JP2022000303A - Fine bubble formation device - Google Patents

Fine bubble formation device Download PDF

Info

Publication number
JP2022000303A
JP2022000303A JP2021153850A JP2021153850A JP2022000303A JP 2022000303 A JP2022000303 A JP 2022000303A JP 2021153850 A JP2021153850 A JP 2021153850A JP 2021153850 A JP2021153850 A JP 2021153850A JP 2022000303 A JP2022000303 A JP 2022000303A
Authority
JP
Japan
Prior art keywords
fine bubble
liquid
bubble forming
fine
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021153850A
Other languages
Japanese (ja)
Other versions
JP7218016B2 (en
Inventor
世一 大林
Yoichi Obayashi
英夫 橋本
Hideo Hashimoto
清 鬼海
Kiyoshi Kiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HINODE SANGYO KK
Original Assignee
HINODE SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HINODE SANGYO KK filed Critical HINODE SANGYO KK
Priority to JP2021153850A priority Critical patent/JP7218016B2/en
Publication of JP2022000303A publication Critical patent/JP2022000303A/en
Application granted granted Critical
Publication of JP7218016B2 publication Critical patent/JP7218016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a fine bubble formation device which is adapted to various liquids, generates a large amount of fine bubbles, and enables the lift and transportation of fine bubble-containing water.SOLUTION: A device includes: a liquid introduction pipe which introduces a liquid from fluid supply means; a concentric cylindrical injection nozzle which has a center axis in a direction parallel to a longer direction of the liquid introduction pipe, and injects a pressurized liquid; first and second fine bubble formation pipes which each have a larger diameter than the injection nozzle, generate a fine bubble-containing liquid with an injection liquid and gas from a self-priming hole, and are each provided in a circular shape concentric with the injection nozzle; and a gas introduction pipe which is provided between the injection nozzle and the fine bubble formation pipes, and is connected to the self-priming hole. There is arranged, inside the first fine bubble formation pipe, the second fine bubble formation pipe having a length and a diameter which are shorter than those at an angular position where the injection liquid injected from the injection nozzle reaches the first fine bubble formation pipe on the outermost side.SELECTED DRAWING: Figure 2

Description

本発明は、気泡崩壊法により微細気泡を発生させる微細気泡形成装置に関する。 The present invention relates to a fine bubble forming apparatus that generates fine bubbles by a bubble collapse method.

水中で酸素呼吸をしている生物、即ち魚類や微生物等は水中の酸素を取り入れて活動・増殖するため水中の溶存酸素が消費される。従って、酸素を呼吸することで増殖する魚類、貝類の養殖、あるいは藻類やミドリ虫、好気性微生物の培養、また活性汚泥中の微生物に対し、酸素の効率の良い供給は重要である。低下した酸素を補給するため、従来はエアーポンプ等で空気を大きなバブルとして水中に吹き込むことが行われており、酸素溶解効率が低いものであった。 Organisms that breathe oxygen in water, that is, fish and microorganisms, take in oxygen from the water and act and proliferate, so that dissolved oxygen in the water is consumed. Therefore, it is important to cultivate fish and shellfish that grow by breathing oxygen, or to cultivate algae, green worms, and aerobic microorganisms, and to efficiently supply oxygen to microorganisms in activated sludge. Conventionally, in order to replenish the reduced oxygen, air is blown into the water as a large bubble by an air pump or the like, and the oxygen dissolution efficiency is low.

また、食品製造工程で生クリーム、バター、ババロアミックスなどを泡だて器やフードプロセッサーにより気泡を混入させた後、低温保存やゲル状になるまで冷却し気泡が抜け
ないように製造するが、連続的に大量に製造することが困難であった。このように空気や窒素ガスを含んだ食品は含まないものに比べ食感が軽くなり、ホイップバターなどは冷たい状態でも容易にパンに塗ることができる。気泡を含有することで、物性や食感に変化をもたらす技術は食品業界で重要な技術である。
Also, in the food manufacturing process, fresh cream, butter, bavarois mix, etc. are mixed with bubbles using a whisk or a food processor, and then stored at low temperature or cooled until they become gel-like so that the bubbles do not come out. It was difficult to continuously mass-produce. As described above, the texture is lighter than that of foods containing air or nitrogen gas, and whipped butter or the like can be easily applied to bread even in a cold state. Technology that changes the physical properties and texture by containing air bubbles is an important technology in the food industry.

水に酸素を供給する方法として、吹き込む空気の気泡をより細かく、例えばミクロン単位(直径)の気泡として吹き込むと、水中でのミクロブラウン運動等で上昇時間が長くなり、その結果、同一吹き込み量で比較すると大きな気泡の空気より、酸素の水への溶存率が上昇することが確認されている。 As a method of supplying oxygen to water, if the bubbles of the blown air are blown in finer, for example, as bubbles of micron unit (diameter), the rising time becomes longer due to the micro-brown movement in water, and as a result, the same amount of blown air is used. By comparison, it has been confirmed that the dissolution rate of oxygen in water is higher than that of air with large bubbles.

微細気泡には、ミリ単位の気泡からマイクロバブルやナノバブルのような気泡径を有するものがあり、このような気泡を液体中に供給させる方法は種々存在する。加圧溶解法、せん断流法、散気膜法、気泡崩壊法、微細ニードル法、多孔質板法等が知られている。 Some microbubbles have a bubble diameter such as microbubbles or nanobubbles from millimeter-unit bubbles, and there are various methods for supplying such bubbles into a liquid. The pressure melting method, the shear flow method, the air diffuser method, the bubble disintegration method, the fine needle method, the porous plate method and the like are known.

微細気泡とは、液体中の孤立した気体の塊であり、徳山高専の大成らは直径10〜100μm、東京大学の松本らは直径数百μm以下とし、船舶の摩擦低減などでは500〜1000μm程度の気泡をマイクロバブルと呼び、また、ナノ単位の気泡はナノバブルと呼ばれ、本願発明ではこれらを含めて微細気泡と称する(書籍「マイクロバブルの世界」森北出版(株)による)。マイクロ単位のバブルは気泡界面の電荷による物体の洗浄、水への効率良い酸素の供給等に使用され、食品加工法としても利用を検討し始めている。また、ナノ単位のバブルは生物への代謝の改良、医療への利用に使われ始めている。 Fine bubbles are isolated gas masses in a liquid. Taisei et al. Of Tokuyama National College of Technology have a diameter of 10 to 100 μm, Matsumoto et al. Of the University of Tokyo have a diameter of several hundred μm or less, and are about 500 to 1000 μm for reducing friction on ships. Bubbles are called microbubbles, and bubbles in nano units are called nanobubbles, and in the present invention, these are also called microbubbles (according to the book "World of Microbubbles" Morikita Publishing Co., Ltd.). Micro-unit bubbles are used for cleaning objects by the electric charge at the interface of bubbles, efficiently supplying oxygen to water, etc., and are beginning to be considered for use as a food processing method. In addition, nano-unit bubbles are beginning to be used for improving metabolism to living organisms and for medical purposes.

本願発明の微細気泡の確認は、社団法人日本下水道協会の下水道試験法(上巻)、透視度測定法の変法として測定した。すなわち長さ50cmの管であって、管底に二重十字を置いた有底管である透視時計の前記管底を閉じた後に、上部開口に試験液を注ぎ、透視度計の底部を上部開口からのぞき、管底の二重十字が確認できた時点の経過時間を透視可時間として測定した。ストークスの法則を利用し、経過時間により気泡の大きさの概数を算出したが、その中心は200μmから20μmと推定された。 The confirmation of the fine bubbles of the present invention was measured as a modified method of the sewerage test method (first volume) and the transparency measurement method of the Japan Sewerage Association. That is, after closing the tube bottom of the fluoroscopic clock, which is a tube having a length of 50 cm and having a double cross on the bottom of the tube, the test solution is poured into the upper opening, and the bottom of the fluorometer is placed on the upper part. The elapsed time at the time when the double cross at the bottom of the tube was confirmed by looking through the opening was measured as the fluoroscopic time. Using Stokes' law, the approximate number of bubble sizes was calculated from the elapsed time, and the center was estimated to be 200 μm to 20 μm.

