JP2021535544A - 光リサイクル光源を用いるグレーティングコリメータ、バックライトシステム、及び方法 - Google Patents

光リサイクル光源を用いるグレーティングコリメータ、バックライトシステム、及び方法 Download PDF

Info

Publication number
JP2021535544A
JP2021535544A JP2021507592A JP2021507592A JP2021535544A JP 2021535544 A JP2021535544 A JP 2021535544A JP 2021507592 A JP2021507592 A JP 2021507592A JP 2021507592 A JP2021507592 A JP 2021507592A JP 2021535544 A JP2021535544 A JP 2021535544A
Authority
JP
Japan
Prior art keywords
light
light guide
backlight
guide
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021507592A
Other languages
English (en)
Other versions
JP7235850B2 (ja
Inventor
リ,シュエジァン
マ,ミン
エー. ファタル,デイヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leia Inc
Original Assignee
Leia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leia Inc filed Critical Leia Inc
Publication of JP2021535544A publication Critical patent/JP2021535544A/ja
Application granted granted Critical
Publication of JP7235850B2 publication Critical patent/JP7235850B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

グレーティングコリメータ及びバックライトシステムが、バックライトを点灯させるためのコリメート光を供給する。グレーティングコリメータは、光を導波光として導くように構成された導光体と、導光体に光を供給し、導光体から受け取った光をリサイクルするように構成された光リサイクル光源とを備える。グレーティングコリメータは、供給された光を導波光として導光体に回折的に方向転換させるように構成された回折格子カプラをさらに備える。バックライトシステムは、コリメート出力光を供給するように構成されたグレーティングコリメータと、コリメート出力光を受け取るように構成されたバックライトとを備える。バックライトはマルチビューバックライトであってもよい。

