JP2021531624A - エネルギー貯蔵デバイス - Google Patents

エネルギー貯蔵デバイス Download PDF

Info

Publication number
JP2021531624A
JP2021531624A JP2021502971A JP2021502971A JP2021531624A JP 2021531624 A JP2021531624 A JP 2021531624A JP 2021502971 A JP2021502971 A JP 2021502971A JP 2021502971 A JP2021502971 A JP 2021502971A JP 2021531624 A JP2021531624 A JP 2021531624A
Authority
JP
Japan
Prior art keywords
stack
groove
substrate
electrode
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021502971A
Other languages
English (en)
Other versions
JP7138765B2 (ja
Inventor
ジョセフ・ハワード
マイケル・レンドール
Original Assignee
ダイソン・テクノロジー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイソン・テクノロジー・リミテッド filed Critical ダイソン・テクノロジー・リミテッド
Publication of JP2021531624A publication Critical patent/JP2021531624A/ja
Application granted granted Critical
Publication of JP7138765B2 publication Critical patent/JP7138765B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/60Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for printing on both faces of the printing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8832Ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M2010/0495Nanobatteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

エネルギー貯蔵デバイスを製造するための方法が提供される。そのような方法は、基板の第1の面上の第1のスタック、および基板の第1の面に対向する、基板の第2の面上の第2のスタックを設けることを含む。例では、互いに異なる深さを有する第1の溝および第3の溝が、第1のスタック内に形成され、互いに異なる深さを有する第2の溝および第4の溝が、第2のスタック内に形成される。他の例では、第1の溝は、第1のスタック内に形成され、第2の溝は、第2のスタック内に形成され、第1の溝と実質的に整列しているが、第1の溝とは異なる深さを有する。

Description

本発明は、エネルギー貯蔵デバイスを製造する方法、エネルギー貯蔵デバイス、およびエネルギー貯蔵デバイスを製造するための中間構造に関する。
固体薄膜セルなどのエネルギー貯蔵デバイスは、基板上に層のスタックを形成することによって生産され得る。層のスタックは、典型的には、第1の電極層、第2の電極層、および第1の電極層と第2の電極層との間の電解質層を含む。次いで、スタックと基板との組合せは、分離したセクションへと切断され、個々のセルを形成し得る。
知られている製造方法よりも単純であるか、または効率的なエネルギー貯蔵デバイスの製造方法を提供することが望ましい。
本発明の第1の態様により、エネルギー貯蔵デバイスを製造するための方法が提供され、この方法は、
基板の第1の面に第1のスタックを設けることであって、第1のスタックは第1の電極層、第2の電極層、および第1の電極層と第2の電極層との間の第1の電解質層を含み、第1の電極層は第2の電極層よりも基板の第1の面に近い、第1のスタックを設けることと、
基板の第1の面に対向する、基板の第2の面に第2のスタックを設けることであって、第2のスタックは第3の電極層、第4の電極層、および第3の電極層と第4の電極層との間の第2の電解質層を含み、第3の電極層は第4の電極層よりも基板の第2の面に近い、第2のスタックを設けることと、
第1のスタックの第1の面に第1の溝を形成することであって、第1のスタックの第1の面は、基板の第1の面と接触する第1のスタックの第2の面に対向し、第1の溝は第1の深さを有する、第1の溝を形成することと、
第2のスタックの第1の面に第2の溝を形成することであって、第2のスタックの第1の面は、基板の第2の面と接触する第2のスタックの第2の面に対向し、第2の溝は第2の深さを有する、第2の溝を形成することと、
第1のスタックの第1の面に第3の溝を形成することであって、第3の溝は第1の深さと異なる第3の深さを有する、第3の溝を形成することと、
第2のスタックの第1の面に第4の溝を形成することであって、第4の溝は第2の深さと異なる第4の深さを有する、第4の溝を形成することとを含む。
第1のスタックの第1の面に第1および第3の溝を形成することは、第1のスタックが単一方向から加工されることを可能にする。同様に、第2のスタックの第1の面に第2および第4の溝を形成することは、第2のスタックが単一方向(たとえば、第1のスタックが加工される方向とは反対の方向)から加工されることを可能にする。したがって、これは、同じ基板の反対側の面での鏡面加工を円滑にし、これは、同時に、または少なくとも部分的に重なる時間間隔の間に行われ得る。したがって、この方法は、他の場合よりも効率的であり得る。たとえば、スタックに溝を形成するためにスタックが複数の方向から加工される他の場合は、本発明の第1の態様による方法などで両面加工に容易に適合しない場合がある。これらの他の例では、基板の第2の面上のスタックは、基板の第1の面内の溝の形成を妨げる可能性がある。しかしながら、本明細書の例による方法は、そのような干渉を防ぎ、たとえば、同じ基板の反対側にある2つのスタックを含む両面構造における溝の形成を簡素化し得る。したがって、そのような方法は、マルチスタックエネルギー貯蔵デバイスが効率的な方式で形成されることを可能にする。この方法は、スケーラブルであり、ロールツーロールプロセスなどの効率的な連続製造プロセスの一部として実行され得る。
さらに、同じ基板の反対側に第1のスタックと第2のスタックとを設けることによって、基板の片面のみにスタックを設ける例と比較して、基板に対する活物質の比率が高められ得る。したがって、エネルギー貯蔵デバイスは、エネルギー密度の増大をはっきり示し得る。
例では、第1の溝は第2の溝と実質的に整列しており、第3の溝は第4の溝と実質的に整列している。第1の溝と第2の溝とを、第3の溝と第4の溝とを整列させることによって、エネルギー貯蔵デバイスのマルチスタックセルはより効率的に形成され得る。たとえば、本発明の第1の態様による方法によって形成されるマルチスタック構造は、第1の溝および第2の溝に対応する第1の軸に沿って、および第3の溝および第4の溝に対応する第2の軸に沿ってマルチスタック構造を切断することによって別々のセルまたは別々のエネルギー貯蔵デバイスに分割され得る。したがって、切断作業の回数は、第1の溝および第2の溝、または第3の溝および第4の溝が互いに整列されない他の場合に比べて低減され得る。
例では、第1の溝および第2の溝は基板を切断することなく形成され、第3の溝は第1の電極層を切断することなく形成され、第4の溝は第3の電極層を切断することなく形成される。しかし、他の例では、第1の溝は第1の電極層を切断することなく形成され、第2の溝は基板を切断することなく形成され、第3の溝は基板を切断することなく形成され、第4の溝は第3の電極層を切断することなく形成される。いずれにしても、方法の効率は、改善され得る。たとえば、溝の形成時に、除去される材料の量は少なくなり得る。したがって、溝は、より多くの量の材料が除去される他の例に比べて、より迅速に、したがってより効率よく形成され得る。
例では、第1の深さは第2の深さと実質的に同じであり、第3の深さは第4の深さと実質的に同じである。このような場合、同じ活性層の異なるインスタンス(第1または第2の電極層の異なるインスタンスなど)は、その後の加工の後にエネルギー貯蔵デバイスの同じ面に沿って露出され得る。これは、異なるスタック内の同じ層の複数のインスタンス(たとえば、複数のアノードまたは複数のカソードなど)が、たとえば、層の各々が露出されているエネルギー貯蔵デバイスの面に配置構成されている電気コネクタを使用して、並列に接続されることを可能にする。これは、たとえば、同じ層の複数のインスタンスがエネルギー貯蔵デバイスの異なるそれぞれの面に露出されている他の例と比較して、短絡の危険性を低減する。
他の例では、第1の深さは第4の深さと実質的に同じであり、第3の深さは第2の深さと実質的に同じである。このような配置構成では、その後の加工の後に、異なる活性層がエネルギー貯蔵デバイスの同じ面に沿って露出され得る。たとえば、アノード(たとえば、第2の電極層の一部に対応する)およびカソード(たとえば、第1の電極層の一部に対応する)は、エネルギー貯蔵デバイスの一方の面に沿って交互に露出され得る。これは、エネルギー貯蔵デバイスを外部回路に接続するさらなる柔軟性をもたらす。たとえば、これは、エネルギー貯蔵デバイスの同じ面に沿った異なる活性層が、たとえば、層の各々が露出されているエネルギー貯蔵デバイスの面に配置構成されている電気コネクタを使用して、直列に接続されることを可能にする。たとえば、アノードおよびカソードがエネルギー貯蔵デバイスの面に沿って交互に露出されている場合、1つのスタックのアノードは、エネルギー貯蔵デバイスのその面で別のスタックのカソードに接続され、スタックを直列に接続し得る。
例では、第1の溝の第1の深さ、第2の溝の第2の深さ、第3の溝の第3の深さ、または第4の溝の第4の深さのうちの少なくとも1つは、基板の第1の面の平面に対して実質的に垂直である。このようにして第1の溝、第2の溝、第3の溝、または第4の溝を形成することによって、第1の溝、第2の溝、第3の溝、または第4の溝内での電気的絶縁材料のその後の堆積は、溝が基板の表面の平面に関して角度を付けられている例と比較して簡素化され得る。たとえば、溝のそのような配置構成は、電気的絶縁材料がそれぞれの溝の中に移動するのを促すか、またはそうでなければ、補助し、電気的絶縁材料とそれぞれの溝内の露出された表面(第1または第2の電極層の露出された表面などの)との間の接触を改善し得る。これは、このようにして形成されたエネルギー貯蔵デバイスのその後の使用時に短絡が生じる危険性を低減し得る。
例では、第1の溝を形成し、第3の溝を形成する場合に、基板の第1の面に向けられた第1の少なくとも1つのレーザービームを使用し、第2の溝を形成し、第4の溝を形成する場合に、基板の第2の面に向けられた第2の少なくとも1つのレーザービームを使用する。これは、溝がレーザーアブレーションプロセスを用いて形成されることを可能にする。レーザーアブレーションは、迅速に実行され、比較的容易に制御され、したがって、溝の深さを正確に制御することが可能である。
例では、方法は、マルチスタック配列構成を実現するために基板を折り畳むことを含み、この配置構成は、
基板の第1の面の第1の部分上の第1のスタックの第1の部分と、
基板の第1の面の第1の部分に対向する、基板の第2の面の第1の部分上にある第2のスタックの第1の部分であって、第1のスタックの第1の部分と重なり合う、第2のスタックの第1の部分と、
基板の第1の面の第2の部分上の第1のスタックの第2の部分であって、第1のスタックの第1の部分および第2のスタックの第1の部分と重なり合う、第1のスタックの第2の部分と、
基板の第1の面の第2の部分に対向する、基板の第2の面の第2の部分上の第2のスタックの第2の部分であって、第1のスタックの第1の部分、第2のスタックの第1の部分、および第1のスタックの第2の部分と重なり合う、第2のスタックの第2の部分とを備える。
このようなマルチスタック配置構成は、たとえば、基板の単位あたりの単一のスタックがある他の例と比較して改善されたエネルギー密度を有する。
例では、基板を折り畳んだ後、第1の溝は、第1のスタックの第1の部分と、第1のスタックの第1の部分と実質的に同じ平面内の基板の第1の面の第3の部分上の第1のスタックの第3の部分との間にあり、この方法は、第1の溝に実質的に整列している長手方向軸に沿ってマルチスタック配置構成を切断することを含む。したがって、切断作業の回数は、他の場合よりも少なく、方法の効率を向上させ得る。
例では、エネルギー貯蔵デバイスは第1のエネルギー貯蔵デバイスであり、マルチスタック配置構成を切断することで、第1のエネルギー貯蔵デバイスへの第1のプリカーサー(precursor)を第2のエネルギー貯蔵装デバイスへの第2のプリカーサーから分離する。このような例では、第1のプリカーサーは、第1のスタックの第1の部分、第2のスタックの第1の部分、第1のスタックの第2の部分、および第2のスタックの第2の部分を含む。したがって、これは、複数のエネルギー貯蔵デバイスが単一のマルチスタック配置構成から形成されることを可能にする。たとえば、複数のエネルギー貯蔵デバイスは、連続製造プロセスを使用して形成され得る。したがって、エネルギー貯蔵デバイスは、バッチプロセスなどの、単一のエネルギー貯蔵デバイスが一度に1つずつ製造される他の方法に比べて効率よく製造され得る。
本発明の第2の態様により、エネルギー貯蔵デバイスを製造するための方法が提供され、この方法は、
基板の第1の面に第1のスタックを設けることであって、第1のスタックは第1の電極層、第2の電極層、および第1の電極層と第2の電極層との間の第1の電解質層を含み、第1の電極層は第2の電極層よりも基板の第1の面に近い、第1のスタックを設けることと、
基板の第1の面に対向する、基板の第2の面に第2のスタックを設けることであって、第2のスタックは第3の電極層、第4の電極層、および第3の電極層と第4の電極層との間の第2の電解質層を含み、第3の電極層は第4の電極層よりも基板の第2の面に近い、第2のスタックを設けることと、
第1のスタックの第1の面に第1の溝を形成することであって、第1のスタックの第1の面は、基板の第1の面と接触する第1のスタックの第2の面に対向し、第1の溝は第1の深さを有する、第1の溝を形成することと、
第1の溝と実質的に整列するように、第2のスタックの第1の面に第2の溝を形成することであって、第2のスタックの第1の面は、基板の第2の面と接触する第2のスタックの第2の面に対向し、第2の溝は第1の深さと異なる第2の深さを有する、第2の溝を形成することとを含む。
本発明の第1の態様に関して、本発明の第2の態様は、マルチスタック配置構成の形成を円滑にし、そこでは第1のスタックが基板の第1の面上に配置構成され、第2のスタックが基板の第2の面上に配置構成される。これは、第1のスタックおよび第2のスタックの両方が互いに同時に加工されることを可能にし、第1のスタックおよび第2のスタックを形成する効率を改善し得る。さらに、基板の片面のみにスタックが設けられている例と比較して、活物質と基板との比率が高められ得る。したがって、エネルギー貯蔵デバイスは、エネルギー密度の増大をはっきり示し得る。
