embodiment, a tilt angle of 135 degrees with respect to the side surface as a more preferable example) is formed. The inner hole 14 and the second inner hole 15 are formed so as to intersect with each other (in the present embodiment, as a more preferable example, orthogonal). Note that the inclination angle with respect to the outer surface and the crossing angle of the inner holes 14 and 15 may be set as appropriate, and the structural hole 12 may be omitted.

第1の内孔14は、開口側から順に栓孔14a、連通路17、装着部18a,冷却室19aとから構成され、第2の内孔15は、開口側から順に栓孔15a、連通路17,装着部18b,冷却室19bとから構成されている。連通路17は第1の内孔14と第2の内孔15との交差部で互いに共有している。内孔14,15は、本実施形態では各々軸心を一致させた段差のある孔によって形成されているが、段差のない真っ直ぐな管となっていてもよい。また、内孔14,15は円筒状で円形断面となっていると、流路断面積の設計が容易になり好ましい。
これらのうち、栓孔14a,15aは冷却水の流路11を閉塞するための蓋部材13が装着される。なお、図3は、図中の左側に示す分割金型36Aには、栓孔14a,15aに蓋部材13,13が装着されているが、右側に示す分割金型36Bでは構造説明のため、蓋部材13が装着されていない状態を示す(実施の際は分割金型36Aと同様蓋部材13,13を装着する)。蓋部材13,13は、本実施形態ではねじ(好ましくは配管栓用のテーパねじ)による回転によって栓孔14a,15aの雌ねじ16a,16bに固定し、第1の内孔14及び第2の内孔15の開口側を閉塞する。蓋部材13の頭部には、蓋部材13を回転させて着脱するためのレンチ用孔として六角孔13aが形成され、六角レンチによって着脱できる。
The first inner hole 14 includes a plug hole 14a, a communication path 17, a mounting portion 18a, and a cooling chamber 19a in order from the opening side, and the second inner hole 15 has a plug hole 15a and a communication path in order from the opening side. 17, the mounting part 18b, and the cooling chamber 19b. The communication path 17 is shared by the intersection of the first inner hole 14 and the second inner hole 15. In the present embodiment, the inner holes 14 and 15 are each formed by a hole having a step whose axial centers coincide with each other, but may be a straight pipe having no step. In addition, it is preferable that the inner holes 14 and 15 are cylindrical and have a circular cross section, because the cross-sectional area of the flow path can be easily designed.
Among these, the plug holes 14 a and 15 a are fitted with a lid member 13 for closing the cooling water flow path 11. In FIG. 3, the split mold 36 </ b> A shown on the left side in the drawing has the lid members 13, 13 attached to the plug holes 14 a, 15 a, but the split mold 36 </ b> B shown on the right side is for structural explanation. A state in which the lid member 13 is not attached is shown (when the lid members 13 and 13 are attached in the same manner as the split mold 36A). In this embodiment, the lid members 13 and 13 are fixed to the female threads 16a and 16b of the plug holes 14a and 15a by rotation by screws (preferably taper screws for piping plugs), and the first inner hole 14 and the second inner hole 14 are fixed. The opening side of the hole 15 is closed. A hexagonal hole 13a is formed in the head of the lid member 13 as a wrench hole for rotating and removing the lid member 13 and can be attached and detached with a hexagon wrench.

第1の内孔14の先端側と第2の内孔15の先端側はプリフォームの口頸部を形成するノズル形成孔36aを跨ぐように配置され、内孔先端部は分割金型36Aの分割面(成形時において分割金型36Aが他方の分割金型36Bに当接する端面)の近くまで達し、袋小路状に閉じられている。
第1の内孔14の装着部18a及び冷却室19aには上流側のパイプ状部材21が配設され、第2の内孔15の装着部18b及び冷却室19bにもパイプ状部材22が配設されるが、部品種類数削減のため、パイプ状部材21と22とを同一形態のものにできるよう内孔14,15を形成するのが好ましい。
The distal end side of the first inner hole 14 and the distal end side of the second inner hole 15 are arranged so as to straddle the nozzle forming hole 36a that forms the mouth and neck portion of the preform, and the distal end portion of the inner hole is the split mold 36A. It reaches close to the dividing surface (the end surface where the dividing mold 36A abuts against the other dividing mold 36B at the time of molding) and is closed in a bag path shape.
An upstream pipe-shaped member 21 is disposed in the mounting portion 18a and the cooling chamber 19a of the first inner hole 14, and a pipe-shaped member 22 is also disposed in the mounting portion 18b and the cooling chamber 19b of the second inner hole 15. However, in order to reduce the number of types of parts, it is preferable to form the inner holes 14 and 15 so that the pipe-like members 21 and 22 can have the same form.