魚や貝の養殖、微生物類の培養、排水処理の曝気槽は大容量の水中に常時十分な酸素を供給することが重要である。それぞれの生物が酸素を呼吸し、活動、増殖するのであり、供給が不足し酸欠状態の場合、即座に死に至ることは疑いのないものである。 It is important for aeration tanks for fish and shellfish culture, microbial culture, and wastewater treatment to constantly supply sufficient oxygen to a large volume of water. Each organism breathes oxygen, is active, and proliferates, and there is no doubt that it will die immediately if there is a shortage of supply and oxygen deficiency.

従って、空気から酸素を取り入れる場合は、より多くの空気を水中に取り込まなくてはならない。また、酸素の溶解効率から言えば微細気泡の状態の方が、単位あたりの気泡の表面積は大きく、水との界面が大きくなることにより、且つ、微細気泡の方がゆっくり水中を上昇するので水中に酸素が効率よく溶け込むことが知られていることから、より小さな気泡を広範囲な区域に大量に放出する技術の向上が求められている。 Therefore, when oxygen is taken in from air, more air must be taken into the water. Further, in terms of oxygen dissolution efficiency, the surface area of bubbles per unit is larger in the state of fine bubbles, the interface with water becomes larger, and the fine bubbles slowly rise in water, so that they are in water. Since it is known that oxygen efficiently dissolves in water, it is required to improve the technique of releasing a large amount of smaller bubbles into a wide area.

また、泡を有効に利用した食品も珍しくなく、飲料としてはビール、カフェラテ、炭酸飲料等、加工食品としてはホイップクリーム、アイスクリーム、エアインチョコ、含気性のデザート、ホイップバター、練り商品などがある。気泡の大きさは種々あり、気泡の混入法も水中油型の乳化を壊しながら気泡を混入させる方法、素材ミックスの粘性を利用して気泡を混入させて低温処理して封入する方法が採られている。これらの製造では、種々の性質を持った溶液から製品の高含気率、気泡径の大小、窒素ガスのような不活性ガスを混入できる技術が求められている。 In addition, foods that make effective use of foam are not uncommon, and beverages include beer, cafe latte, carbonated beverages, and processed foods include whipped cream, ice cream, air-in chocolate, aerated desserts, whipped butter, and paste products. .. There are various sizes of bubbles, and the method of mixing bubbles is a method of mixing bubbles while breaking the emulsification of the oil-in-water type, and a method of mixing bubbles using the viscosity of the material mix and treating them at low temperature for encapsulation. ing. In these productions, there is a demand for a technique capable of mixing a solution having various properties with a high air content of the product, a large or small bubble diameter, and an inert gas such as nitrogen gas.

従来の微細気泡の発生方法で、加圧溶解法では加圧部から開放されて微細気泡が生じるため使用範囲が限定され、また、散気膜法、微細ニードル法や多孔質版法では揚程を要する場合、粘度が高い液体の使用、微細気泡含有水の移送に課題があり、そして多量の微細気泡を発生させることが困難である欠点があった。 In the conventional method of generating fine bubbles, the range of use is limited because the pressure melting method is released from the pressurized part to generate fine bubbles, and the air diffuser method, the fine needle method and the porous plate method have a lift. In short, there are problems in using a highly viscous liquid, transferring water containing fine bubbles, and it is difficult to generate a large amount of fine bubbles.

本願発明の微細気泡形成装置は気泡崩壊法の改良装置であり、同様な機構の装置の一つであるベンチュリー管法式は原則的にベンチュリー管内に気体を導入し、高流速条件で気泡が急激に崩壊し微細気泡を発生する方法である(非特許文献1)。気体導入機構のため大量の微細気泡を発生させることは問題があり、揚程、微細気包含有水の移送には課題があり、高粘度の液体の使用は困難である欠点があった。 The fine bubble forming device of the present invention is an improved device of the bubble collapse method, and the Venturi tube method, which is one of the devices having the same mechanism, introduces a gas into the Venturi tube in principle, and the bubbles suddenly appear under high flow velocity conditions. This is a method of collapsing to generate fine bubbles (Non-Patent Document 1). Due to the gas introduction mechanism, there is a problem in generating a large amount of fine bubbles, there is a problem in lifting and transfer of water containing fine air bubbles, and there is a drawback that it is difficult to use a high-viscosity liquid.

また、気泡崩壊法の一種であるエジェクター方式により微細気泡を造る際は、流路を狭くし複雑にすることが求められる(特許文献1)。また、特許文献2に記載された微細気泡発生機は円形パイプの中央に球状物体を設置しその隙間に高速流体を流す構造になっており、粘度の高い液体や不純物(固体やゴミ)が含まれている場合には流速が低下したり詰まってしまう問題があった。単純なエジェクター方式であっても水中ポンプに直接設置する(非特許文献2)方法で、微細気泡含有水の揚程、移送に問題があり、液体の粘度が高い場合は流速の低下や詰まる問題があるとともに、多量に微細気泡を発生することができないという欠点があった。 Further, when creating fine bubbles by the ejector method, which is a kind of bubble collapse method, it is required to narrow the flow path and make it complicated (Patent Document 1). Further, the fine bubble generator described in Patent Document 2 has a structure in which a spherical object is installed in the center of a circular pipe and a high-speed fluid flows through the gap thereof, and contains highly viscous liquids and impurities (solids and dust). If this is the case, there is a problem that the flow velocity is reduced or clogged. Even if it is a simple ejector method, it is installed directly in the submersible pump (Non-Patent Document 2), and there is a problem in the lifting and transfer of water containing fine bubbles. At the same time, there is a drawback that a large amount of fine bubbles cannot be generated.

特許出願公開番号 2015−20165Patent application publication number 2015-2016 特許出願公開番号 2003−305494Patent application publication number 2003-305494

修士論文発表会2011年2月3日「ベンチュリー管式マイクロバブル発生法を用いた洗浄技術の開発」筑波大学院構造エネルギー工学専攻 阿部弘樹Master's thesis presentation February 3, 2011 "Development of cleaning technology using Ventury tube type microbubble generation method" Hiroki Abe, Department of Structural Energy Engineering, Tsukuba Graduate School ジャパンフードサイエンス 2012年6月号p36〜38Japan Food Science June 2012 issue p36-38

解決しようとする問題点は、これまでの微細気泡の形成装置は大量の微細気泡を供給できず、海や湖沼での養殖や浄化、大きな工場排水施設や下水処理場に適さない点であり、また、揚程のある設備、移送距離を有する設備に利用できない点であり、粘度の高い液体や固体を含む液体に対応できない点である。本願発明は円筒形を基本構造とし、流体への抵抗の少ない構造を有し、種々の液体に対応し大量の微細気泡を発生させ、微細気泡含有水の揚程、移送を可能とした微細気泡形成装置を提供することを課題とする。 The problem to be solved is that the conventional fine bubble forming device cannot supply a large amount of fine bubbles and is not suitable for cultivation and purification in the sea or lakes, large factory drainage facilities and sewage treatment plants. In addition, it cannot be used for equipment with a lift and equipment with a transfer distance, and it cannot be used for liquids containing highly viscous liquids and solids. The present invention has a cylindrical shape as a basic structure, has a structure with low resistance to fluid, generates a large amount of fine bubbles corresponding to various liquids, and forms fine bubbles that enable the lifting and transfer of water containing fine bubbles. The subject is to provide the device.