さらに、第2の溝の第2の深さが第1の溝の第1の深さと異なる場合に、第2の溝内の露出表面は、その後の加工の後に、第1の溝内の露出表面とは異なる層の表面を含み得る。たとえば、カソード(たとえば、第1の電極層の一部に対応する)が第1の溝内で露出され得るが、アノード(たとえば、第2の電極層の一部に対応する)は第2の溝内で露出され得る。第1の溝と第2の溝との間の整列により、そのような場合のカソードおよびアノードの露出された部分は、エネルギー貯蔵デバイスの同じ面に沿って整列され得る。このようにして、カソードおよびアノードは、たとえば、層の各々が露出されているエネルギー貯蔵デバイスの面に配置構成されている電気コネクタを使用して、直列に接続され得る。このようにして、第1のスタックおよび第2のスタックは直列に接続され得る。
例では、第1の溝は、第1の電極層を切断することなく形成され、第2の溝は、基板を切断することなく形成される。そのような例は、除去する材料を減らすことによってより効率的であり、溝がより高速に形成されることを可能にし得る。
例では、第1の溝を形成する場合に、基板の第1の面に向けられた第1の少なくとも1つのレーザービームを使用し、第2の溝を形成する場合に、基板の第2の面に向けられた第2の少なくとも1つのレーザービームを使用する。これは、溝がレーザーアブレーションプロセスを用いて形成されることを可能にし、これは典型的には高速で正確である。
本発明の第3の態様により、エネルギー貯蔵デバイスに対するマルチスタック構造が提供され、マルチスタック構造は、
基板の第1の面上の第1のスタックであって、
第1の電極と、
第2の電極と、
第1の電極と第2の電極との間の第1の電解質であって、第1の電極は第2の電極よりも基板の第1の面に近い、第1の電解質とを備える、第1のスタックと、
基板の第1の面に対向する、基板の第2の面上の第2のスタックであって、
第3の電極と、
第4の電極と、
第3の電極と第4の電極との間の第2の電解質であって、第3の電極は第4の電極よりも基板の第2の面に近い、第2の電解質とを備える、第2のスタックと、
第2の電極の第1の露出表面の少なくとも一部に接触することなく第1の電極の第1の露出表面および第1の電解質の第1の露出表面に接触している第1の電気絶縁体と、
第4の電極の第1の露出表面の少なくとも一部に接触することなく第3の電極の第1の露出表面および第2の電解質の第1の露出表面に接触している第2の電気絶縁体と、
第1の電極の第2の露出表面、第1の電解質の第2の露出表面、および第2の電極の第2の露出表面に接触している第3の電気絶縁体と、
第3の電極の第2の露出表面、第2の電解質の第2の露出表面、および第4の電極の第2の露出表面に接触している第4の電気絶縁体とを具備する。
本発明の第1および第2の態様を参照しつつ説明されているように、そのようなマルチスタック構造は、たとえば、活物質と不活物質との比率がより大きい。エネルギー貯蔵デバイスの活物質は、電極などのエネルギー貯蔵デバイスの化学的活性を有する構成要素、さらには電解質を含み得る。たとえば、活物質は、たとえば、カソードである、第1および第3の電極の材料と、たとえば、アノードである、第2および第4の電極の材料とを含み得る。逆に、エネルギー貯蔵デバイスの不活物質は、化学エネルギーの貯蔵または移動に関わらない、化学的不活性である構成要素を含み得る。不活物質は、基板の材料であるか、または基板の材料を含み得る。活物質と不活物質との比率が大きいことによって、マルチスタック構造のエネルギー密度は、活物質と不活物質との比率が小さい他の構造よりも大きくなり得る。
たとえば、第1、第2、第3、および第4の電気絶縁体は、第1および第2の電極または第3および第4の電極が互いに電気的に接触した場合に、これらがなければ発生する可能性のある短絡の危険性を低減する。
例では、第1の電気絶縁体は、第2の電気絶縁体と実質的に整列しており、第3の電気絶縁体は、第4の電気絶縁体と実質的に整列している。しかし、他の例では、第1の電気絶縁体は、第4の電気絶縁体と実質的に整列しており、第3の電気絶縁体は、第2の電気絶縁体と実質的に整列している。いずれの場合も、マルチスタック配置構成のさらなる加工が簡素化され得る。たとえば、電気絶縁体のそれぞれの対の整列により、マルチスタック配置構成は、たとえばマルチスタック配置構成のある1つの面であり得る、比較的滑らかなまたは平面状の表面を備え得る。このような配置構成では、マルチスタック配置構成デバイスの表面が非平面状である他の例と比較して、電極の露出部分を外部回路に接続するために導電性材料をその後堆積することがより容易になり得る。
例では、第1の電気絶縁体は第1のスタックの第1の面に配置構成され、第2の電気絶縁体は第2のスタックの第1の面に配置構成され、第3の電気絶縁体は第1のスタックの第1の面に対向する、第1のスタックの第2の面に配置構成され、第4の電気絶縁体は第2のスタックの第2の面に対向する、第2のスタックの第2の面に配置構成される。したがって、第1のスタックの第1の面で、第1の電気絶縁体は、第1の電極の第1の露出表面(スタックの第1の面にあってもよい)を第2の電極の第1の露出表面から絶縁し得る。同様に、スタックの第2の面では、第2の電気絶縁体は、第2の電極の第2の露出表面(スタックの第2の面にあってもよい)を第1の電極の第2の露出表面から絶縁し得る。第3および第4の電気絶縁体は、同様に、第3および第4の電極の露出表面を互いに絶縁し得る。このようにして、短絡は、効果的に防止または低減され得る。
代替的な例では、第1の電気絶縁体は第1のスタックの第1の面に配置構成され、第4の電気絶縁体は第2のスタックの第1の面に配置構成され、第3の電気絶縁体は第1のスタックの第1の面に対向する、第1のスタックの第2の面に配置構成され、第2の電気絶縁体は第2のスタックの第2の面に対向する、第2のスタックの第2の面に配置構成される。そのような例も、短絡を防止または低減し得る。
例では、
第3の電気絶縁体が、第1の電極の第2の露出表面と重なり合い、第1の電極の第2の露出表面の平面が、基板の第1の面の平面に実質的に平行であるか、または
第4の電気絶縁体が、第3の電極の第2の露出表面と重なり合い、第3の電極の第2の露出表面の平面が、基板の第2の面の平面に実質的に平行である
のうちの少なくとも一方である。
そのような配置構成では、第1の電極の第2の露出表面および第3の電極の第2の露出表面は、各々、第3および第4の電気絶縁体を形成するための電気的絶縁材料が容易に堆積され得るそれぞれの棚または出っ張りを形成し得る。
例では、基板の第1の面の平面に垂直な方向の基板の厚さは、基板の第1の面の平面に垂直な方向で、第1のスタックの第1の厚さまたは第2のスタックの第2の厚さのうちの少なくとも一方と実質的に同じであるか、またはそれよりも大きい。このような場合、マルチスタック構造は、たとえば、本発明の第1または第2の態様による方法を使用して、容易に製造され得る。たとえば、溝の深さ(その後、たとえば、電気絶縁体を形成するために、少なくとも部分的に電気的絶縁材料を充填され得る)は、より容易に制御され得る。溝の深さは、同じスタックを同じ基板の異なる面から加工することによって溝が形成される他の方法よりも、本発明の第1または第2の態様による方法(同じスタック内の溝の各々が基板の同じ面から形成される)を使用した方が、制御しやすい場合がある。これらの他の方法は、基板の厚さが溝が形成されるべきスタックの厚さと実質的に同じであるかまたはそれよりも大きい場合に所望の深さからの溝深さのずれの影響を受けやすい。しかし、溝を同じ面から形成することによって、溝の深さのそのようなずれが低減され得る。
本発明の第4の態様により、エネルギー貯蔵デバイスに対するマルチスタック構造が提供され、マルチスタック構造は、
基板の第1の面上の第1のスタックであって、
第1の電極と、
第2の電極と、
第1の電極と第2の電極との間の第1の電解質であって、第1の電極は第2の電極よりも基板の第1の面に近い、第1の電解質とを備える、第1のスタックと、
基板の第1の面に対向する、基板の第2の面上の第2のスタックであって、
第3の電極と、
第4の電極と、
第3の電極と第4の電極との間の第2の電解質であって、第3の電極は第4の電極よりも基板の第2の面に近い、第2の電解質とを備える、第2のスタックと、
第1の電極の露出表面、第1の電解質の露出表面、および第2の電極の露出表面に接触している第1の電気絶縁体と、
第4の電極の露出表面の少なくとも一部に接触することなく第3の電極の露出表面および第2の電解質の露出表面に接触している第2の電気絶縁体とを備える。
本発明の第3の態様を参照しつつ説明されているように、そのようなマルチスタック構造は、たとえば、単一のスタック構造より大きいエネルギー密度を有する。
例では、第1の電気絶縁体は、第2の電気絶縁体と実質的に整列している。このような場合に、マルチスタック配置構成のさらなる加工は、たとえば、マルチスタック配置構成の表面がより平面状であることにより、簡素化され得る。
例では、第1の電気絶縁体は第1の電極の露出表面と重なり合い、第1の電極の露出表面の平面は基板の第1の面の平面に実質的に平行である。このような配置構成では、第1の電極の露出表面は、第1の電気絶縁体を形成するための電気的絶縁材料が上に容易に堆積され得る棚または出っ張りを形成し得る。
例では、基板の第1の面の平面に垂直な方向の基板の厚さは、基板の第1の面の平面に垂直な方向で、第1のスタックの第1の厚さまたは第2のスタックの第2の厚さのうちの少なくとも一方と実質的に同じであるか、またはそれよりも大きい。そのようなマルチスタック構造は、たとえば、本発明の第1または第2の態様による方法を使用して、精度を改善して製造され得る。
本発明の第5の態様により、装置が提供され、これは、エネルギー貯蔵デバイスのためのスタックの第1の面の上に材料を堆積するように配置構成されている第1のインクジェット材料堆積コンポーネントと、スタックの第2の面の上に材料を堆積するように配置構成されている第2のインクジェット材料堆積コンポーネントであって、第2の面は第1の面に対向する、第2のインクジェット材料堆積コンポーネントと、スタックの第1の面が第1のインクジェット材料堆積コンポーネントからのスタック上への材料のトップダウンインクジェット材料堆積用に提示され、スタックの第2の面が第2のインクジェット材料堆積コンポーネントからのスタック上への材料のトップダウンインクジェット材料堆積用に提示されるように第1のインクジェット材料堆積コンポーネントと第2のインクジェット材料堆積コンポーネントとの間のスタックの移動を誘導するように配置構成されている複数のローラとを備える。
インクジェット印刷などの、インクジェット材料堆積をトップダウンで実行することは、スタック上への材料の正確で効率的な堆積を可能にし得る。スタックの両面がトップダウン印刷用に提示されることを確実にすれば、基板の両面上の層を含むスタックの場合であってもスタック上への材料の正確で効率的な堆積を可能にし得る。
例では、装置は、第1の態様による方法を実行するように配置構成される。
さらなる特徴は、添付の図面を参照しつつなされる、例のみで与えられる、以下の説明から明らかになるであろう。
例によるエネルギー貯蔵デバイスに対するスタックの概略図である。 例によるエネルギー貯蔵デバイスの製造のための図1のスタックの加工の一例を示す概略図である。 例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造方法を例示する概略図である。 例によるエネルギー貯蔵デバイスの製造のための中間構造の概略図である。 さらなる例によるエネルギー貯蔵デバイスの製造のための中間構造の概略図である。 リールツーリールプロセスにおける中間構造の加工の一例を示す概略図である。 リールツーリールプロセスにおける中間構造の加工のさらなる例を示す概略図である。 例によるエネルギー貯蔵デバイスに対する折り畳まれた中間構造を例示する概略図である。 図9の折り畳まれた中間構造の切断を例示する概略図である。 図10に示されているように図9の折り畳まれた中間構造を切断して形成されたマルチスタック構造を例示する概略図である。 エネルギー貯蔵デバイスのプリカーサーの一部の例を示す概略図である。
例による方法、構造、およびデバイスの詳細は、図を参照しつつ、次の説明から明らかになるであろう。この説明では、説明を目的として、いくつかの例の多数の具体的詳細が述べられている。本明細書において「一例」または類似の言い回しを述べた場合、これは例に関連して説明されている特定の特徴、構造、または特性が、少なくともその一例に含まれていることを意味するが、必ずしも他の例に含まれているわけではない。いくつかの例は、例の基礎となる概念の説明および理解を容易にするためにいくつかの特徴が省略され、および/または必然的に簡略化されて概略として記述されていることにさらに留意されたい。
図1は、エネルギー貯蔵デバイスのための層のスタック100を示している。図1のスタック100は、たとえば、固体電解質を有する薄膜エネルギー貯蔵デバイスの一部として使用され得る。
スタック100は、図1では基板102上にある。基板102は、たとえば、ガラスまたはポリマーであり、剛性または可撓性を有するものとしてよい。基板102は、典型的には平面状である。スタック100は、図1において基板102に直接接触しているように示されているが、他の例ではスタック100と基板102との間に1つまたは複数のさらなる層があってよい。したがって、特に断りのない限り、本明細書において1つの要素が別の要素の「上に」あると述べた場合に、このことは、直接または間接的な接触を含むものとして理解されるべきである。言い換えれば、別の要素上の一要素は、他の要素に接触しているか、または他の要素と接触していないが、その代わりに、一般的に、介在する(1つまたは複数の)要素によって支持されているが、それにもかかわらず、他の要素の上に配置されているか、または他の要素と重なり合っているものとしてよい。
図1のスタック100は、第1の電極層104、電解質層106、および第2の電極層108を含む。図1の例では、第2の電極層108は、第1の電極層104よりも基板102から離れており、電解質層106は、第1の電極層104と第2の電極層108との間にある。
第1の電極層104は、正極集電体層(positive current collector layer)として働き得る。このような例では、第1の電極層104は、正電極層(スタック100を含むエネルギー貯蔵デバイスのセルの放電時のカソードに対応し得る)を形成し得る。第1の電極層104は、コバルト酸リチウム、リン酸鉄リチウム、またはアルカリ金属多硫化塩などの、安定した化学反応によりリチウムイオンを貯蔵するのに適した材料を含んでいてもよい。
代替的な例では、第1の電極層104と基板102との間に配置され得る、別個の正極集電体層が存在してもよい。これらの例では、別個の正極集電体層はニッケル箔を含み得るが、アルミニウム、銅、もしくは鋼鉄、またはポリエチレンテレフタレート(PET)上のアルミニウムなどの金属化プラスチックを含む金属化材料などの任意の好適な金属が使用され得ることは理解されるべきである。