パイプ状部材21,22は図5のA〜Cに示すように、取付部21a,22a、中栓21b,22b、パイプ本体21c,22cとから構成されている。パイプ本体は、断面が円環形状の円筒状であると、前述の内孔14,15と同様、流路断面積の設計が容易になり好ましい。取付部21a,22aには、雄ねじ21d,22dが形成され、雄ねじ21d,22dは装着部18a,18bに形成された雌ねじに螺着されることによって締結される。なお、螺着の際、取付部21aと装着部18aとの間、および取付部22aと装着部18bとの間を閉塞するようにしてもよい。その際は、雄ねじ21d,22dおよび装着部18a,18bに形成された雌ねじをそれぞれ配管用テーパねじ構造とすると好ましい。   As shown in FIGS. 5A to 5C, the pipe-shaped members 21 and 22 are configured by attachment portions 21a and 22a, inner plugs 21b and 22b, and pipe main bodies 21c and 22c. It is preferable that the pipe body has an annular cylindrical cross section, as in the case of the inner holes 14 and 15 described above, the flow path cross-sectional area can be easily designed. Male screws 21d and 22d are formed on the mounting portions 21a and 22a, and the male screws 21d and 22d are fastened by being screwed onto female screws formed on the mounting portions 18a and 18b. In addition, you may make it block | close between the attachment part 21a and the mounting part 18a, and between the attachment part 22a and the mounting part 18b at the time of screwing. In that case, it is preferable that the internal threads formed on the male threads 21d and 22d and the mounting portions 18a and 18b have a pipe taper screw structure, respectively.

パイプ状部材21,22の中栓21b,22bは、本実施形態ではパイプ本体21c,22cが内孔14,15の所定位置(好ましくは中央)に組み付け配置されるよう組み付けガイドの役割を担わせている。なお、中栓21b,22bと内孔14,15との間を閉塞する役割(その際はOリングなどのシール部材を介在させると好ましい)を担わせてもよい。これらの役割を担わせない場合は、中栓21b、22bは省略可能である。
パイプ状部材21,22を内孔14,15に取付けた状態で、中栓21b,22bから内孔14,15の奥行き方向へ突出する中空円柱形のパイプ本体21c,22cの外周面は、好ましくは内孔14,15の内周面に対して(内孔径方向に)間隔を空けて配設される。パイプ本体21c,22cの先端部は、内孔14,15の最深部で開放されて内孔と連通している。これによって、パイプ本体21c,22cの各々は、パイプ本体21c,22cの内周側と外周側とが、先端開口を介して連通して冷却液の流路を形成することになる。
上述した中栓21b,22bおよび取付部21a,22aには内部にパイプ本体21c,22cと連通路17とを連通させて冷却水を流通させるための孔21g,22gが形成され、取付部21a,22aの頂面には、流通孔21f,22fが形成されている。流通孔21f,22fはパイプ状部材21,22を回転させて着脱させるための着脱器具(好ましくは六角レンチ)を係止するための着脱器具係止溝(好ましくは六角穴形状)として活用できるよう形成されると好ましい。また、着脱器具係止溝を兼ねる流通孔21f,22fの深さは適宜変更可能で、取付部21a,22aの途中まででもよいし、中栓21b,22bにまで達していてもよい。
In this embodiment, the inner plugs 21b and 22b of the pipe-shaped members 21 and 22 serve as an assembly guide so that the pipe main bodies 21c and 22c are assembled and arranged at predetermined positions (preferably in the center) of the inner holes 14 and 15. ing. In addition, you may play the role which closes between the inner stoppers 21b and 22b and the inner holes 14 and 15 (in that case, it is preferable to interpose a sealing member, such as an O-ring). When these roles are not performed, the inner plugs 21b and 22b can be omitted.
The outer peripheral surfaces of the hollow cylindrical pipe bodies 21c and 22c projecting in the depth direction of the inner holes 14 and 15 from the inner plugs 21b and 22b with the pipe-shaped members 21 and 22 attached to the inner holes 14 and 15 are preferable. Are arranged at an interval (in the radial direction of the inner hole) with respect to the inner peripheral surfaces of the inner holes 14 and 15. The distal ends of the pipe bodies 21c and 22c are opened at the deepest part of the inner holes 14 and 15, and communicate with the inner holes. Thus, in each of the pipe main bodies 21c and 22c, the inner peripheral side and the outer peripheral side of the pipe main bodies 21c and 22c communicate with each other through the tip opening to form a coolant flow path.
The above-described inner plugs 21b, 22b and the attachment portions 21a, 22a are formed with holes 21g, 22g for allowing the pipe main bodies 21c, 22c and the communication passage 17 to communicate with each other to allow cooling water to flow therethrough. Flow holes 21f and 22f are formed on the top surface of 22a. The circulation holes 21f and 22f can be used as attachment / detachment device locking grooves (preferably hexagonal holes) for locking attachment / detachment devices (preferably hexagonal wrench) for rotating and removing the pipe-like members 21 and 22. Preferably formed. Further, the depths of the flow holes 21f and 22f that also serve as attachment / detachment device locking grooves can be changed as appropriate, and may be up to the middle of the attachment portions 21a and 22a, or may reach the inner plugs 21b and 22b.