Description

関連出願の相互参照
なし
連邦政府による資金提供を受けた研究開発の記載
なし
電子ディスプレイは、多種多様なデバイス及び製品のユーザに情報を伝達するためのほぼどこにでもある媒体である。最も一般的に見られる電子ディスプレイとしては、陰極線管(CRT)、プラズマディスプレイパネル(PDP)、液晶ディスプレイ(LCD)、エレクトロルミネセンスディスプレイ(EL)、有機発光ダイオード(OLED)及びアクティブマトリクスOLED(AMOLED)ディスプレイ、電気泳動ディスプレイ(EP)、並びに電気機械的又は電気流体的光変調を利用する様々なディスプレイ(例えば、デジタルマイクロミラーデバイス、エレクトロウェッティングディスプレイなど)が挙げられる。一般に、電子ディスプレイは、アクティブディスプレイ(すなわち、光を放射するディスプレイ)又はパッシブディスプレイ(すなわち、別の光源によって供給される光を変調するディスプレイ)のいずれかに分類することができる。アクティブディスプレイの最も分かりやすい例には、CRT、PDP、及びOLED/AMOLEDがある。放射光を考慮したときに通常パッシブとして分類されるディスプレイは、LCD及びEPディスプレイである。パッシブディスプレイは、限定するものではないが本質的に低消費電力であることを含み、魅力的な性能特性を示すことが多いが、発光する能力がないために、多くの実用的なアプリケーションにおいていくらか使用が限られるように感じられることがある。
発光に関連するパッシブディスプレイの様々な潜在的適用制限に対処するために、多くのパッシブディスプレイは、外部光源に結合されている。結合された光源によって、本来パッシブであるこれらのディスプレイが、光を放射し、実質的にアクティブディスプレイとして機能し得る。このような結合される光源の例は、バックライトである。
本明細書で説明される原理による例及び実施形態の様々な特徴は、以下の「発明を実施するための形態」を添付の図面と併せて読めば、より容易に理解することができ、添付の図面では、同様の参照番号は同様の構造要素を示している。
本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータの断面図である。
本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータの平面図である。
本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータの斜視図である。
本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータの光リサイクル光源の拡大側面図である。
本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータの断面図である。
本明細書で説明される原理による別の実施形態による、一例におけるグレーティングコリメータの断面図である。
本明細書で説明される原理による実施形態による、一例におけるバックライトシステムのブロック図である。
本明細書で説明される原理による実施形態による、一例におけるマルチビューバックライトを備えるバックライトシステムの側面図である。
本明細書で説明される原理による実施形態による、一例における図5Aのバックライトシステムの斜視図である。
本明細書で説明される原理による実施形態による、一例における光をコリメートする方法の流れ図である。
特定の例及び実施形態は、上記の図面に示す特徴のうちの1つである他の特徴を追加的又は代替的に有する。以下、これら及び他の特徴について、上記の図面を参照して詳述する。
本明細書で説明される原理による実施形態は、グレーティングコリメータからのコリメート光を受け取るように構成されたバックライトシステムと共に、コリメート照明源を提供するように構成されたグレーティングコリメータを提供する。特に、導光体と、光リサイクル光源と、回折格子カプラとを備えるグレーティングコリメータが提供される。導光体は、導光体の導光面の平面に対して非ゼロ伝播角度で導波光として光を導くように構成される。導波光は、グレーティングコリメータの出力に向かう伝播方向を有する。光リサイクル光源は、導光体に光を供給し、導光体から受け取った光をリサイクルするように構成される。光リサイクル光源によってリサイクルされた光は、供給される光を増強するように構成される。回折格子は、導光体の導光面にあり、光リサイクル光源によって供給された光を、非ゼロ伝播角度で導波光として導光体に回折的に方向転換させるように構成される。様々な実施形態によれば、回折的に方向転換された光は、コリメート出力光としてグレーティングコリメータを出ることができる。
様々な実施形態によれば、グレーティングコリメータからのコリメート出力光は、電子ディスプレイで使用されるバックライトの導光体に結合され得る。一部の実施形態では、電子ディスプレイは、3D情報を、例えば3D又はマルチビュー画像として表示するために使用される3次元(3D)又はマルチビュー電子ディスプレイであり得る。例えば、電子ディスプレイは、オートステレオスコピック又は「メガネ不要」マルチビュー又は3D電子ディスプレイであり得る。他の実施形態では、電子ディスプレイは、2次元(2D)ディスプレイであり得る。
特に、マルチビューディスプレイは、バックライトを使用して、マルチビューディスプレイによって表示されているマルチビュー画像の照明を提供することができる。例えば、バックライトは、マルチビューディスプレイ(又は等価的にはマルチビュー画像)のピクセルに対応する指向性光線を供給するように構成された複数のマルチビーム要素を備え得る。様々な実施形態において、指向性光線は、互いに異なる主角度方向を有し得る(「異なる方向に向けられた光線」とも呼ばれる)。一部の実施形態によれば、バックライトによって生成されるこれらの異なる方向に向けられた光線は、変調されて、マルチビューディスプレイの異なるビューに対応するマルチビューピクセルとして機能し得る。これらの実施形態では、グレーティングコリメータによってもたらされる光コリメーションを使用して、バックライト内にコリメート光を生成することができる。同様に、2Dディスプレイは、バックライトを使用して、表示されている2D画像の照明を提供することができる。ただし、2Dディスプレイのバックライトは、拡散又は実質的に拡散又は無指向性の照明を提供することもできる。
本明細書では、「2次元ディスプレイ」又は「2Dディスプレイ」は、画像が見られる方向に関係なく(すなわち、2Dディスプレイの所定の視野角又は範囲内で)実質的に同じ画像のビューを提供するように構成されたディスプレイとして定義される。多くのスマートフォン及びコンピュータモニタに見られる従来の液晶ディスプレイ(LCD)が、2Dディスプレイの例である。ここで対照的に「マルチビューディスプレイ」は、様々なビュー方向で、又は様々なビュー方向からマルチビュー画像の様々なビューを提供するように構成された電子ディスプレイ又は電子ディスプレイシステムとして定義される。特に、様々なビューは、マルチビュー画像のシーン又はオブジェクトの様々なパースペクティブビューを表し得る。
本明細書では、「導光体」は、内部全反射を用いてその構造内において光を導く構造として定義される。特に、導光体は、導光体の動作波長で実質的に透明なコアを備え得る。様々な実施例では、「導光体」という用語は、一般に、内部全反射を利用して導光体の誘電体材料とその導光体を取り囲む材料又は媒質との間の界面で光を導く、誘電体光学導波路を指す。定義によれば、内部全反射のための条件は、導光体の屈折率が導光体材料の表面に隣接する周囲の媒質の屈折率より大きいことである。一部の実施形態では、内部全反射をさらに促進するために、導光体は、上述の屈折率の差に加えて、又はその代わりに、コーティングを備え得る。コーティングは、例えば反射性コーティングとすることができる。導光体は、バー導光体及びストリップ導光体のうちの一方又は両方を含むが、これらに限定されない、いくつかの導光体のうちの任意のものとすることができる。
さらに、本明細書では、「バー型導光体」など導光体に用いられるときの「バー」という用語は、「バー」導光体と呼ばれることもある3次元の角柱として定義される。よって、「バー型」導光体は、定義によれば、3次元の略柱状形状を有する。特に、バー型導光体は、2つの略直交する方向(例えば、導光体の上面及び下面並びに2つの側面)に整列された2対の対向する表面によって囲まれた長さに沿って光を導くように構成された導光体として定義される。さらに、2対の対向する側面のいずれかの長さに直交する寸法(例えば、幅又は高さ)は、定義によれば、導光体の長さよりも短い。様々な実施形態によれば、バー型導光体の対向する表面の第1の対(例えば、上面及び下面)は、少なくとも微分的な意味では互いに略平行である。同様に、様々な実施形態によれば、他の2つの略対向する側面(例えば、両側面)もまた、少なくとも微分的な意味では互いに略平行である。つまり、バー型導光体の任意の微分的に小さな領域又は長さ内で、対向する表面(例えば、上面及び下面、一対の側面など)は、互いに略平行である。
本明細書で説明される様々な実施形態によれば、回折格子を利用して、光を光線として導光体(例えば、グレーティングコリメータ)に散乱させる、又は結合させることができる。本明細書では、「回折格子」は、一般に、その回折格子に入射する光を回折させるように構成された複数の機構(すなわち、回折機構)として定義される。一部の例では、複数の機構は、周期的又は準周期的に構成され得る。例えば、回折格子の複数の機構(例えば、材料表面の複数の溝)は機構の1次元(1D)アレイに構成され得る。他の例では、回折格子は、機構の2次元(2D)アレイとすることもできる。回折格子は、例えば材料表面のバンプ又は穴の2Dアレイとすることもできる。
