JP2022009464A - Single-row deep groove ball bearing and manufacturing method thereof - Google Patents

Single-row deep groove ball bearing and manufacturing method thereof Download PDF

Info

Publication number
JP2022009464A
JP2022009464A JP2021173897A JP2021173897A JP2022009464A JP 2022009464 A JP2022009464 A JP 2022009464A JP 2021173897 A JP2021173897 A JP 2021173897A JP 2021173897 A JP2021173897 A JP 2021173897A JP 2022009464 A JP2022009464 A JP 2022009464A
Authority
JP
Japan
Prior art keywords
inner ring
ball bearing
axial direction
raceway groove
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021173897A
Other languages
Japanese (ja)
Other versions
JP7151854B2 (en
Inventor
良雄 神谷
Yoshio Kamiya
達男 若林
Tatsuo Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JP2022009464A publication Critical patent/JP2022009464A/en
Application granted granted Critical
Publication of JP7151854B2 publication Critical patent/JP7151854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Attitude Control For Articles On Conveyors (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single-row deep groove ball bearing capable of suppressing a falling speed of an inner ring falling from an elevator conveyor, to prevent damage of the inner ring, and a manufacturing method thereof.
SOLUTION: An inner ring 12 has an axially asymmetric structure where the shape of one end part in an axis direction is different from that of the other end part in the axis direction with an inner ring raceway groove 12a held therebetween. At the other end part in the axis direction of the inner ring 12, a first small-diameter step part 12f is provided. At an outer peripheral edge of one shoulder part 12b out of a pair of shoulder parts 12b adjacent to the inner ring raceway groove 12a of the inner ring 12, an inner ring side chamfer part 12i is provided, wherein the inner ring side chamfer part is larger than a chamfer part 12e provided on an outer peripheral edge of the other shoulder part 12b.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、製造時に内輪がエレベータコンベアにより搬送される単列深溝玉軸受、例えば、半浮動式後輪アクスル用玉軸受、及びその製造方法に関する。 The present invention relates to a single row deep groove ball bearing in which an inner ring is conveyed by an elevator conveyor at the time of manufacturing, for example, a semi-floating rear wheel axle ball bearing, and a method for manufacturing the same.

半浮動式の車輪支持装置は、構造が単純で安価であり、半浮動式後輪アクスル用玉軸受(以下「玉軸受」とも言う。)の交換も容易なため、車両の走行距離の長いタクシー車や小型商用車(バンやトラック)に広く搭載される。この車輪支持装置では、その端部に車輪取付部が設けられる車軸(アクスルシャフト)の外周面に玉軸受が圧入固定され、アクスルシャフトはこの玉軸受を介して回転可能に支持される。 The semi-floating wheel support device has a simple structure and is inexpensive, and the ball bearings for semi-floating rear wheel axles (hereinafter also referred to as "ball bearings") can be easily replaced. Widely installed in cars and small commercial vehicles (vans and trucks). In this wheel support device, a ball bearing is press-fitted and fixed to the outer peripheral surface of an axle (axle shaft) provided with a wheel mounting portion at its end, and the axle shaft is rotatably supported via the ball bearing.

この種の玉軸受としては、内輪に軸方向に突出する突出部が形成され、内輪の軸方向寸法(幅)が外輪の軸方向寸法よりも長く設けられるものが知られる(例えば、特許文献1参照)。すなわち、この種の玉軸受の内輪は、突出部が形成されて内輪軌道溝を挟んで軸方向に非対称構造に設けられる。 As this type of ball bearing, it is known that a protruding portion protruding in the axial direction is formed in the inner ring, and the axial dimension (width) of the inner ring is provided longer than the axial dimension of the outer ring (for example, Patent Document 1). reference). That is, the inner ring of this type of ball bearing is provided in an axially asymmetrical structure with a protruding portion formed and the inner ring raceway groove interposed therebetween.

特開2002-013539号公報Japanese Unexamined Patent Publication No. 2002-013539

そして、上記したような非対称構造の内輪の内輪軌道溝に研削加工や超仕上げ加工を施す場合、内輪軌道溝が内輪全幅の中央からずれた位置にあるため、その製造過程で内輪を所定の向きに揃える必要がある。そこで非対称構造の内輪の向きを揃えるために、非対称構造の内輪の重心が軸方向中心に対して一方に偏ること、及び重力方向に対して斜めに配置されるエレベータコンベアを利用する。このエレベータコンベアは、ホッパーに収容された多数の内輪を下方から上方に1個ずつ又は複数個ずつ搬送しながらその向きを揃える。 When grinding or super-finishing the inner ring raceway groove of the inner ring having an asymmetric structure as described above, the inner ring raceway groove is located at a position deviated from the center of the entire width of the inner ring, so that the inner ring is oriented in a predetermined direction during the manufacturing process. Need to be aligned with. Therefore, in order to align the directions of the inner rings of the asymmetric structure, an elevator conveyor is used in which the center of gravity of the inner rings of the asymmetric structure is biased to one side with respect to the center in the axial direction and is arranged diagonally with respect to the gravity direction. This elevator conveyor aligns the directions of a large number of inner rings housed in the hopper while transporting them one by one or one or more from the bottom to the top.

ここで、図7及び図8を参照して、非対称構造の内輪をエレベータコンベアで搬送する従来例について説明する。図7は、従来の玉軸受の内輪をその突出部でエレベータコンベアの爪部と係合させて搬送する状態を説明する断面図である。図8は、従来の玉軸受の内輪をその突出部とは軸方向反対側の端部でエレベータコンベアの爪部と係合させて搬送する状態を説明する断面図である。 Here, with reference to FIGS. 7 and 8, a conventional example of transporting an inner ring having an asymmetric structure by an elevator conveyor will be described. FIG. 7 is a cross-sectional view illustrating a state in which an inner ring of a conventional ball bearing is engaged with a claw portion of an elevator conveyor at a protruding portion thereof and conveyed. FIG. 8 is a cross-sectional view illustrating a state in which an inner ring of a conventional ball bearing is engaged with a claw portion of an elevator conveyor at an end portion opposite to the protruding portion in the axial direction and conveyed.

図7及び図8に示すように、内輪52は、内輪軌道溝52aを挟んで軸方向に非対称構造であり、軸方向一端部(図7の左側端部、図8の右側端部)に軸方向外方に突出する突出部52cを有する。また、内輪52の軸方向他端部(図7の右側端部、図8の左側端部)の外周面には、小径段部52dが全周に亘って形成されている。また、内輪52は、内輪軌道溝52aに隣接する一対の肩部52bをその外周部に有し、一対の肩部52bのうち一方が突出部52cを構成する。また、突出部52cの外周面及び小径段部52d側の肩部52bの外周面はそれぞれ径が一様な円筒面に形成される。 As shown in FIGS. 7 and 8, the inner ring 52 has an axially asymmetric structure with the inner ring raceway groove 52a interposed therebetween, and has an axial axis at one end in the axial direction (left end in FIG. 7, right end in FIG. 8). It has a protruding portion 52c that protrudes outward in the direction. Further, a small diameter step portion 52d is formed over the entire circumference on the outer peripheral surface of the other end portion in the axial direction of the inner ring 52 (the right end portion in FIG. 7 and the left end portion in FIG. 8). Further, the inner ring 52 has a pair of shoulder portions 52b adjacent to the inner ring raceway groove 52a on the outer peripheral portion thereof, and one of the pair of shoulder portions 52b constitutes the protruding portion 52c. Further, the outer peripheral surface of the protruding portion 52c and the outer peripheral surface of the shoulder portion 52b on the small diameter step portion 52d side are each formed into a cylindrical surface having a uniform diameter.

エレベータコンベア60は、ベルト61と、ベルト61の表面に設けられ、内輪52を乗せるための爪部62と、を備える。爪部62は、重力方向断面視で矩形状且つベルト61の幅方向に沿って線状に形成される。エレベータコンベア60は、爪部62の上面に内輪52の外周面を乗せて、内輪52を上方に向けて搬送する。 The elevator conveyor 60 includes a belt 61 and a claw portion 62 provided on the surface of the belt 61 for mounting the inner ring 52. The claw portion 62 is formed in a rectangular shape in a cross-sectional view in the direction of gravity and in a linear shape along the width direction of the belt 61. The elevator conveyor 60 places the outer peripheral surface of the inner ring 52 on the upper surface of the claw portion 62, and conveys the inner ring 52 upward.