図3及び図4に戻って、冷却室19aには、第1の内孔14の内周面とパイプ本体21cの外周面との間に外周流路11aが形成され、パイプ本体21cの内周側に内周流路11bが形成され、冷却室19bには、パイプ本体22cの内周側に内周流路11cが形成され、第2の内孔15の内周面とパイプ本体22cとの間に外周流路11dが形成されている。
内孔は内孔通液路によって分割金型36Aの外部に連通するが、内孔通液路として、第1の内孔14の冷却室19aの中栓21b側には、冷却水の給水路24が形成され、第2の内孔15の冷却室19bの中栓22b側には、冷却水の排水路25が形成されている。図6示すように、分割金型36Aの底面には、給水路24に連通する給水口24aと排水路25に連通する排水口25aが形成されている。給水口24aは、スライドインサート金型36Aを取付け、当接・分離移動するスライド対(スライド機構ともよぶ)39の内部流路39a(図1参照)を介して図示しない開閉弁、冷却水を送水するポンプ、冷却水の温度を計測する温度計、流量計、熱交換器、冷却水を貯める貯水槽などの補機類が接続され、排水口25aは、スライドインサート金型36Aを取付けるスライド対39の内部流路39b(図1参照)を介して貯水槽などの補機類に接続されている。なお、給水口24a、および排水口25aが、分割金型36Aの分割面を除く側面、または、図6における上面側にくるよう給水路24および排水路25を設け、スライド対を介さずに給水口24a,排水口25aを直接補機類に接続してもよい。
パイプ状部材を分割金型36A,36Bに取付ける手順は、図3の分割金型36Bに示すように、初めに第1の内孔14,および第2の内孔15にバイプ状部材21,22を1本ずつ取付け、その後図3の分割金型36Aに示すように、蓋部材13,13で第1の内孔14及び第2の内孔15を閉塞する。
Returning to FIGS. 3 and 4, the cooling chamber 19a has an outer peripheral flow path 11a formed between the inner peripheral surface of the first inner hole 14 and the outer peripheral surface of the pipe main body 21c, and the inner periphery of the pipe main body 21c. An inner circumferential flow path 11b is formed on the side, and an inner circumferential flow path 11c is formed on the inner circumferential side of the pipe body 22c in the cooling chamber 19b, and an outer circumferential flow is formed between the inner circumferential surface of the second inner hole 15 and the pipe body 22c. A path 11d is formed.
The inner hole communicates with the outside of the split mold 36A through an inner hole liquid passage. As an inner hole liquid passage, a cooling water supply passage is provided on the inner plug 21b side of the cooling chamber 19a of the first inner hole 14. 24 is formed, and a cooling water drainage channel 25 is formed on the side of the inner plug 22b of the cooling chamber 19b of the second inner hole 15. As shown in FIG. 6, a water supply port 24 a that communicates with the water supply channel 24 and a water discharge port 25 a that communicates with the drainage channel 25 are formed on the bottom surface of the split mold 36 </ b> A. The water supply port 24a is attached with a slide insert mold 36A, and supplies an on-off valve and cooling water (not shown) via an internal flow path 39a (see FIG. 1) of a slide pair (also referred to as a slide mechanism) 39 that contacts and separates. Auxiliary equipment such as a pump for measuring the temperature of the cooling water, a thermometer for measuring the temperature of the cooling water, a flow meter, a heat exchanger, and a water storage tank for storing the cooling water are connected, and the drain port 25a is a slide pair 39 for mounting the slide insert mold 36A. The internal flow path 39b (see FIG. 1) is connected to auxiliary equipment such as a water storage tank. It should be noted that the water supply passage 24 and the drainage passage 25 are provided so that the water supply port 24a and the drainage port 25a are located on the side surface excluding the dividing surface of the split mold 36A or on the upper surface side in FIG. The port 24a and the drain port 25a may be directly connected to auxiliary equipment.
The procedure for attaching the pipe-shaped member to the divided molds 36A, 36B is as follows. First, as shown in the divided mold 36B of FIG. Are attached one by one, and then the first inner hole 14 and the second inner hole 15 are closed by the lid members 13 and 13 as shown in the split mold 36A of FIG.