第2の電極層108は、負極集電体層として働き得る。そのような場合における第2の電極層108は、負電極層(スタック100を含むエネルギー貯蔵デバイスのセルの放電時のアノードに対応し得る)を形成し得る。第2の電極層108は、リチウム金属、グラファイト、シリコン、またはインジウムスズ酸化物(ITO)を含み得る。第1の電極層104に関して、他の例では、スタック100は、第2の電極層108上にあり、第2の電極層108は負極集電体層と基板102との間にあり得る、別個の負極集電体層を備え得る。負極集電体層が別個の層である例では、負極集電体層は、ニッケル箔を含んでもよい。しかし、アルミニウム、銅、もしくは鋼鉄、またはポリエチレンテレフタレート(PET)上のアルミニウムなどの金属化プラスチックを含む金属化材料などの、任意の好適な金属が負極集電体層に使用され得ることも理解されるべきである。
第1および第2の電極層104、108は、典型的には導電性である。したがって、電流は、第1および第2の電極層104、108を通るイオンまたは電子の流れにより第1および第2の電極層104、108を通って流れ得る。
電解質層106は、オキシ窒化リン酸リチウム(LiPON)などの、イオン伝導性であるが、電気絶縁体でもある、任意の好適な材料を含み得る。上で説明されているように、電解質層106は、たとえば、固体層であり、高速イオン伝導体と称され得る。固体電解質層は、たとえば、規則的な構造を欠き、自由に移動し得るイオンを含む液体電解質の構造と、結晶性固体の構造との間の中間の構造を有し得る。結晶性物質は、たとえば、原子が秩序正しく配列されている正規構造を有し、これは二次元または三次元の格子として配列され得る。結晶性物質のイオンは、典型的には不動であり、したがって、物質全体を通して自由に移動することができない場合がある。
スタック100は、たとえば、基板102上に第1の電極層104を堆積することによって製造され得る。電解質層106は、その後、第1電極層104上に堆積され、第2電極層108は、次いで、電解質層106上に堆積される。スタック100の各層は、他の堆積方法も可能であるが、均質性の高い層を生成する単純で効果的な方法を提供する、フラッド堆積によって堆積され得る。
図1のスタック100は、エネルギー貯蔵デバイスを製造するために、さらなる加工がなされ得る。図1のスタック100に適用され得る加工の例は、図2に概略として示されている。
図2では、スタック100および基板102は、一緒になって、エネルギー貯蔵デバイスを製造するための中間構造110を形成する。この例における中間構造110は可撓性であり、ロールツーロール製造プロセス(リールツーリール製造プロセスと称されることもある)の一部としてローラ112の周りに巻き付けられることを可能にする。中間構造110は、ローラ112から徐々に巻きを解かれ、さらなる処理を受け得る。
図2の例では、第1のレーザー114を使用して中間構造110を介して(たとえば、スタック100を通して)溝が形成され得る。第1のレーザー114は、中間構造110にレーザービーム116を当てて中間構造の一部を除去し、それによってスタック100に溝を形成するように配置構成される。このプロセスは、レーザーアブレーションと称され得る。
溝の形成後、電気的絶縁材料が、材料堆積システム118を使用して溝の少なくとも一部に堆積され得る。材料堆積システム118は、たとえば、有機懸濁液材料などの液体120で溝の少なくとも一部を満たす。次いで、液体120は、溝内で硬化され、溝内に電気的絶縁プラグを形成し得る。電気的絶縁材料は、非導電性であると考えられてよく、したがって、電界内に置かれたときに比較的少量の電流を伝導し得る。典型的には、電気的絶縁材料(絶縁体と称されることもある)は、半導体材料または導電性材料に比べて少ない電流を伝導する。しかしながら、絶縁体であっても電流を流すための少量の電荷担体を含み得るので、電界の影響下では、それにもかかわらず、少量の電流が電気的絶縁材料を通って流れることがある。本明細書の例では、材料は、絶縁体の機能を果たす十分な電気的絶縁性を有する場合に電気的絶縁性を有するとみなされ得る。この機能は、たとえば、短絡回避がなされるように材料が一方の要素を別の要素から十分に絶縁する場合に果たされ得る。
図2を参照すると、電気的絶縁材料を堆積した後に、中間構造110は、溝の少なくとも一部に沿って切断され、エネルギー貯蔵デバイスのための別々のセルを形成する。図2などの例では、数百個、潜在的に数千個のセルが中間構造110のロールから切断することができ、複数のセルが効率的な方式で製造されることを可能にする。
図2では、切断作業は、中間構造110にレーザービーム124を当てるように配置構成されている、第2のレーザー122を使用して実行される。各切断は、たとえば、プラグが2つのピースに分割され、各ピースがそれが付着しているエッジを含む露出表面上の保護カバーを形成するように絶縁プラグの中心を通るものとしてよい。この方式でスタック全体を切り開くことで、第1および第2の電極層104、108の露出表面を形成する。
図2には示されていないが(単なる概略図である)、電気的絶縁材料の堆積の後、中間構造110は、絶縁プラグの各々が整列されている少なくとも10層、場合によっては数百層、潜在的には数千層を有するz折り配置構成を形成するために、それ自身の上に折り返され得ることが理解されるべきである。次いで、第2のレーザー122によって実行されるレーザー切断プロセスは、プラグの整列されたセットの各々について、単一の切断作業でz折り畳み配置構成を切り開くために使用され得る。
セルを切断した後、電気コネクタがセルの対向する面に沿って設けられ得、セルの一方の面上の第1の電気コネクタは第1の電極層104(セルが中間構造110の残りの部分から分離された後に第1の電極を形成すると考えられ得る)に接触するが、電気的絶縁材料によって他の層との接触が防がれる。同様に、セルの対向する面上の第2の電気コネクタは、第2の電極層108(セルが中間構造体110の残りの部分から分離された後に第2の電極を形成すると考えられ得る)と接触するように配置構成され得るが、絶縁材料によって他の層との接触を防がれている。したがって、絶縁材料は、第1および第2の電極層104、108と各セル内の他の層との間の短絡の危険性を低減し得る。第1および第2の電気コネクタは、たとえば、スパッタリングによってスタックのエッジ(または中間構造110のエッジ)に付けられる金属材料であるものとしてよい。したがって、セルは、単純、容易に並列に接合することができる。
図3aから図3e(図3と総称する)は、エネルギー貯蔵デバイスの製造方法の例示的な特徴を示す概略図である。図1の対応する特徴と同じである、図3の特徴は、同じ参照番号が付されている。対応する説明が適用されると解釈されるべきである。同じ参照番号は、図3aから図3eの各々において同じ要素を表すために使用される。しかしながら、わかりやすくするために、図3aから図3eの各々においてすべての要素にラベルが付けられているわけではない。図3aから図3eのうちの1つの図ではラベルを付けられているが、図3aから図3eのうちの他の図ではラベルを付けられていない要素は、図3aから図3eの処理が同じスタックに順次適用され得るので、それにもかかわらず存在し得る。
図3aの前に、図3による方法は、基板102の表面126上にスタック100を設けることを含む。この例では、スタック100および表面102は、図1に示されているとおりである。しかしながら、他の例では、図3による方法は、図1に示されているものとは異なる構造または層を有する他のスタックに適用され得る。
スタック100の層(この場合、第1の電極層104、電解質層106、および第2の電極層108)は、順次設けられてもよい。しかしながら、他の例では、基板は、部分的に組み立てられて提供されてもよい。たとえば、第1の電極層、電解質層、および第2の電極層を含むスタックは、基板が提供される前にすでに基板上に配置構成されていてもよい。
図3aでは、第1の溝128a、第2の溝128b、および第3の溝128cが、スタック100の第1の面130内に形成される。第1の溝128a、第2の溝128b、および第3の溝128cは、参照番号128で総称され得る。スタック100の第1の面130は、基板102の表面126上にあるスタック100の第2の面に対向している。したがって、スタック100の第1の面130は、たとえば、スタック100の露出表面であり、これは別のコンポーネントと接触していないか、または他の何らかの形で目立たなくされている。この例では、スタック100の第1の面130は、スタック100の上面であるが、他の例ではそうである必要はない。
溝は、たとえば、連続しているか、または非連続的であり得るチャネル、スロット、またはトレンチである。いくつかの例では、溝は細長いものとしてよい。溝は、スタック100の層を途中まで貫通し得るか、または基板102の一部を露出させるためにスタック100のすべて層を貫通し得る。たとえば、溝は、液体または他の流体などのさらなる材料のその後の堆積のためのチャネルを提供する。
図3aでは、第1の溝128aは第1の深さdを有し、第2の溝128bは第2の深さdを有し、第3の溝128cは第3の深さdを有する。第1の深さdは第3の深さdと実質的に同じであるが、第1の深さdは第2の深さdとは異なる。溝128の深さd、d、dの各々は、図3aの基板102の表面126の平面に対して実質的に垂直な方向に取られる。方向は、測定公差内にある、または垂直からプラス/マイナス5度、10度、もしくは20度の範囲内の角偏向を有するなど、方向が平面に対して正確に垂直であるか、または平面に対しておおよそ垂直である場合に平面に対して実質的に垂直であるとみなされ得る。このような場合、溝128は、この方向に延在するか、または他の何らかの形で伸長しているとみなされ得る。これらの場合、溝128は、それに加えて、これに垂直な方向(図3aを参照してページの中に入るかまたはページの外に出る方向など)などの異なる方向に伸長してもよい。たとえば、溝の口または開口部から溝の基部に向かって延在する、溝の中心軸は、基板102の表面126の平面に実質的に垂直な方向であってよい。
しかしながら、他の例では、溝128の一部または全部が、基板102の表面126の平面に対して、実質的に垂直な角度とは異なる角度を成す軸に沿って延在し得る。たとえば、溝128の一部または全部は、基板102の表面126の平面に関して鋭角(90度未満の角度など)を成す内面を有し得る。しかし、これにより、溝128内に材料を堆積することが、その後図3aなどの例と比較して困難になり、溝128の内面は基板102の表面126の平面に対して実質的に垂直であるものとしてよい。
第1の溝128a、第2の溝128b、および第3の溝128cは、スタック100の様々な層を異なる部分に分離する。図3aでは、第1の溝128aは、第1の電極層108を第1の部分108aおよび第2の部分108bに分離する。また、第1の溝128aは、電解質層106を第1の部分106aおよび第2の部分106bに分離する。第2の溝128bは、第1の電極層108の第2の部分108bを第1の電極層108の第3の部分108cから分離する。第2の溝128bは、電解質層106の第2の部分106bを電解質層106の第3の部分106cから分離する。それに加えて、第2の溝128bは、第2の電極層104を第1の部分104aおよび第2の部分104bに分離する。図3aでは、第3の溝128cは、第1の電極層108の第3の部分108cを第1の電極層108の第4の部分108dから分離し、電解質層106の第3の部分106cを電解質層106の第4の部分106dから分離する。第2の溝128bとは異なり、第1の溝128aも第3の溝128cも、第2の電極層104の部分を分離しない。
図3aでは、第1の溝128aは、第2の電極層108の第1の露出表面132aを含む第1の表面を有している。この例では、第2の電極層108の第1の露出表面132aは、第2の電極層108の第1の部分108aの表面である。しかしながら、第1の溝128aの第1の表面は、第2の電極層108の第2の部分108bの露出表面、ならびに電解質層106の第1および第2の部分106a、106bの露出表面も含む。第1の溝128aの第1の表面は、それに加えて、第1の電極層104の第1の部分104aの露出表面を含み、これは、この例では、第1の電極層104の第1の部分104aの上側表面である。したがって、この例では、第1の溝128aは、第2の電極層108および電解質層106を通して形成される。したがって、第2の電極層108および電解質層106の露出表面は、第1の溝128aの面を形成するが、第1の電極層104の露出表面は、第1の溝128aの基部または底部領域を形成する。第1の溝128aは、第1の電極層104または基板102を貫通しない。
溝の露出表面は、たとえば、溝の形成後に別の層で覆われるかまたは他の層と接触することのない表面である。このようにして、露出表面は、たとえば、溝の形成後に、覆われていないか、暴露されているか、または他の何らかの形で示されている。露出表面は、たとえば、溝の壁、側部、側壁、または面に対応し得る。したがって、露出表面は、覆われていない、溝内の任意の表面であるか、そのような表面を含み得る。たとえば、露出表面は、溝の垂直壁、または基板102に関して上向き方向に延在する溝の一般的に上向きに延在する内面であるか、または含み得る。これは、図3aにおける場合であり、第1の溝128aの第1の表面(たとえば、第1の溝128aの露出表面である)は、第1の電極層108の第1および第2の部分108a、108bの面と、電解質層106の第1および第2の部分106a、106bの面とを含む。代替的に、露出表面は、水平に対して、または基板102の表面126の平面に対して一般的に平行である平面内に延在する溝の水平な壁または溝の壁もしくは他の表面であるか、または含むものとしてよい。たとえば、露出表面は、溝の水平な底部表面であるか、または含むものとしてよく、これは、たとえば、基板102に最も近いことがある、溝の最も深い表面である。他の例では、溝は、一般的に水平に、または基板の平面に平行である平面内に延在し得る、1つまたは複数の棚または出っ張り部分を含み得る。
第2の溝128bは、第1の電極層104の露出表面134を含む第2の表面を有する。この例では、第1の電極層104の露出表面134は、第1の電極層104の第1の部分104aの表面(この例では、基板102の表面126の平面から離れる第1の電極層104の第1の部分104aの面の表面)である。しかしながら、第2の溝128bの第2の表面は、また、電極層106の第2および第3の部分106b、106cの露出表面と、第2の電極層108の第2および第3の部分108b、108cの露出表面とを含む。したがって、この例では、第2の溝128bは、第2の電極層108、電解質層106、および第1の電極層104を通して形成され、これらは、たとえば、第2の溝128bの面を形成する。第2の溝128bは、基板102を貫通しないが、図3aにおける基板102の表面126は、第2の溝128bの基部と対応する。第2の溝128bは、第1の溝128aと第3の溝128cとの間に配置される。
第3の溝128cは、第2の電極層108の第2の露出表面132bを含む第3の表面を有する。この例では、第2の電極層108の第2の露出表面132bは、第2の電極層108の第3の部分108cの表面である。しかしながら、第3の溝128cの第3の表面は、電解質層106の第3の部分106cの露出表面、さらには第2の電極層108および電解質層106の第4の部分108d、106dの露出表面も含む。第3の溝128cの第3の表面は、第1の電極層104の第2の部分104bの露出表面も含み、これは、たとえば、第3の溝128cの基部に対応する。したがって、この例では、第3の溝128cは、第2の電極層108および電解質層106を通して形成され、これらは、たとえば、第3の溝128cの面を形成する。しかし、第3の溝128cは、第1の電極層104または基板102を貫通しない。