具体的には、図7に示すように、内輪52の突出部52c側の一端面がベルト61側に位置する場合、内輪52の突出部52cの外周面が爪部62の上面に係合して搬送される。そして、図7に示す搬送状態では、内輪52の重心Gを通る垂線Lが爪部62の上面の範囲、又は爪部62の上面よりもベルト61側(図7の左側)の範囲を通過するため、内輪52は爪部62から落下せずに次工程に搬送される。 Specifically, as shown in FIG. 7, when one end surface of the inner ring 52 on the protruding portion 52c side is located on the belt 61 side, the outer peripheral surface of the protruding portion 52c of the inner ring 52 engages with the upper surface of the claw portion 62. Will be transported. Then, in the transport state shown in FIG. 7, the vertical line L passing through the center of gravity G of the inner ring 52 passes through the range of the upper surface of the claw portion 62 or the range of the belt 61 side (left side of FIG. 7) with respect to the upper surface of the claw portion 62. Therefore, the inner ring 52 is conveyed to the next step without falling from the claw portion 62.

その一方、図8に示すように、内輪52の小径段部52d側の他端面がベルト61側に位置する場合、内輪52の小径段部52d側の肩部52bの外周面が爪部62の上面に係合して搬送される。しかし、図8に示す搬送状態では、内輪52の重心Gを通る垂線Lが爪部62よりもベルト61から離れる側に位置するため、内輪52と爪部62との係合部分を中心にして内輪52がベルト61から離れる方向(図8の矢印B方向)に回転して、搬送中に内輪52が爪部62から落下する。従って、内輪52の小径段部52d側の他端面がベルト61側に位置する場合、内輪52は次工程に搬送されない。 On the other hand, as shown in FIG. 8, when the other end surface of the inner ring 52 on the small diameter step portion 52d side is located on the belt 61 side, the outer peripheral surface of the shoulder portion 52b on the small diameter step portion 52d side of the inner ring 52 is the claw portion 62. It engages with the upper surface and is conveyed. However, in the transport state shown in FIG. 8, since the vertical line L passing through the center of gravity G of the inner ring 52 is located on the side away from the belt 61 with respect to the claw portion 62, the engagement portion between the inner ring 52 and the claw portion 62 is centered. The inner ring 52 rotates in the direction away from the belt 61 (direction of arrow B in FIG. 8), and the inner ring 52 falls from the claw portion 62 during transportation. Therefore, when the other end surface of the inner ring 52 on the small diameter step portion 52d side is located on the belt 61 side, the inner ring 52 is not conveyed to the next step.

そして、内輪52がベルト61から回転して落下する場合、落下距離が大きくなり、内輪52に圧痕ができ、さらにその落下が激しい場合には圧痕の底にマイクロクラックが発生し、内輪52の遅れ破壊などの損傷の原因となる可能性があった。 When the inner ring 52 rotates from the belt 61 and falls, the fall distance becomes large and an indentation is formed on the inner ring 52, and when the drop is severe, a microcrack occurs at the bottom of the indentation and the inner ring 52 is delayed. It could cause damage such as destruction.

ところで、上記した特許文献1の玉軸受の内輪では、突出部の外周面に小径段部が形成されると共に、突出部の内周面に大きな面取部が形成されているため、内輪の突出部に大きな肉抜きが形成されている。このため、内輪の突出部側の端面がベルト側に位置する場合と内輪の突出部から離間する側の端面がベルト側に位置する場合との間において、内輪の軸方向中心からの重心の移動が少なくなる。従って、上記した特許文献1の玉軸受の内輪の場合、図7及び図8に示す内輪の向きを揃える方法を適用することが難しい。 By the way, in the inner ring of the ball bearing of Patent Document 1 described above, since a small diameter step portion is formed on the outer peripheral surface of the protruding portion and a large chamfered portion is formed on the inner peripheral surface of the protruding portion, the inner ring protrudes. A large cutout is formed in the part. Therefore, the movement of the center of gravity from the axial center of the inner ring between the case where the end surface on the protruding portion side of the inner ring is located on the belt side and the case where the end surface on the side away from the protruding portion of the inner ring is located on the belt side. Is reduced. Therefore, in the case of the inner ring of the ball bearing of Patent Document 1 described above, it is difficult to apply the method of aligning the directions of the inner rings shown in FIGS. 7 and 8.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、エレベータコンベアから落下する内輪の落下速度を抑制して、内輪の損傷を防止することができる単列深溝玉軸受及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof is a single-row deep groove ball bearing capable of suppressing the falling speed of the inner ring falling from the elevator conveyor and preventing damage to the inner ring. The purpose is to provide a manufacturing method.

本発明の上記目的は、下記の構成により達成される。
(1)内周面に外輪軌道溝が形成される外輪と、外周面に内輪軌道溝が形成される内輪と外輪軌道溝と内輪軌道溝との間に転動可能に設けられる複数の玉と、を備える単列深溝玉軸受であって、内輪は、内輪軌道溝を挟んで軸方向一端部と軸方向他端部の形状が異なる軸方向に非対称構造であって、内輪の軸方向他端部に第1小径段部が設けられ、内輪の内輪軌道溝に隣接する一対の肩部のうち他方の肩部の外周縁には、一方の肩部の外周縁に設けられる面取部よりも大きい内輪側面取部が設けられることを特徴とする単列深溝玉軸受。
(2)内輪軌道溝から内輪の軸方向一端面までの軸方向寸法が、内輪軌道溝から内輪の軸方向他端面までの軸方向寸法よりも大きいことを特徴とする(1)に記載の単列深溝玉軸受。
(3)内輪側面取部と内輪の重心とを通る直線と内輪の中心軸との交角が55°~75°
の範囲に設定されることを特徴とする(1)又は(2)に記載の単列深溝玉軸受。
(4)(1)~(3)のいずれか1つに記載の単列深溝玉軸受の製造方法であって、内輪は、重力方向に対して斜めに配置されるエレベータコンベアにより下方から上方に搬送され、エレベータコンベアは、ベルトと、ベルトの表面に設けられ、内輪を乗せるための爪部と、を備え、爪部は重力方向断面視で矩形状に形成され、爪部の上面と表側面との間の縁部には、爪側面取部が設けられ、内輪の内輪軌道溝に隣接する一対の肩部のうち他方の肩部の外周縁には、一方の肩部の外周縁に設けられる面取部よりも大きい内輪側面取部が設けられ、エレベータコンベアの爪部によって内輪が搬送される際、内輪側面取部が、爪側面取部に対向するように位置し、且つ内輪の重心を通る垂線上に位置することを特徴とする単列深溝玉軸受の製造方法。
(5)内輪の軸方向一端部に第2小径段部が設けられ、第2小径段部は、内輪軌道溝と同時に研削により設けられ、エレベータコンベアの搬送方向と重力方向に対して直交する水平面との交角は、内輪側面取部と内輪の重心とを通る直線と内輪の中心軸との交角以上に設定されることを特徴とする(4)に記載の単列深溝玉軸受の製造方法。
The above object of the present invention is achieved by the following configuration.
(1) An outer ring having an outer ring raceway groove formed on the inner peripheral surface, and a plurality of balls rotatably provided between the inner ring having an inner ring raceway groove formed on the outer peripheral surface, the outer ring raceway groove, and the inner ring raceway groove. A single-row deep groove ball bearing comprising, the inner ring has an axially asymmetric structure in which the shapes of one end in the axial direction and the other end in the axial direction are different across the inner ring raceway groove, and the other end in the axial direction of the inner ring. A first small-diameter step portion is provided in the portion, and the outer peripheral edge of the other shoulder portion of the pair of shoulder portions adjacent to the inner ring raceway groove of the inner ring is larger than the chamfered portion provided on the outer peripheral edge of one shoulder portion. Single row deep groove ball bearings characterized by a large inner ring chamfer.
(2) The simple dimension according to (1), wherein the axial dimension from the inner ring raceway groove to the axial end surface of the inner ring is larger than the axial dimension from the inner ring raceway groove to the axial end surface of the inner ring. Row deep groove ball bearings.
(3) The intersection angle between the straight line passing through the inner ring side surface portion and the center of gravity of the inner ring and the central axis of the inner ring is 55 ° to 75 °.
The single row deep groove ball bearing according to (1) or (2), which is set in the range of.
(4) The method for manufacturing a single-row deep groove ball bearing according to any one of (1) to (3), wherein the inner ring is moved from the bottom to the top by an elevator conveyor arranged diagonally with respect to the direction of gravity. The elevator conveyor is conveyed and includes a belt and a claw portion provided on the surface of the belt for mounting an inner ring, and the claw portion is formed in a rectangular shape in a cross-sectional view in the direction of gravity, and the upper surface and the front surface surface of the claw portion are formed. A claw side bearing portion is provided on the edge portion between the bearing and the outer peripheral edge of the other shoulder portion of the pair of shoulder portions adjacent to the inner ring raceway groove of the inner ring. An inner ring side surface larger than the chamfered portion is provided, and when the inner ring is conveyed by the claw portion of the elevator conveyor, the inner ring side surface portion is located so as to face the claw side surface capture portion, and the center of gravity of the inner ring. A method for manufacturing a single-row deep groove ball bearing, which is characterized by being located on a vertical line passing through.
(5) A second small-diameter step portion is provided at one end in the axial direction of the inner ring, and the second small-diameter step portion is provided by grinding at the same time as the inner ring raceway groove, and is a horizontal plane orthogonal to the transport direction and the gravity direction of the elevator conveyor. The method for manufacturing a single-row deep groove ball bearing according to (4), wherein the angle of intersection with the bearing is set to be equal to or greater than the angle of intersection between the straight line passing through the side surface portion of the inner ring and the center of gravity of the inner ring and the central axis of the inner ring.