本実施形態では、上述したように、インサートスライド金型36の分割金型36A,36Bには、冷却水が流れる冷却水の流路11,11が形成されている。
図3及び図4を参照にして、一方の分割金型36Aで説明すると、冷却水は図示しない圧送手段によって、スライド対39の内部流路39a(図1参照)から冷却水の流路11に供給される。詳しくは冷却水を分割金型36A,36Bの底面にある給水口24aから給水路24に冷却水を供給し、第1の冷却室19aの外周流路11aへ供給される。第1の冷却室19aでは、パイプ本体21cの先端開口が外周流路11aと連通しているので、冷却水はパイプ本体21cの内周流路11bに流れ込む。そして、孔21g、連通孔21fを通過して連通路17に流れ込む。連通路17は第1の内孔14と第2の内孔15とが交差している箇所であり、冷却水は連通路17から流通孔22f、孔22gを通って、パイプ本体22cの内周流路11cへ供給される。パイプ本体22cの先端開口が外周流路11dに連通しているので冷却水は外周流路11dへ供給される。そして、外周流路11dから排水路25を通って冷却水は排水口25aからスライド対39の内部流路39b(図1参照)に排水され、好ましくは再び貯水槽などに集められ、熱交換機を通して再度冷却水として用いられる。
In the present embodiment, as described above, the cooling water flow paths 11 and 11 through which the cooling water flows are formed in the split molds 36A and 36B of the insert slide mold 36.
Referring to FIGS. 3 and 4, the one split mold 36 </ b> A will be described. The cooling water is transferred from the internal flow path 39 a (see FIG. 1) of the slide pair 39 to the cooling water flow path 11 by a pumping means (not shown). Supplied. Specifically, the cooling water is supplied from the water supply port 24a on the bottom surface of the divided molds 36A and 36B to the water supply passage 24 and supplied to the outer peripheral flow passage 11a of the first cooling chamber 19a. In the 1st cooling chamber 19a, since the front-end | tip opening of the pipe main body 21c is connecting with the outer periphery flow path 11a, a cooling water flows in into the inner peripheral flow path 11b of the pipe main body 21c. Then, it passes through the hole 21 g and the communication hole 21 f and flows into the communication path 17. The communication path 17 is a place where the first inner hole 14 and the second inner hole 15 intersect, and the cooling water passes from the communication path 17 through the circulation hole 22f and the hole 22g, and passes through the inner peripheral flow path of the pipe body 22c. 11c. Since the tip opening of the pipe body 22c communicates with the outer peripheral flow path 11d, the cooling water is supplied to the outer peripheral flow path 11d. Then, the cooling water is drained from the outer peripheral channel 11d through the drainage channel 25 to the inner channel 39b (see FIG. 1) of the slide pair 39 from the drainage port 25a, and is preferably collected again in a water storage tank or the like and passed through the heat exchanger. Used again as cooling water.

このように、冷却室19a側では外周流路11aと内周流路11bの内外の2重構造を採っているので、冷却水の流路を長くでき、冷却室19b側では内周流路11cと外周流路11dの内外の2重構造を採っているので、冷却水の流路を長くできる。そして、第1の冷却室19aと第2の冷却室19bとがノズル形成孔36aを跨ぐようにして配置されているので、分割金型36A,36Bのノズル成形孔36aの周辺を冷却し、ノズル部を形成する溶融樹脂を効率良く冷却できる。   Thus, since the cooling chamber 19a side has a double structure inside and outside the outer peripheral flow path 11a and the inner peripheral flow path 11b, the flow path of the cooling water can be lengthened, and the inner peripheral flow path 11c and the outer peripheral flow path can be increased on the cooling chamber 19b side. Since the inner / outside dual structure of 11d is adopted, the flow path of the cooling water can be lengthened. And since the 1st cooling chamber 19a and the 2nd cooling chamber 19b are arrange | positioned so that the nozzle formation hole 36a may be straddled, the circumference | surroundings of the nozzle formation hole 36a of the division molds 36A and 36B are cooled, and a nozzle The molten resin forming the part can be efficiently cooled.