したがって、また本明細書の定義によれば、「回折格子」は、その回折格子に入射する光を回折させる構造である。光が光源から回折格子に入射すると、それによりもたらされる回折又は回折的散乱は、回折格子が光を回折によって導光体に結合させることができるという点で「回折結合」を生じ、したがって、この回折又は回折的散乱は、「回折結合」と呼ばれることもある。回折格子はまた、回折によって(すなわち、回折角で)、光を方向転換させる、又は光の角度を変化させる。特に、回折の結果として、回折格子を出る光(すなわち、回折光)は、一般に、回折格子に入射した光(すなわち、入射光)の伝播方向とは異なる伝播方向を有する。回折による光の伝播方向の変化を、本明細書では、「回折的方向転換」と呼ぶ。したがって、回折格子は、回折格子に入射した光を回折的に方向転換させる回折機構を含む構造であると理解することができ、光が光源から入射した場合に、回折格子は、光源からの光を導光体に回折的に結合させることもできる。
さらに、本明細書の定義によれば、回折格子の機構は、「回折機構」と呼ばれ、材料表面(すなわち、「表面」とは2つの材料の間の境界をいう)にある、表面内にある、表面上にある、のうちの1つ又はそれ以上であり得る。この表面は、例えばグレーティングコリメータの表面であり得る。回折機構は、溝、リッジ、穴、及びバンプのうちの1つ又はそれ以上を含むが、これらに限定されない、光を回折させる様々な構造のうちのいずれかを含むこともでき、これらの構造は、表面における、表面内にある、及び表面上にあるもののうちの1つ又はそれ以上であり得る。例えば、回折格子は、材料表面に複数の平行な溝を備え得る。別の例では、回折格子は材料表面から立ち上がる複数の平行なリッジを備え得る。回折格子が側面に平行な溝、平行なリッジなどを備える場合、回折格子は、本明細書での定義によれば、互いに平行な「垂直」回折機構(すなわち、平行な垂直回折機構)を備える。回折機構(溝、リッジ、穴、バンプなどを問わない)は、正弦波形プロファイル、方形プロファイル(例えば、バイナリ型回折格子)、3角形プロファイル、及び鋸歯形プロファイル(例えば、ブレーズド回折格子)のうちの1つ又はそれ以上を含むが、これらに限定されない、回折をもたらす様々な断面形状又はプロファイルのうちのいずれかを有し得る。
本明細書では、「光源」は、作動されると光を放射する光の源(例えば、装置又はデバイス)として定義される。本明細書では、光源は、発光ダイオード(LED)、レーザ、有機発光ダイオード(OLED)、ポリマー発光ダイオード、プラズマ型光エミッタ、蛍光灯、白熱灯、及び実質的に任意の他の光源のうちの1つ又はそれ以上を含むが、これらに限定されない、実質的に任意の光源又は光エミッタであり得る。光源によって生成される光は、色を有してもよいし、特定の波長の光を含んでもよい。そのため、「異なる色の複数の光源」は、本明細書では、複数の光源のうちの少なくとも1つが、複数の光源のうちの少なくとも1つの他の光源によって生成される光の色又は等価的には波長とは異なる色又は等価的には波長を有する光を生成する光源のセット又はグループとして明示的に定義される。さらに、「異なる色の複数の光源」は、複数の光源のうちの少なくとも2つの光源が、異なる色の光源である(つまり、少なくとも2つの光源の間で異なる光の色を生成する)限り、同色又は略同色の複数の光源を含み得る。したがって、本明細書の定義によれば、「異なる色の複数の光源」は、第1の色の光を生成する第1の光源と第2の色の光を生成する第2の光源とを含み、第2の色が第1の色とは異なり得る。一部の実施形態では、光源は、白色光を供給するように構成された多色発光ダイオードを含む。
本明細書では、定義によれば、光リサイクル光源は、光を供給し、且つ反射などによって戻された光をリサイクルするように構成された光源である。様々な実施形態によれば、次に、光リサイクル光源に戻された光は、リサイクルされて、光リサイクル光源によって既に供給されている光に追加され得る。
本明細書の定義によれば、「マルチビーム要素」は、複数の指向性光線を含む光を生成するバックライト又はディスプレイの構造又は要素である。一部の実施形態では、マルチビーム要素は、バックライトの導光体に光学的に結合されて、導光体内を導波光の一部分を取り出すことによって光線を供給することができる。さらに、マルチビーム要素によって生成される複数の光線の光線は、本明細書の定義によれば、互いに異なる主角度方向を有する。特に、定義によれば、複数の光線のうちのある光線は、複数の光線のうちの別の光線とは異なる所定の主角度方向を有する。さらに、複数の光線は、ライトフィールドを表すことができる。例えば、複数の光線は、実質的に円錐形の空間領域に制限され得る、又は複数の光線における光線の異なる主角度方向を含む所定の角度拡がりを有し得る。そのため、合計の光線(すなわち、複数の光線)の所定の角度拡がりが、ライトフィールドを表し得る。様々な実施形態によれば、様々な光線の様々な主角度方向は、マルチビーム要素のサイズ(例えば、長さ、幅、面積など)を含むが、これに限定されない特性によって測定される。一部の実施形態では、マルチビーム要素は、本明細書の定義によれば、「拡張された点光源」、すなわちマルチビーム要素の範囲にわたって分布した複数の点光源と考えることができる。
本明細書では、「サイズ」は、長さ、幅、又は面積を含むがこれらに限定されない様々な仕方のいずれかで定義され得る。例えば、マルチビーム要素のサイズはマルチビーム要素の長さであり得る。別の例では、サイズは、マルチビーム要素の面積を指し得る。一部の実施形態では、マルチビーム要素のサイズは、複数の指向性光線の指向性光線(directional light beams of the plurality of directional light beams)を変調するために使用されるライトバルブのサイズに相当する。そのため、マルチビーム要素サイズがライトバルブサイズの約50パーセント(50%)〜約200パーセント(200%)である場合、マルチビーム要素サイズは、ライトバルブサイズに相当し得る。例えば、マルチビーム要素サイズを「s」とし、ライトバルブサイズを「S」とすると、マルチビーム要素サイズsは次式(1)で与えられ得る。
Figure 2021535544
他の例では、マルチビーム要素サイズは、ライトバルブサイズの約60パーセント(60%)より大きい、又はライトバルブサイズの約70パーセント(70%)より大きい、又はライトバルブサイズの約80パーセント(80%)より大きい、又はライトバルブサイズの約90パーセント(90%)より大きく、且つマルチビーム要素は、ライトバルブの約180パーセント(180%)より小さい、又はライトバルブサイズの約160パーセント(160%)より小さい、又はライトバルブサイズの約140(140%)より小さい、又はライトバルブサイズの約120パーセント(120%)より小さい。例えば、マルチビーム要素サイズは、ライトバルブサイズの約75パーセント(75%)〜約150パーセント(150%)である場合、マルチビーム要素はライトバルブとサイズが相当し得る。別の例では、マルチビーム要素サイズは、ライトバルブサイズの約125パーセント(125%)〜約85パーセント(85%)である場合、マルチビーム要素とライトバルブとはサイズが相当し得る。一部の実施形態によれば、マルチビーム要素及びライトバルブの相当するサイズは、マルチビューディスプレイのビュー間の暗いゾーンを減らす、又は一部の例では最小にするように、同時に、マルチビューディスプレイのビュー間の重複を減らす、又は一部の例では最小にするように、選択され得る。
さらに、本明細書で使用される場合、冠詞「a(1つ)」は、特許技術(patent art)における通常の意味、すなわち、「1つ又はそれ以上(one or more)」の意味を有することが意図されている。例えば、「光線」は1本又はそれ以上の光線を意味し、したがって「光線」は本明細書では「光線(複数可)」を意味する。また、本明細書における「上部(top)」、「下部(bottom)」、「上側(upper)」、「下側(lower)」、「上向き(up)」、「下向き(down)」、「正面(front)」、「背面(back)」、「第1の」、「第2の」、「左」、又は「右」に対するいかなる言及も、本明細書では限定を意図するものではない。本明細書では、「約」という用語は、値に適用されたときは一般にその値を生成するために用いられる機器の許容範囲内を意味する、又は別段明示的に指定されない限り、±10%、若しくは±5%、若しくは±1%を意味し得る。さらに、本明細書で使用される場合、「実質的に」及び「約」という用語は、大多数、又はほとんどすべて、又はすべて、又は約51%〜約100%の範囲内の量を意味する。さらに、本明細書における例は、例示に過ぎず、検討の目的で提示されたものであり、限定のためのものではないことが意図される。
本明細書に開示される原理にしたがって、グレーティングコリメータが提供される。図1Aは、本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータ100の断面図である。図1Bは、本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータ100の平面図である。図1Cは、本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータ100の斜視図である。
一部の実施形態によれば、図1A〜図1Cに示されるグレーティングコリメータ100は、バックライト102の照明源として機能するように構成される。特に、グレーティングコリメータ100は、コリメート光104をバックライト102の入力102aに供給するように構成される。さらに、様々な実施形態によれば、供給されるコリメート光104は、バックライト入力102aの長さに対応する大きさを有する。例えば、グレーティングコリメータ100(又は少なくともコリメート光104を放射する部分)の長さLは、バックライト入力102aの長さと実質的に同様であり得る。一部の実施形態では、供給されるコリメート光104は、バックライト入力102aの長さに沿って強度が均一又は少なくとも実質的に均一になるように構成される。他の実施形態では、供給されるコリメート光104は、バックライト入力102aの長さに沿って変化する強度プロファイル(すなわち、不均一な強度プロファイル)を有し得る。例えば、強度プロファイルは、バックライト102の非理想的な伝播又は放射特性を補償するように構成され得る。