本発明によれば、内輪は、内輪軌道溝を挟んで軸方向一端部と軸方向他端部の形状が異なる軸方向に非対称構造であって、内輪の軸方向他端部に第1小径段部が設けられ、内輪の内輪軌道溝に隣接する一対の肩部のうち他方の肩部の外周縁には、一方の肩部の外周縁に設けられる面取部よりも大きい内輪側面取部が設けられるため、エレベータコンベアの爪部によって内輪が搬送される際、内輪側面取部が、爪部の爪側面取部に対向するように位置し、且つ内輪の重心を通る垂線上に位置する。このため、内輪の内輪側面取部が爪部の爪側面取部を滑り落ち、内輪が回転することなくベルトに沿って滑り落ちるので、内輪の落下速度を抑制して、内輪の損傷を防止することができる。 According to the present invention, the inner ring has an axially asymmetric structure in which the shapes of one end in the axial direction and the other end in the axial direction are different across the inner ring raceway groove, and the first small diameter step is formed at the other end in the axial direction of the inner ring. A portion is provided, and the outer peripheral edge of the other shoulder portion of the pair of shoulder portions adjacent to the inner ring raceway groove of the inner ring has an inner ring side surface portion larger than the chamfered portion provided on the outer peripheral edge of one shoulder portion. Therefore, when the inner ring is conveyed by the claw portion of the elevator conveyor, the inner ring side surface portion is located so as to face the claw side surface portion of the claw portion and is located on a vertical line passing through the center of gravity of the inner ring. For this reason, the inner ring side surface portion of the inner ring slides down the claw side surface portion of the claw portion and slides down along the belt without rotating the inner ring. Therefore, the falling speed of the inner ring is suppressed to prevent damage to the inner ring. Can be done.

本発明に係る単列深溝玉軸受の第1実施形態を説明する断面図である。It is sectional drawing explaining 1st Embodiment of the single row deep groove ball bearing which concerns on this invention. 図1に示す内輪を一方の肩部で爪部と係合させて搬送する状態を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a state in which the inner ring shown in FIG. 1 is engaged with a claw portion at one shoulder portion and conveyed. 図1に示す内輪を他方の肩部で爪部と係合させて搬送する状態を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a state in which the inner ring shown in FIG. 1 is engaged with a claw portion at the other shoulder portion and conveyed. 本発明に係る単列深溝玉軸受の第1実施形態の変形例を説明する断面図である。It is sectional drawing explaining the modification of the 1st Embodiment of the single row deep groove ball bearing which concerns on this invention. 本発明に係る単列深溝玉軸受の第2実施形態を説明する断面図である。It is sectional drawing explaining the 2nd Embodiment of the single row deep groove ball bearing which concerns on this invention. 図5に示す内輪を一方の肩部で爪部と係合させて搬送する状態を説明する断面図である。FIG. 5 is a cross-sectional view illustrating a state in which the inner ring shown in FIG. 5 is engaged with a claw portion at one shoulder portion and conveyed. 従来の玉軸受の内輪をその突出部でエレベータコンベアの爪部と係合させて搬送する状態を説明する断面図である。It is sectional drawing explaining the state which engages and conveys the inner ring of the conventional ball bearing with the claw part of an elevator conveyor by the protruding part. 従来の玉軸受の内輪をその突出部とは軸方向反対側の端部でエレベータコンベアの爪部と係合させて搬送する状態を説明する断面図である。It is sectional drawing explaining the state which carries out the inner ring of the conventional ball bearing by engaging with the claw part of an elevator conveyor at the end part opposite to the protruding part.

以下、本発明に係る単列深溝玉軸受の各実施形態について、図面に基づいて詳細に説明する。なお、単列深溝玉軸受(以下「玉軸受」とも言う。)は、半浮動式の車輪支持装置に搭載される転がり軸受であり、車両の後輪(駆動輪)を回転自在に支承するために使用される。また、半浮動式の車輪支持装置では、車軸(アクスルシャフト)は玉軸受を介してハウジング(アクスルハウジング)に収納される。そして、本実施形態の玉軸受はアクスルシャフトの外周面に係止される。 Hereinafter, each embodiment of the single-row deep groove ball bearing according to the present invention will be described in detail with reference to the drawings. A single row deep groove ball bearing (hereinafter also referred to as "ball bearing") is a rolling bearing mounted on a semi-floating wheel support device, and is used to rotatably support the rear wheels (driving wheels) of the vehicle. Used for. Further, in the semi-floating wheel support device, the axle (axle shaft) is housed in the housing (axle housing) via ball bearings. Then, the ball bearing of the present embodiment is locked to the outer peripheral surface of the axle shaft.

(第1実施形態)
まず、図1~図4を参照して、本発明に係る単列深溝玉軸受の第1実施形態について説明する。
(First Embodiment)
First, a first embodiment of a single-row deep groove ball bearing according to the present invention will be described with reference to FIGS. 1 to 4.

本実施形態の玉軸受(単列深溝玉軸受)10は、図1に示すように、固定軌道輪である外輪11と、回転軌道輪である内輪12と、外輪11の外輪軌道溝11aと内輪12の内輪軌道溝12aとの間に転動可能に設けられる複数の玉13と、複数の玉13を周方向に略等間隔に保持する保持器14と、外輪11の内周面の両端部に取り付けられる第1及び第2密封装置15,16と、を備える。また、軸受内部空間には、潤滑剤(例えば、グリース)が封入されている。 As shown in FIG. 1, the ball bearing (single row deep groove ball bearing) 10 of the present embodiment has an outer ring 11 which is a fixed raceway ring, an inner ring 12 which is a rotary raceway ring, and an outer ring raceway groove 11a and an inner ring of the outer ring 11. A plurality of balls 13 rotatably provided between the inner ring raceway grooves 12a of the twelve, a cage 14 for holding the plurality of balls 13 at substantially equal intervals in the circumferential direction, and both ends of the inner peripheral surface of the outer ring 11. The first and second sealing devices 15 and 16 attached to the above are provided. Further, a lubricant (for example, grease) is sealed in the bearing internal space.