この分割金型により成形されるプリフォームは、この好適な冷却水の流路による冷却によって、ノズル部(口頸部)のヒケや変形を防止し、安定した製品(半製品)となる。
本発明のパイプ状部材21,22は、断面が円環形状であり、また第1の内孔14(及び第1の冷却室19a)、第2の内孔15(及び第2の冷却室19b)が円形断面の空間の2重円断面構造であるため、冷却水の流路断面積の設計が容易である。また、パイプ状部材21,22がどの回転角度で取付けられても、冷却路の形状は変化しない。したがって、各成形金型毎の冷却のばらつきを抑えることができる。
ねじによるパイプ状部材21,22の取付け、取り外しができるので、パイプ状部材21,22のパイプ本体21c,22cの長さ、内径、外径(肉厚)を変更して、適宜冷却水の流路断面積や内周流路と外周流路の断面積比、あるいは内孔先端の流路形状の設計を変更できる。また、ねじ式の蓋部材13と相俟って、流路の清掃を容易かつ十分に行うことが可能となる。すなわち、蓋部材13,13およびパイプ状部材21,22を取り外して各々を清掃する共に、取り外し後の内孔14,15および連通路17を清掃後、再びパイプ状部材21,22および蓋部材13,13を取付けることで流路の分解清掃作業が可能となる。
The preform formed by this divided mold prevents the sink or deformation of the nozzle portion (mouth neck portion) by cooling with the flow path of this preferable cooling water, and becomes a stable product (semi-finished product).
The pipe-shaped members 21 and 22 of the present invention have an annular cross section, and the first inner hole 14 (and the first cooling chamber 19a), the second inner hole 15 (and the second cooling chamber 19b). ) Is a double-circular cross-sectional structure of a circular cross-section space, it is easy to design the flow passage cross-sectional area of the cooling water. In addition, the shape of the cooling path does not change regardless of the rotation angle at which the pipe-like members 21 and 22 are attached. Therefore, variation in cooling for each molding die can be suppressed.
Since the pipe-like members 21 and 22 can be attached and detached by screws, the length, inner diameter, and outer diameter (thickness) of the pipe main bodies 21c and 22c of the pipe-like members 21 and 22 can be changed to appropriately flow the cooling water. It is possible to change the design of the cross-sectional area of the road, the cross-sectional area ratio between the inner peripheral channel and the outer peripheral channel, or the channel shape at the tip of the inner hole. Further, in combination with the screw-type lid member 13, the flow path can be easily and sufficiently cleaned. That is, the lid members 13 and 13 and the pipe-shaped members 21 and 22 are removed and cleaned, and the removed inner holes 14 and 15 and the communication passage 17 are cleaned, and then the pipe-shaped members 21 and 22 and the lid member 13 are again cleaned. , 13 can be disassembled and cleaned.

以上、本発明を実施形態に基づいて添付図面を参照しながら詳細に説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく、更に他の変形あるいは変更が可能である。
例えば、冷却液は冷却水に限らず、冷却油など、様々な冷却液を用いてもよい。
また、上記実施形態では、プリフォームのノズル形成孔36aを形成するインサートスライド金型36の半割型である分割金型36A,36Bに冷却水の流路11,11を形成したが、その他の半円状物、円弧状物、V字状物、U字状物の成形金型などに本発明の冷却水の流路を形成してもよい。また、成形金型は樹脂の射出成形用に限らず樹脂の圧縮成形用成形金型に適用してもよいし、プレス加工用金型など、様々な成形金型に用いることができる。
また、二重孔、内孔、パイプ状部材等を2本備えた冷却液流路構造の例を示したが、実施形態で挙げた2本を一組とした冷却液流路構造を一つの金型に複数組備えていてもよい。
The present invention has been described in detail based on the embodiments with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and other modifications can be made without departing from the scope of the present invention. Or it can be changed.
For example, the cooling liquid is not limited to cooling water, and various cooling liquids such as cooling oil may be used.
In the above embodiment, the cooling water flow paths 11 and 11 are formed in the split molds 36A and 36B which are half molds of the insert slide mold 36 for forming the nozzle forming hole 36a of the preform. The cooling water flow path of the present invention may be formed in a semi-circular object, an arc-shaped object, a V-shaped object, a U-shaped object molding die, or the like. The molding die is not limited to resin injection molding, and may be applied to a resin compression molding molding die, or may be used for various molding dies such as a press working die.
Moreover, although the example of the cooling fluid flow path structure provided with two double holes, an inner hole, a pipe-shaped member, etc. was shown, the cooling fluid flow path structure which made two sets mentioned in embodiment one set is one. A plurality of sets may be provided in the mold.