図1A〜図1Cに示されるように、グレーティングコリメータ100は導光体110を備える。導光体110は、その導光体110の長さに沿って、導波光112として光を導くように構成される。さらに、導光体110は、導光体110の導光面の平面に対して非ゼロ伝播角度で導波光112を導くように構成される。特に、非ゼロ伝播角度は、導光体110の第1の表面110a及び第2の表面110bの一方又は両方に対するものであり得る。特に、導光体110は、内部全反射を用いて導波光112を導くように構成される。例えば、導光体110は、光導波路として構成された光学的に透明な誘電体材料を含むことができ、誘電体材料は、光導波路を取り囲む媒体の屈折率よりも大きい屈折率を有する。誘電体材料と周囲の媒体との間の屈折率の差は、その1つ又はそれ以上の導波モードに応じて、グレーティングコリメータ100内の導波光112の内部全反射を容易にするように構成される。さらに、様々な実施形態によれば、導光体110内の導波光112の非ゼロ伝播角度は、内部全反射の臨界角よりも小さい角度に対応し得る。図1Aでは、導波光112の伝播は、x方向に沿って指し、導光体110の出力又は出力面110cに向かって導かれる導光体110内の伝播する光線を表す矢印として示される。よって、一部の実施形態によれば、導光体110は、内部全反射によって、第1の表面110aと第2の表面110bとの間に、導光体110の出力面110cに概して向かって導波光112を導くように構成される。
様々な実施形態において、導光体110は、例えば図1A〜図1Cに示されるように、バー型柱状光導波路である、又はバー型柱状光導波路を備え得る。特に、図1A〜図1Cに示されるように、導光体110は、x方向の幅W及びz方向の厚さHの双方よりも大きいy方向の長さLを有するバー型形状を有する(すなわち、L>W及びL>H)。一部の実施形態では、伝播方向における導光体110の幅Wは、導光体110の厚さHを非ゼロ伝播角度の正接で除した値の2倍より大きく、厚さHは、幅Wに直交する導光体110の寸法である。
様々な実施形態例によれば、導光体110は、様々な種類のガラス(例えば、シリカガラス、アルミノケイ酸アルカリガラス、ホウケイ酸ガラスなど)のうちの1種又はそれ以上、及び実質的に光学的に透明なプラスチック又はポリマー(例えば、ポリメタクリル酸メチル又は「アクリルガラス」、ポリカーボネートなど)を含むが、これらに限定されない、様々な誘電体材料のうちのいずれかを含む、又はいずれかで構成することができる。一部の実施形態では、導光体110は、導光体110の表面(例えば、上面及び/又は下面)の少なくとも一部分の上にクラッディング層をさらに備え得る(図示せず)。例えば、クラッディング層を使用して、内部全反射をさらに促進することができる。
図1A〜図1Cに示される回折グレーティングコリメータ100は、光リサイクル光源120をさらに備える。図示のように、光リサイクル光源120は、導光体110の側面(例えば、図示のように第2の表面110b)に、導光体の長さLに沿って配置される。一部の実施形態によれば、光リサイクル光源120は、導光体110の長さLと同等又はそれに見合った長さ又は大きさを有し得る。
様々な実施形態によれば、光リサイクル光源120は、導光体110に光を放射光120aとして放射又は供給するように構成される。図示のように、光リサイクル光源120は、導光体110の第2の表面110bに放射光120aを供給する。さらに、光リサイクル光源120は、導光体110から受け取った光120bをリサイクルするように構成される。例えば、光リサイクル光源120によってリサイクルされた光は、例えば、光リサイクル光源120に反射及び回折の一方又は両方で戻される放射光120aを含み得る。様々な実施形態によれば、光リサイクル光源120によって供給されるリサイクル光は、光リサイクル光源120によって供給される放射光120aを増強する又は放射光120aに加わるように構成される。つまり、リサイクル光は、放射光120aの一部として、光リサイクル光源120によって再放射され得る。
図2は、本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータ100の光リサイクル光源120の拡大側面図である。特に、図2は、図1A及び1Cに示されるグレーティングコリメータ100の光リサイクル光源120の拡大側面図を表し得る。図2に示されるように、光リサイクル光源120は、光エミッタ122をさらに備える。光エミッタ122は、放射光120aとして光を放射するように構成される。様々な実施形態によれば、光エミッタ122は、レーザ、発光ダイオード(LED)、有機発光ダイオード(OLED)、ポリマー発光ダイオード、プラズマ型光エミッタ、蛍光灯、白熱灯、及び実質的に任意の他の光源を含むがこれらに限定されない、任意のいくつかの異なる光エミッタを含み得る。一部の実施形態では、光エミッタ122は、多色光(例えば、白色光)を放射するように構成され得る。例えば、光エミッタ122は、白色光を放射するように構成された白色LEDを含み得る。別の例では、多色光、例えば白色光を放射するように構成された光エミッタ122は、組み合わされたときに白色光を放射光として供給する複数の異なる色のLED(例えば、赤色LED、緑色LED、及び青色LED)を含み得る。一部の実施形態によれば、光エミッタ122は、光リサイクル光源120の長さに沿って、又は等価的には導光体110の長さLに沿って配置されたLED又は同様の光エミッタのアレイを含み得る。
図2に示される光リサイクル光源120は、光ディフューザ124をさらに備える。光ディフューザ124(例えば、拡散フィルム又は層)は、光を拡散させるように、具体的には、光リサイクル光源120によって受け取られた光120bを拡散させるように構成される。一部の実施形態では、光ディフューザ124はまた、光エミッタ122によって放射された放射光120aを拡散させ得る。光ディフューザ124は、光を拡散させるように構成された実質的に任意の層又は材料、例えば、これらに限定されないが、埋め込まれた微粒子及びランダムに散乱させる表面処理の一方又は両方を有する透明ポリマーフィルムを含み得る。図示のように、光エミッタ122は、光ディフューザ124と、導光体110の第2の表面110bに隣接する光リサイクル光源120の出力との間に配置される。さらに、光ディフューザ124は、光エミッタ122のそばを通る、又は光エミッタ122を通過する光120bを拡散させるように構成される。他の実施形態(図示せず)では、光ディフューザ124は、光エミッタ122と光リサイクル光源120の出力との間に配置され得る。
図2に示されるように、光リサイクル光源120は、反射体126をさらに備える。反射体126は、光ディフューザ124によって拡散された光をリサイクルとして導光体110に向けて、又は等価的には光リサイクル光源120の出力に向けて反射させるように構成される。特に、反射体126によって反射された拡散光は、上記のように、放射光120aをリサイクル光として増強するために使用され得る。つまり、光リサイクル光源120の出力において導光体110に供給される放射光120aは、光エミッタ122によって放射された光と、反射された拡散光(又はリサイクル光)との組み合わせを含み得る。
一部の実施形態では、反射体126は、強化された鏡面反射体(ESR)層を含み得る。ESRフィルムの例としては、ミネソタ州セントポールの3M Optical Systems Divisionから入手可能なVikuiti(商標)Enhanced Specular Reflector Filmが挙げられるがこれに限定されない。他の実施形態では、反射体126は、メタライズドフィルム、例えば金属化マイラー、層若しくは反射金属(例えば、光ディフューザ124の表面上に)、又は実質的に任意の他の光学反射体が挙げられるがこれらに限定されない。
一部の実施形態によれば(例えば、図2に示されるように)、光リサイクル光源120は、コリメーション層128をさらに備え得る。コリメーション層128は、導光体110に供給される光(例えば、放射光120a)をコリメートするように構成される。コリメーション層128は、輝度上昇フィルム(BEF)を含み得る。輝度上昇フィルムは、例えば、ミネソタ州セントポールの3M Optical Systems Divisionからプリズム構造を利用して最大60%の輝度ゲインをもたらすマイクロ複製エンハンスメントフィルムであるVikuiti(商標)BEF IIとして入手できる。一部の実施形態では、コリメーション層128は、約30度未満の所定の円錐角にしたがって、導光体110に供給される光をコリメートするように構成され得る。
再び図1A〜図1Cを参照すると、グレーティングコリメータ100は、回折格子カプラ130をさらに備える。一部の実施形態によれば、回折格子カプラ130は、導光体110の導光面、つまり、第1及び第2の表面110a、110bの一方又は両方に配置される。つまり、一部の実施形態では、回折格子カプラ130は、図示のように、光リサイクル光源120に隣接する第2の表面110bに対向する導光体110の第1の表面110a上に配置され得る。他の実施形態では、回折格子カプラ130は、導光体110の第2の表面110b上に配置され得る。さらに他の実施形態では、回折格子カプラ130は、導光面の間且つ導光体110内に配置され得る。
回折格子カプラ130は、光リサイクル光源120によって供給される光(例えば、放射光120a)を、導波光112として出力面110cに向かって導光体110に回折的に方向転換させるように構成される。さらに、一部の実施形態によれば、回折格子カプラ130は、非ゼロ伝播角度で光を方向転換させるように構成される。
一部の実施形態では、回折格子カプラ130は、透過モード回折格子を備える透過型回折格子カプラである。透過モード回折格子は、透過回折を用いて光を回折的に方向転換させるように構成される。透過型回折格子カプラとしての回折格子カプラ130は、光リサイクル光源120に隣接する導光面、例えば第2の表面110bに配置され得る。他の実施形態では、回折格子カプラ130は、反射モード回折格子を備える反射型回折格子カプラである。反射モード回折格子は、反射回折を用いて光を回折的に方向転換させるように構成される。反射型回折格子カプラとしての回折格子カプラ130は、光リサイクル光源120に隣接する導光面に対向する導光面、例えば第1の表面110aに配置され得る。