本願発明の一視点において、微細気泡形成装置が提供される。該微細気泡形成装置は、
流体供給手段から液体を導く液体導入管を有し、前記液体導入菅の長手方向と平行な方向に中心軸を有し加圧液を噴射させる同心円筒形の噴射ノズルを有し、
前記噴射ノズルより大きな径で噴射液と自吸孔からの気体により微細気包含有液を生じさせる前記噴射ノズルと同心円状に設けられた第1、第2の微細気泡形成管を有し、
前記噴射ノズルと微細気泡形成管との間に設けられた前記自吸孔に連なる気体導入管を備え、
前記噴射ノズルから発した噴射液が、最外側の前記第1の微細気泡形成管に達する角度位置(即ち、当たるまでの長さ)より短長で短径な第2の微細気泡形成管を前記第1の微細気泡形成管の内側に配設した、
ことを特徴とする。
本微細気泡形成装置1は、流体供給手段から液体を導く液体導入管3を有し、前記長手方向と平行な方向に中心軸(回転の中心軸)を有し加圧液を噴射させる同心円筒形の噴射ノズル4を有し、前記噴射ノズルより大きな径で噴射液と自吸孔5からの気体により微細気包含有液を生じさせる前記同様に同心円状に設けられた微細気泡形成管7を有し、前記噴射ノズルと微細気泡形成管との間に設けられた前記自吸孔から連なる気体導入管6を有する微細気泡形成装置である。
From one viewpoint of the present invention, a fine bubble forming apparatus is provided. The fine bubble forming device is
It has a liquid introduction pipe that guides the liquid from the fluid supply means, has a central axis in a direction parallel to the longitudinal direction of the liquid introduction pipe, and has a concentric cylindrical injection nozzle for injecting a pressurized liquid.
It has first and second fine bubble forming tubes provided concentrically with the injection nozzle to generate a fine air-filled liquid by the injection liquid and the gas from the self-priming hole with a diameter larger than that of the injection nozzle.
A gas introduction pipe connected to the self-priming hole provided between the injection nozzle and the fine bubble forming pipe is provided.
The second fine bubble forming tube having a shorter length and a shorter diameter than the angular position (that is, the length until it hits) at which the injection liquid emitted from the injection nozzle reaches the outermost first fine bubble forming tube is described. Arranged inside the first fine bubble forming tube,
It is characterized by that.
The fine bubble forming apparatus 1 has a liquid introduction pipe 3 for guiding a liquid from a fluid supply means, has a central axis (central axis of rotation) in a direction parallel to the longitudinal direction, and is a concentric cylinder for injecting a pressurized liquid. A fine bubble forming tube 7 having a shaped injection nozzle 4 and having a diameter larger than that of the injection nozzle and similarly provided concentrically to generate a fine air-filled liquid by the injection liquid and the gas from the self-priming hole 5. It is a fine bubble forming apparatus having a gas introduction tube 6 connected to the self-priming hole provided between the injection nozzle and the fine bubble forming tube.

流体供給手段により液体導入管3に導いた加圧供給液が水圧0.04〜0.25Mpaを得るための噴射ノズル径Aを設定し、Aの径に対し1.3から4.0倍の微細気泡形成管径Cを設定し、微細気泡形成管長Dは噴射ノズルから発した噴射液が負圧により広がり細気泡形成管に当たるまでの長さ以上とした。 The injection nozzle diameter A for obtaining a water pressure of 0.04 to 0.25 Mpa for the pressurized supply liquid guided to the liquid introduction pipe 3 by the fluid supply means is set, and the diameter of A is 1.3 to 4.0 times larger than the diameter of A. The fine bubble forming tube diameter C was set, and the fine bubble forming tube length D was set to be longer than the length until the injection liquid emitted from the injection nozzle spreads due to negative pressure and hits the fine bubble forming tube.

微細気泡形成管の噴射ノズルから発した噴射液が、最外側の微細気泡形成管7に達した角度位置より短長で短径な第2の微細気泡形成管をその内側に付設し、噴射液により第2の微細気泡発生管に達した角度より短長で短径な第3の微細気泡形成管をその内側に付設し、同様に繰り返して重ねて設置することができ、少なくても2個以上付設することもでき、流体供給手段から導入した液体の流速が変化しても揚程や移送に対応し微細気泡を形成する装置である。 A second fine bubble forming tube having a shorter length and a shorter diameter than the angle position where the injection liquid emitted from the injection nozzle of the fine bubble forming tube reaches the outermost fine bubble forming tube 7 is attached inside the injection liquid. Therefore, a third fine bubble forming tube having a shorter length and a shorter diameter than the angle reached to the second fine bubble generating tube can be attached to the inside thereof, and can be repeatedly installed in the same manner, at least two. It can be attached as described above, and it is a device that forms fine bubbles corresponding to the lift and transfer even if the flow velocity of the liquid introduced from the fluid supply means changes.

微細気泡発生のための通液量(体積)に対し、自吸する気体が最大75%(体積)である微細気泡を形成する装置である(常圧下)。 It is a device that forms fine bubbles in which the self-absorbing gas is up to 75% (volume) with respect to the amount of liquid passing (volume) for generating fine bubbles (under normal pressure).

導管により、50%の微細気泡含有水を水平に50mまで、30%の微細気泡含有水を水平に100mまで移動ができる微細気泡を形成する装置である。 It is a device that forms fine bubbles that can move 50% fine bubble-containing water horizontally up to 50 m and 30% fine bubble-containing water horizontally up to 100 m by means of a conduit.

導管により、40%の微細気泡含有水を揚程5mまで上昇できる微細気泡を形成する装置である。 It is a device that forms fine bubbles that can raise 40% fine bubble-containing water up to a lift of 5 m by means of a conduit.

以上の説明から明らかのように、本発明にあっては次に列挙する効果が得られる。
(1)本願発明の微細気泡形成装置は上述の背景技術に鑑みてなされたものであり、深く広い湖沼や海洋での養殖や浄化、大きな工場排水処理施設や下水処理場に大量の微細気泡を供給でき、流体への抵抗の少ない円筒構造を基本形としており、揚程のある設備、移送のある施設、粘度の高い液体、固体を含む液体に対応できる特性を有する。
As is clear from the above description, the following effects can be obtained in the present invention.
(1) The fine bubble forming apparatus of the present invention was made in view of the above-mentioned background technology, and a large amount of fine bubbles are generated in deep and wide lakes and marshes, cultivation and purification in oceans, large factory wastewater treatment facilities and sewage treatment plants. It is based on a cylindrical structure that can be supplied and has low resistance to fluids, and has characteristics that can be applied to equipment with a lift, equipment with a transfer, highly viscous liquids, and liquids including solids.

(2)液体導入管3に導いた加圧供給液が液圧の変化があっても適切な流速があれば噴射ノズルの径を設定し、この径に対し1.3から4.0倍の微細気泡形成管の径を設定し、微細気泡形成管の長さは噴射ノズルから発した噴射液が陰圧により広がり微細気泡形成管に当たるまでの長さ以上を有すれは良い。これにより、種々の性能の装置の製造が可能となった。 (2) If the pressurized supply liquid guided to the liquid introduction pipe 3 has an appropriate flow rate even if the liquid pressure changes, set the diameter of the injection nozzle, and 1.3 to 4.0 times this diameter. The diameter of the fine bubble forming tube is set, and the length of the fine bubble forming tube should be longer than the length until the jet liquid emitted from the injection nozzle spreads due to negative pressure and hits the fine bubble forming tube. This has made it possible to manufacture devices with various performances.

本願の発明は流体への抵抗の少ない円筒構造を基本形とし、最小径である噴射ノズル径は工業的な場合は10mm以上あり、噴射管径以下の固形物を含有している液体であれば使用でき、揚程、移送のある工程でも高粘度液体でも詰まりがなく、微細気泡の形成が可能となった。 The invention of the present application is based on a cylindrical structure having low resistance to fluid, and the minimum diameter of the injection nozzle is 10 mm or more in the industrial case, and any liquid containing a solid substance having an injection pipe diameter or less is used. It was possible to form fine bubbles without clogging even in a process with lifting and transfer or in a high-viscosity liquid.