第1および第3の溝128a、128cの第1および第3の深さd、dは第2の溝128bの第2の深さdと異なるので、第2の溝128bは第1の電極層104を貫通するが、第1および第3の溝128a、128cは第1の電極層104を貫通するのに十分な深さではない。これは、第1および第3の溝128a、128c内に第2の電極層108の側部表面(第1および第3の溝128a、128cの内部表面または側壁とみなされ得る)を露出する。第1電極層104の側部表面は、第1および第3の溝128a、128c内には露出されない。その代わりに、第1電極層104の上側表面は、第1および第3の溝128a、128cの基部を形成する。しかしながら、第1の電極層104の側部表面は、第1および第3の溝128a、128cよりも深い第2の溝128b内に露出されている。しかし、他の例では、同じ層の側部表面が溝の各々の中に露出され、同じ層の異なる部分の側部表面が溝の異なる部分に露出され得る。しかしながら、そのような場合の第1および第3の溝は、それにもかかわらず、互いに実質的に同じ深さを有するが、第2の溝とは異なる深さを有し得る。
図3aでは、第1の溝128aは、第2の溝128bから離間し、実質的に平行であり、第2の溝128bは、第3の溝128cから離間し、実質的に平行である。2つの溝は、互いに正確に平行である場合、または製造公差内で、または20度、15度、10度、もしくは5度未満の範囲内で、互いに平行である場合に、互いに実質的に平行であると考えられ得る。言い換えれば、第1、第2、および第3の溝128は、各々、互いに一般的に同じ方向に延在する。これは、第1、第2、および第3の溝128の形成を簡素化し得る。
図3aでは、溝128は、実質的に一定の、または他の何らかの形で一様な断面を有する。溝の断面は、たとえば、溝の深さに垂直な方向に取られ、したがって、溝の幅に対応するものとしてよい。図3aでは、溝128は円筒形である。しかしながら、他の例では、溝は異なる形状を有し得る。たとえば、溝の断面は、溝の基部から離れるにつれてサイズが増加または減少し得るか、またはサイズが不均一であってもよい。溝128の一部または全部は、正確に同じ幅、または製造公差内で同じ幅、または20%、15%、10%、または5%未満の偏差などで、互いに実質的に同じ幅を有し得る。異なる幅を有する溝128を製造するよりも、各々同じ幅を有する溝128を製造する方が簡単であり得る。たとえば、これにより、他の場合であれば異なる幅の溝を形成するために必要になる可能性がある、隣接する溝の形成の間の製造機器の調整の必要がなくなり得る。溝の幅は、基板102の表面126の平面に平行な方向に取られてよく、これは溝の深さに垂直であってよい。他の例では、溝の1つまたは複数は、それらの溝のうちの別の溝とは異なる幅および/または形状を有し得る。
図3aなどの例では、基板102の表面126の平面に平行な方向の第1の溝128aと第2の溝128bとの間の第1の距離Dは、同じ方向の第2の溝128bと第3の溝128cとの間の第2の距離Dと実質的に同じである。2つの距離は、全く同じであるか、測定不確実性の範囲内で、またはたとえば、互いの20%、15%、10%、もしくは5%の範囲内で同じである場合に実質的に同じであるとみなされ得る。この配置構成により、溝128は、溝128が不規則な間隔で形成されている他の場合に比べて、より容易に製造され得る。さらに、これは、溝をz折り配置構成で互いに整列させることを容易にし得る。
溝の一部または全部は、レーザーアブレーションを使用して形成され得る。レーザーアブレーションは、レーザーベースのプロセスを使用してスタック100から材料を除去することを指すものとしてよい。材料の除去は、複数の物理的プロセスのうちの任意の1つを含み得る。たとえば、材料の除去は、溶融、溶融飛散、蒸発(または昇華)、光分解(単一光子)、光分解(多光子)、機械的衝撃、熱機械的衝撃、他の衝撃ベースのプロセス、表面プラズマ機械加工、および蒸発(アブレーション)による除去のうちの任意の1つまたはその組合せを(限定することなく)含み得る。レーザーアブレーションは、たとえば、除去されるべき(1つまたは複数の)層の表面にレーザービームを照射することを伴う。これは、たとえば、(1つまたは複数の)層の一部を除去する。レーザーアブレーションによって除去される層の量は、レーザービームの波長またはパルスレーザービームのパルス長などのレーザービームの特性を制御することによって制御され得る。レーザーアブレーションは、典型的には、溝の形成が容易に、素早く制御されることを可能にする。しかしながら、他の例では、代替的な方法がフォトリソグラフィ技術などの、溝の一部または全部を形成するために使用されてよい。
レーザーアブレーションが使用される例では、溝128は、たとえば、スタック100が配置構成される基板102の表面126に対応する基板102の第1の面に向けられた少なくとも1つのレーザービームを使用して形成され得る。たとえば、少なくとも1つのレーザービームが、スタック100の第1の面130に向けられ得る。少なくとも1つのレーザービームをスタック100の第1の面130に向けることにより、少なくとも1つのレーザービームは、それによって基板102の第1の面に向けられ得る。少なくとも1つのレーザービームを基板102の第1の面に向けるために、少なくとも1つのレーザービームを生成するように配置構成されているレーザーは、それ自体、基板102の第1の面(たとえば、スタック100の第1の面130に面する)に配置され得る。しかし、代替的に、少なくとも1つのレーザービームは、異なる位置に配置されてもよいが、それにもかかわらず、好適な光学的配置構成を用いて基板102の第1の面に向けられ得る。たとえば、少なくとも1つのレーザービームは、レーザー、およびレーザーによって生成された少なくとも1つのレーザービームを基板102の第1の面の方へ偏向させるための鏡または他の反射体などの光学素子を備えるレーザーアブレーションシステムを使用して生成され得る。
このようにして、溝128は、スタック100の単一の面から少なくとも1つのレーザービームを当てることによって形成され得る。これは、スタック100の異なるそれぞれの面からレーザービームが当てられる場合と比較して溝128の形成を簡素化し得る。
図3aからわかるように、第1の溝128a、第2の溝128bおよび/または第3の溝128cは、基板102を切断することなく形成されてもよい。例では、基板102は、スタック100と比較して比較的厚いものであってもよい。たとえば、基板102の表面126の平面に垂直な方向における基板102の厚さは、同じ方向におけるスタック100の厚さと実質的に同じか、またはそれよりも大きく、実質的に同じであるとは、たとえば、厚さが正確に同じであること、製造公差内で同じであること、または互いの20%、15%、10%、もしくは5%の範囲内などの一般的に類似していることを指す。そのような場合、基板102を切断することなくスタック100の第1の面130から溝を切ることによって溝の深さを制御する方が、基板102を貫通してスタック100内に溝を切ることよって溝の深さを制御することよりも簡単であり得る。
図3aでは、第1および第3の溝128a、128cは、第1の電極層108および基板102を切断することなく形成される。第2の溝128bは、基板102を切断することなく形成される。これは、たとえば、追加の材料が除去される他の例と比較して、エネルギー貯蔵デバイスの形成に適した形状またはサイズを有する溝128を依然として生成しながら、溝128の形成の効率を向上させる。
図3bでは、電気的絶縁材料136が、第1、第2、および第3の溝128内に堆積されている(場合によっては、電気的絶縁材料は、溝128の1つまたは複数に堆積されていない場合もあるが)。電気的絶縁材料136は、たとえば、インクジェット印刷プロセスなどの、インクジェット材料堆積プロセスを使用して、第1の液体として提供され得る。これは、たとえば、電気的絶縁材料136の液滴を、たとえばノズルから、溝128内に噴射するか、または他の何らかの形で推進することを伴う。電気的絶縁材料136は、誘電体インクなどの、インクであってもよい。好適な誘電体インクは、Dycotec Materials Ltd.、Unit 12 Star West、Westmead Industrial Estate、Westlea、Swindon、SN5 7SW、United Kingdomから入手可能なDM−INI−7003である。一般に、電気的絶縁材料126は、任意の好適な誘電体材料であってよい。誘電体材料は、たとえば、電界の印加時に分極し得る電気絶縁体である。そのような誘電体材料はまた、典型的には、低い電気伝導率を有する。図3bでは、同じ電気的絶縁材料136は溝128の各々に堆積されているが、他の例では、異なる電気的絶縁材料は溝128の1つまたは複数に堆積され得ることが理解されるべきである。
第1の溝128aに電気的絶縁材料136を堆積させることで、第2の電極層108の第1の露出表面132aを第1の電極層104から絶縁する。同様に、第2の溝128bに電気的絶縁材料136を堆積させることで、第1の電極層104の露出表面134を第2の電極層108から絶縁する。第3の溝128cに電気的絶縁材料136を堆積させることで、第2の電極層108の第2の露出表面132bを第1の電極層104から絶縁する。このようにして、第1電極層104と第2電極層108との間の短絡の危険性が低減され得る。
第2の溝128bに電気絶縁材料136を設けた後、電気絶縁材料136の一部が除去され得る。これは、図3cに概略として示されている。電気的絶縁材料136の部分は、溝128の形成に使用されたものと同じ装置もしくはシステムを使用して、またはそれにもかかわらず溝128を形成するために使用されたものと同じ処理を適用する異なる装置もしくはシステムを使用して除去され得る。たとえば、電気的絶縁材料136の部分は、レーザーアブレーションを使用して除去され得る。しかしながら、他の方法も可能である。たとえば、当業者には理解されるであろうが、溝128を形成するため、また電気的絶縁材料136の部分を除去するために、異なる方法が使用され得る。
電気的絶縁材料136の部分を除去することによって、第2の電極層108の第3の露出表面138が露出される。図3cでは、第2の電極層108の第3の露出表面138は、これは単なる例示に過ぎないが、第2の電極層108の第2の部分108bの表面である。第2の電極層108の第2の部分108bの表面を露出させることに加えて、図3cの例では、第2の電極層108の第3の部分108cの表面も露出されている(これはその場合でなくてもよいが)。導電性材料は、その後堆積され、第2の電極層108の第3の露出表面138に接触して、第2の電極層108を外部回路に接続し得る。
電気的絶縁材料136の堆積後、図3dに示されているように、切断手順が適用され得る。図3dでは、スタック100および基板126の中間構造は、第1の溝128aに整列された第1の軸140a、第2の溝128bに整列された第2の軸140b、第3の溝128cに整列された第3の軸140cに沿って切断される。これらの軸は、参照番号140を付けて総称され得る。この例では、軸140は各々、それぞれの溝128の中心に整列されているが、他の場合には、そのような軸は、この方法で整列されていない場合もある。図2を参照しつつ述べられているように、これは単なる例に過ぎないが、切断作業はレーザーを使用して実行され得る。この方法で中間構造を切断することによって、中間構造は、個別のセルに分離され得る。
図3dに示されているような中間構造を切断することで、図3eに示されているように、エネルギー貯蔵デバイスのセル142が形成され得る。図3eでは、4つのセル142a〜142eが形成されているが、典型的には、スタック100からかなり多くのセルが形成され得る。第1のセル142aは、第2の電極層108の第1の部分108a(第2の電極に対応すると考えられる)、電極層106の第1の部分106a(電解質に対応すると考えられ得る)、第1の電解質層104の第1の部分104a(第1の電極に対応すると考えられ得る)、および第1の基板102の第1の部分102aを含む。第2、第3、および第4のセル142b、142c、142dは、第1のセル142aと同様の層を含む。第1のセル142aの対応するコンポーネントに類似する第2、第3、および第4のセル142b、142c、142dのコンポーネントは、同じ参照番号を付けられているが、それぞれ、「a」ではなく、「b」、「c」または「d」を付加されている。
図3eでは、第1の電気絶縁体は、第2の電極層108の一部の露出表面の少なくとも一部に接触することなく、第1の電極層104の一部の露出表面および電解質層106の一部の露出表面に接触している。第1の電気絶縁体は、第1、第2、第3、または第4のセル142a〜142dにそれぞれ関連付けられているかどうかに応じて、参照番号144に「a」、「b」、「c」、または「d」を付加して図3eにラベル付きで示されている。第2の電気絶縁体は、第1の電極層104の露出表面の少なくとも一部に接触することなく、第2の電極層108の一部の露出表面および電解質層106の一部の露出表面に接触している。第2の電気絶縁体は、第1、第2、第3、または第4のセル142a〜142dにそれぞれ関連付けられているかどうかに応じて、参照番号146に「a」、「b」、「c」、または「d」を付加して図3eにラベル付きで示されている。
図3eでは、第1のセル142aおよび第4のセル142dは、第2の電気絶縁体146a、146dを含むが、第1の電気絶縁体を欠いている。それにもかかわらず、第1および第4のセル142a、142dは、第2および第3のセル142b、142cの第1の電気絶縁体144b、144cと同様のものであってよい、第1の電気絶縁体を追加するためのさらなる加工を受け得る。
第1および第2の電気絶縁体144b、146bの機能は、次に、第2のセル142bを参照しつつ説明される。図3eでは、第2のセル142bの第1の電気絶縁体144bは、第1の電極層104の第2の部分104bの露出表面および電解質層106の第2の部分106bの露出表面に接触している。したがって、第1の電気絶縁体144bは、第1の電極層104の第2の部分104bを第2の電極層108の第2の部分108bから絶縁する。第2のセル142bの第2の電気絶縁体146bも、第1の電極層104の第2の部分104bを第2の電極層108の第2の部分108bから絶縁する。ただし、第2のセル142bの第2の電気絶縁体146bは、電解質層106の第2の部分106bの露出表面と第2の電極層108の第2の部分108bの露出表面とを接触させることによってこれを行う。