図3Aは、本明細書で説明される原理による実施形態による、一例におけるグレーティングコリメータ100の断面図である。特に、図3Aのグレーティングコリメータ100は、光リサイクル光源120に対向する導光体110の第1の表面110aに配置された反射型回折格子カプラである回折格子カプラ130を有する。図示のように、光リサイクル光源120からの放射光120aは、回折格子カプラに入射し、反射回折によって、非ゼロ伝播角度θで、導光体110の出力面110cに向かって導波光112として導光体110に回折的に方向転換され得る。導波光112は、例えば、正の一次回折(+1R)の結果であり得る。
図3Bは、本明細書で説明される原理による別の実施形態による、一例におけるグレーティングコリメータ100の断面図である。特に、図3Aのグレーティングコリメータ100は、光リサイクル光源120に隣接する導光体110の第2の表面110bに配置された透過型回折格子カプラである回折格子カプラ130を有する。図示のように、光リサイクル光源120からの放射光120aは、回折格子カプラに入射し、透過回折によって、非ゼロ伝播角度θで、導光体110の出力面110cに向かって導波光104として導光体110に回折的に方向転換され得る。導波光104は、例えば、正の一次回折(+1R)の結果であり得る。
一部の例(例えば、図3A及び図3Bに示される例)では、回折格子カプラ130による負の一次回折(−1R)は、出力面110cから離れるように負の方向に伝播する回折的に方向転換された光112’をもたらし得る。回折的に方向転換された光112’は、例えば、負の非ゼロ伝播角度−θを有し得る。出力面110cから離れるように負の方向に伝播する回折的に方向転換された光112’は、出力面110cに対向する導光体110の面に当たることにより反射され得る。反射された後、回折的に方向転換された光112’は、図3A及び図3Bの延長された矢印によって示されるように、導波光112の一部として出力面110cに向けて方向転換され得る。さらに、ゼロ次回折成分(図3Bでは「0R」として示されているが、図示を簡単にするために図3Aには示されていない)は、リサイクルのために、例えば反射によって光リサイクル光源120に方向転換され得る。さらに、一部の例では、導光体110の臨界角よりも鋭角である角度で回折的に方向転換された光もまた、光リサイクル光源120に再度入射してリサイクルされ得る。図3A及び図3Bはまた、光リサイクル光源120からの放射光120aと、光リサイクル光源120が導光体110から受け取った光120b(例えば、0R回折などによる)との両方を示している。
再び図1Aを図3A及び図3Bと共に参照すると、グレーティングコリメータ100は、光リサイクル光源120に対向するグレーティングコリメータ100の表面(例えば、第1の表面110a)上に上部反射層140をさらに備え得る。上部反射層140は、回折格子カプラ130による反射を容易にするように構成される。特に、回折格子カプラ130が図1A及び図3Bに示されるような反射型回折格子カプラである場合、上部反射層140は、反射型回折格子カプラによる反射回折を助け得る。さらに、グレーティングコリメータ100は、グレーティングコリメータ100の出力面110cに対向する導光体110の表面上に側面反射層150を備え得る。側面反射層150は、例えば図示のように、導光体110の出力面110cに向かって光を戻すように構成される。例えば、側面反射層150は、負の方向に伝播する回折的に方向転換された光112’を出力面110cに向けて反射させて戻すように構成され得る。
一部の実施形態によれば、上部反射層140及び側面反射層150の一方又は両方は、強化鏡面反射(ESR)層、例えば、限定されないが、Vikuiti(商標)Enhanced Specular Reflector Filmを含み得る。他の実施形態では、上部反射層140及び側面反射層150の一方又は両方は、反射金属層又はフィルム、例えば、導光体110のそれぞれの表面(複数可)に堆積された反射金属フィルムを含み得る。
本明細書で説明される原理の他の実施形態によれば、バックライトシステム200が提供される。図4は、本明細書で説明される原理による実施形態による、一例におけるバックライトシステム200のブロック図である。バックライトシステム200は、様々なディスプレイ用途で有用な放射光202の形態で照明を提供するように構成され得る。例えば、バックライトシステム200は、広い視野角で画像(例えば、2D画像)を表示することと一致し得る放射光202として拡散照明を提供することができる。特に、表示された画像は、広い視野角内の実質的にどこでも、表示された画像の同じビューを視聴者に提供するように構成され得る。他の例では、バックライトシステム200は、放射光202として指向性照明(例えば、ライトフィールド)を提供するように構成され得る。指向性照明を表す放射光202は、例えば、マルチビュー画像を表示することと一致し得る。これらの例では、放射光202は、表示されたマルチビュー画像に関連する異なるビュー方向に対応する異なる主角度方向を有する複数の指向性光線を含み得る。
図4に示されるように、バックライトシステム200は、グレーティングコリメータ210とバックライト220とを備える。グレーティングコリメータ210は、コリメート光204を出力として(すなわち、出力光として)供給するように構成される。バックライト220は、グレーティングコリメータ210に隣接するバックライトの入力においてコリメート光204を受け取るように構成される。さらに、バックライト220は、コリメート光204から、又はコリメート光204を用いて放射光202を供給するように構成される。様々な実施形態によれば、バックライト220、より具体的には、バックライト220の入力は、グレーティングコリメータ210の長さに対応する大きさを有する。
図4に示されるグレーティングコリメータ210は、導光体212を備える。導光体212は、グレーティングコリメータ210の出力に向けて、例えばバックライト220に隣接して導波光として光を導くように構成される。グレーティングコリメータ210は、導光体212に光を供給するように構成された光リサイクル光源214をさらに備える。光リサイクル光源214は、導光体212から受け取った光をリサイクルするようにさらに構成され、リサイクル光は、導光体212に供給された光を増強する。グレーティングコリメータ210は、導光体212の導光面に配置された回折格子カプラ216をさらに備える。回折格子カプラ216は、光リサイクル光源214によって供給された光を、導波光として導光体212に回折的に方向転換させて、グレーティングコリメータ出力にコリメート光204を供給するように構成される。
一部の実施形態では、グレーティングコリメータ210は、上記のグレーティングコリメータ100と実質的に同様であり得る。特に、導光体212は、一部の実施形態では、上記のグレーティングコリメータ100の導光体110と実質的に同様であり得る。例えば、導光体212は、導光体212の導光面の平面に対して非ゼロ伝播角度で導波光を導くように構成され得る。さらに、導光体212は、グレーティングコリメータ出力に対応する導光体212の長さに沿った側面を有するバー型柱状光導波路を含み得る。
さらに、一部の実施形態では、光リサイクル光源214は、グレーティングコリメータ100に関して上記した光リサイクル光源120と実質的に同様であり得る。特に、光リサイクル光源214は、光を放射するように構成された光エミッタと、導光体から受け取った光を拡散させるように構成された光ディフューザと、光ディフューザによって拡散された光をリサイクル光として導光体212に向かう方向に反射させるように構成された反射体とを備え得る。光エミッタ、光ディフューザ、及び反射体のそれぞれは、光リサイクル光源120に関して上記した光エミッタ122、光ディフューザ124、及び反射体126とそれぞれ実質的に同様であり得る。一部の実施形態では、光リサイクル光源214は、導光体212に供給される光をコリメートするように構成されたコリメーション層をさらに備え得る。一部の実施形態では、コリメーション層は、上記の光リサイクル光源120のコリメーション層128と実質的に同様であり得る。様々な実施形態によれば、導光体212に供給された光は、光エミッタによって放射された光とリサイクル光との両方を含む。
一部の実施形態では、回折格子カプラ216は、上記のグレーティングコリメータ100の回折格子カプラ130と実質的に同様であり得る。特に、回折格子カプラ216は、透過型回折格子カプラ又は反射型回折格子カプラのいずれかを備え得る。様々な実施形態によれば、透過型回折格子カプラは、光リサイクル光源214に隣接する導光体212の導光面に配置され得、反射型回折格子カプラは、光リサイクル光源214に隣接する導光面に対向する導光体212の導光面に配置され得る。
さらに、一部の実施形態(図示せず)では、グレーティングコリメータ210は、第1の反射層及び第2の反射層の一方又は両方をさらに備える。一部の実施形態では、第1の反射層及び第2の反射層はそれぞれ、グレーティングコリメータ100の上部反射層140及び側面反射層150と実質的に同様であり得る。特に、第1の反射層は、反射型回折格子カプラを備える回折格子カプラ216による反射を容易にするために、光リサイクル光源214に対向する導光体212の表面に隣接して配置され得る。同様に、第2の反射層は、グレーティングコリメータ210の出力から離れるように回折的に方向転換される回折格子カプラ216からの光を反射させるのを助けるために、グレーティングコリメータ210の出力に対向する導光体212の表面上に配置され得、回折格子カプラは、透過型回折格子カプラ及び反射型回折格子カプラの一方又は両方を備える。
一部の実施形態によれば、バックライトシステム200のバックライト220は、グレーティングコリメータ210から受け取ったコリメート光204を導くように構成されたバックライト導光体を備え得る。次に、点灯されたバックライト220は、受け取ったコリメート光204を用いて放射光202を供給するように構成される。様々な実施形態によれば、グレーティングコリメータ210は、バックライト220の入力端に隣接する。