(3)微細気泡形成管の噴射ノズルから発した噴射液が、最外側の微細気泡形成管7に達した角度位置より短長で短径な第2の微細気泡形成管7−1を図2のように付設し、噴射液により第2の微細気泡発生管に達した角度位置より短長で短径な第3の微細気泡形成管7−2を付設し、同様に繰り返して重ねて設置することができ、少なくても2個以上の微細気泡形成管を付設すると揚程が存在しても、遠くに移送する場合でも、若しくは使用する液体の流速が粘度等で変化する場合であっても、その流量にあった微細気泡発生管に液体が噴射され、変化に対応ができる微細気泡形成装置が可能となった。 (3) FIG. 2 shows a second fine bubble forming tube 7-1 having a shorter length and a shorter diameter than the angular position where the injection liquid emitted from the injection nozzle of the fine bubble forming tube reached the outermost fine bubble forming tube 7. Attach the third fine bubble forming tube 7-2, which is shorter and shorter than the angle position reached to the second fine bubble generating tube by the jet liquid, and repeatedly install them in the same manner. It is possible to attach at least two or more fine bubble forming tubes, even if there is a lift, if it is transferred far away, or if the flow velocity of the liquid used changes due to viscosity etc. A liquid is sprayed onto the fine bubble generation tube that matches the flow rate, making it possible to create a fine bubble forming device that can respond to changes.

含気食品の加工では粘度が高い液体や果実など固体を含有する液状物に微細気泡を混入させる工程が常套手段であるが、これまでの微細気泡形成装置では前記した様に細密機構のために困難であったが、本発明の多機能を有する微細気泡形成装置でこれらの製造が可能となった。 In the processing of aerated foods, the process of mixing fine bubbles into a liquid containing a solid such as a highly viscous liquid or fruit is a common practice, but in conventional fine bubble forming devices, as described above, due to the fine mechanism. Although it was difficult, these can be manufactured by the multifunctional fine bubble forming apparatus of the present invention.

(4)本願発明の微細気泡形成装置は、微細気泡発生のための通液量(体積)に対し、自吸する気体が75%(体積)に達し、液体が水、気体が空気としたとき水中に多量の空気の供給が可能で、広範囲に酸素が供給され、海、湖水での養殖・環境改善、あるいは藻類やミドリ虫、好気性微生物の培養、また活性汚泥中の微生物において、効率の良い酸素供給が可能となった。 (4) In the fine bubble forming apparatus of the present invention, when the self-absorbing gas reaches 75% (volume) of the liquid passing amount (volume) for generating fine bubbles, the liquid is water and the gas is air. It is possible to supply a large amount of air to the water, oxygen is supplied over a wide range, and it is efficient in culturing and improving the environment in the sea and lake water, culturing algae, green worms, aerobic microorganisms, and microorganisms in active sludge. A good oxygen supply has become possible.

(5)本願発明の微細気泡形成装置は、微細気泡含有水を導管により水平に遠く移送ができるようになり、施設設計の創造性が大となった。 (5) The fine bubble forming apparatus of the present invention has made it possible to transfer water containing fine bubbles horizontally and far away by a conduit, and the creativity of facility design has been greatly increased.

(6)本願発明の微細気泡形成装置は、微細気泡含有水を導管により揚程5mまで上昇でき、設置する場所を限定しなので施設設計の創造性が大となった。 (6) The fine bubble forming apparatus of the present invention can raise the water containing fine bubbles up to a lift of 5 m by a conduit, and the place where it is installed is limited, so that the creativity of the facility design is great.

本願発明の微細気泡形成装置1に液体を流すことで気体を自吸し、減圧された液体に気泡が含有され、衝撃波面を形成しつつ、気泡が崩壊し微細気泡を発生させることを実現した。 By flowing a liquid through the fine bubble forming apparatus 1 of the present invention, the gas is self-absorbed, and the depressurized liquid contains bubbles, and while forming a shock wave surface, the bubbles collapse and generate fine bubbles. ..

次に、それぞれの部位について説明すると、主管部2は、前記長手方向において管状であり、前記長手方向と平行な方向に中心軸(回転の中心軸)を有する内部空間を有する。この部分の大きさ、太さは限定されるものではなく、微細気泡の必要気泡量に準じて設計すれば良い。 Next, to explain each portion, the main pipe portion 2 is tubular in the longitudinal direction and has an internal space having a central axis (central axis of rotation) in a direction parallel to the longitudinal direction. The size and thickness of this portion are not limited, and may be designed according to the required amount of fine bubbles.

液体導入管3は、液体ポンプ液Bを噴射ノズルに導入するための導管であり、ポンプ排出管の径またはホース径にあわせ、また、液体導入管3は、前記長手方向と平行な方向に中心軸(回転の中心軸)を有して徐々に細くする内部空間を有し、液体をスムーズに流す機構を有する。径とは本発明の記載上では直径を示すこととする。 The liquid introduction pipe 3 is a conduit for introducing the liquid pump liquid B into the injection nozzle, and is adjusted to the diameter of the pump discharge pipe or the hose diameter, and the liquid introduction pipe 3 is centered in a direction parallel to the longitudinal direction. It has an internal space that has a shaft (central axis of rotation) and gradually narrows, and has a mechanism for smooth flow of liquid. The diameter means the diameter in the description of the present invention.

噴射ノズル4は、前記長手方向と平行な方向に中心軸(回転の中心軸)を有し、液体導入管から導かれた流体をスムーズに流し流速を一定に保ち出口より噴射させる部位であり、流体は負圧を生じて徐々に拡大し、径の大きな微細気泡形成管に接する。 The injection nozzle 4 has a central axis (central axis of rotation) in a direction parallel to the longitudinal direction, and is a portion where the fluid guided from the liquid introduction pipe flows smoothly, the flow velocity is kept constant, and the fluid is injected from the outlet. The fluid creates a negative pressure, gradually expands, and comes into contact with a fine bubble forming tube having a large diameter.

噴射ノズル径Aの設定は、ポンプから導入される液量から求める液圧になるように定めれば良い。ポンプからの液圧を0.05Mpa〜0.2Mpaとすれば良いが、より好ましくは液圧が0.08Mpa〜0.15Mpaを保つものであればなお良い。 The injection nozzle diameter A may be set so as to have a hydraulic pressure obtained from the amount of liquid introduced from the pump. The hydraulic pressure from the pump may be 0.05 Mpa to 0.2 Mpa, but more preferably the liquid pressure is maintained at 0.08 Mpa to 0.15 Mpa.

噴射ノズル4から液体が噴射されると微細気泡形成管7との間に負圧が生じ、その開口部の自吸孔5から気体が自給され、減圧された液体に気体が含有され、減圧されることで気泡が崩壊し、衝撃波面を形成しつつ微細気泡を発生させる。 When a liquid is injected from the injection nozzle 4, a negative pressure is generated between the liquid and the fine bubble forming tube 7, the gas is self-sufficient from the self-priming hole 5 at the opening thereof, and the depressurized liquid contains the gas and is depressurized. As a result, the bubbles collapse and generate fine bubbles while forming a shock wave surface.

気体導入管6または自吸孔の径5は厳格に規定されるものではなく、断面形状は角型、円形で、1又は数個あってもよく、太さも特に限定されないがあまり太いと気泡径が大きくなり好ましくはない。また、気体が空気以外であれば、発生機やボンベに導線を用いて接続すればよい。その数、形状は自吸孔に合わせ、減圧弁や圧力計を設置できればなお好ましい。 The diameter 5 of the gas introduction pipe 6 or the self-priming hole is not strictly defined, and the cross-sectional shape is square or circular, and there may be one or several, and the thickness is not particularly limited, but if it is too thick, the bubble diameter Is not preferable because it becomes large. If the gas is other than air, it may be connected to the generator or cylinder using a conducting wire. It is even more preferable if a pressure reducing valve and a pressure gauge can be installed according to the number and shape of the self-priming holes.

微細気泡形成管7は、前記長手方向に同心円状の筒形の内部空間を有し、噴射ノズルから噴出した液体を受け止め負圧部分を造り、微細気泡形成管径Cは噴射ノズル径に対し1.3から4.0倍の径で良く、より好ましくは1.5から3.5倍の径であればなお良い。微細気泡形成管長Dは噴射ノズルから発した噴射液が負圧により広がり微細気泡形成管に当たるまでの長さ以上を有すれば良く、微細気泡を形成させる部位である。 The fine bubble forming tube 7 has a concentric tubular internal space in the longitudinal direction, receives the liquid ejected from the injection nozzle and forms a negative pressure portion, and the fine bubble forming tube diameter C is 1 with respect to the injection nozzle diameter. The diameter may be 3.3 to 4.0 times, more preferably 1.5 to 3.5 times. The fine bubble forming tube length D only needs to have a length longer than the length until the injection liquid emitted from the injection nozzle spreads due to negative pressure and hits the fine bubble forming tube, and is a portion where fine bubbles are formed.