外輪11は、その内周面の軸方向中央に外輪軌道溝11aが形成され、外輪軌道溝11aに隣接する一対の肩部11bを有する。外輪11は、外輪軌道溝11aを挟んで軸方向一端部と軸方向他端部の形状が略同一である。 The outer ring 11 has an outer ring raceway groove 11a formed at the center of the inner peripheral surface in the axial direction, and has a pair of shoulder portions 11b adjacent to the outer ring raceway groove 11a. The outer ring 11 has substantially the same shape at one end in the axial direction and the other end in the axial direction with the outer ring raceway groove 11a interposed therebetween.

内輪12は、その外周面に内輪軌道溝12aが形成され、内輪軌道溝12aに隣接する一対の肩部12bを有する。また、内輪12は、内輪軌道溝12aを挟んで軸方向一端部と軸方向他端部の形状が異なる軸方向に非対称構造であり、内輪軌道溝12aの溝底部から内輪12の軸方向一端面12cまでの軸方向寸法B1が、内輪軌道溝12aの溝底部から内輪12の軸方向他端面12dまでの軸方向寸法B2よりも大きくなるように形成されている。このため、内輪12の軸方向寸法は外輪11の軸方向寸法よりも大きく構成され、内輪12の軸方向一端部が外輪11の軸方向一端面よりも軸方向外側に突出している。また、内輪12の軸方向他端面は、外輪11の軸方向他端面と軸方向位置が略同一である。 The inner ring 12 has an inner ring raceway groove 12a formed on the outer peripheral surface thereof, and has a pair of shoulder portions 12b adjacent to the inner ring raceway groove 12a. Further, the inner ring 12 has an axially asymmetrical structure in which the shapes of one end in the axial direction and the other end in the axial direction are different across the inner ring raceway groove 12a, and the groove bottom portion of the inner ring raceway groove 12a to the one end surface in the axial direction of the inner ring 12. The axial dimension B1 up to 12c is formed to be larger than the axial dimension B2 from the groove bottom portion of the inner ring raceway groove 12a to the axial end surface 12d of the inner ring 12. Therefore, the axial dimension of the inner ring 12 is configured to be larger than the axial dimension of the outer ring 11, and one end portion of the inner ring 12 in the axial direction protrudes outward in the axial direction from the one end surface of the outer ring 11 in the axial direction. Further, the axial end surface of the inner ring 12 has substantially the same axial position as the axial end surface of the outer ring 11.

また、内輪12の軸方向一方側(図1の右側)の肩部12bの外周縁には、テーパ状又は円弧状の面取部12eが全周に亘って形成されている。なお、一対の肩部12bの外周面はそれぞれ径が一様な円筒面に形成される。 Further, on the outer peripheral edge of the shoulder portion 12b on one side in the axial direction (right side in FIG. 1) of the inner ring 12, a tapered or arcuate chamfered portion 12e is formed over the entire circumference. The outer peripheral surfaces of the pair of shoulder portions 12b are formed into cylindrical surfaces having uniform diameters.

また、内輪12の軸方向他端部(図1の左側端部)の外周面には、肩部12bの外周面よりも小径となるように、底面12g及び側面12hを有する第1小径段部12fが全周に亘って形成されている。第1小径段部12fの底面12gは、軸方向外方に向かって縮径するテーパ面に形成される。 Further, on the outer peripheral surface of the other end of the inner ring 12 in the axial direction (left end in FIG. 1), a first small diameter step portion having a bottom surface 12g and a side surface 12h so as to have a smaller diameter than the outer peripheral surface of the shoulder portion 12b. 12f is formed over the entire circumference. The bottom surface 12g of the first small diameter step portion 12f is formed on a tapered surface whose diameter is reduced outward in the axial direction.

また、内輪12の軸方向他方側の肩部12bの外周縁、つまり、第1小径段部12fの側面12hと軸方向他方側(図1の左側)の肩部12bの外周面との間の縁部には、テーパ状の内輪側面取部12iが全周に亘って形成されている。つまり、内輪12の内輪側面取部12iが設けられる側の軸方向端部に、第1小径段部12fが設けられている。そして、内輪側面取部12iは、一方側の肩部12bの面取部12eよりも径方向寸法及び軸方向寸法が大きく形成されている。 Further, the outer peripheral edge of the shoulder portion 12b on the other side in the axial direction of the inner ring 12, that is, between the side surface 12h of the first small diameter step portion 12f and the outer peripheral surface of the shoulder portion 12b on the other side in the axial direction (left side in FIG. 1). A tapered inner ring side surface portion 12i is formed on the edge portion over the entire circumference. That is, the first small diameter step portion 12f is provided at the axial end portion of the inner ring 12 on the side where the inner ring side surface portion 12i is provided. The inner ring side surface chamfer portion 12i is formed to have a larger radial dimension and axial dimension than the chamfer portion 12e of the shoulder portion 12b on one side.

第1密封装置15は、車両組み付け状態で車両外側に配置され、外部の塵埃や泥水が玉軸受内へ侵入することを防止するシールであり、ラジアルリップが内輪12の一方側の肩部12bの外周面に摺接すると共に、サイドリップが内輪12の一方側の肩部12bの外周面に円筒部が嵌合される断面L字形状のスリンガ15aの円輪部の軸方向内側面に摺接する。第2密封装置16は、アクスル管内に封入されたデフオイルが玉軸受内に封入された潤滑剤を洗い流してしまうことを防ぐためのシールであり、ラジアルリップが内輪12の第1小径段部12fの底面12gに摺接する。 The first sealing device 15 is a seal that is arranged on the outside of the vehicle in the vehicle assembled state and prevents external dust and muddy water from entering the ball bearings, and the radial lip is attached to the shoulder portion 12b on one side of the inner ring 12. The side lip is in sliding contact with the outer peripheral surface and the side lip is in sliding contact with the axial inner surface of the circular ring portion of the slinger 15a having an L-shaped cross section in which the cylindrical portion is fitted to the outer peripheral surface of the shoulder portion 12b on one side of the inner ring 12. The second sealing device 16 is a seal for preventing the differential oil sealed in the axle pipe from washing away the lubricant sealed in the ball bearing, and the radial lip is the first small diameter step portion 12f of the inner ring 12. It is in sliding contact with the bottom surface 12 g.

次に、上記した内輪12の製造工程について説明する。内輪12の製造工程は、内輪側面取部12iが形成された内輪12を後述するエレベータコンベア20によって搬送する搬送工程と、搬送された内輪12の内輪軌道溝12aを加工する軌道溝加工工程(研削加工工程又は超仕上げ加工工程)と、を少なくとも含んでいる。 Next, the manufacturing process of the inner ring 12 described above will be described. The manufacturing process of the inner ring 12 includes a transport process in which the inner ring 12 on which the inner ring side surface portion 12i is formed is conveyed by an elevator conveyor 20 described later, and a raceway groove processing step (grinding) in which the inner ring raceway groove 12a of the conveyed inner ring 12 is machined. Processing process or super-finishing process), and at least includes.

搬送工程では、内輪12を所定の向きに揃えて軌道溝加工工程に搬送する。軌道溝加工工程では、内輪12の内輪軌道溝12aに研削加工や超仕上げ加工を施す。なお、内輪12には、内輪側面取部12i、面取部12e、及び第1小径段部12fが、切削加工等により搬送工程の前に予め形成されている。 In the transporting process, the inner rings 12 are aligned in a predetermined direction and transported to the track groove processing step. In the raceway groove processing step, the inner ring raceway groove 12a of the inner ring 12 is subjected to grinding or super-finishing. The inner ring 12 has an inner ring side surface step portion 12i, a chamfer portion 12e, and a first small diameter step portion 12f formed in advance by cutting or the like before the transfer process.

次に、図2及び図3を参照して、内輪12の搬送工程について詳しく説明する。 Next, the transfer process of the inner ring 12 will be described in detail with reference to FIGS. 2 and 3.