この例では、第1の電気絶縁体144bは、第2のセル142bの第1の面に配置構成され、第2の電気絶縁体146bは、第1の面に対向する、第2のセル142bの第2の面に配置構成される。たとえば、セルの面は、セルのスタックの面に対応する。電気絶縁体は、電気絶縁体がセルまたはスタックのその面の露出表面の少なくとも一部に接触するセルまたはスタックの面に配置構成されると考えられ得る。たとえば、電気絶縁体は、セルまたはスタックのその面に沿って延在し得る(必要ではないが)。図3eの例などの例では、セルまたはスタックの第1の面およびセルまたはスタックの第2の面は、各々、基板102の表面126の平面に対して実質的に垂直であってよい。そのような場合、セルもしくはスタックの第1または第2の面は、それ自体が平面である必要はなく、非平面状表面であってもよい。それにもかかわらず、第1または第2の面は、表面126の平面に対して一般的にまたは近似的に垂直であってよく、第1または第2の面の中心平面は、正確に、製造公差内で、または20度、15度、10度、または5度の範囲内で、表面の平面に対して垂直である。このような場合、第1または第2の電気絶縁体144b、146bは、基板102の表面126から一般的に離れる方向に延在し得る。たとえば、第1または第2の電気絶縁体144b、146bは、第2のセル142bのスタックの側面の一部を覆うように、おおよそ垂直に延在し得る。
この配置構成により、第2のセル142bの第1の電極層104の第2の部分104bの露出表面は、第2の電気絶縁体146bによって覆われていないままである。第2のセル142bの第2の電極層108の第2の部分108bの露出表面も、第1の電気絶縁体144bによって覆われない。このようにして、第1の電極層104および第2の電極層108の露出部分は、第2のセル142bの対向面上にある。これは、第1の電極層104および第2の電極層108が第2のセル142bの対向する面上に導電性材料を配置構成し、第1の電極層104および第2の電極層108の露出部分と接触させることによって、外部回路に接続されることを可能にする。これは、したがって、第1の電極層104と第2の電極層108との間で短絡が発生する危険性を低減する。
図3eの第3のセル142cは、第2のセル142bの鏡像である。このようにして、図3cの第2の溝128bは、切断され2つに分割された後に第2および第3のセル142b、142cの第1の電気絶縁体144b、144cを形成する電気絶縁材料136で満たすことができる。第3のセル142cは、第2のセル142bと同様に外部回路に接続され得る。
図3eのセル142に類似する複数のセルが並列に接続されて、マルチセルエネルギー貯蔵デバイスを形成し得る。たとえば、第1の電気コネクタが複数の第1の電極層の各々を互いに接続するために使用され、第2の電気コネクタが複数の第2の電極層の各々を互いに接続するために使用され得る。したがって、第1の電気コネクタおよび第2の電気コネクタは、エネルギー貯蔵デバイスの端子の接点を形成し得る。たとえば、第1の電気コネクタおよび第2の電気コネクタは、それぞれ、エネルギー貯蔵デバイスの負端子および正端子の接点を形成し得る。負端子および正端子は、負荷に電力を供給するために負荷に電気的に接続され、それによって、マルチセルエネルギー貯蔵デバイスが実現し得る。
図4aから図4f(図4と総称される)は、さらなる例によるエネルギー貯蔵デバイスの製造方法を示す概略図である。図4の特徴は、図3aから図3eの対応する特徴と類似しており、同じ参照番号が100ずつ増やして付されている。対応する説明が適用されると解釈されるべきである。同じ参照番号は、図4aから図4fの各々において同じ要素を表すために使用される。しかしながら、わかりやすくするために、図4aから図4fの各々においてすべての要素にラベルが付けられているわけではない。図4aから図4fのうちの1つの図ではラベルを付けられているが、図4aから図4fのうちの他の図ではラベルを付けられていない要素は、図4aから図4fの処理が同じスタックに順次適用され得るので、それにもかかわらず存在し得る。
図4aでは、スタック200が基板202上に設けられている。スタック200は、第1の電極層204、電極層206、および第2の電極層208を含む。しかしながら、スタック200は、また、第2の電極層208の上に、さらなる一連の層を備える。この例では、さらなる一連の層は、2つのさらなる電解質層206’、206’’、さらなる第1の電極層204’、およびさらなる第2の電極層208’を含む。第1のさらなる電解質層206’は、さらなる第1の電極層204’を第2の電極層208から分離する。第2のさらなる電解質層206’’は、さらなる第2の電極層208’を第1の電極層204’から分離する。同じ参照番号を有するが、アポストロフィ’または二重アポストロフィ’’が付加された図4の要素は、この付加がない対応する要素と同じであってもよい。対応する説明が適用されると解釈されるべきである。
図4bでは、第1、第2、および第3のプリカーサー溝148a、148b、148cは、スタック200の第1の面内に形成される。第1、第2、および第3のプリカーサー溝148a、148b、148cは、プリカーサー溝148と総称され得る。図3と同様に、スタック200の第1の面は、たとえば、基板202の表面226と接触しているスタック200の第2の面に対向している。プリカーサー溝は、たとえば、形成された溝であり、その後の溝を形成するためにさらなる加工(広げるまたは他の要素を部分的に充填するなど)を受ける。プリカーサー溝は、図3の溝128を形成するために使用される方法と同じ方法または類似する方法を使用して形成され得る。たとえば、プリカーサー溝は、レーザーアブレーションまたはフォトリソグラフィなどの代替的プロセスを使用して形成され得る。
図4bのプリカーサー溝148は、互いに実質的に同じ深さで形成される。これは、プリカーサー溝148の形成を簡素化し得る。しかしながら、他の例では、プリカーサー溝のうちの1つまたは複数は、他のプリカーサー溝と異なる深さで形成され得る。図4cでは、プリカーサー溝148の各々は、さらなる第2の電極層208’、第2のさらなる電解質層206’’、さらなる第1の電極層204’、第1のさらなる電解質層206’、第2の電極層208、電解質層206、および第1の電極層204を通して形成される。しかしながら、他の例では、プリカーサー溝148は、これとは異なる層を通して形成されてもよい。さらに、いくつかの場合では、スタック200は、図4のスタック200と異なる層を含み得る。たとえば、第2の電極層208とさらなる第1の電極層206’との間の第1のさらなる電解質層206’は省略され得る。その代わりに別の層(絶縁層など)が、第2の電極層208をさらなる第1の電極層206’から分離してもよい。
図4bなどの例では、プリカーサー溝148は、プリカーサー溝の幅がプリカーサー溝の口の方へ(たとえば、基板202から離れる方向で)増大する、段付き形状の断面を有し得る。これは、図4dに例示されているように、特定の層が、たとえば、その後に導電性材料に接続できるように暴露されるか、または他の何らかの形で露出されることを可能にする。しかしながら、図4bのプリカーサー溝148の形状は、単なる一例に過ぎない。他の例では、プリカーサー溝148は、異なる形状および/またはサイズを有していてもよい。たとえば、プリカーサー溝148の一部または全部が、その代わりに、図3aの溝128と同様に、一定の断面を有してもよい。
図4cは、プリカーサー溝148内に電気的絶縁材料236を設けることを示している。電気的絶縁材料236は、図3bを参照しつつ説明されているように提供され得る。
電気的絶縁材料236を提供した後、図3の溝128に類似している溝228が設けられ得る。これは、第1および第2の溝228a、228bの形成を示す、図4dに概略として示されている(第1の溝228aの形成と同様に第3の溝が形成され得ることは理解されるが)。
図4dでは、第1の溝228aは、第1のプリカーサー溝148a内の電気的絶縁材料236を通して形成される。第2の溝228bは、第2のプリカーサー溝148b内の電気的絶縁材料を通して形成される。図4dには示されていないが、第3の溝は、第1の溝228aの形成と同様にして第3のプリカーサー溝148c内の電気的絶縁材料236を通して形成され得ることは理解されるべきである。
図4dの第1および第2の溝228a、228bを形成するために除去された電気的絶縁材料236は、図3の第1および第2の溝128a、128bを形成するために電気的絶縁材料136を除去するのと類似の方法で除去され得る。たとえば、第1および第2の溝228a、228bは、電気的絶縁材料236の一部をレーザーアブレーションすることによって、または別の技術を使用して電気的絶縁材料236の一部を除去することによって、形成され得る。
第1の溝228aは、第1のプリカーサー溝148aの第1の領域Rにある電気的絶縁材料236の第1の部分を最初に除去することによって形成され得る。電気的絶縁材料236の第1の部分を除去した後、電気的絶縁材料は、電解質層206a、206bの第1および第2の部分の表面ならびに第1および第2の電極層204、208の第1および第2の部分の表面に接触する第1の電気絶縁体244a、244bに分離され得る。このようにして、第1の電気絶縁体244a、244bは、第1および第2の電極層204、208を互いから電気的に絶縁する。
その後、第1の溝228aは、第1のプリカーサー溝148aの第2の領域R内の電気的絶縁材料236の第2の部分を除去することによって広げられ得る。第2の領域Rは、たとえば、基板202の表面226の平面に平行な方向に第1の領域Rよりも広くなっている。
図4dの例では、第2の領域Rは、第2の領域R内の電気的絶縁材料236の第2の部分を除去すると、第1の溝228a内で第2の電極層208の第1および第2の部分208a、208bの表面が露出する十分な広さを有する。このように、第1の溝228aの第1の表面は、第2の電極層208の第1の露出表面を含み、これは、この場合、第2の電極層208の第1の部分208aの露出表面である。
このように第1の溝228aを広げると、第2の電気絶縁体246a、246bは、第1の溝228a内で、それぞれ、第1のさらなる電解質層206の第1および第2の部分206a’、206b’の表面と接触したままになる。第2の電気絶縁体246a、246bは、また、それぞれ、第1の溝228a内のさらなる第1の電極層204の第1および第2の部分204a’、204b’の表面に接触する。第2の電気絶縁体246a、246bは、また、それぞれ、第1の溝228a内の第2のさらなる電解質層206’’の第1および第2の部分206a’’、206b’’の表面に接触したままである。これは、さらなる第1の電極層204’の第1および第2の部分204a’、204b’を、第2の電極層208の第1および第2の部分208a、208bから電気的に絶縁する。このようにして、たとえば、第1の溝228aに面するさらなる第1の電極層204の側面または面に対応する、さらなる第1の電極層204の第1および第2の部分204a’、204b’の表面は、電気的絶縁材料236によって第1の溝228aから絶縁される。同様にして、たとえば、第1の溝228aに面するさらなる第1の電極層204の側面または面に対応する、さらなる第2の電極層208の第1および第2の部分208a’、208b’の表面は、電気的絶縁材料236によって第1の溝228aから絶縁される。さらなる第2の電極層208の第1の部分208a’のこの表面は、その後に露出され得るので、さらなる第2の電極層208の第1の露出表面と称されてよい。
電気的絶縁材料236の第2の部分を除去した後、電気的絶縁材料236の第3の部分は、第1のプリカーサー溝148aの第3の領域R内で除去される。第3の領域Rは、たとえば、基板202の表面226の平面と平行な方向において、第1および第2の領域R、Rよりも幅広である。電気的絶縁材料236の第3の部分を除去することによって、第1の溝228a内のさらなる第2の電極層208’の第1および第2の部分208a’、208b’の表面が露出される。これは、たとえば、さらなる第2の電極層208の第1の露出表面を露出させる。これは、さらなる第2の電極層208’が、たとえば、さらなる第2の電極層208’の第1の露出表面と接触して堆積されている導電性材料を介して外部回路に接続されることを可能にする。
図4dからわかるように、第1の溝228aを広げた後、第1の溝228aの第1の部分(たとえば、第1の電極層204の第1の部分204aと第2の部分204bとの間の)は、第1の溝228aの第2の部分(たとえば、さらなる第1の電極層204’の第1の部分204a’と第2の部分204b’との間の)より狭くなっている。第1の溝228aの第1の部分は、たとえば、第1の溝228aの第2の部分よりも基板202に近い。したがって、第1の溝228aは、たとえば、基板202から離れるにつれ(または第1の溝228aの口に向かうにつれ)断面が広くなるものとしてよい。これは、導電性材料のようなさらなるコンポーネントの堆積など、スタック200のさらなる加工を円滑にし得る。しかしながら、図4bの第1の溝228aの形状は、単なる一例に過ぎない。
第1の溝228aに対する加工に類似する加工が、第2の溝228bに施され得る。しかし、図4dに示されているように、第2の溝228bの第1の拡大中に除去された電気的絶縁材料236の第1の部分は、第1の溝228aの第1の拡大中に除去された電気的絶縁材料236の第1の部分よりも大きくてもよい。このようにして、第1の電極層204の第2および第3の部分204b、204cの露出表面は、電気的絶縁材料236の第1の部分を除去することによって、第2の溝228b内に形成され得る。たとえば、第2の溝228bを形成することは、第2のプリカーサー溝148b内に電気的絶縁材料236を通して第2の溝228bを形成し、第1の電極層204の露出表面を含む第2の表面(たとえば、第1の電極層204の第2の部分204bの露出表面である)を有する第2の溝228bを形成することを含み得る。逆に、第2の電極層208の第2および第3の部分208b、208cの面または側面は、第2の溝228bを形成する間、電気的絶縁材料236によって覆われたままであるか、または他の何らかの形で絶縁されたままであり得る。同様に、さらなる第1の電極層204a’の第2および第3の部分204a’、204b’の面または側面は、電気的絶縁材料236によって絶縁されたままであってよい。このようにして、さらなる第1の電極層204a’の露出表面(さらなる第1の電極層204a’の第2の部分204a’の表面など)と称され得るものは、電気的絶縁材料236によって第2の溝228bから絶縁されたままであってよい。しかしながら、第2の溝228bの第2の拡大、たとえば、電気的絶縁材料236の第2の部分の除去による第2の拡大は、第2の溝228b内のさらなる第1の電極層204’の第2の部分204b’および第3の部分204c’の露出表面を露わにし得る。このようにして、第2の溝228bの第2の表面は、さらなる第1の電極層204a’の露出表面を含み得る。さらなる第2の電極層208の第2および第3の部分208b’、208c’の側面または面は、電気的絶縁材料236によって覆われたままであり得るか、または他の何らかの形で絶縁されたままであり得る。
第3の溝は、第1のプリカーサー溝228aを通して第1の溝228aを形成するのと似た方法で第3のプリカーサー溝228cを通して形成され得る。したがって、図4のスタック200などのスタック200内に第1、第2、および第3の溝を形成した後、第1の溝228aの第1の表面は、さらなる第2の電極層208’の第1の露出表面さらには第2の電極層208の第1の露出表面を含み得る。同様に、第2の溝228bの第2の表面は、さらなる第1の電極層204’の露出表面さらには第1の電極層204の露出表面を含み得る。第3の溝の第3の表面は、さらなる第2の電極層208’の第2の露出表面さらには第2の電極層208の第2の露出表面を含み得る。