気体流入調整装置8は、自吸孔又は気体導入管に設置するものである。気体量の導入を絞る必要がある場合はこれを設置するが、この先に気体流量測定器を設置することで気体導入量を測定できる。水道水程度の純度の水では、この孔を絞ることで噴射ノズルと微細気泡形成管の間でより微細な気泡を形成することができる。 The gas inflow adjusting device 8 is installed in the self-priming hole or the gas introduction pipe. If it is necessary to limit the amount of gas introduced, install it, but by installing a gas flow rate measuring device ahead of it, the amount of gas introduced can be measured. With water as pure as tap water, finer bubbles can be formed between the injection nozzle and the fine bubble forming tube by narrowing this hole.

液状体とは、本発明を実施する際(本発明の装置の場合は、使用する際であり、以下、同様である。)の環境(具体的には、液状体が受ける温度、圧力等の環境条件)において流動性を有するもの(流動性を有する液状体であるもの)を用いることができる。例えば、室温(20〜25℃)において本発明を実施する場合は、室温(20〜25℃)において流動性を有するものを用いることができる。また、0℃以下において本発明を実施する場合は、0℃以下において流動性を有するものを用いることができる。 The liquid material refers to the environment (specifically, the temperature, pressure, etc. received by the liquid material) when carrying out the present invention (in the case of the apparatus of the present invention, when using the liquid material, the same applies hereinafter). It is possible to use a material having fluidity (a liquid material having fluidity) under environmental conditions). For example, when the present invention is carried out at room temperature (20 to 25 ° C.), those having fluidity at room temperature (20 to 25 ° C.) can be used. Further, when the present invention is carried out at 0 ° C. or lower, those having fluidity at 0 ° C. or lower can be used.

また、液状体とは、(1)液体(使用する際の環境(温度等の環境条件)において液体であるもの)のみを含有するのではなく、(2)液体(使用する際の環境(温度等の環境条件)において液体であるもの)と前記液体に溶解しない不純物を含有するもの(より詳細には、液状体が流動性を失わない範囲の前記不純物を含有するもの)も含まれる。また、差し支えがない場合であれば、液状体には、気体が含有していても構わない。液状体には、例えば、水、油脂、鉱物油、有機溶媒、河川水、湖沼水、海水、排水処理水、洗濯水(界面活性剤の混入液)、浴場水、飲用物、加工食品ミックス液、血液、個体(例えば、金属あるいは無機粒子、果実・カット野菜)を含有する液体等である。 Further, the liquid material does not contain only (1) a liquid (a liquid in the environment (environmental conditions such as temperature) at the time of use), but (2) a liquid (environment at the time of use (temperature)). It also includes those that are liquid under environmental conditions such as) and those that contain impurities that do not dissolve in the liquid (more specifically, those that contain the impurities within the range in which the liquid does not lose its fluidity). Further, if there is no problem, the liquid material may contain a gas. Liquids include, for example, water, oils and fats, mineral oils, organic solvents, river water, lake water, seawater, wastewater treatment water, washing water (mixed liquid of surfactant), bath water, drinks, processed food mix liquid. , Blood, liquid containing solids (eg, metal or inorganic particles, fruits / cut vegetables) and the like.

微細気泡を形成するための気体は、本発明を実施する際の環境(具体的には、微細気泡を形成するための気体が受ける温度、圧力等の環境条件)において気体であるものを用いることができる。例えば、室温(20〜25℃)において本発明を実施する場合は、室温(20〜25℃)において気体であるものを用いることができる。 As the gas for forming fine bubbles, one that is a gas in the environment for carrying out the present invention (specifically, environmental conditions such as temperature and pressure received by the gas for forming fine bubbles) shall be used. Can be done. For example, when the present invention is carried out at room temperature (20 to 25 ° C.), a gas at room temperature (20 to 25 ° C.) can be used.

また、微細気泡を形成させるための気体は、用途・使用目的に応じて、適宜気体を選択できる。例えば、微細気泡を形成しようとする液状体に殺菌力を保持させるには、オゾンガスないしオゾンガス含有ガスを使用する。また、微細気泡を形成しようとする液状体に対して、なるべく化学的な影響を与えないようにしたい場合には窒素ガス等の不活性ガスを使用する。また、微細気泡を形成しようとする液状体の溶存酸素の濃度を高めたい場合には酸素を使用することができる。 Further, as the gas for forming fine bubbles, a gas can be appropriately selected according to the intended use and purpose of use. For example, ozone gas or a gas containing ozone gas is used to maintain the bactericidal power of the liquid material that is going to form fine bubbles. Further, when it is desired to minimize the chemical influence on the liquid material for which fine bubbles are to be formed, an inert gas such as nitrogen gas is used. Further, when it is desired to increase the concentration of dissolved oxygen in the liquid material for which fine bubbles are to be formed, oxygen can be used.

本願発明の微細気泡形成装置の要素として、導入した液体の圧、噴射ノズル径、微細気泡形成管径及び長さにより示したが、当然、各圧力で導入した液体と噴射ノズル径による流量、流速の関係はベルヌーイの定理にある。 The elements of the fine bubble forming apparatus of the present invention are shown by the pressure of the introduced liquid, the injection nozzle diameter, the fine bubble forming tube diameter and the length, but of course, the flow rate and the flow velocity depending on the introduced liquid and the injection nozzle diameter at each pressure. The relationship is in Bernoulli's theorem.

本願発明の微細気泡形成装置の素材は、金属、プラスティック、セラミック等で形態を維持できれば素材を問わないし、作成方法もパイプの利用や削り出し、鋳物、3D(次元)プリンター方式を問うものではなく、何なる大きさ(能力)のものでも対応できる。 The material of the fine bubble forming apparatus of the present invention may be any material as long as the morphology can be maintained by metal, plastic, ceramic, etc. , Any size (ability) can be handled.

本願発明を実施するための最良の第一の形態の微細気泡形成装置図である。It is the fine bubble formation apparatus figure of the best 1st form for carrying out the invention of this application. 本願発明を実施するための最良の第3の形態の微細気泡形成装置図である。It is the fine bubble formation apparatus figure of the best 3rd form for carrying out the invention of this application.

以下、本発明の実施の形態に基づいて説明するが、次に実施例を挙げて更に詳細に説明する。しかし、本願発明はその要旨を超えない限り、これらの実施例に何ら限定されるものではない。 Hereinafter, the description will be given based on the embodiment of the present invention, but the following will be described in more detail with reference to examples. However, the invention of the present application is not limited to these examples as long as the gist of the present invention is not exceeded.

図1は、本願発明の実施例の断面図であって、図1は本願発明の一実施例の円筒形状の微細気泡形成装置1の概略断面図(概略円筒形状の微細気泡形成装置1の長手方向の概略断面図)である(但し、ハッチングは省略する)。本装置はポンプ等を用い微細気泡形成装置1の主管部2にある液体導入管3に適切な圧力の加圧液(a)を流し、噴射ノズル4から噴射させると、噴射ノズルより径の大きな微細気泡形成管7の間で負圧が生じ、気体導入管6の自給孔5から気体が自吸され、負圧された液体に気体が含有され、前記した微細気泡形成管7に当たり衝撃波面を形成しつつ、気泡が崩壊し微細気泡を連続的に形成し
た。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of a cylindrical fine bubble forming apparatus 1 according to an embodiment of the present invention (longitudinal length of the substantially cylindrical fine bubble forming apparatus 1). It is a schematic cross-sectional view of the direction (however, hatching is omitted). This device uses a pump or the like to flow a pressurized liquid (a) having an appropriate pressure through the liquid introduction pipe 3 in the main pipe portion 2 of the fine bubble forming device 1, and when the pressurized liquid (a) is injected from the injection nozzle 4, the diameter is larger than that of the injection nozzle. A negative pressure is generated between the fine bubble forming tubes 7, the gas is self-sucked from the self-sufficient hole 5 of the gas introduction tube 6, the gas is contained in the negatively pressured liquid, and the shock wave surface hits the fine bubble forming tube 7 described above. While forming, the bubbles collapsed and fine bubbles were continuously formed.