搬送工程では、図2及び図3に示すように、内輪12は、重力方向(図2及び図3の上下方向)に対して斜めに配置されるエレベータコンベア20により下方から上方に搬送される。つまり、エレベータコンベア20の搬送方向Dは、重力方向に対して斜めに設定されている。 In the transfer step, as shown in FIGS. 2 and 3, the inner ring 12 is conveyed from the bottom to the top by the elevator conveyor 20 arranged diagonally with respect to the gravity direction (vertical direction of FIGS. 2 and 3). That is, the transport direction D of the elevator conveyor 20 is set diagonally with respect to the gravity direction.

エレベータコンベア20は、ベルト21と、ベルト21の表面に設けられ、内輪12を乗せるための爪部22と、を備える。爪部22は、重力方向断面視で矩形状且つベルト21の幅方向に沿って線状に形成される。そして、爪部22の上面と表側面との間の縁部には、曲面状の爪側面取部22aが形成されている。エレベータコンベア20は、爪部22の上面に内輪12を乗せて、内輪12を上方に向けて搬送する。 The elevator conveyor 20 includes a belt 21 and a claw portion 22 provided on the surface of the belt 21 for mounting the inner ring 12. The claw portion 22 is formed in a rectangular shape in a cross-sectional view in the direction of gravity and in a linear shape along the width direction of the belt 21. A curved claw side surface picking portion 22a is formed on the edge portion between the upper surface and the front side surface of the claw portion 22. The elevator conveyor 20 places the inner ring 12 on the upper surface of the claw portion 22 and conveys the inner ring 12 upward.

そして、図2に示すように、内輪12の軸方向一端面12cがベルト21側に位置して内輪12を搬送する場合、内輪12の一方側の肩部12bの外周面が爪部22の上面に係合する。このとき、内輪12の重心Gを通る垂線Lが爪部22の上面の範囲或いは爪部22の上面よりもベルト21側の範囲に位置するため、内輪12は爪部22から落下せずに次工程に搬送される。なお、内輪12の重心Gは、内輪12の中心軸(径方向中心を通る軸方向線)C上に位置する。 Then, as shown in FIG. 2, when the axial end surface 12c of the inner ring 12 is located on the belt 21 side to convey the inner ring 12, the outer peripheral surface of the shoulder portion 12b on one side of the inner ring 12 is the upper surface of the claw portion 22. Engage in. At this time, since the vertical line L passing through the center of gravity G of the inner ring 12 is located in the range of the upper surface of the claw portion 22 or the range on the belt 21 side of the upper surface of the claw portion 22, the inner ring 12 does not fall from the claw portion 22 and is next. Transported to the process. The center of gravity G of the inner ring 12 is located on the central axis (axial direction line passing through the radial center) C of the inner ring 12.

その一方、図3に示すように、内輪12の軸方向他端面12dがベルト21側に位置して内輪12を搬送する場合、内輪12の内輪側面取部12iが爪部22の爪側面取部22aに係合する。このとき、内輪側面取部12iが、爪側面取部22aに対向するように位置し、且つ内輪12の重心Gを通る垂線L上に位置するため、内輪12の内輪側面取部12iが爪側面取部22aを滑り落ち(図3の矢印A参照)、内輪12が回転することなくベルト21に沿って滑り落ちる。従って、内輪12は爪部22から落下するため次工程に搬送されない。また、内輪12がベルト21に沿って滑り落ちる場合、内輪12の落下速度が抑制され、内輪12の損傷が防止される。 On the other hand, as shown in FIG. 3, when the other end surface 12d in the axial direction of the inner ring 12 is located on the belt 21 side to convey the inner ring 12, the inner ring side surface portion 12i of the inner ring 12 is the claw side surface portion of the claw portion 22. Engage with 22a. At this time, since the inner ring side surface picking portion 12i is located so as to face the claw side surface picking portion 22a and on the vertical line L passing through the center of gravity G of the inner ring 12, the inner ring side surface picking portion 12i of the inner ring 12 is located on the claw side surface. It slides down the take portion 22a (see arrow A in FIG. 3), and the inner ring 12 slides down along the belt 21 without rotating. Therefore, the inner ring 12 falls from the claw portion 22 and is not conveyed to the next step. Further, when the inner ring 12 slides down along the belt 21, the falling speed of the inner ring 12 is suppressed, and damage to the inner ring 12 is prevented.

以上説明したように、本実施形態の単列深溝玉軸受10及びその製造方法によれば、エレベータコンベア20の爪部22によって内輪12が搬送される際、内輪側面取部12iが、爪側面取部22aに対向するように位置し、且つ内輪12の重心Gを通る垂線L上に位置する。このため、内輪12の内輪側面取部12iが爪部22の爪側面取部22aを滑り落ち、内輪12が回転することなくベルト21に沿って滑り落ちるので、内輪12の落下速度を抑制して、内輪12の損傷を防止することができる。 As described above, according to the single-row deep groove ball bearing 10 and the manufacturing method thereof of the present embodiment, when the inner ring 12 is conveyed by the claw portion 22 of the elevator conveyor 20, the inner ring side surface removing portion 12i receives the claw side surface removing portion 12i. It is located so as to face the portion 22a and is located on the vertical line L passing through the center of gravity G of the inner ring 12. Therefore, the inner ring side surface portion 12i of the inner ring 12 slides down the claw side surface portion 22a of the claw portion 22 and slides down along the belt 21 without rotating the inner ring 12, so that the falling speed of the inner ring 12 is suppressed. It is possible to prevent damage to the inner ring 12.

また、本実施形態の単列深溝玉軸受10及びその製造方法によれば、内輪12の第1小径段部12fの底面12gが、軸方向外方に向かって縮径するテーパ面に形成されるため、内輪12の内輪側面取部12iが爪部22の爪側面取部22aを滑り落ちる際に、第1小径段部12fの底面12gが爪部22に引っ掛からず、内輪12が滑り落ちることを阻害しない。このため、内輪12を回転させることなくベルト21に沿って滑り落とすことができる。 Further, according to the single row deep groove ball bearing 10 of the present embodiment and the manufacturing method thereof, the bottom surface 12g of the first small diameter step portion 12f of the inner ring 12 is formed on a tapered surface whose diameter is reduced outward in the axial direction. Therefore, when the inner ring side surface picking portion 12i of the inner ring 12 slides down the claw side surface picking portion 22a of the claw portion 22, the bottom surface 12g of the first small diameter step portion 12f does not get caught on the claw portion 22 and does not prevent the inner ring 12 from sliding down. .. Therefore, the inner ring 12 can be slid off along the belt 21 without rotating.

また、本実施形態の変形例として、図4に示すように、内輪12の軸方向一端部の外輪11の軸方向一端面に対する突出幅を小さくしてもよい。また、内輪12の軸方向一端部(図4の右側端部)の外周面に第2小径段部12kが全周に亘って形成され、第1密封装置15が第2密封装置16と同様の構造となっている。そして、本変形例においても、図2及び図3に示すように、内輪12を所定の向きに揃えて次工程に搬送することができる。 Further, as a modification of the present embodiment, as shown in FIG. 4, the protrusion width of the axial end portion of the inner ring 12 with respect to the axial end surface of the outer ring 11 may be reduced. Further, a second small diameter step portion 12k is formed on the outer peripheral surface of one end portion in the axial direction (right end portion in FIG. 4) of the inner ring 12 over the entire circumference, and the first sealing device 15 is the same as the second sealing device 16. It has a structure. Further, also in this modification, as shown in FIGS. 2 and 3, the inner rings 12 can be aligned in a predetermined direction and conveyed to the next step.

(第2実施形態)
次に、図5及び図6を参照して、本発明に係る単列深溝玉軸受の第2実施形態について説明する。なお、上記第1実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略或いは簡略化する。
(Second Embodiment)
Next, a second embodiment of the single-row deep groove ball bearing according to the present invention will be described with reference to FIGS. 5 and 6. The same or equivalent parts as those in the first embodiment are designated by the same reference numerals in the drawings, and the description thereof will be omitted or simplified.