さらに、実施形態では連通路17を内孔14,15の交差箇所としたが、図7のようにパイプ状部材21,22の孔21g,22g内に配管用雌ねじを設け、そこにホースを連結するためのジョイントを締結し、ホース17aによって内周流路11b,11c同士を接続してもよい。
蓋部材13、パイプ状部材21,22については、内孔14,15にねじによって取付けるようにしたが、パイプ状部材を頻繁に付け換える必要のないときは、圧入,溶接などによって取付けてもよい。
冷却室19a,19bにおける内孔14,15の内周面には、熱伝達のよいスリーブ状の部材を装着し、熱交換の効率を向上させるようにしてもよい。
本実施形態で説明した冷却水の流路については、一例であり、例えば連通路17に直接達する冷却水の給水路および給水口を別途形成し、連通路17から内周流路11b,11cへ冷却水を流し、各内周流路11b,11cから外周流路11a,11dへ冷却水を流し、給水路24及び排水路25から冷却水を排水できるし、その逆も可能である。
Further, in the embodiment, the communication passage 17 is the intersection of the inner holes 14 and 15, but as shown in FIG. 7, pipe internal threads are provided in the holes 21g and 22g of the pipe-like members 21 and 22, and a hose is connected thereto. For this purpose, the inner peripheral flow paths 11b and 11c may be connected to each other by a hose 17a.
The lid member 13 and the pipe-like members 21 and 22 are attached to the inner holes 14 and 15 by screws. However, when the pipe-like members need not be frequently replaced, they may be attached by press-fitting, welding, or the like. .
A sleeve-like member with good heat transfer may be attached to the inner peripheral surfaces of the inner holes 14 and 15 in the cooling chambers 19a and 19b to improve the efficiency of heat exchange.
The cooling water flow path described in the present embodiment is an example. For example, a cooling water supply path and a water supply port that directly reach the communication path 17 are separately formed, and the cooling water is supplied from the communication path 17 to the inner peripheral flow paths 11b and 11c. The cooling water can be discharged from the inner peripheral flow paths 11b and 11c to the outer peripheral flow paths 11a and 11d, and the cooling water can be drained from the water supply path 24 and the drainage path 25, and vice versa.

1 合成樹脂供給装置
11 冷却水の流路
11a,11d 外周流路
11b,11c 内周流路
13 蓋部材
13a 六角孔
14 第1の内孔
14a,15a 栓孔
15 第2の内孔
19a,19b 冷却室
21,22 パイプ状部材
21a,22b 取付部
21b,22b 中栓
21c,22c パイプ本体
21d,22d 雄ねじ
21f,22f 流通孔
21g,22b 孔
31 圧縮成型装置
33 圧縮成形金型
34 キャビティ金型
35 コア金型
36 スライドインサート金型
36A,36B 分割金型
DESCRIPTION OF SYMBOLS 1 Synthetic resin supply apparatus 11 Flow path of cooling water 11a, 11d Outer peripheral flow path 11b, 11c Inner peripheral flow path 13 Lid member 13a Hexagonal hole 14 First inner hole 14a, 15a Plug hole 15 Second inner hole 19a, 19b Cooling chamber 21, 22 Pipe-shaped member 21a, 22b Mounting portion 21b, 22b Inner plug 21c, 22c Pipe body 21d, 22d Male screw 21f, 22f Flow hole 21g, 22b Hole 31 Compression molding device 33 Compression molding die 34 Cavity die 35 Core die Mold 36 Slide insert mold 36A, 36B Split mold

Claims (7)