一部の実施形態(図示せず)では、バックライト220は、拡散又は実質的に無指向性の放射光202を供給するように構成された散乱機構(図示せず)を備える。特に、散乱機構は、バックライト220の表面にわたって互いに間隔を空けて配置された複数の散乱要素を備え得る。散乱要素は、バックライト220の導光体に光学的に結合されて、例えば、拡散光又は実質的に無指向性の放射光202として光を導光体から散乱させることができる。一部の実施形態では、複数の散乱要素の散乱要素のサイズは、照明源としてバックライト220を使用するディスプレイのライトバルブアレイのライトバルブのサイズ以下であり得る。拡散又は実質的に無指向性の放射光202は、例えば、広い視野角を有する画像(例えば、2D画像)を表示することと一致する角度拡がり又はビーム幅を有し得る。
他の実施形態では、バックライトシステム200のバックライト220は、マルチビューバックライト220’である。マルチビューバックライト220’は、指向性である放射光202を供給するように構成される。特に、指向性放射光202は、互いに異なる主角度方向を有する指向性光線を含む。さらに、指向性光線の異なる主角度方向は、マルチビューディスプレイ又は等価的にはマルチビューディスプレイによって表示されるマルチビュー画像のそれぞれの異なるビュー方向に対応する。図5Aは、本明細書で説明される原理による実施形態による、一例におけるマルチビューバックライト220’を備えるバックライトシステム200の側面図である。図5Bは、本明細書で説明される原理による実施形態による、一例における図5Aのバックライトシステム200の斜視図である。
図5A及び図5Bに示されるように、バックライトシステム200は、グレーティングコリメータ210と、マルチビューバックライト220’として実施されるバックライト220とを備える。グレーティングコリメータ210は上で説明している。グレーティングコリメータ210は、マルチビューバックライト220’の入力端220aにコリメート光204を供給するように構成される。単一のグレーティングコリメータ210のみが示されているが、一部の実施形態では、マルチビューバックライト220’の両端にある一対のグレーティングコリメータ210が使用され得ることに留意されたい。
図5A及び図5Bに示されるマルチビューバックライト220’は、バックライト導光体222を備える。バックライト導光体222は、取り出された光をコリメート光204として受け取り、受け取ったコリメート光204を導かれたコリメート光206として導くように構成される。図5Aは、太い矢印を用いて、導かれたコリメート光206の一般的な伝播方向208を示している。さらに、導かれたコリメート光206は、図示のように、コリメーション係数σを有する。
図5A及び図5Bに示されるように、マルチビューバックライト220’は、バックライト導光体222の長さに沿って互いに間隔を空けて配置された複数のマルチビーム要素224をさらに備える。複数のマルチビーム要素224のマルチビーム要素224は、導かれたコリメート光206の一部を、複数の指向性光線を含む放射光202としてバックライト導光体222から散乱させるように構成される。図5A及び図5Bの発散する矢印によって表される、放射光202の指向性光線は、互いに異なる主角度方向を有する。さらに、複数の指向性光線の異なる主角度方向は、様々な実施形態によれば、マルチビューバックライト220’を備えるマルチビューディスプレイのそれぞれの異なるビュー方向に対応する。
一部の実施形態では、マルチビーム要素224のサイズsは、照明源としてマルチビューバックライト220’を用いるマルチビューディスプレイのライトバルブ226のサイズSの約50パーセント〜約200パーセントである。図5A及び図5Bは、例示的なライトバルブ226のアレイを示している。図示のように、各マルチビーム要素224は、放射光202の指向性光線を、ライトバルブ226の唯一のセット226’に供給するように構成され、各セット226’はマルチビューピクセルに対応する。そのため、マルチビーム要素224の所与の1つについて、マルチビューディスプレイの異なるビューに対応する異なる主角度方向を有する指向性光線は、例えば図5Aに示されるように、単一の対応するマルチビューピクセル、又は等価的にはマルチビーム要素224に対応する単一セットのライトバルブ226に実質的に限定される。そのため、マルチビューバックライト220’の各マルチビーム要素224は、マルチビューディスプレイの異なるビューに対応する異なる主角度方向のセットを有する放射光202の対応する指向性光線のセットを供給する(すなわち、指向性光線のセットは、異なるビュー方向のそれぞれに対応する方向を有する光線を含む)。
様々な実施形態によれば、複数のマルチビーム要素のマルチビーム要素224は、導かれたコリメート光206の一部を取り出すように構成されたいくつかの異なる構造のいずれかを含み得る。例えば、異なる構造は、回折格子、マイクロ反射要素、マイクロ屈折要素、又はそれらの様々な組み合わせを含むことができるが、それらに限定されない。一部の実施形態では、回折格子を備えるマルチビーム要素224は、異なる主角度方向を有する放射光202の複数の指向性光線として、導波光部分を回折的に取り出すように構成される。他の実施形態では、マイクロ反射要素を備えるマルチビーム要素224が、複数の指向性光線として導波光部分を反射により取り出すように構成される、又はマイクロ屈折要素を備えるマルチビーム要素224が、屈折により又は屈折を用いて放射光202の複数の指向性光線として導波光部分を取り出す(すなわち、導波光部分を屈折により取り出す)ように構成される。
本明細書で説明される原理の他の実施形態によれば、光をコリメートする方法が提供される。光をコリメートする方法は、例えば、バックライトを点灯させるために用いられるコリメート出力光を供給するために使用され得る。図6は、本明細書で説明される原理による実施形態による、一例における光をコリメートする方法300の流れ図である。
図示のように、光をコリメートする方法300は、光リサイクル光源を用いて導光体に光を供給するステップ310を含む。様々な実施形態において、310の供給される光は、様々な実施形態によれば、光リサイクル光源のリサイクル光及び放射光の両方を含む。リサイクル光は、様々な実施形態によれば、導光体に向けて方向転換されて放射光を増強する、光リサイクル光源によって導光体から受け取られた光を含む。
一部の実施形態では、光リサイクル光源は、上記のように、グレーティングカプラ100の光リサイクル光源120とそれぞれ実質的に同様であり得る。特に、一部の実施形態では、導光体に光を提供するステップ310は、放射光を供給するために光エミッタを用いて光を放射するステップを含み得る。さらに、一部の実施形態によれば、供給するステップ310は、光ディフューザ及び反射体を用いて導光体から受け取った光を拡散及び反射させて、受け取った光をリサイクル光として導光体に方向転換させて戻すステップを含み得る。
図6に示される光をコリメートする方法300は、導光体の導光面で回折格子カプラを用いて、導光体に供給された光を回折的に方向転換させるステップ320をさらに含む。様々な実施形態によれば、回折的に方向転換された光は、導波光として非ゼロ伝播角度で導光体に向けられる。一部の実施形態では、回折格子カプラは、グレーティングコリメータ100に関して上記した回折格子カプラ130と実質的に同様であり得る。
図6の光をコリメートする図示の方法300は、導光体を用いて導波光をグレーティングコリメータの出力に向けて導いて、コリメート出力光を供給するステップ330をさらに含む。一部の実施形態では、導光体は、上記のように、グレーティングコリメータ100の導光体110と実質的に同様である。例えば、導光体は、内部全反射を用いて、導光体の一対の導光面の間で導波光を導くことができる330。さらに、導光体はバー型の形状であり得る。さらに、バー型導光体は、導波光の伝播方向に、導光体110の厚さを非ゼロ伝播角度の正接で除した値の2倍より大きい幅を有し得、厚さは、幅に直交する導光体の寸法である。
一部の実施形態(図示せず)では、光をコリメートする方法300は、コリメーション層を用いて、光リサイクル光源によって導光体に供給された光をコリメートするステップをさらに含む。コリメーション層は、グレーティングコリメータ100に関して説明した光リサイクル光源120のコリメーション層128と実質的に同様であり得る。一部の実施形態(図示せず)では、光をコリメートする方法300は、グレーティングコリメータの出力からのコリメート出力光をバックライトの入力に向けるステップをさらに含み、グレーティングコリメータはバックライト入力に隣接する。様々な実施形態によれば、バックライト入力に向けられるコリメート出力光は、バックライトを点灯させるように機能し得る。
一部の実施形態では、バックライトはマルチビューバックライトである。これらの実施形態(図示せず)では、光をコリメートする方法300は、バックライトの導光体においてコリメート光を導くステップをさらに含み、コリメート光は、バックライト入力においてバックライト導光体によって受け取られる。さらに、これらの実施形態(図示せず)では、光をコリメートする方法300は、マルチビューバックライトのマルチビーム要素を用いて、導かれたコリメート光の一部を散乱させることによって、複数の指向性光線を含む放射光を供給するステップをさらに含む。様々な実施形態によれば、複数の指向性光線は、マルチビューディスプレイのそれぞれの異なるビュー方向に対応する異なる主角度方向を有する。
以上、光リサイクル光源を備える、グレーティングコリメータ、グレーティングコリメータを備えるバックライトシステム、及び光をコリメートする方法の例及び実施形態を説明した。上記の例は、本明細書で説明される原理を表現する多くの具体的な例のうちの一部を単に例示しているに過ぎないことを理解されたい。当然のことながら、当業者であれば、以下の特許請求の範囲によって定義される範囲を逸脱することなく、無数の他の構成を容易に考案することができる。