本実施形態では、図5に示すように、内輪12の軸方向一端部(図5の右側端部)の外周面に、肩部12bの外周面よりも小径となるように、底面12n及び側面12pを有する第2小径段部12mが全周に亘って形成されている。この第2小径段部12mは、軸方向他端部の第1小径段部12fよりも大径である。また、第2小径段部12mの底面12nは径が一様な円筒面に形成され、第2小径段部12mの側面12pは軸方向外方に向かって縮径するテーパ面に形成される。また、第2小径段部12mの底面12nにスリンガ15aが嵌合される。 In the present embodiment, as shown in FIG. 5, the bottom surface 12n and the side surface of the inner ring 12 so that the outer peripheral surface of the axial end portion (right end portion in FIG. 5) has a smaller diameter than the outer peripheral surface of the shoulder portion 12b. A second small diameter step portion 12m having 12p is formed over the entire circumference. The second small diameter step portion 12m has a larger diameter than the first small diameter step portion 12f at the other end in the axial direction. Further, the bottom surface 12n of the second small diameter step portion 12m is formed on a cylindrical surface having a uniform diameter, and the side surface 12p of the second small diameter step portion 12m is formed on a tapered surface whose diameter is reduced outward in the axial direction. Further, the slinger 15a is fitted to the bottom surface 12n of the second small diameter step portion 12m.

そして、第2小径段部12mは、上記した製造工程の軌道溝加工工程において、内輪12の内輪軌道溝12aと同時に研削により形成される。 The second small diameter step portion 12m is formed by grinding at the same time as the inner ring raceway groove 12a of the inner ring 12 in the raceway groove processing step of the above-mentioned manufacturing process.

また、本実施形態では、内輪側面取部12iと内輪12の重心Gとを通る直線Eと内輪12の中心軸Cとの交角αが55°~75°の範囲、より好ましくは60°~70°の範囲に設定される。より具体的には、直線Eは、内輪側面取部12iの軸方向内端と軸方向外端との間を通る直線である。このため、内輪側面取部12iの軸方向内端と内輪12の重心Gとを通る直線Eと内輪12の中心軸Cとの交角α、及び内輪側面取部12iの軸方向外端と内輪12の重心Gとを通る直線Eと内輪12の中心軸Cとの交角αの両方が、55°~75°の範囲、より好ましくは60°~70°の範囲に設定されている。なお、本実施形態では、交角αは63°~66°に設定される。 Further, in the present embodiment, the intersection angle α between the straight line E passing through the inner ring side surface portion 12i and the center of gravity G of the inner ring 12 and the central axis C of the inner ring 12 is in the range of 55 ° to 75 °, more preferably 60 ° to 70. Set in the range of °. More specifically, the straight line E is a straight line passing between the inner end in the axial direction and the outer end in the axial direction of the inner ring side surface portion 12i. Therefore, the intersection angle α between the straight line E passing through the axial inner end of the inner ring side surface portion 12i and the center of gravity G of the inner ring 12 and the central axis C of the inner ring 12, and the axial outer end and inner ring 12 of the inner ring side surface portion 12i. Both the intersection angle α between the straight line E passing through the center of gravity G and the central axis C of the inner ring 12 are set in the range of 55 ° to 75 °, more preferably in the range of 60 ° to 70 °. In this embodiment, the intersection angle α is set to 63 ° to 66 °.

また、本実施形態では、図6に示すように、エレベータコンベア20の搬送方向Dと重力方向(=垂線L)に対して直交する水平面Fとの交角βは、内輪側面取部12iと内輪12の重心Gとを通る直線Eと内輪12の中心軸Cとの交角α以上(β≧α)に設定される。つまり、本実施形態では、交角βは66°以上に設定される。 Further, in the present embodiment, as shown in FIG. 6, the intersection angle β between the transport direction D of the elevator conveyor 20 and the horizontal plane F orthogonal to the gravity direction (= vertical line L) is the inner ring side surface portion 12i and the inner ring 12. The angle between the straight line E passing through the center of gravity G and the central axis C of the inner ring 12 is set to be equal to or greater than α (β ≧ α). That is, in the present embodiment, the cross angle β is set to 66 ° or more.

そして、上記したように交角α及び交角βが設定されることにより、内輪12の軸方向他端面12dがベルト21側に位置して内輪12を搬送する場合、内輪12の内輪側面取部12iが爪側面取部22aを滑り落ち(図6の矢印A参照)、内輪12が回転することなくベルト21に沿って滑り落ちる。従って、内輪12は爪部22から落下するため次工程に搬送されない。また、内輪12がベルト21に沿って滑り落ちる場合、内輪12の落下速度が抑制され、内輪12の損傷を防止される。 Then, when the crossing angle α and the crossing angle β are set as described above and the other end surface 12d in the axial direction of the inner ring 12 is located on the belt 21 side to convey the inner ring 12, the inner ring side surface portion 12i of the inner ring 12 becomes available. It slides down the claw side surface portion 22a (see arrow A in FIG. 6), and the inner ring 12 slides down along the belt 21 without rotating. Therefore, the inner ring 12 falls from the claw portion 22 and is not conveyed to the next step. Further, when the inner ring 12 slides down along the belt 21, the falling speed of the inner ring 12 is suppressed, and damage to the inner ring 12 is prevented.

また、内輪12の軸方向一端面12cがベルト21側に位置して内輪12を搬送する場合、図2に示す内輪12と同様に、内輪12の重心Gを通る垂線Lが爪部22の上面の範囲或いは爪部22の上面よりもベルト21側の範囲に位置するため、内輪12は爪部22から落下せずに次工程に搬送される。 Further, when the axial end surface 12c of the inner ring 12 is located on the belt 21 side to convey the inner ring 12, the vertical line L passing through the center of gravity G of the inner ring 12 is the upper surface of the claw portion 22 as in the inner ring 12 shown in FIG. Since it is located in the range of the above or in the range on the belt 21 side of the upper surface of the claw portion 22, the inner ring 12 is conveyed to the next step without falling from the claw portion 22.

以上説明したように、本実施形態の単列深溝玉軸受10及びその製造方法によれば、内輪側面取部12iと内輪12の重心Gとを通る直線Eと内輪12の中心軸Cとの交角αが55°~75°の範囲に設定され、エレベータコンベア20の搬送方向Dと重力方向に対して直交する水平面Fとの交角βが、内輪側面取部12iと内輪12の重心Gとを通る直線Eと内輪12の中心軸Cとの交角α以上に設定される。このため、内輪12の内輪側面取部12iが爪部22の爪側面取部22aを滑り落ち、内輪12が回転することなくベルト21に沿って滑り落ちるので、内輪12の落下速度を抑制して、内輪12の損傷を防止することができる。 As described above, according to the single-row deep groove ball bearing 10 and the manufacturing method thereof of the present embodiment, the angle of intersection between the straight line E passing through the inner ring side surface portion 12i and the center of gravity G of the inner ring 12 and the central axis C of the inner ring 12. α is set in the range of 55 ° to 75 °, and the intersection β of the transport direction D of the elevator conveyor 20 and the horizontal plane F orthogonal to the gravity direction passes through the inner ring side bearing portion 12i and the center of gravity G of the inner ring 12. It is set to be equal to or greater than the intersection angle α between the straight line E and the central axis C of the inner ring 12. Therefore, the inner ring side surface portion 12i of the inner ring 12 slides down the claw side surface portion 22a of the claw portion 22 and slides down along the belt 21 without rotating the inner ring 12, so that the falling speed of the inner ring 12 is suppressed. It is possible to prevent damage to the inner ring 12.

また、本実施形態の単列深溝玉軸受10によれば、内輪12の軸方向一端部の外周面に、第2小径段部12mが形成されるため、第1密封装置15を径方向で大型化することができると共に、スリンガ15aの内周面と第2小径段部12mの底面12nとの嵌合面からの浸水を更に防止することができるので、軸受の耐水性を向上することができる。 Further, according to the single row deep groove ball bearing 10 of the present embodiment, since the second small diameter step portion 12 m is formed on the outer peripheral surface of the axial end portion of the inner ring 12, the first sealing device 15 is large in the radial direction. In addition, it is possible to further prevent water from entering from the fitting surface between the inner peripheral surface of the slinger 15a and the bottom surface 12n of the second small diameter step portion 12m, so that the water resistance of the bearing can be improved. ..