成形金型に冷却液を通すための流路構造であって、
前記金型内に設けられた内孔と前記内孔内に挿入されるパイプ本体とで形成された、前記パイプ本体の内周面側の内周流路と、前記内孔の内周面とパイプ本体の外周面との間に形成される外周流路とからなる二重孔を二本備え、
前記内周流路と外周流路とは、先端部側では連通し、後端部側では連通不能となるよう前記外周流路が閉塞部によって閉塞され、
前記二本の二重孔の内周流路は互いに後端部側で連通路によって接続され、
前記外周流路の前記閉塞部近傍と、前記金型外部とを通液可能にする内孔通液路が設けられていることを特徴とする、成形金型の冷却液流路構造。
A flow path structure for passing a cooling liquid through a molding die,
An inner peripheral flow path on the inner peripheral surface side of the pipe main body, an inner peripheral surface of the inner hole, and a pipe main body formed by an inner hole provided in the mold and a pipe main body inserted into the inner hole. Two double holes consisting of an outer peripheral flow path formed between the outer peripheral surface of
The inner peripheral flow path and the outer peripheral flow path are communicated on the front end side, and the outer peripheral flow path is blocked by a closing portion so as not to communicate on the rear end side,
The inner peripheral flow paths of the two double holes are connected to each other by a communication path on the rear end side,
A cooling liquid flow path structure for a molding die, wherein an inner hole liquid passage for allowing liquid to pass through the vicinity of the closed portion of the outer circumferential flow path and the outside of the mold is provided.
成形金型の内部に向かって交差させて形成される2本の内孔と、
前記内孔内の装着部によって取付けられる、中空のパイプ本体と中空の取付部とからなるパイプ状部材2本と、
前記内孔開口端を閉塞する2つの蓋部材と、
前記金型外部から前記内孔に達する2つの内孔通液路と、からなり、
前記内孔同士の交差箇所を連通路とし、
前記パイプ状部材は、前記取付部によって取付部外周と前記内孔装着部の内周とを封じ、前記内孔の連通路より奥側に配設され、
前記内孔通液路は、前記装着部近傍と金型外部とを連通させ、
前記連通路と前記内孔の先端部とが前記パイプ状部材の孔によって連通し、
前記パイプ状部材の孔からなる内周流路と、前記内孔内周面と前記パイプ本体の外周面とからなる外周流路と、を備えていることを特徴とする、成形金型の冷却液流路構造。
Two inner holes formed crossing toward the inside of the molding die;
Two pipe-like members each comprising a hollow pipe body and a hollow attachment portion, which are attached by the attachment portion in the inner hole;
Two lid members for closing the open end of the inner hole;
And two inner hole fluid passages that reach the inner hole from the outside of the mold,
The intersection between the inner holes is a communication path,
The pipe-shaped member seals the outer periphery of the attachment portion and the inner periphery of the inner hole mounting portion by the attachment portion, and is disposed on the back side from the communication path of the inner hole,
The inner hole liquid passage connects the vicinity of the mounting portion and the outside of the mold,
The communication passage and the tip of the inner hole communicate with each other through a hole in the pipe-shaped member;
A cooling liquid flow of a molding die, comprising: an inner peripheral flow path composed of holes of the pipe-shaped member; and an outer peripheral flow path composed of an inner peripheral surface of the inner hole and an outer peripheral surface of the pipe body. Road structure.
前記内孔通液路の一方から前記外周流路の一方を通り、以下該一方の外周流路側の内周流路、他方の内周流路、他方の外周流路、他方の内孔通液路の順に冷却液が流れるように構成したことを特徴とする請求項1または2に記載の成形金型の冷却液流路構造。   One of the inner hole passages is passed through one of the outer passages, and the inner peripheral passage on the one outer passage side, the other inner passage, the other outer passage, and the other inner passage passage are sequentially cooled. The coolant flow path structure of the molding die according to claim 1, wherein the coolant flows. 前記パイプ本体が円筒状であり、前記パイプ本体が配設される箇所の前記内孔内周面の形状が円形断面であることを特徴とする、請求項1〜3のいずれかに記載の成形金型の冷却液流路構造。   The said pipe main body is cylindrical shape, The shape of the said internal peripheral surface of the inner hole of the location by which the said pipe main body is arrange | positioned is a circular cross section, The shaping | molding in any one of Claims 1-3 characterized by the above-mentioned. Mold coolant flow path structure. 前記パイプ状部材の取付部は雄ねじが形成され、該雄ねじを前記内孔の装着部に形成された雌ねじに螺着させて、取付けするとともに、前記雄ねじの頭部には、冷却液を流通可能にし、且つパイプ状部材の取付け取外しの際に、前記雄ねじを回転させる着脱器具を係止させる、流通孔が形成されていることを特徴とする請求項1〜4のいずれかに記載の成形金型の冷却液流路構造。   The mounting portion of the pipe-shaped member is formed with a male screw, and the male screw is screwed onto the female screw formed in the mounting portion of the inner hole for mounting, and coolant can be circulated through the head of the male screw. The metal mold according to any one of claims 1 to 4, wherein a flow hole is formed to lock the attachment / detachment device for rotating the male screw when the pipe-shaped member is attached and detached. Mold coolant flow path structure. 前記成形金型は樹脂製容器のプリフォームを形成するための成形金型であって、前記冷却液通構造が前記プリフォームの口頸部を実質的に成形する分割金型に設けられていることを特徴とする請求項1〜5のいずれかに記載の成形金型の冷却液流路構造。   The molding die is a molding die for forming a preform of a resin container, and the cooling fluid passage structure is provided in a split die that substantially molds the neck and neck of the preform. The coolant flow path structure of the molding die according to any one of claims 1 to 5. 請求項1〜6のいずれかに記載の冷却液流路構造を備えたことを特徴とする成形金型。   A molding die comprising the coolant flow path structure according to claim 1.
JP2010097975A 2010-04-21 2010-04-21 Cooling liquid flow path structure of molding die and molding die Active JP5540861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097975A JP5540861B2 (en) 2010-04-21 2010-04-21 Cooling liquid flow path structure of molding die and molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097975A JP5540861B2 (en) 2010-04-21 2010-04-21 Cooling liquid flow path structure of molding die and molding die