Claims (20)

  1. グレーティングコリメータであって、
    導光体の導光面の平面に対して非ゼロ伝播角度で導波光として光を導くように構成された導光体であって、前記導波光が、前記グレーティングコリメータの出力に向かう伝播方向を有する、導光体と、
    前記導光体に光を供給し、前記導光体から受け取った光をリサイクルするように構成された光リサイクル光源であって、前記光リサイクル光源によってリサイクルされる前記光が、前記供給される光を増強するように構成される、光リサイクル光源と、
    前記導光体の前記導光面にあり、前記光リサイクル光源によって供給される前記光を、前記非ゼロ伝播角度で前記導波光として前記導光体に回折的に方向転換させるように構成された、回折格子カプラと
    を備える、グレーティングコリメータ。
  2. 前記光リサイクル光源が、光を放射するように構成された光エミッタと、前記導光体から受け取った光を拡散させるように構成された光ディフューザと、前記光ディフューザによって拡散された光を反射拡散光として前記導光体に向かう方向に反射させるように構成された光反射体であって、前記光エミッタによって放射された前記光と前記反射拡散光とが組み合わされて前記導光体に供給される前記光として供給される、光反射体とを備える、請求項1に記載のグレーティングコリメータ。
  3. 前記光リサイクル光源が、前記導光体に供給される前記光をコリメートするように構成されたコリメーション層をさらに備える、請求項2に記載のグレーティングコリメータ。
  4. 前記コリメーション層が、約30度未満の所定の円錐角にしたがって、前記導光体に供給される前記光をコリメートするように構成される、請求項3に記載のグレーティングコリメータ。
  5. 前記回折格子カプラが、透過回折を用いて光を回折的に方向転換させるように構成された透過モード回折格子を備える透過型回折格子カプラであり、前記回折格子カプラが配置される前記導光面が、前記光リサイクル光源に隣接する、請求項1に記載のグレーティングコリメータ。
  6. 前記回折格子カプラが、反射回折を用いて光を回折的に方向転換させるように構成された反射モード回折格子を備える反射型回折格子カプラであり、前記回折格子カプラが配置される前記導光面が、前記光リサイクル光源に対向する、請求項1に記載のグレーティングコリメータ。
  7. 前記光リサイクル光源に対向する前記グレーティングコリメータの表面上にあり、前記回折格子カプラによる反射を容易にするように構成された上部反射層と、前記グレーティングコリメータの前記出力に対向する前記導光体の表面上にある側面反射層との少なくとも一方をさらに備える、請求項1に記載のグレーティングコリメータ。
  8. 前記回折格子カプラが、前記導波光の方向とは反対且つ前記側面反射層に向かう方向に光を回折的に方向転換させるようにさらに構成され、前記側面反射層が、前記回折的に方向転換された光を前記導光体の前記出力に向けて反射させて戻すのを助けるように構成される、請求項7に記載のグレーティングコリメータ。
  9. 前記伝播方向における前記導光体の幅が、前記導光体の厚さを前記非ゼロ伝播角度の正接で除した値の2倍より大きく、前記厚さが、前記幅に直交する前記導光体の寸法である、請求項1に記載のグレーティングコリメータ。
  10. 請求項1に記載のグレーティングコリメータを備えるマルチビューバックライトシステムであって、前記マルチビューバックライトシステムが、
    バックライトの入力において前記グレーティングコリメータからのコリメート光を受け取り、前記受け取ったコリメート光を導かれたコリメート光として導くように構成されたバックライト導光体と、
    前記バックライト導光体の長さに沿って互いに間隔を空けて配置された複数のマルチビーム要素であって、前記複数のマルチビーム要素のマルチビーム要素が、前記導かれたコリメート光の一部を、マルチビューディスプレイのそれぞれの異なるビュー方向に対応する異なる主角度方向を有する複数の指向性光線として前記バックライト導光体から散乱させるように構成される、複数のマルチビーム要素と
    をさらに備える、マルチビューバックライトシステム。
  11. グレーティングコリメータであって、
    前記グレーティングコリメータの出力に向かう導波光として光を導くように構成された導光体と、
    前記導光体に光を供給し、前記導光体から受け取った光をリサイクルするように構成された光リサイクル光源と、
    前記導光体の導光面に配置され、前記光リサイクル光源によって供給された前記光を、前記導波光として前記導光体に回折的に方向転換させて、前記グレーティングコリメータの出力においてコリメート出力光を供給するように構成された、回折格子カプラと
    を備える、グレーティングコリメータと、
    前記グレーティングコリメータに隣接するバックライトの入力において前記コリメート出力光を受け取るように構成され、前記グレーティングコリメータの長さに対応する大きさを有するバックライトと
    を備える、バックライトシステム。
  12. 前記光リサイクル光源が、光を放射するように構成された光エミッタと、前記導光体から受け取った光を拡散させるように構成された光ディフューザと、前記光ディフューザによって拡散された光をリサイクル光として前記導光体に向かう方向に反射させるように構成された反射体と、前記導光体に供給される前記光をコリメートするように構成されたコリメーション層であって、前記供給される光が、前記光エミッタによって放射された光及び前記リサイクル光の両方を含む、コリメーション層とを備える、請求項11に記載のバックライトシステム。
  13. 前記回折格子カプラが、透過型回折格子カプラ又は反射型回折格子カプラのいずれかを備え、前記透過型回折格子カプラが、前記光リサイクル光源に隣接する前記導光体の前記導光面に配置され、前記反射型回折格子カプラが、前記光リサイクル光源に隣接する前記導光面に対向する前記導光体の前記導光面に配置される、請求項11に記載のバックライトシステム。
  14. 第1の反射層及び第2の反射層の一方又は両方をさらに備え、前記第1の反射層が、前記反射型回折格子カプラを備える前記回折格子カプラによる反射を容易にするために、前記光リサイクル光源に対向する前記導光体の表面に隣接し、前記第2の反射層が、前記グレーティングコリメータの前記出力から離れるように回折的に方向転換される前記回折格子カプラからの光を反射させるのを助けるために、前記グレーティングコリメータの前記出力に対向する前記導光体の表面上にある、請求項13に記載のバックライトシステム。
  15. 前記バックライトが、前記グレーティングコリメータから受け取った前記コリメート出力光を導かれたコリメート光として導くように構成されたバックライト導光体を備え、前記導かれたコリメート光が、前記バックライトの照明源として機能するように構成される、請求項11に記載のバックライトシステム。
  16. 前記バックライトがマルチビューバックライトであり、前記バックライト導光体の長さに沿って互いに間隔を空けて配置された複数のマルチビーム要素であって、前記複数のマルチビーム要素のマルチビーム要素が、前記導かれたコリメート光の一部を、前記マルチビューバックライトを備えるマルチビューディスプレイのそれぞれの異なるビュー方向に対応する異なる主角度方向を有する複数の指向性光線として前記バックライト導光体から散乱させるように構成される、複数のマルチビーム要素をさらに備える、請求項15に記載のバックライトシステム。
  17. 光をコリメートする方法であって、前記方法が、
    光リサイクル光源を用いて導光体に光を供給するステップであって、前記光が、前記光リサイクル光源のリサイクル光及び放射光の両方を含む、ステップと、
    前記導光体の導光面において回折格子カプラを用いて、前記導光体に供給される前記光を回折的に方向転換させるステップであって、前記回折的に方向転換された光が、導波光として非ゼロ伝播角度で前記導光体に向けられる、ステップと、
    前記導光体を用いて前記導波光を前記導光体の出力に向けて導いて、コリメート出力光を供給するステップであって、
    前記リサイクル光が、前記導光体に向かって方向転換されて戻されて前記放射光を増強する、前記光リサイクル光源によって前記導光体から受け取られた光を含む、ステップと
    を含む、方法。
  18. 前記導光体に光を提供する、前記ステップが、
    光エミッタを用いて光を放射して、前記放射光を供給するステップと、
    光ディフューザ及び反射体を用いて前記導光体から受け取った前記光を拡散及び反射させて、前記受け取った光を前記リサイクル光として前記導光体に方向転換させて戻すステップと
    を含む、請求項17に記載の光をコリメートする方法。
  19. コリメーション層を用いて、前記光リサイクル光源によって前記導光体に供給された前記光をコリメートするステップをさらに含む、請求項17に記載の光をコリメートする方法。
  20. 前記導光体の前記出力からの前記コリメート出力光をバックライトの入力に向けるステップであって、前記導光体が前記バックライト入力に隣接し、前記バックライトの入力に向けられる前記コリメート出力光が、前記バックライトを点灯させるように機能する、ステップをさらに含む、請求項17に記載の光をコリメートする方法。
JP2021507592A 2018-08-13 2018-08-13 光リサイクル光源を用いるグレーティングコリメータ、バックライトシステム、及び方法 Active JP7235850B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/046562 WO2020036587A1 (en) 2018-08-13 2018-08-13 Grating collimator, backlight system, and method employing a light-recycling light source