スタック200内の第1、第2、および第3の溝を形成した後、図4eに示されているように、スタック200の中間構造および基板202は切断され得る。図4eの中間構造の切断は、図3dの切断に類似している。たとえば、中間構造は、第1および第2の溝228a、228bとそれぞれ整列されている第1および第2の軸240a、240b(参照番号240と総称される)に沿って切断されてもよい。中間構造は、また、第3の溝と整列されている第3の軸に沿って切断されてよい。
中間構造の切断は、参照番号242で総称されている、図4fの3つのセル242a〜242cを形成する。セル242は、マルチセルエネルギー貯蔵デバイスを形成するために図3eのセル142の接続と似た仕方で一緒に接続され得る。
図5は、例によるエネルギー貯蔵デバイスに対する中間構造150の概略図である。図3の対応する特徴に類似する図5の特徴は、同じ参照番号が200ずつ増やして付けされている。対応する説明が適用されると解釈されるべきである。
図5の中間構造150は、基板302の第1の表面326上の第1のスタック300を含む。中間構造150は、第1の表面326に対向する、基板302の第2の表面326’上の第2のスタック300’も含む。第1のスタック300は、図3のスタック100と同じである。第2のスタック300’は、第1のスタック300と同じである。しかしながら、第2のスタック300’は、基板302の、第1のスタック300とは反対の面に配置構成されている。参照を容易にするために、第2のスタック300’の第1の電極層304a’は、第3の電極層と称され得る。同様に、第2のスタック300’の第2の電極層308’は、第4の電極層と称され得る。
第1および第2のスタック300、300’は、各々、図3に示されているように、第1および第2のスタック300、300’内に溝152、152’を形成するように製造され得る。第1および第2のスタック300、300’の溝152、152’は、図3を参照しつつ説明されている溝128に類似しているものとしてよい。しかしながら、第2のスタック300’内の溝152’は、第1のスタック300の溝152とは反対の方向から形成されてもよい。たとえば、第1のスタック300は、基板302の第1の表面326上に設けられ、これは、基板302の第1の面に対応すると考えられ得る。次いで、溝152が第1のスタック300内に形成され得る。類似の方式で、第2のスタック300’は、基板302’の第2の表面326’上に設けられてよく、これは基板302の第2の面に対応すると考えられ得る。次いで、溝152’は、第2のスタック300’内に形成され得る。
第1および第2のスタック300、300’の溝152、152’は、レーザーアブレーション(図3を参照しつつ説明されているような)または材料を除去するための別の技術を使用して形成され得る。溝152、152’がレーザーアブレーションを使用して形成される場合、第1および第3の溝152a、152bは、基板302の第1の面、たとえば第1の表面326の方へ向けられた第1の少なくとも1つのレーザービームを使用して形成され得る。この場合、第2および第4の溝152a’、152b’は、基板302の第1の側面とは反対側、たとえば第2の表面326’に向かって向けられた第2の少なくとも1つのレーザービームを用いて形成されてもよい。第5および第6の溝152c、152c’もまた、第1および第2の少なくとも1つのレーザービームを用いてそれぞれ形成されてもよい。
第1および第2の少なくとも1つのレーザービームは、それぞれ、別々のレーザーアブレーションシステムを使用して生成され得る。たとえば、第1の少なくとも1つのレーザービームは、基板302の第1の面に配置構成されている第1のレーザーアブレーションシステムによって生成されてよい。逆に、第2の少なくとも1つのレーザービームは、基板302の第2の面に配置構成されている第2のレーザーアブレーションシステムによって生成され得る。これは、第1および第2の少なくとも1つのレーザービームをそれぞれ基板302の第1および第2の面上の所望の位置に誘導するための複雑な光学装置を不要にし得るので、他の配置構成に比べてより簡単であり得る。第1および第2のレーザーアブレーションシステムは、互いに同じであるか、または異なり得る。
しかし、他の例では、第1および第2の少なくとも1つのレーザービームは両方とも同じレーザーアブレーションシステムを使用して生成され得る。たとえば、レーザーアブレーションシステムは、レーザーパルスを生成し、レーザーパルスの一部を基板302の第1の面の方へ向け、他を基板302の第2の面の方へ向けるように配置構成され得る。たとえば、レーザービームの一部を第1の面または第2の面の方へ選択的に偏向させるために、たとえば、ビームスプリッタ、またはミラーもしくは他の反射体を含み得る、光学的配置構成が使用されてもよい。このようにして、第1および第2の少なくとも1つのレーザービームは、単一のレーザーアブレーション配置構成を使用して生成され得る。
図5では、中間構造は、第1の溝152aと、第2の溝152a’と、第3の溝152bと、第4の溝152b’とを備える。第1および第3の溝152a、152bは、第1のスタック300を通して形成され、図3の第1および第2の溝128a、128bと類似しているものとしてよい。第2および第4の溝152a’、152b’は、第2のスタック300’を通して形成され、これもまた、図3の第1および第2の溝128a、128bと類似しているものとしてよい(ただし、第1のスタック300ではなく第2のスタック300’を通して形成される)。この例では、中間構造は、第1のスタック300内の第5の溝152cおよび第2のスタック300’内の第6の溝152c’も備えるが、他の例では、第5の溝および第6の溝は省略され得る。図5では、第3の溝152bは、第1のスタック300内の第1の溝152aと第5の溝152cとの間にあり、第4の溝152b’は、第2のスタック300’内の第2の溝152a’と第6の溝152c’との間にあるが、これは単なる一例に過ぎない。
図5などの例では、第1の溝152aの第1の深さは、第3の溝152bの第3の深さと異なる(これらの深さの各々は、図3の溝128の深さd、d、dと同じ方向に取られてもよい)。同様に、第2の溝152a’の第2の深さは、第4の溝152b’の第4の深さと異なり得る。したがって、これは、その後の加工(図11を参照しつつさらに説明されている)の後に、異なる層の表面が第1および第2のスタック300、300’の対向面上に露出されることを可能にする。図5では、第5の溝152cの第5の深さは、第1の溝152aの第1の深さと実質的に同じであり、第6の溝152c’の第6の深さは、第2の溝152a’の第2の深さと実質的に同じである。しかし、これは必ずしもそうである必要はない。
図5の例では、第1の溝152aは第2の溝152a’と実質的に整列しており、第3の溝152bは第4の溝152b’と実質的に整列している。図5では、第5の溝152cも、第6の溝152c’と実質的に整列しているが、これは必ずしもそうである必要はない。2つの溝は、それらが共通の軸に沿って延在しているもしくは配置しているか、または溝の一方が他方の溝と少なくともおおよそ重なっている場合に、互いに実質的に整列しているとみなされ得る。たとえば、そのような溝は、断面内で、互いに一直線上に配置されるものとしてよい。これの例は、図5に示されており、第1および第2の溝152a、152a’は、各々、縦方向に細長く、第1の溝152aが第2の溝152a’と重なるように(第1および第2のスタック300、300’の第1の電極層304a、304a’および基板302によって分離されているにもかかわらず)順に重ねて積み上げられる。
図5では、第1および第2のスタック300、300’は、互いに同じであり、互いに整列されているが、基板302の対向する側にある。したがって、第1のスタック300の第1、第3、および第5の溝152a、152b、152cの第1、第3、および第5の深さは、第2のスタック300’の第2、第4、および第6の溝152a’、152b’、152c’の第2、第4、および第6の深さと実質的に同じである。しかしながら、他の場合では、第1のスタック300の1つまたは複数の溝152は、第2のスタック300’の1つまたは複数の溝152’と異なる深さを有し得る。たとえば、互いに整列しているが、異なるそれぞれのスタック内にある溝は、互いに異なる深さを有し得る。たとえば、第1の深さは第4の深さと実質的に同じであり、第3の深さは第2の深さと実質的に同じであり得る。これは、たとえば、第1の溝および第2の溝が互いに実質的に整列され、第3の溝および第4の溝が互いに実質的に整列されている場合、または、第1のスタックの溝と第2のスタックの溝との間の整列が図5に示されているものと異なる他の例における場合であり得る。
図6は、エネルギー貯蔵デバイスの製造のための中間構造450のさらなる例を示している。図5の対応する特徴に類似している図6の特徴は、同じ参照番号を付けられているが、「1」または「3」ではなく「4」を前に付けられている。
図6の中間構造450は、図5の構造に類似している。図6の第1のスタック400は、図5の第1のスタック300と同じであり、また基板402の第1の表面426上に配置構成されている。しかしながら、基板402の第2の表面426’上に配置構成されている、図6の第2のスタック400’は、図5の第2のスタック300’と異なる。
特に、図5の第2のスタック300’は、図5の第1のスタック300の鏡像である。したがって、第1のスタック300の第1、第3、および第5の溝152a、152b、152cの第1、第3、および第5の深さは、それぞれ、第2のスタック300’の第2、第4、および第6の溝152a’、152b’、152c’の第2、第4、および第6の深さと実質的に同じである。対照的に、図6の第1のスタック400の第1の溝452aの第1の深さは、第2のスタック400’の第2の溝452a’の第2の深さと異なる。第1の溝452aは、第2の溝452a’と実質的に整列されているが、基板402の対向する側にある。
第1のスタック400の第3および第5の溝452b、452cは、また、図6の例において第2のスタック400の第4および第6の溝452b’、452c’と整列されている。第1のスタック400の第3および第5の溝452b、452cの第3および第5の深さは、この場合、それぞれ、第2および第6の溝452b’、452c’の第4および第6の深さと異なる。しかし、これは必ずしもそうである必要はない。実際、他の例は、溝の整列された複数の対(各対は第1のスタック内の溝および第1のスタック内の溝と整列されている第2のスタック内の溝を含む)を含み得る。そのような場合、溝のいくつかの対は、互いに実質的に同じ深さを有し得る。他の対は、互いに異なる深さを有する2つの溝を含み得る。
図6の第2、第4、および第6の溝452a’、452b’、452c’は、図5の第2、第4および第6の溝152a’、152b’、152c’の形成と同様に形成され得るが、互いに異なる深さを有する。たとえば、図6の第1の溝452aは、第1のスタック400の第1の電極層404または基板402を切断することなく形成されるものとしてよく、第1の溝452aは、第1のスタック400内の第1の電極層404内に貫入することなく、第2の電極層408および電解質層406を通して形成される。対照的に、図6の第2の溝452a’は、基板402を切断することなく形成され得る。しかしながら、第2の溝452a’は、第2のスタック400’の第2の電極層408’、電解質層406’、および第1の電極層404’を通して形成され得る。このようにして、第2の溝452a’は、第2のスタック400’の第1の電極層404’を第1の部分404a’と第2の部分404b’とに分離し得る。そのような場合の第2の溝452a’は、また、電解質層406’の第1の部分406a’を電解質層406’の第2の部分406b’から分離し、第2の電極層408’の第1の部分408a’を第2のスタック400’内の第2の電極層408’の第2の部分408b’から分離する。
同様に、図6の第3の溝452bは、第1のスタック400の第2の電極層408、電解質層406、および第1の電極層404を通して形成され得る(たとえば、基板402を切断することなく)。しかしながら、図6の第4の溝452b’は、第2のスタック400’の第1の電極層404’または基板402-を切断することなく、第2のスタック400’の第2の電極層408’および電解質層406’を通して形成され得る。このようにして、第4の溝452b’は、電解質層406’の第2の部分406b’を第2のスタック400’内の電解質層406’の第3の部分406c’から分離する。第4の溝452b’は、また、第2の電極層408’の第2の部分408b’を、第2のスタック400’内の第2の電極層408’の第3の部分408c’から分離する。
図6では、第5の溝452cは、第1のスタック400の第1の電極層404および基板402を切断することなく、第1のスタック400の第2の電極層408および電解質層406を通して形成される。第6の溝452c’は、第2の電極層408’、電解質層406’、および第2のスタック400’の第1の電極層404’を通して形成される。第6の溝452c’は、したがって、第1の電極層404’の第2の部分404b’を、第2のスタック400’内の第1の電極層404’の第3の部分404c’から分離する。第6の溝452c’は、また、電解質層406’の第3の部分406c’を電解質層406’の第4の部分406d’から分離し、第2の電極層408’の第3の部分408c’を第2のスタック400’内の第2の電極層408’の第4の部分408d’から分離する。
図5または図6に例示されているような中間構造を形成した後、さらなる加工が中間構造に施され得る(図2を参照しつつ述べられているように)。いくつかの例では、中間構造のさらなる加工は、中間構造を折り畳む前に中間構造を切断して1つまたは複数のリボンにすることを含み得る。
たとえば、次に図7を特に参照すると、リールツーリールタイプのプロセスにおける図5の中間構造150のさらなる加工の例が概略として示されている。図7に例示されているように、中間構造150は、第1の方向156に進むようにリール154から提供される。中間構造150における第1のスタック300内の溝152は、図7内に見えている。しかしながら、中間構造150は、図5に示されているように、第2のスタック300’内の溝152’も含む。中間構造150は、図7において平面図で示されている。したがって、第2のスタック300’(第1のスタック300の下にある)は、図7では見えていない。図7の中間構造150は、レジストレーション特徴158も含む。レジストレーション特徴は、たとえば、スタックの溝と異なる。たとえば、レジストレーション特徴は、スタック内の陥凹部であってよく、この陥凹部は、たとえば、(スタックの少なくとも1つの層を通るのではなく)スタックの上側層を通って途中までしか延在しない。このような場合のレジストレーション特徴は、スタック内の溝と異なるサイズまたは形状を有していてもよい。レジストレーション特徴は、典型的には、スタック(またはスタックを含む中間構造)が折り畳まれるべき位置または折り畳まれる方向の折り畳み点を示す。中間構造を折り畳むことで、中間構造を電池セルに効率的にセグメント分割することを可能にし得る。レジストレーション特徴は、レーザーアブレーションまたは他の方法によって形成され得る。たとえば、レジストレーション特徴は、スタック上に、材料を堆積する、たとえば、材料を印刷することによって形成され得る。別の例として、レジストレーション特徴は、スタック内にスクライビングを行うか、または他の何らかのマーク(たとえば、必ずしもレーザーアブレーションを使用する必要はない)を形成することによって形成され得る。図7に例示されている例では、溝152およびレジストレーション特徴158(この例では溝152に平行な陥凹部の形態をとる)は、第1の進行方向156に垂直な方向に細長い。しかし、他の例では他のレジストレーション特徴が可能である。さらに、いくつかの場合では、レジストレーション特徴は省略されてもよい。