Publications (2)

Publication Number Publication Date
JP2011224906A true JP2011224906A (en) 2011-11-10
JP5540861B2 JP5540861B2 (en) 2014-07-02

Family

ID=45040879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097975A Active JP5540861B2 (en) 2010-04-21 2010-04-21 Cooling liquid flow path structure of molding die and molding die

Country Status (1)

Country Link
JP (1) JP5540861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208498A1 (en) * 2018-04-26 2019-10-31 日精エー・エス・ビー機械株式会社 Mold for injection molding, lip die included in said mold, and injection molding method
CN113654744A (en) * 2021-08-31 2021-11-16 广州市型腔模具制造有限公司 Mold cooling water path pressure and flow detection and analysis system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156915U (en) * 1979-04-27 1980-11-11
JPS59120030U (en) * 1983-02-03 1984-08-13 本田技研工業株式会社 Mold cooling/heating equipment
JPH0454826U (en) * 1990-09-14 1992-05-11
JP2005103620A (en) * 2003-10-01 2005-04-21 Daihatsu Motor Co Ltd Die with cooling function
JP2008055709A (en) * 2006-08-30 2008-03-13 Hitachi Ltd Mold cooling device
JP2008542066A (en) * 2005-06-03 2008-11-27 ハスキー インジェクション モールディング システムズ リミテッド Mold split insert
JP2009034695A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Cooling structure for die

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156915U (en) * 1979-04-27 1980-11-11
JPS59120030U (en) * 1983-02-03 1984-08-13 本田技研工業株式会社 Mold cooling/heating equipment
JPH0454826U (en) * 1990-09-14 1992-05-11
JP2005103620A (en) * 2003-10-01 2005-04-21 Daihatsu Motor Co Ltd Die with cooling function
JP2008542066A (en) * 2005-06-03 2008-11-27 ハスキー インジェクション モールディング システムズ リミテッド Mold split insert
JP2008055709A (en) * 2006-08-30 2008-03-13 Hitachi Ltd Mold cooling device
JP2009034695A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Cooling structure for die

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208498A1 (en) * 2018-04-26 2019-10-31 日精エー・エス・ビー機械株式会社 Mold for injection molding, lip die included in said mold, and injection molding method
JPWO2019208498A1 (en) * 2018-04-26 2021-04-30 日精エー・エス・ビー機械株式会社 Injection molding dies, lip dies included in them, and injection molding methods
JP7279025B2 (en) 2018-04-26 2023-05-22 日精エー・エス・ビー機械株式会社 Injection mold, lip mold included therein, and injection molding method
CN113654744A (en) * 2021-08-31 2021-11-16 广州市型腔模具制造有限公司 Mold cooling water path pressure and flow detection and analysis system

Also Published As

Publication number Publication date
JP5540861B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
RU2427464C2 (en) Mould for moulding plastic articles and method of producing mould components
KR20080023722A (en) A mold split insert
JP5684225B2 (en) Spout sleeve
ES2568066T3 (en) Molding device with cooling channels with successive stages
US9833987B2 (en) Process of manufacturing an injection mould component
JP5540861B2 (en) Cooling liquid flow path structure of molding die and molding die
EP3175966A1 (en) Air-cooled sprue bush for mold
KR20110032266A (en) Injection mold
JP2007276224A (en) Cooling structure of arc-shaped core mold and method for forming arc-shaped cooling water hole in the core mold
CN210651674U (en) Mold cooling structure and compression mold
JP5829983B2 (en) Delivery pipe forming method
US20110165285A1 (en) Blow mold design
CN216658881U (en) Bottom die and bottle blowing die using same
CN110539461A (en) bottle blank mold cooling plate
KR102294653B1 (en) injection molding tool
WO2014157447A1 (en) Plastic bottle blow molding die
JP5684421B2 (en) Mold divertor and casting mold having the same
CN102275268A (en) Nozzle and injection mold adopting same
JP2006068956A (en) Cooling structure of cavity bottom part of injection mold
BR112019000853B1 (en) PUNCH FOR COMPRESSION MOLDS
JP5931645B2 (en) Connector member
KR20110055956A (en) Capping member and mold cooling device thereof
KR200484963Y1 (en) Cooler for diecasting
JP2016093764A (en) Fluid mixer
CN211590940U (en) Mould convenient to adjust internal diameter for producing plastic pipe cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150