また、本実施形態の単列深溝玉軸受10によれば、第2小径段部12mが、内輪軌道溝12aと同時に研削により形成されるため、図1に示すような第2小径段部12mが形成されない内輪12と比較して、肩部12bを研削する際の研削抵抗を低くすることができる。より詳細に説明すると、研削加工は、切削加工と比較して、加工抵抗、特に径方向の加工抵抗が大きいため、被研削物が変形しやすい。そこで、本実施形態では、第2小径段部12mを設けて、肩部12bを研削する際の研削部分を減らしている。これにより、研削抵抗を低くすることができるため、内輪12の真円度を高めることができる。
その他の構成及び作用効果については、上記第1実施形態と同様である。
Further, according to the single row deep groove ball bearing 10 of the present embodiment, the second small diameter step portion 12m is formed by grinding at the same time as the inner ring raceway groove 12a, so that the second small diameter step portion 12m as shown in FIG. 1 is formed. The grinding resistance when grinding the shoulder portion 12b can be reduced as compared with the inner ring 12 which is not formed. More specifically, in the grinding process, the processing resistance, particularly the processing resistance in the radial direction, is larger than that in the cutting process, so that the object to be ground is easily deformed. Therefore, in the present embodiment, the second small diameter step portion 12m is provided to reduce the grinding portion when grinding the shoulder portion 12b. As a result, the grinding resistance can be lowered, so that the roundness of the inner ring 12 can be increased.
Other configurations and actions and effects are the same as those in the first embodiment.

なお、本発明は上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態では、本発明を軸方向で非対称構造の内輪に適用する場合を例示したが、これに限定されず、軸方向で対称構造の内輪に本発明を適用してもよい。この場合、例えば、内輪の刻印の方向を揃える場合などに利用可能である。
また、上記実施形態では、内輪側面取部がテーパ状の面取りで、爪側面取部が曲面状の面取りであるが、これに限定されず、内輪側面取部が曲面状の面取りで、爪側面取部がテーパ状の面取りであってもよい。また、内輪側面取部と爪側面取部の両方がテーパ状の面取り又は曲面状の面取りであってもよい。
The present invention is not limited to those exemplified in the above embodiments, and can be appropriately modified without departing from the gist of the present invention.
For example, in the above embodiment, the case where the present invention is applied to an inner ring having an asymmetric structure in the axial direction is exemplified, but the present invention is not limited to this, and the present invention may be applied to an inner ring having a symmetrical structure in the axial direction. In this case, it can be used, for example, when the directions of the markings on the inner ring are aligned.
Further, in the above embodiment, the inner ring side chamfer portion is a tapered chamfer and the claw side surface chamfer is a curved surface chamfer, but the present invention is not limited to this, and the inner ring side surface chamfer portion is a curved surface chamfer and the claw side surface. The chamfered portion may be a tapered chamfer. Further, both the inner ring side chamfer portion and the claw side surface chamfer portion may be tapered chamfered or curved chamfered.

10 玉軸受(単列深溝玉軸受)
11 外輪
11a 外輪軌道溝
11b 肩部
12 内輪
12a 内輪軌道溝
12b 肩部
12c 軸方向一端面
12d 軸方向他端面
12e 面取部
12f 第1小径段部
12g 底面
12h 側面
12i 内輪側面取部
12m 第2小径段部
12n 底面
12p 側面
13 複数の玉
14 保持器
15 第1密封装置
16 第2密封装置
20 エレベータコンベア
21 ベルト
22 爪部
22a 爪側面取部
B1 内輪軌道溝から内輪の軸方向一端面までの軸方向寸法
B2 内輪軌道溝から内輪の軸方向他端面までの軸方向寸法
C 内輪の中心軸
D エレベータコンベアの搬送方向
G 重心
L 垂線
E 内輪側面取部と内輪の重心とを通る直線
F 重力方向に対して直交する水平面
α 内輪側面取部と内輪の重心とを通る直線と内輪の中心軸との交角
β エレベータコンベアの搬送方向と重力方向に対して直交する水平面との交角
10 ball bearings (single row deep groove ball bearings)
11 Outer ring 11a Outer ring raceway groove 11b Shoulder part 12 Inner ring raceway groove 12b Inner ring raceway groove 12b Shoulder part 12c Axial direction one end surface 12d Axial direction other end surface 12e Surfaced part 12f First small diameter step part 12g Bottom surface 12h Side surface 12i Inner ring side surface Small diameter step part 12n Bottom surface 12p Side surface 13 Multiple balls 14 Cage 15 First sealing device 16 Second sealing device 20 Elevator conveyor 21 Belt 22 Claw part 22a Claw side taking part B1 From inner ring raceway groove to one end surface in the axial direction of the inner ring Axial dimension B2 Axial dimension from the inner ring raceway groove to the other end surface of the inner ring in the axial direction C Central axis of the inner ring D Transport direction of the elevator conveyor G Center of gravity L Vertical line E Straight line passing through the side surface of the inner ring and the center of gravity of the inner ring F Gravity direction Horizontal plane orthogonal to α α Intersection angle between the straight line passing through the inner ring side surface and the center of gravity of the inner ring and the central axis of the inner ring β Intersection angle between the horizontal plane orthogonal to the transport direction of the elevator conveyor and the direction of gravity

Claims (5)