Publications (2)

Publication Number Publication Date
JP2021535544A true JP2021535544A (ja) 2021-12-16
JP7235850B2 JP7235850B2 (ja) 2023-03-08

Family

ID=69525670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021507592A Active JP7235850B2 (ja) 2018-08-13 2018-08-13 光リサイクル光源を用いるグレーティングコリメータ、バックライトシステム、及び方法

Country Status (8)

Country Link
US (1) US20210157160A1 (ja)
EP (1) EP3837579B1 (ja)
JP (1) JP7235850B2 (ja)
KR (1) KR102617358B1 (ja)
CN (1) CN112534337B (ja)
CA (1) CA3108060C (ja)
TW (1) TWI830762B (ja)
WO (1) WO2020036587A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553178A (ja) 2019-10-15 2022-12-22 レイア、インコーポレイテッド プライバシーモードバックライト、プライバシーディスプレイ、及び方法
EP3932664A1 (en) * 2020-06-30 2022-01-05 Corning Incorporated Light guide plate and transparent illumination system utilizing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016048A1 (ja) * 2013-07-30 2015-02-05 堺ディスプレイプロダクト株式会社 光源装置、照明装置及び液晶表示装置
JP2016517998A (ja) * 2013-03-26 2016-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 照明装置
WO2017039876A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Supersampled 3d display with improved angular resolution
JP2018516432A (ja) * 2015-04-23 2018-06-21 レイア、インコーポレイテッドLeia Inc. 二重ライトガイド式格子ベースのバックライトおよび同バックライトを用いる電子ディスプレイ
US20180172893A1 (en) * 2015-09-05 2018-06-21 Leia Inc. Polychromatic grating-coupled backlighting

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953130A4 (en) * 1997-01-13 2000-01-05 Minnesota Mining & Mfg LIGHTING DEVICE
US7223005B2 (en) * 2003-12-23 2007-05-29 Lamb David J Hybrid lightguide backlight
JP4845893B2 (ja) * 2004-01-20 2011-12-28 シャープ株式会社 方向性バックライトおよびマルチビューディスプレイデバイス
JP5642385B2 (ja) * 2006-06-13 2014-12-17 ウェイヴィーン・インコーポレイテッド 光源の輝度を増大させるために光をリサイクルする照明システムと方法
WO2010049912A2 (en) * 2008-10-31 2010-05-06 Udayan Kanade A light source with light recovery mechanism
WO2012092465A1 (en) * 2010-12-31 2012-07-05 Luminit Llc Substrate-guided holographic diffuser
CN110749378B (zh) * 2012-10-24 2022-12-27 视瑞尔技术公司 照明设备
KR101660911B1 (ko) * 2013-07-30 2016-09-28 레이아 인코포레이티드 다중빔 회절 격자-기반의 백라이트
KR101856568B1 (ko) * 2013-09-16 2018-06-19 삼성전자주식회사 다시점 영상 디스플레이 장치 및 제어 방법
US10408426B2 (en) * 2016-03-18 2019-09-10 PixelDisplay Inc. Method and apparatus to enhance spectral purity of a light source
KR102214346B1 (ko) 2016-05-23 2021-02-09 레이아 인코포레이티드 회절성 멀티빔 소자 기반의 백라이팅
KR102659194B1 (ko) * 2016-07-26 2024-04-19 삼성전자주식회사 홀로그래픽 디스플레이 장치용 박형 백라이트 유닛 및 이를 포함하는 홀로그래픽 디스플레이 장치
JP6681808B2 (ja) * 2016-09-12 2020-04-15 マクセル株式会社 光源装置
US10310268B2 (en) * 2016-12-06 2019-06-04 Microsoft Technology Licensing, Llc Waveguides with peripheral side geometries to recycle light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517998A (ja) * 2013-03-26 2016-06-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 照明装置
WO2015016048A1 (ja) * 2013-07-30 2015-02-05 堺ディスプレイプロダクト株式会社 光源装置、照明装置及び液晶表示装置
JP2018516432A (ja) * 2015-04-23 2018-06-21 レイア、インコーポレイテッドLeia Inc. 二重ライトガイド式格子ベースのバックライトおよび同バックライトを用いる電子ディスプレイ
WO2017039876A1 (en) * 2015-09-05 2017-03-09 Leia Inc. Supersampled 3d display with improved angular resolution
US20180172893A1 (en) * 2015-09-05 2018-06-21 Leia Inc. Polychromatic grating-coupled backlighting

Also Published As

Publication number Publication date
EP3837579A1 (en) 2021-06-23
EP3837579A4 (en) 2022-03-23
WO2020036587A1 (en) 2020-02-20
KR102617358B1 (ko) 2023-12-21
EP3837579B1 (en) 2024-05-22
US20210157160A1 (en) 2021-05-27
CA3108060C (en) 2024-01-23
JP7235850B2 (ja) 2023-03-08
KR20210032546A (ko) 2021-03-24
CA3108060A1 (en) 2020-02-20
CN112534337B (zh) 2024-05-28
TW202014762A (zh) 2020-04-16
TWI830762B (zh) 2024-02-01
CN112534337A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
TWI728289B (zh) 可切換模式的背光板、顯示器及方法
US20210132281A1 (en) Polychromatic grating-coupled multibeam diffraction grating backlight, display and method
TWI722260B (zh) 採用定向散射特徵的可選擇模式的背光板、方法以及顯示器
JP2022028698A (ja) マルチビーム要素型バックライトおよびこれを用いたディスプレイ
JP6971324B2 (ja) バックライト、マルチビューディスプレイ、およびテーパ付きコリメータを使用する方法
JP7066693B2 (ja) 透明ディスプレイ及び方法
TWI730253B (zh) 背光式透明顯示器、透明顯示器系統、及其操作方法
US11256022B2 (en) Polarization recycling backlight, method and multiview display employing subwavelength gratings
US20210157160A1 (en) Grating collimator, backlight system, and method employing a light-recycling light source
JP2022504643A (ja) 格子スプレッダを有するバックライト、マルチビューディスプレイ、および方法
TWI700528B (zh) 條狀準直器、多視域背光系統以及準直光的方法
JP7299343B2 (ja) マルチゾーンバックライト、マルチビューディスプレイ、及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230224

R150 Certificate of patent or registration of utility model

Ref document number: 7235850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150