微細気泡形成管径の設定に関する本願微細形成装置の前方に最適な水中ポンプ(2.2kw〜5.5kw)を設置し、ここから3又は4インチのホースにて液体導入管3に繋ぎ、圧力計(山本計器製造(株))を用い0.05Mpaから0.2Mpa間の圧で直径7mm、20mm、25mm、30mm、35mm、40mmの噴射ノズルより噴射させ、噴射ノズルより径の大きな径を変動できる微細気泡形成管7を設置し、気体導入管6の自給孔5から気体を吸引し、通水量(V:体積)の75%(V)の気体を微細気泡として発生させる微細気泡形成管の径をそれぞれ測定した。なお、気体の量は自吸孔に接続した気体流量計(CML080:アズビル(株))にて測定し、微細気泡径の確認は前記した濁度計を用い吐出液の白濁消失時間で確認した。 An optimal submersible pump (2.2 kW to 5.5 kW) is installed in front of the fine bubble forming device of the present application regarding the setting of the fine bubble forming tube diameter, and the pressure is connected to the liquid introduction tube 3 from here with a 3 or 4 inch hose. Using a meter (Yamamoto Keiki Seisakusho Co., Ltd.), inject from a jet nozzle with a diameter of 7 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm at a pressure between 0.05 Mpa and 0.2 Mpa, and change the diameter larger than the injection nozzle. A fine bubble forming tube 7 is installed, and a gas is sucked from the self-sufficient hole 5 of the gas introduction tube 6 to generate a gas of 75% (V) of the water flow rate (V: volume) as fine bubbles. The diameter was measured respectively. The amount of gas was measured with a gas flow meter (CML080: Asville Co., Ltd.) connected to the self-priming hole, and the fine bubble diameter was confirmed by using the above-mentioned turbidity meter and checking the white turbidity disappearance time of the discharged liquid. ..

それぞれの噴射ノズル径で通水量(V)の75%(V)を吸引し、微細気泡化する際に適する微細気泡形成管径の平均値を表1にまとめた。尚、噴射管ノズル径7mmの場合での微細気泡形成管径の関係式は[数1]Y=61.4x+8.9、噴射管ノズル径20mmの場合での微細気泡形成管径の関係式は[数2]Y=174.8x+25.5、噴射ノズル管径25mmの場合での微細気泡形成管径の関係式は[数3]Y=221.2x+31.95、噴射ノズル管径30mmでの微細気泡形成径の関係式は[数4]Y=265.8x+38、噴射ノズル管径35mmでの微細気泡形成管径の関係式は[数5]Y=310.2x+44.3、噴射ノズル管径40mmでの微細気泡形成管径の関係式は[数6]Y=354x+50.7であった。xは水圧(Mpa)でこれらの結果から、水圧が下がれば微細気泡形成管径は小さくなり、水圧が大きくなればその径は大きくなることが明確になった。 Table 1 summarizes the average value of the fine bubble forming tube diameter suitable for sucking 75% (V) of the water flow rate (V) at each injection nozzle diameter and forming fine bubbles. The relational expression of the fine bubble forming pipe diameter when the injection pipe nozzle diameter is 7 mm is [Equation 1] Y = 61.4x + 8.9, and the relational expression of the fine bubble forming pipe diameter when the injection pipe nozzle diameter is 20 mm is [Equation 1] Y = 61.4x + 8.9. [Equation 2] Y = 174.8x + 25.5, the relational expression of the fine bubble forming tube diameter when the injection nozzle tube diameter is 25 mm is [Equation 3] Y = 221.2x + 31.95, and the fineness when the injection nozzle tube diameter is 30 mm. The relational expression of the bubble formation diameter is [Equation 4] Y = 265.8x + 38, the relational expression of the fine bubble formation tube diameter at the injection nozzle tube diameter of 35 mm is [Equation 5] Y = 310.2x + 44.3, and the injection nozzle tube diameter is 40 mm. The relational expression of the fine bubble forming tube diameter in was [Equation 6] Y = 354x + 50.7. x is the water pressure (Mpa), and from these results, it was clarified that the diameter of the fine bubble forming tube decreases as the water pressure decreases, and the diameter increases as the water pressure increases.

[表1]
噴射ノズル径における各 Mpa時の微細気泡形成管径

Figure 2022000303
単位mm
[Table 1]
Fine bubble forming tube diameter at each Mpa at the injection nozzle diameter
Figure 2022000303
Unit mm

水中ポンプから微細気泡形成装置までの揚程(ポンプ揚程3m、ポンプ揚程10m)の変化に関する。
本願微細気泡形成装置の前方に水中ポンプ(機種:エバラDL型汚水汚物用水中ポンプ1000DLB75.7 7.5kw :荏原製作所)を設置し、ここから4インチのホースにて、水中ポンプから揚程3mにて液体導入管3に繋ぎ、0.09Mpaの圧にて径59mmの噴射ノズル4(流量:2200l/min)から気泡形成管径121.2mm、管長607mmに噴射させた。
It relates to the change of the head (pump head 3m, pump head 10m) from the submersible pump to the fine bubble forming device.
A submersible pump (model: Ebara DL type sewage sewage submersible pump 1000DLB75.7 7.5 kW: Ebara Corporation) was installed in front of the fine bubble forming device of the present application, and a 4-inch hose was used to lift the head from the submersible pump to 3 m. It was connected to the liquid introduction tube 3 and injected from an injection nozzle 4 (flow rate: 2200 l / min) having a diameter of 59 mm to a bubble forming tube diameter of 121.2 mm and a tube length of 607 mm at a pressure of 0.09 Mpa.

また、前記同様のポンプを用いその水中ポンプから揚程10mにて液体導入管3に繋ぎ、0.09Mpaの圧にて直径39.7mmの噴射ノズル4(流量:1000l/min)から気泡形成管径81.5mm、管長607mmに噴射させた。なお、気体の量は自吸孔に接続した前記した流量計にて測定したところ、両者ともに通水量(V)の75%の気体を微細気泡として発生させた。 Further, using the same pump as described above, the submersible pump is connected to the liquid introduction pipe 3 at a lift of 10 m, and the bubble forming pipe diameter is connected from the injection nozzle 4 (flow rate: 1000 l / min) having a diameter of 39.7 mm at a pressure of 0.09 Mpa. It was sprayed to 81.5 mm and a pipe length of 607 mm. When the amount of gas was measured by the above-mentioned flow meter connected to the self-priming hole, both gas generated 75% of the water flow rate (V) as fine bubbles.

二重微細気泡形成管による微細気泡水の移送距離に関する。
ポンプ(7.5kw:エバラDL型汚水汚物用水中ポンプ1000DLB75.7:荏原製作所(株))を使用し4インチのホースにて、水中ポンプから微細気泡形成装置までの揚程3mにて液体導入管3に繋ぎ、0.09Mpaの圧にて径59mm(流量:2200l/min)の噴射ノズル4から気泡形成管(管径121.2mm、管長607mm)に噴射させ、吐出揚程0mで8インチの塩ビ管を接続し、通水量(V)の75%の気体を微細気泡として発生させた。
It relates to the transfer distance of fine bubble water by a double fine bubble formation tube.
Using a pump (7.5 kW: Ebara DL type sewage sewage submersible pump 1000DLB75.7: Ebara Seisakusho Co., Ltd.) with a 4-inch hose, a liquid introduction pipe with a lift of 3 m from the submersible pump to the fine bubble forming device. It is connected to 3 and is injected from an injection nozzle 4 having a diameter of 59 mm (flow rate: 2200 l / min) to a bubble forming tube (pipe diameter 121.2 mm, pipe length 607 mm) at a pressure of 0.09 Mpa, and an 8-inch vinyl chloride with a discharge head of 0 m. A pipe was connected to generate a gas having a water flow rate (V) of 75% as fine bubbles.