内周面に外輪軌道溝が形成される外輪と、外周面に内輪軌道溝が形成される内輪と、前記外輪軌道溝と前記内輪軌道溝との間に転動可能に設けられる複数の玉と、を備える単列深溝玉軸受であって、
前記内輪は、前記内輪軌道溝を挟んで軸方向一端部と軸方向他端部の形状が異なる軸方向に非対称構造であって、
前記内輪の軸方向他端部に第1小径段部が設けられ、
前記内輪の前記内輪軌道溝に隣接する一対の肩部のうち軸方向他端側の肩部の外周縁には、軸方向一端側の肩部の外周縁に設けられる面取部よりも大きい内輪側面取部が設けられ、
前記内輪軌道溝から前記内輪の軸方向一端面までの軸方向寸法が、前記内輪軌道溝から前記内輪の軸方向他端面までの軸方向寸法よりも大きく、
前記内輪の軸方向一端部が前記外輪の軸方向一端面よりも軸方向外側に突出する
ことを特徴とする単列深溝玉軸受。
An outer ring having an outer ring raceway groove formed on the inner peripheral surface, an inner ring having an inner ring raceway groove formed on the outer peripheral surface, and a plurality of balls rotatably provided between the outer ring raceway groove and the inner ring raceway groove. A single row deep groove ball bearing with,
The inner ring has an axially asymmetric structure in which the shapes of one end in the axial direction and the other end in the axial direction are different across the inner ring raceway groove.
A first small diameter step is provided at the other end of the inner ring in the axial direction.
The outer peripheral edge of the shoulder portion on the other end side in the axial direction of the pair of shoulder portions adjacent to the inner ring raceway groove of the inner ring is larger than the chamfered portion provided on the outer peripheral edge of the shoulder portion on the one end side in the axial direction. A chamfer is provided,
The axial dimension from the inner ring raceway groove to the axial end surface of the inner ring is larger than the axial dimension from the inner ring raceway groove to the axial end surface of the inner ring.
A single-row deep groove ball bearing characterized in that one end portion in the axial direction of the inner ring projects outward in the axial direction from the one end surface in the axial direction of the outer ring.
前記第1小径段部は、車両組み付け状態で車両内側に配置され、
前記単列深溝玉軸受は、半浮動式後輪アクスル用玉軸受である
ことを特徴とする請求項1に記載の単列深溝玉軸受。
The first small diameter step portion is arranged inside the vehicle in the vehicle assembled state.
The single-row deep-groove ball bearing according to claim 1, wherein the single-row deep-groove ball bearing is a semi-floating rear wheel axle ball bearing.
前記内輪側面取部と前記内輪の重心とを通る直線と前記内輪の中心軸との交角が55°~75°の範囲に設定されることを特徴とする請求項1又は2に記載の単列深溝玉軸受。 The single row according to claim 1 or 2, wherein the intersection angle between the straight line passing through the inner ring side bearing portion and the center of gravity of the inner ring and the central axis of the inner ring is set in the range of 55 ° to 75 °. Deep groove ball bearing. 請求項1~3のいずれか1項に記載の単列深溝玉軸受の製造方法であって、
前記内輪は、重力方向に対して斜めに配置されるエレベータコンベアにより下方から上方に搬送され、
前記エレベータコンベアは、ベルトと、前記ベルトの表面に設けられ、前記内輪を乗せるための爪部と、を備え、
前記爪部は重力方向断面視で矩形状に形成され、
前記爪部の上面と表側面との間の縁部には、爪側面取部が設けられ、
前記エレベータコンベアの前記爪部によって前記内輪が搬送される際、前記内輪側面取部が、前記爪側面取部に対向するように位置し、且つ前記内輪の重心を通る垂線上に位置することを特徴とする単列深溝玉軸受の製造方法。
The method for manufacturing a single-row deep groove ball bearing according to any one of claims 1 to 3.
The inner ring is conveyed from the bottom to the top by an elevator conveyor arranged diagonally with respect to the direction of gravity.
The elevator conveyor includes a belt and a claw portion provided on the surface of the belt and on which the inner ring is placed.
The claw portion is formed in a rectangular shape in a cross-sectional view in the direction of gravity.
A claw side surface is provided on the edge between the upper surface and the front surface of the claw portion.
When the inner ring is conveyed by the claw portion of the elevator conveyor, the inner ring side surface picking portion is positioned so as to face the claw side surface picking portion and is located on a vertical line passing through the center of gravity of the inner ring. A characteristic method for manufacturing single-row deep groove ball bearings.
前記内輪の軸方向一端部に第2小径段部が設けられ、
前記第2小径段部は、前記内輪軌道溝と同時に研削により設けられ、
前記エレベータコンベアの搬送方向と重力方向に対して直交する水平面との交角は、前記内輪側面取部と前記内輪の重心とを通る直線と前記内輪の中心軸との交角以上に設定されることを特徴とする請求項4に記載の単列深溝玉軸受の製造方法。
A second small diameter step is provided at one end of the inner ring in the axial direction.
The second small diameter step portion is provided by grinding at the same time as the inner ring raceway groove.
The intersection angle between the transport direction of the elevator conveyor and the horizontal plane orthogonal to the gravity direction is set to be equal to or larger than the intersection angle between the straight line passing through the inner ring side bearing portion and the center of gravity of the inner ring and the central axis of the inner ring. The method for manufacturing a single-row deep groove ball bearing according to claim 4.
JP2021173897A 2017-09-26 2021-10-25 Single row deep groove ball bearing and manufacturing method thereof Active JP7151854B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017184862 2017-09-26
JP2017184862 2017-09-26
JP2018092285A JP7010137B2 (en) 2017-09-26 2018-05-11 Manufacturing method of single row deep groove ball bearings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018092285A Division JP7010137B2 (en) 2017-09-26 2018-05-11 Manufacturing method of single row deep groove ball bearings

Publications (2)

Publication Number Publication Date
JP2022009464A true JP2022009464A (en) 2022-01-14
JP7151854B2 JP7151854B2 (en) 2022-10-12

Family

ID=66176654

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018092285A Active JP7010137B2 (en) 2017-09-26 2018-05-11 Manufacturing method of single row deep groove ball bearings
JP2021173897A Active JP7151854B2 (en) 2017-09-26 2021-10-25 Single row deep groove ball bearing and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018092285A Active JP7010137B2 (en) 2017-09-26 2018-05-11 Manufacturing method of single row deep groove ball bearings

Country Status (1)

Country Link
JP (2) JP7010137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118617212A (en) * 2024-08-09 2024-09-10 浙江欣东煌轴承有限公司 Surface grinding system and feeding method for outer ring and inner ring of bearing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128878B1 (en) * 1970-06-13 1976-08-21
JPS5765738U (en) * 1980-10-08 1982-04-20
JPS58176820U (en) * 1982-05-19 1983-11-26 日産自動車株式会社 Conveyed article alignment device
JP2002013539A (en) * 2000-06-29 2002-01-18 Koyo Seiko Co Ltd Rolling bearing and assembly of the same with stepped shaft
JP2005299730A (en) * 2004-04-07 2005-10-27 Nsk Ltd Manufacturing method for raceway ring and sealed ball bearing
WO2009144785A1 (en) * 2008-05-27 2009-12-03 日本精工株式会社 Rolling bearing
JP2012127466A (en) * 2010-12-17 2012-07-05 Jtekt Corp Sealing device of rolling bearing
JP2012255564A (en) * 2007-11-07 2012-12-27 Nsk Ltd Ball bearing
JP2014098460A (en) * 2012-11-15 2014-05-29 Ntn Corp Deep groove ball bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291651A (en) * 1999-04-12 2000-10-20 Koyo Seiko Co Ltd Rolling bearing with one-way clutch
JP2009024776A (en) * 2007-07-19 2009-02-05 Ntn Corp Rolling bearing
JP5128878B2 (en) 2007-08-28 2013-01-23 三協立山株式会社 Opening device
GB0904104D0 (en) 2009-03-10 2009-04-22 Bradford Pharma Ltd Atorvastatin and rosuvastatin derivatives
JP2011117548A (en) * 2009-12-04 2011-06-16 Nsk Ltd Rolling bearing with seal ring, electric motor, and throttle device for automobile

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128878B1 (en) * 1970-06-13 1976-08-21
JPS5765738U (en) * 1980-10-08 1982-04-20
JPS58176820U (en) * 1982-05-19 1983-11-26 日産自動車株式会社 Conveyed article alignment device
JP2002013539A (en) * 2000-06-29 2002-01-18 Koyo Seiko Co Ltd Rolling bearing and assembly of the same with stepped shaft
JP2005299730A (en) * 2004-04-07 2005-10-27 Nsk Ltd Manufacturing method for raceway ring and sealed ball bearing
JP2012255564A (en) * 2007-11-07 2012-12-27 Nsk Ltd Ball bearing
WO2009144785A1 (en) * 2008-05-27 2009-12-03 日本精工株式会社 Rolling bearing
JP2012127466A (en) * 2010-12-17 2012-07-05 Jtekt Corp Sealing device of rolling bearing
JP2014098460A (en) * 2012-11-15 2014-05-29 Ntn Corp Deep groove ball bearing

Also Published As

Publication number Publication date
JP7010137B2 (en) 2022-01-26
JP7151854B2 (en) 2022-10-12
JP2019060487A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP2005273796A (en) Bearing device for supporting pinion shaft
US20110222805A1 (en) Seal equipped bearing assembly
US10539190B2 (en) Rolling bearing with improved sealing device
US11486474B2 (en) Pulley device for a tensioning or winding roller
JP2022009464A (en) Single-row deep groove ball bearing and manufacturing method thereof
US9011016B2 (en) Rolling bearing cage, rolling bearing and electric steering system of a motor vehicle
US9272573B2 (en) Hub-bearing assembly with sealing device
JP2009079640A (en) Angular contact ball bearing
JP2007192301A (en) Ball bearing device
JP2008169871A (en) Tapered roller bearing and inner ring machining method for tapered roller bearing
CN206000871U (en) Multiple row roller bearing
JP4627017B2 (en) Wheel bearing device
JP2019023478A (en) Sealed rolling bearing and belt type non-stage transmission
EP1220995B1 (en) Sealing device for a bearing arrangement
JP2006308043A (en) Self-aligning roller bearing with cage
US20160032974A1 (en) Tapered roller bearing
RU173946U1 (en) DOUBLE ROW BALL BEARING
JP6829522B2 (en) Self-aligning roller bearing
JP2006291979A (en) Thrust roller bearing
JP6927347B2 (en) Self-aligning roller bearing
CN111322318B (en) System with rolling bearing
JP2004084705A (en) Cylindrical roller bearing with synthetic resin retainer
JP5810627B2 (en) Tandem angular ball bearings and outer ring side assemblies for tandem angular ball bearings
CN215634412U (en) Impact-resistant hub bearing
KR102536309B1 (en) A Tapered Roller Bearing Having Improved Assembling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150