図7に概略として例示されているように、中間構造150は切断されて複数のリボン160を形成し得る(図7では1つだけが示されている)。たとえば、リボン160は、第1の進行方向156に平行な方向に沿って中間構造150をレーザー切断することによって形成され得る。各リボン156は、溝152の長さに垂直な方向に細長である。各リボン156は、次いで、折り畳まれた中間構造162を形成するようにレジストレーション特徴158のところで、またはレジストレーション特徴158の方に(たとえば、折り畳みプロセスにおいておよび/または説明されているような折り畳み機によって)折り畳まれ得る。レジストレーション特徴158を形成することによって、リボン156が折り畳まれる折り畳み点が効率的に確実に識別され得る。たとえば、中間構造150は、折り畳み機によって加工されてよく、レジストレーション特徴158は、折り畳み機が、たとえば、各折り目の間の溝の数を数えなくても、中間構造150が折り畳まれるべき位置のレジストレーションを効率的に行う(すなわち、識別しおよび/または整列させる)ことができる手段を提供し得る。
図7には1つの折り畳みのみが例示されているが、他の例では、折り畳まれた中間構造162が多くのスタック、たとえば、数十もしくは数百個のスタックを含むような多くの折り畳みがあり得ることが理解されるであろう。
別の例として、次に図8を参照すると、中間構造150のさらなる加工の別の例が概略として例示されている。図8に例示されているように、中間構造150は、第2の方向166に進むようにリール164から提供される。中間構造150は、たとえば、図7のリール154から提供される中間構造150と同じである。しかしながら、図8では、溝152およびレジストレーション特徴158(この例では溝152に平行な陥凹部の形態をとる)は、第2の進行方向166に平行な方向に細長である。この配向で溝152および/またはレジストレーション特徴158を形成することは、レーザー光源および/またはそれによって生成されるアブレーションビームが、たとえば、溝152および/またはレジストレーション特徴158を実質的に連続するプロセスで形成するために中間構造150が移動され得る静的レーザーシステムから提供されることを可能にし、これは効率的であり得る。同様に、第2のスタック300’の溝152’(図8では見えない)は、第1のスタック300の溝152と重なり得る。第2のスタック300’の溝152’は、第2の進行方向166に平行な方向に細長であってもよい。したがって、第2のスタック300’内の溝152’を形成するためのレーザー光源またはアブレーションビームは、中間構造150に関して静止していてもよい。図5を参照しつつ説明されているように、第1および第2のスタック300、300’内の溝152、152’をそれぞれ形成するために別個のレーザーシステムまたは複合レーザーシステムが使用され得る。
図8に概略として例示されているように、中間構造150は切断されて複数のリボン168を形成し得る(図8では1つだけが示されている)。たとえば、リボン168は、第2の進行方向166に垂直な方向に沿って中間構造150をレーザー切断することによって形成され得る。ここでもまた、各リボン168は、第1のスタック300内の溝152の平面に垂直な方向に細長である。各リボン168は、次いで、折り畳まれた中間構造170を形成するようにレジストレーション特徴158のところで、またはレジストレーション特徴158の方に(たとえば、折り畳みプロセスにおいておよび/または折り畳み機によって)折り畳まれ得る。図8には1つの折り畳みのみが例示されているが、他の例では、折り畳まれた中間構造170が多くのスタック、たとえば、数十もしくは数百個のスタックを含むような多くの折り畳みがあり得ることが理解されるであろう。
いくつかの例では、図7の折り畳まれた中間構造162は、図8の折り畳まれた中間構造170と実質的に同じであってよい(たとえば、区別できない)ことが理解されるであろう。しかしながら、図8のように中間構造150を第2の進行方向166に実質的に平行に切断することは、生産されるリボン168の各々を平行に加工することを可能にし、したがって効率的な製造プロセスが可能になり得る。
リボン160、168を形成するために中間構造150を切断するように配置構成されている切断装置(図示せず)が提供され得る。切断装置は、第1および第2のスタック300、300’の溝152、152’を形成するための装置および/または折り畳み機の一部を形成し得るか、または別個の装置であってもよい。たとえば、切断装置は、中間構造150を切断してリボン160、168を形成するように配置構成されているレーザーカッターを備え得る。折り畳み機(図示せず)は、レジストレーション特徴158を認識または識別するための手段を備え得る。たとえば、認識手段は、第1のスタック300の溝152と異なるような中間構造150のレジストレーション特徴158を認識するように配置構成されているカメラまたは他のセンサを備えてもよい。識別されたレジストレーションマークのところで、または識別されたレジストレーションマークの方へ中間構造150を折り畳むように配置構成されている折り畳み機は、折り畳み機が、たとえば、各折り畳みの間の溝の数を数えなくても、中間構造150を確実に効率的に折り畳むことを可能にし得る。しかしながら、これは単なる例に過ぎず、他の例では他の折り畳み機が使用されてもよい。
図9は、例によるエネルギー貯蔵デバイスに対する折り畳まれた中間構造172を例示する概略図である。図9の折り畳まれた中間構造172は、図5の基板302と同じである基板302を折り畳むことによって得られる。図9の基板302上には、第1のスタック300、第2のスタック300’、第3のスタック300’’、第4のスタック300’’’、第5のスタック300’’’’、第6のスタック300’’’’’が配置構成されている。第1および第2のスタック300、300’は、図5の第1および第2のスタック300、300’と同じである。対応する説明が適用されると解釈されるべきである。実際、図9の各スタック300〜300’’’’’は、各他のスタックと同じであり、基板302に関するそれぞれの位置が単に異なるだけである。したがって、第1のスタック300の対応する特徴と同じである第2のスタック300’の特徴は、アポストロフィ’を付けた同じ参照番号をラベル付けされている。第1のスタック300の対応する特徴と同じである第3のスタック300’’の特徴は、2個のアポストロフィ’’を付けた同じ参照番号をラベル付けされている。第1のスタック300の対応する特徴と同じである第4のスタック300’’’の特徴は、3個のアポストロフィ’’’を付けた同じ参照番号をラベル付けされている。第1のスタック300の対応する特徴と同じである第5のスタック300’’’’の特徴は、4個のアポストロフィ’’’’を付けた同じ参照番号をラベル付けされている。第1のスタック300の対応する特徴と同じである第6のスタック300’’’’’の特徴は、5個のアポストロフィ’’’’’を付けた同じ参照番号をラベル付けされている。
第1、第4、および第5のスタック300、300’’’、300’’’’は、基板302の第1の表面326上に配置構成される。第2、第3、および第6のスタック300’、300’’、300’’’’’は、第1の表面326に対向する、基板302の第2の表面326’上に配置構成される。
したがって、折り畳まれた中間構造172は、図7および図8の折り畳まれた中間構造162、170と類似しているか、または同じであってよい。図9の折り畳まれた中間構造172は、図7および図8に示されているように、中間構造150を切断してリボン160、168を形成した後に得られ得る(これは、必ずしもそうである必要はないが)。たとえば、図7および図8に示されているように、折り畳まれた中間構造172は、中間構造150を複数回折り畳むことによって得られ得る。
図9の例では、折り畳まれた中間構造172は、z折り配置構成で折り畳まれている。言い換えれば、第2のスタック300’は、第1のスタック300の下に折り畳まれる。第3のスタック300’’は、第2のスタック300’の下に折り畳まれる。第4のスタック300’’’は、第3のスタック300’’の下に折り畳まれる。第5のスタック300’’’’は、第4のスタック300’’’の下に折り畳まれる。第6のスタック300’’’’’は、第5のスタック300’’’’の下に折り畳まれる。この配置構成では、スタック300〜300’’’’’の各々の層によって画成される平面は、互いに実質的に平行である。しかしながら、基板302の折り畳みにより、第2のスタック300’は、第1のスタック300と比較すると反転されている。同様に、第4のスタック300’’’は、第3のスタック300’’と比較して反転され、第6のスタック300’’’’’は、第5のスタック300’’’’と比較して反転されている。第1、第3、および第5のスタック300、300’’、300’’’’は、互いに同じ配向で、ただし、たとえば、互いに実質的に平行である、異なるそれぞれの平面内に配置構成されている。2つの平面は、互いに正確に平行である場合、または製造公差内で、または20度、15度、10度、もしくは5度未満の範囲内で、互いに平行である場合に、互いに実質的に平行であると考えられ得る。
折り畳みの各々の間の距離は、実質的に同じであり、たとえば、全く同じ、製造公差内で同じ、または20%、15%、10%、または5%未満の偏差を有する。たとえば、折り畳み点は、リボン160、168の長さに沿ってなど、スタック300〜300’’’’’を含む中間構造の長さに沿って、等間隔であってよい。このようにして、スタック300〜300’’’’’の各々は、スタック300〜300’’’’’の互いのレジストレーションまたは整列がなされるように、互いに同じ幅であってよい。
折り畳まれた中間構造172は、その後、図10に示されているようにセグメント分割され得る。図10からわかるように、スタック300〜300’’’’’の各々は、互いに整列され、たとえば、スタックの1つ(図10では各々絶縁材料336を充填されている)の溝は隣接するスタックの対応する溝と整列(たとえば、図10の向きで垂直に整列)される。第1のスタック300の第1の溝152aに対応する第1の軸174aは、第1のスタック300の第1の溝152aの中心に整列され、図10を参照すると垂直方向に延在している。同様に、図10の第2の軸174bは、第1のスタック300の第3の溝152bの中心軸に対応し、図10の第3の軸174cは、第1のスタック300の第5の溝152cの中心軸に対応する。
たとえば、基板302を折り畳んだ後、第1のスタック300の第1の溝152aは、第1のスタック300の第1の部分と実質的に同じ平面内で、基板302の第1の表面326の第1の部分上の第1のスタック300の第1の部分175aと、基板302の第1の面の第3の部分上の第1のスタック300の第3の部分175bとの間にある。第1のスタック300の第1の部分175aは、第1のスタック300の第2の電極層308aおよび電解質層306aの第1の部分を含む。第1のスタック300の第1の部分175aは、第1のスタック300の第1の電極層304の第1の部分304aの第1のサブ部分304aaも含む。第1のサブ部分304aaは、たとえば、図10の第1の軸174aの左側に位置する第1の電極層304の第1の部分304aのセクションである。図10では、第1のスタック300の第3の部分175bは、第2の電極層308bおよび電解質層306bの第2の部分、さらには第1のスタック300の第1の電極層304の第1の部分304の第2のサブ部分304abを含む。
第2の溝152bは、第1のスタック300の第3の部分175bを、第1のスタック300の第2の電極層308cおよび電解質層306cの第3の部分を含む第1のスタック300の第4の部分175cから分離する。第1のスタック300の第4の部分175cは、第1のスタック300の第1の電極層304の第2の部分304bの第1のサブ部分304baも含む。
同様に、第3の溝152cは、第1のスタック300の第4の部分175cを、第1のスタック300の第2の電極層308dおよび電解質層306dの第4の部分を含む第1のスタック300の第5の部分175dから分離する。第1のスタック300の第5の部分175dは、第1のスタック300の第1の電極層304の第2の部分304bの第1のサブ部分304baも含む。
図10では、折り畳まれた中間構造172は、第1の溝152aと実質的に整列している長手方向軸であると考えられ得る、第1の軸174aに沿って切断される。折り畳まれた中間構造172が切断される際に沿う軸は、折り畳まれた中間構造を複数のマルチスタック構造に分離するように、折り畳まれた中間構造172の全体を貫通し得る。マルチスタック構造の各々は、それぞれのエネルギー貯蔵デバイスのプリカーサーに対応すると考えられ得る。たとえば、第1の軸174aに沿って折り畳まれた中間構造172を切断することは、第1のエネルギー貯蔵デバイスに対する第1のプリカーサー176aを第2のエネルギー貯蔵デバイスに対する第2のプリカーサー176bから分離し得る。図10では、第1のプリカーサー176aは、互いに実質的に整列するスタック300〜300’’’’’の各々の一部を含む。第1のプリカーサー176aは、第1のスタック300の第1の部分175a、さらには第1のスタック300の第1の部分175aと重なる他のスタック300’〜300’’’’’の各々の一部を含む。
図10の例では、折り畳まれた中間構造172が、基板302の第2の表面326’の第1の部分上に第2のスタック300’の第1の部分を含むことがわかる。第2の表面326’の第1の部分は、たとえば、第1のスタック300の第1の部分175aが配置構成されている第1の表面326の第1の部分に対向している。したがって、そのような場合の第1のスタック300の第1の部分175aは、第2のスタック300’の第1の部分に対向している。したがって、第2のスタック300’の第1の部分は、第1のスタック300の第1の部分175aと重なり合ってよい。図10では、第2のスタック300’の第1の部分は、第2のスタック300’の第2の電極層308a’および電解質層306a’の第1の部分を含む。第2のスタック300’の第1の部分は、第2のスタック300’の第1の電極層304’の第1の部分304a’の第1のサブ部分304aa’も含む。第1のサブ部分304aa’は、たとえば、図10の第1の軸174aの左側に位置する第1の電極層304’の第1の部分304a’のセクションである。