前記微細気泡形成管の内側に第2の微細気泡形成管(管径97.0mm、管長2043mm)を設置し噴射ノズルから噴射すると、吐出揚程0.5m以下であれば、50%の微細気泡を含有した水を約50m移送することが可能となり、30%の微細気泡を含有した水を約100m移送することが可能となった。 When a second fine bubble forming tube (tube diameter 97.0 mm, pipe length 2043 mm) is installed inside the fine bubble forming tube and injected from an injection nozzle, 50% of fine bubbles are discharged if the discharge head is 0.5 m or less. It became possible to transfer the contained water by about 50 m, and it became possible to transfer the water containing 30% fine bubbles by about 100 m.

二重微細気泡形成管によるポンプ揚程3mで吐出揚程0mの場合、ポンプ揚程3mで吐出揚程5mの場合の比較に関する。
本願微細気泡形成装置の前方に水中ポンプ(7.5kw:エバラDL型汚水汚物用水中ポンプ1000DLB75.7:荏原製作所(株))を設置し、ここから4インチのホースにて、水中ポンプから微細気泡形成装置までの揚程3mにて液体導入管3に繋ぎ、0.09Mpaの圧にて直径59mmの噴射ノズル4(流量:2200l/min)から気泡形成管(管径121.2mm、管長607mm)に噴射させ、吐出揚程0mで長さ3mの6インチの塩ビ管を接続し、通水量(V)の75%の気体を微細気泡として発生させたが、吐出揚程5mでは十分に微細気泡を発生できなかった。
The present invention relates to a comparison in the case where the pump head is 3 m and the discharge head is 0 m by the double fine bubble forming pipe, and the case where the pump head is 3 m and the discharge head is 5 m.
A submersible pump (7.5 kW: Ebara DL type sewage sewage submersible pump 1000DLB75.7: Ebara Seisakusho Co., Ltd.) was installed in front of the fine bubble forming device of the present application, and from here, a 4-inch hose was used to minute the water from the submersible pump. Connected to the liquid introduction pipe 3 at a lift of 3 m to the bubble forming device, and from the injection nozzle 4 (flow rate: 2200 l / min) having a diameter of 59 mm at a pressure of 0.09 Mpa to the bubble forming pipe (tube diameter 121.2 mm, pipe length 607 mm). A 6-inch PVC pipe with a discharge height of 0 m and a length of 3 m was connected to generate a gas with 75% of the water flow rate (V) as fine bubbles. could not.

吐出揚程5mの場合は、上記微細気泡形成管の内側に第2の微細気泡形成管(管径88.0mm、管長220mm)を設置し、噴射ノズル4から噴射させると通水量(V)の40%(V)の気体を微細気泡として発生させた。微細気泡形成管を二重に設置することで吐出揚程が0mから吐出揚程が5mの場合でも利用が可能となった。 In the case of a discharge lift of 5 m, a second fine bubble forming tube (tube diameter 88.0 mm, pipe length 220 mm) is installed inside the fine bubble forming tube, and when the injection nozzle 4 is used to inject water, the water flow rate (V) is 40. % (V) gas was generated as fine bubbles. By installing the fine bubble forming tube twice, it can be used even when the discharge head is 0 m to 5 m.

多重微細気泡形成管を有する微細気泡形成装置に関する。
水180Lに攪拌しながら徐々に脱脂粉乳20kg、砂糖14kg、粉ゼラチン6kg、コーンスターチ10kgを加え、弱火から徐々に加熱していき75℃に達した後、攪拌しながら45℃付近に下げてミルクムースミックスを作った。このミックスを40℃以下に下げながら粘度計(英弘精機(株)LVDV−Iprime)で測定すると温度の低下と時間の経過とともに160から400cpに増粘した。
The present invention relates to a fine bubble forming apparatus having a multiple fine bubble forming tube.
Gradually add 20 kg of skim milk powder, 14 kg of sugar, 6 kg of gelatin powder, and 10 kg of cornstarch to 180 L of water while stirring, gradually heat from low heat to reach 75 ° C, and then lower to around 45 ° C while stirring to make milk mousse. I made a mix. When this mix was measured with a viscometer (LVDV-Iprime Co., Ltd.) while lowering the temperature to 40 ° C. or lower, the viscosity increased from 160 to 400 cp with the decrease in temperature and the passage of time.

このミックス液をポンプ(ツルミ 40PSF2.4S:(株)鶴見製作所)で吸い込み、径7mmの噴射ノズル4を用い管径18.2mm、管長250mmnの微細気泡形成管、その内側に管径14.5mm、管長120mmの微細気泡形成管、また、その内側に管径10.4mm、管長50mmの微細気泡形成管を設置した微細気泡形成装置に通すと空気を自吸し、微細気泡を含んだ増粘ゾル状液ができた。 This mixed liquid is sucked by a pump (Tsurumi 40PSF2.4S: Tsurumi Seisakusho Co., Ltd.), and a fine bubble forming tube with a tube diameter of 18.2 mm and a tube length of 250 mmn is used with an injection nozzle 4 having a diameter of 7 mm. When passed through a fine bubble forming device having a fine bubble forming tube with a tube length of 120 mm and a fine bubble forming tube having a tube diameter of 10.4 mm and a tube length of 50 mm inside, air is self-absorbed and thickening containing fine bubbles. A sol-like liquid was formed.

出来上がった微細気泡含有ゾル液を100mlの容器にて隙間のない様に注ぎ込み、冷蔵庫でゲル化させその重量を測定、気泡を入れる処理をしていないミックス溶液を100mlの容器に移し重量を測定、容器のみの重量を同様に測定し、アイスクリームなどのオーバーランの測定法に準じて計算した結果、30%から75%のオーバランを有したババロア状のデザートができた。 Pour the finished fine bubble-containing sol solution into a 100 ml container without any gaps, gel it in a refrigerator and measure its weight, transfer the mixed solution that has not been treated to contain bubbles to a 100 ml container, and measure the weight. As a result of measuring the weight of only the container in the same manner and calculating according to the measurement method of overrun such as ice cream, a bavarois-like dessert having an overrun of 30% to 75% was produced.

本願発明は幅広い液圧、粘度溶液で、多様な設定(揚程、移送)で、微細気泡を多量に発生させることができる多機能な微細気泡形成措置である。例えば湖沼での養殖や水質改善、排水処理場での溶存酸素の効率良い供給源として利用、揚程や移送の必要のある複雑な施設での利用、含気食品等の加工関連に利用でき、その他、化学工業、医療や福祉と幅広い分野で利用できる。また、種々の気体や液体(個体を含む)を利用すれば、高度な食品加工、化学反応の多様化、医学の現場等、利用可能性の高い技術である。 The present invention is a multifunctional fine bubble forming measure capable of generating a large amount of fine bubbles with various settings (lift, transfer) with a wide range of hydraulic pressure and viscosity solutions. For example, it can be used for aquaculture and water quality improvement in lakes, as an efficient source of dissolved oxygen in wastewater treatment plants, in complex facilities that require lifting and transportation, and for processing aerated foods, etc. , Chemical industry, medical and welfare and can be used in a wide range of fields. In addition, if various gases and liquids (including individuals) are used, it is a highly usable technology for advanced food processing, diversification of chemical reactions, medical practice, and the like.

1.微細気泡形成装置
2.主幹部
3.液体導入管
4.噴射ノズル
5.自吸孔
6.気体導管
7.微細気泡形成管
8.気体流入調整装置
1. 1. Fine bubble forming device 2. Chief executive 3. Liquid introduction tube 4. Injection nozzle 5. Self-priming hole 6. Gas vessel 7. Fine bubble forming tube 8. Gas inflow regulator

Claims (6)

流体供給手段から液体を導く液体導入管を有し、前記液体導入菅の長手方向と平行な方向に中心軸を有し加圧液を噴射させる同心円筒形の噴射ノズルを有し、
前記噴射ノズルより大きな径で噴射液と自吸孔からの気体により微細気包含有液を生じさせる前記噴射ノズルと同心円状に設けられた第1、第2の微細気泡形成管を有し、
前記噴射ノズルと微細気泡形成管との間に設けられた前記自吸孔に連なる気体導入管を備え、
前記噴射ノズルから発した噴射液が、最外側の前記第1の微細気泡形成管に達する角度位置より短長で短径な第2の微細気泡形成管を前記第1の微細気泡形成管の内側に配設した、ことを特徴とする微細気泡形成装置
It has a liquid introduction pipe that guides the liquid from the fluid supply means, has a central axis in a direction parallel to the longitudinal direction of the liquid introduction pipe, and has a concentric cylindrical injection nozzle for injecting a pressurized liquid.
It has first and second fine bubble forming tubes provided concentrically with the injection nozzle to generate a fine air-filled liquid by the injection liquid and the gas from the self-priming hole with a diameter larger than that of the injection nozzle.
A gas introduction pipe connected to the self-priming hole provided between the injection nozzle and the fine bubble forming pipe is provided.
The second fine bubble forming tube having a shorter length and a shorter diameter than the angle position where the injection liquid emitted from the injection nozzle reaches the outermost first fine bubble forming tube is inside the first fine bubble forming tube. A fine bubble forming device, characterized in that it is arranged in
噴射液により前記第2の微細気泡発生管に達した角度位置より短長で短径な少なくとも第3の微細気泡形成管をその内側に配設し、以下同様に繰り返して重ねて第4以上の微細気泡形成管をその内側に配設することができるよう構成したことを特徴とする、請求項1に記載の微細気泡形成装置。 At least a third fine bubble forming tube having a shorter length and a shorter diameter than the angle position reached to the second fine bubble generating tube by the jet liquid is arranged inside the tube, and the same applies to the fourth and higher cells. The fine bubble forming apparatus according to claim 1, wherein the fine bubble forming tube is configured to be arranged inside the fine bubble forming tube. 流体供給手段により液体導入管に導いた加圧供給液が液圧0.04〜0.25Mpaを得るための噴射ノズル径(A)を設定し、(A)の径に対し1.3から4.0倍の微細気泡形成管径(C)を設定し、微細気泡形成管長(D)は噴射ノズルから発した噴射液が負圧により広がり微細気泡形成管に当たるまでの長さ以上を有すること、を特徴とする請求項1または2に記載の微細気泡形成装置。 The injection nozzle diameter (A) for the pressurized supply liquid guided to the liquid introduction pipe by the fluid supply means to obtain a liquid pressure of 0.04 to 0.25 Mpa is set, and 1.3 to 4 with respect to the diameter of (A). The fine bubble forming tube diameter (C) is set to 0.0 times, and the fine bubble forming tube length (D) is longer than the length until the injection liquid emitted from the injection nozzle spreads due to negative pressure and hits the fine bubble forming tube. The fine bubble forming apparatus according to claim 1 or 2. 微細気泡発生のための通液量(体積)に対し、自吸する気体が75%(体積)に達することを特徴とする請求項1〜3のいずれか1項に記載の微細気泡形成装置。 The fine bubble forming apparatus according to any one of claims 1 to 3, wherein the self-absorbing gas reaches 75% (volume) with respect to the liquid passing amount (volume) for generating fine bubbles. 導管により、50%の微細気泡含有水を水平に50mまで、30%の微細気泡含有水を
水平に100mまで移動ができることを特徴とする請求項1〜4のいずれか1項に記載の微細気泡形成装置。
The fine bubbles according to any one of claims 1 to 4, wherein 50% of the fine bubble-containing water can be moved horizontally to 50 m and 30% of the fine bubble-containing water can be moved horizontally to 100 m by the conduit. Forming device.
導管により、40%の微細気泡含有水を揚程5mまで上昇できることを特徴とする請求項1〜5のいずれか1項に記載の微細気泡形成装置。 The fine bubble forming apparatus according to any one of claims 1 to 5, wherein 40% of fine bubble-containing water can be raised to a lift of 5 m by means of a conduit.
JP2021153850A 2017-04-11 2021-09-22 Fine bubble forming device Active JP7218016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021153850A JP7218016B2 (en) 2017-04-11 2021-09-22 Fine bubble forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087650A JP7014391B2 (en) 2017-04-11 2017-04-11 Fine bubble forming device
JP2021153850A JP7218016B2 (en) 2017-04-11 2021-09-22 Fine bubble forming device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017087650A Division JP7014391B2 (en) 2017-04-11 2017-04-11 Fine bubble forming device

Publications (2)

Publication Number Publication Date
JP2022000303A true JP2022000303A (en) 2022-01-04
JP7218016B2 JP7218016B2 (en) 2023-02-06

Family

ID=64280517

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017087650A Active JP7014391B2 (en) 2017-04-11 2017-04-11 Fine bubble forming device
JP2021153850A Active JP7218016B2 (en) 2017-04-11 2021-09-22 Fine bubble forming device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017087650A Active JP7014391B2 (en) 2017-04-11 2017-04-11 Fine bubble forming device

Country Status (1)

Country Link
JP (2) JP7014391B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063554A4 (en) 2019-11-22 2023-01-18 Qingdao Haier Washing Machine Co., Ltd. Microbubble treatment agent cartridge assembly and washing equipment having same
NO347828B1 (en) * 2019-12-13 2024-04-15 Nordic Clean Pumps As APPARATUS FOR IMPROVING WATER QUALITY AND A METHOD OF OPERATING THE APPARATUS
KR102603861B1 (en) * 2022-03-15 2023-11-20 서윤환 Fine-bubble generator device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286594A (en) * 1997-04-17 1998-10-27 Kurantsu Kk Water purification device
JP2007203206A (en) * 2006-02-02 2007-08-16 Maikomu:Kk Microbubble generating nozzle and apparatus for supplying microbubble equipped with the same
WO2015064159A1 (en) * 2013-10-31 2015-05-07 日之出産業株式会社 Microbubble formation method, and microbubble formation device
JP2017225961A (en) * 2016-06-24 2017-12-28 日東精工株式会社 Fine bubble generation nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286594A (en) * 1997-04-17 1998-10-27 Kurantsu Kk Water purification device
JP2007203206A (en) * 2006-02-02 2007-08-16 Maikomu:Kk Microbubble generating nozzle and apparatus for supplying microbubble equipped with the same
WO2015064159A1 (en) * 2013-10-31 2015-05-07 日之出産業株式会社 Microbubble formation method, and microbubble formation device
JP2017225961A (en) * 2016-06-24 2017-12-28 日東精工株式会社 Fine bubble generation nozzle

Also Published As

Publication number Publication date
JP7014391B2 (en) 2022-02-01
JP7218016B2 (en) 2023-02-06
JP2018176145A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP2022000303A (en) Fine bubble formation device
JP5261124B2 (en) Nanobubble-containing liquid manufacturing apparatus and nanobubble-containing liquid manufacturing method
JP6384765B2 (en) Microbubble forming method and microbubble forming apparatus
JP4525890B2 (en) Swivel type micro bubble generator
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
JP3397154B2 (en) Revolving microbubble generator
WO1999033553A1 (en) Swirling fine-bubble generator
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP4914399B2 (en) Nanobubble generating method and nanobubble generating apparatus
JPWO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilization system
JP2010155243A (en) Swirling type fine-bubble generating system
JP4145000B2 (en) Fine bubble feeder
JP2014097449A5 (en)
EP1670574B1 (en) Method and apparatus for mixing of two fluids
JP2010535627A5 (en)
US20150008191A1 (en) Low-turbulent aerator and aeration method
CN108751457A (en) Rotate freely the jet aerator of agitating function
JP2003117368A (en) Gas-liquid or liquid-liquid mixer, mixing apparatus, method of manufacturing mixed liquid and method of manufacturing fine bubble-containing liquid
JP2010535627A (en) Method and apparatus for aeration
JP2008178792A (en) Biological reaction method and biological reaction apparatus
Rasdi et al. A novel membrane-based bubble generator for oxygen dissolution in water
CN101781030B (en) Aeration nozzle for sewage treatment
JP2011011178A (en) Method and apparatus for gas-liquid mixing dissolution
JP2003181259A (en) Swirling type fine bubble formation method and apparatus
CN210481377U (en) Gas dissolving device for aerobic fermentation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230118

R150 Certificate of patent or registration of utility model

Ref document number: 7218016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150