図10の例では、折り畳まれた中間構造172は、基板302の第1の表面326の第2の部分上の第1のスタック300の第2の部分も含む。第1のスタック300の第2の部分は、第1のスタック300の第1の部分175aおよび第2のスタック300’の第1の部分と重なり合う。図10では、第1のスタック300の第2の部分は、第4のスタック300’’’の一部に対応すると考えられ得る。したがって、第1のスタック300の第2の部分は、第4のスタック300’’’の第2の電極層308a’’’および電解質層306a’’’の第1の部分を含むと考えられ得る。また、第1のスタック300の第2の部分は、第4のスタック300’’’の第1の電極層304’’’の第1の部分304a’’’の第1のサブ部分304aa’’’を含むと考えられ得る。
図10の折り畳まれた中間構造172は、基板302の第2の表面326’の第2の部分上の第2のスタック300’の第2の部分も含む。第2のスタック300’の第2の部分は、第1のスタック300の第1の部分175a、第2のスタック300’の第1の部分、および第1のスタック300の第2の部分(図10では第4のスタック300’’’の一部である)と重なり合う。したがって、図10では、第2のスタック300’の第2の部分は、第6のスタック300’’’’’の一部に対応すると考えられ得る。したがって、第2のスタック300’の第2の部分は、第6のスタック300’’’’’の第2の電極層308a’’’’’および電解質層306a’’’’’の第1の部分を含むと考えられ得る。また、第2のスタック300’の第2の部分は、第6のスタック300’’’’’の第1の電極層304’’’’’の第1の部分304a’’’’’の第1のサブ部分304aa’’’’’を含むと考えられ得る。
折り畳まれた中間構造172は、第1のスタック300内の溝の各々に整列された軸に沿って切断され得る。図10では、折り畳まれた中間構造172は、第3の溝152bに整列された第2の軸174bに沿って、および第5の溝152cに整列された第3の軸174cに沿って切断される。このようにして、折り畳まれた中間構造172は、第1、第2、第3、および第4のプリカーサー176a〜176dにセグメント分割される。
図10の例では、折り畳まれた中間構造172をセグメント分割する前に、溝は各々電気的絶縁材料336を充填されていることに留意されたい。したがって、切り込みは、溝の各々の中に電気的絶縁材料336を通して形成される。しかしながら、他の例では、折り畳まれた中間構造は、溝の一部または全部に電気的絶縁材料を堆積する前にセグメント分割され得る。
図10の切断によって形成される第1および第2のプリカーサー176a、176bは、図11に概略として例示されている。各プリカーサーは、エネルギー貯蔵デバイスのためのマルチスタック構造に対応すると考えられ得る。
図11の第1のプリカーサー176aに対応するマルチスタック構造は、第1のスタック300の一部(それ自体、第1のスタックに対応すると考えられ得る)を含む。セグメント分割後、第1のスタック300の第2の電極層308の第1の部分308aは、第1のスタックの第2の電極に対応すると考えられ得る。第1のスタック300の電解質層306の第1の部分306aは、第1のスタックの第1の電解質に対応すると考えられ得る。同様に、第1のスタック300の第1の電極層304の第1の部分304aの第1のサブ部分304aaは、第1のスタックの第1の電極に対応すると考えられ得る。第1の電極は、第2の電極よりも基板302に近い。
図11の第1のプリカーサー176aは、第2のスタック300’の一部(それ自体、第2のスタックに対応すると考えられ得る)も含む。セグメント分割後、第2の電極層308’の第1の部分308a’は、第2スタックの第4の電極に対応すると考えられ得る。電解質層306’の第1の部分306a’は、第2のスタックの第2の電解質に対応すると考えられ得る。同様に、第1の電極層304’の第1の部分304a’の第1のサブ部分304aa’は、第2のスタックの第3の電極に対応すると考え得る。第3の電極は、第4の電極よりも基板302に近い。
図11では、第1の電気絶縁体178aは、第2の電極の第1の露出表面の少なくとも一部に接触することなく第1の電極の第1の露出表面および第1の電解質の第1の露出表面に接触している。同様に、第2の電気絶縁体178bは、第4の電極の第1の露出表面の少なくとも一部に接触することなく第3の電極の第1の露出表面および第2の電解質の第1の露出表面に接触している。第3の電気絶縁体178cは、第1の電極の第2の露出表面、第1の電解質の第2の露出表面、および第2の電極の第2の露出表面に接触している。第4の電気絶縁体178dは、第3の電極の第2の露出表面、第2の電解質の第2の露出表面、および第4の電極の第2の露出表面に接触している。図11の電気絶縁体178a〜178dは、図3eを参照しつつ説明されている電気絶縁体144a〜144dおよび146a〜146cに類似している。対応する説明が適用されると解釈されるべきである。
図11の電気絶縁体178a〜178dは、たとえば、折り畳まれた中間構造体172のセグメント分割時に、図10に例示されている電気的絶縁材料336を切断することによって形成される。図11の例では、第1の電気絶縁体178aは、第2の電気絶縁体178bと実質的に整列している。第3の電気絶縁体178cは、第4の電気絶縁体178dと実質的に整列しているが、これはそうである必要はない。
図11の第1の電気絶縁体178aは、第1のスタックの第1の面に配置構成され、第2の電気絶縁体178bは、第2のスタックの第1の面に配置構成されている。第3の電気絶縁体178cは、第1のスタックの第2の面に配置構成され、第4の電気絶縁体178dは、第2のスタックの第2の面に配置構成されている。第1のスタックの第1の面は、第1のスタックの第2の面に対向しており、第2のスタックの第1の面は、第2のスタックの第2の面に対向している。図11では、第1のスタックの第1の面および第2のスタックの第1の面は、互いに対向しており、第1のスタックの第2の面および第2のスタックの第2の面は、互いに対向しているが、これは単なる例に過ぎない。
図11では、第3の電気絶縁体178cは、第1の電極の第2の露出表面と重なり合い、第1の電極の第2の露出表面の平面は、基板302の第1の面の平面に実質的に平行である。第4の電気絶縁体178dは、第3の電極の第2の露出表面と重なり合い、第3の電極の第2の露出表面の平面は、基板302の第2の面の平面に実質的に平行である。このようにして、第1の電極の第2の露出表面は、第3の電気絶縁体178cを支持するための棚または出っ張りを形成する。
しかし、他の例では、第1の電気絶縁体178a(第1の電極および第1のスタックの第1の電解質を絶縁する)は、第2の電気絶縁体178bではなく、第4の電気絶縁体178d(第2の電解質および第2のスタックの第4の電極を絶縁する)と実質的に整列しているものとしてよい。そのような場合、第2の電気絶縁体178b(第3の電極および第2のスタックの第2の電解質を絶縁する)は、第3の電気絶縁体178c(第1の電解質および第1のスタックの第2の電極を絶縁する)と実質的に整列しているものとしてよい。
そのような場合、第1の電気絶縁体178aは、第1のスタックの第1の面に配置構成されてよく、第4の電気絶縁体178dは、第2のスタックの第1の面に配置構成されてよく、第3の電気絶縁体178cは、第1のスタックの第2の面に配置構成されてよく、第2の電気絶縁体178bは、第2のスタックの第2の面に配置構成されてよい。このようにして、第1および第2のスタック300、300’に関する電気絶縁体178の位置は図11に示されている位置とは異なり、第1、第2、第3、または第4の電極の、図11に示されているのとは異なる露出表面を露出し得る。
図12は、図11のプリカーサー176a、176bと同様に形成され得るエネルギー貯蔵デバイスに対するプリカーサー476の一部の例を示す概略図である。しかしながら、図11のプリカーサー176a、176bは、図5の第1および第2のスタック300、300’を含む折り畳まれた中間構造から形成されるが、図12のプリカーサー476は、図6の第1および第2のスタック400、400’を含む折り畳まれた中間構造から形成される。図12の特徴は、図11の対応する特徴と同じ参照番号を付けられているが、「1」または「3」ではなく「4」を前に付けられている。対応する説明が適用されると解釈されるべきである。
図12では、第1の電気絶縁体478aは、第1の電極の露出表面(たとえば、スタック400の第1の電極層404の第1の部分404aの第1のサブ部分404aaの露出した表面に対応する)に接触している。この例における第1の電気絶縁体478aは第1の電極の露出表面と重なり合い、第1の電極の露出表面の平面は基板402の第1の面の平面に実質的に平行である。そのような場合、第1の電極の露出表面は、たとえば、後に第1の電気絶縁体を形成する、電気的絶縁材料を支持するための出っ張りまたは棚を形成する、第1の電極の上側表面であってもよい。第1の電気絶縁体478aは、また、第1の電解質の露出表面(たとえば、第1のスタック400の電解質層406の第1の部分406aの露出表面に対応する)、および第2の電極の露出表面(たとえば、第1のスタック400の第2の電極層408の第1の部分408aの露出表面に対応する)に接触する。
第2の電気絶縁体478bは、図12の第1の電気絶縁体478aと整列している(が、そうである必要はない)。しかしながら、第2の電気絶縁体478bは、第3の電極の露出表面(たとえば、第2のスタック400’の第1の電極層404’の第1の部分404a’の第1のサブ部分404aa’’の露出表面に対応する)に接触する。第2の電気絶縁体478bは、また、第2の電解質の露出した部分(たとえば、第2のスタック400’の電解質層406’の第1の部分406a’の露出表面に対応する)に接触するが、第4の電極の露出表面(たとえば、第2のスタック400’の第2の電極層408’の第1の部分408a’の露出表面に対応する)の少なくとも一部(この例では、全体)には接触しない。
同様に、図12では、第3の電気絶縁体478cは、第1の電解質および第1のスタックの第1の電極を絶縁し、第4の電気絶縁体478dは、第2の電解質および第2のスタックの第4の電極を絶縁する。第3および第4の電気絶縁体478c、478dは、この例では互いに実質的に整列している。したがって、図12では、第1および第2の電気絶縁体は、プリカーサー476の片面に配置構成され、第3および第4の電気絶縁体は、プリカーサー476の対向する面に配置構成される。しかしながら、電気絶縁体476a〜476dは、導電性材料を介して、外部回路へのその後の接続のために露出された特定の表面を残しつつ、プリカーサー476のそれぞれの面の一部を絶縁するように、一般的に基板402の平面に垂直な方向に延在する。
図11および図12のプリカーサー176a、176b、478は、各々、マルチスタック構造であると考えられ、また、各々、エネルギー貯蔵デバイスのセルに対応すると考えられ得る。
上記の例は、説明図であると理解されるべきである。さらなる例も企図される。たとえば、図3eのセル142に類似したセルは、図4の方法に類似する方法を使用して形成されてよく、その場合、電気的絶縁材料のその後の選択的アブレーションの前に電気的絶縁材料を少なくとも部分的に充填されたプリカーサー溝が形成される。
図3dおよび図4eは、例示しやすくするために、z折りプロセスを経ずに中間構造を切断することを例示している。しかしながら、いくつかの場合では、図3dおよび図4eのものと似た中間構造は、中間構造をセルに分離するために切断をその後受ける前に図2を参照しつつ説明されているようなz折り配置構成を形成するためにz折りプロセスを受け得ることは理解されるべきである。そのような場合、溝128、228内の電気的絶縁材料136、236は、z折り配置構成で整列され得る。次いで、中間構造は、電気的絶縁材料136、236と整列されている軸(たとえば、溝128、228と整列されている軸140、240に対応する)に沿って切断され得る。これは、そのようなz折り配置構成を形成しない例と比較して切断作業の回数を減らすことによって方法の効率をさらに改善し得る。たとえば、図7から図10を参照しつつ説明されているのと似たプロセスが、図3dおよび図4eに示されている中間構造を折り畳み、切断するために使用され得る。
図7から図12を参照しつつ説明されている例では、スタック300〜300’’’’’のうちのいずれかの代わりに、異なる構造のスタックが使用されてもよいことは理解されるべきである。
さらに、図4のスタック200は、図5から図10のいずれかを参照しつつ説明されているような両面加工技術を使用して製造されてもよい。
本明細書において説明されている例では、基板の第1の面上の第1のスタックは、その第1の面に対向する、基板の第2の面上の第2のスタックと同じ層順を有する。たとえば、第1のスタックの第1の電極層は、第1のスタックの第2の電極層よりも基板の第1の面に近い位置にあり得る。同様に、第2のスタックの第1の電極層は、第2のスタックの第2の電極層よりも、基板の第2の面に近い位置にあり得る。しかしながら、他の例では、第1のスタックおよび第2のスタックは、互いに異なる層の順序を有し得る。たとえば、第2のスタックの層の堆積順序は、第1のスタックの層の堆積順序とは逆であってもよい。たとえば、第1のスタックの第1の電極層(たとえば、カソード)は、第1のスタックの第2の電極層(たとえば、アノード)よりも、基板の第1の面に近くてもよいが、第2のスタックの第2の電極層(たとえば、アノード)は、第2のスタックの第1の電極層(たとえば、カソード)よりも、そのような例における基板の第2の面に近いものとしてよい。これは、コーティングの応力の管理を助け得る。そのような例は、本明細書の例で述べられているように製造され得るが、第2のスタックと異なる、第1のスタックに対する層順を使用するものとしてよい。
たとえば、第2のスタックの層順は、図6と他の何らかの形で類似している例において第1のスタックの層順とは逆であってもよい。そのような場合には、その後の処理に続き、同じ種類の層の異なる実体の一部がエネルギー貯蔵デバイスの同じ面に露出され得る。たとえば、第1のスタックおよび第2のスタックの各々の第1の電極層の一部(または第1のスタックおよび第2のスタックの各々の第2の電極層の一部)は、たとえば、図7、図8、または図10に示されているように、第1のスタックおよび第2のスタックを切り開いた後にエネルギー貯蔵デバイスの同じ面で露出され得る。これは、したがって、第1のスタックおよび第2のスタックの対応する電極層が並列に接続されることを可能にする。
インクジェット印刷などのインクジェット材料堆積による両面堆積の場合、アノード層、電解質層、およびカソード層も基板層302の第2の面302b上に形成されている場合であっても、たとえば図5を参照しつつ説明されているように、インクジェット材料堆積のためのトップダウン配置構成を維持することが有益である場合がある。
図13は、基板302の両面302a、302bに形成されている層を有するスタック上にインク材料の、インクジェット印刷などのトップダウンインクジェット材料堆積を円滑にする堆積装置1310の例示的な配置構成の概略を示している。
図13を参照すると、堆積装置1310は、第1のインクジェット材料堆積コンポーネント、たとえばインクジェット印刷ノズル1330’からのインク材料の、インクジェット印刷などのトップダウンインクジェット材料堆積のためにスタックの第1の面が提示され、第2のインクジェット堆積コンポーネント、たとえばインクジェット印刷ノズル1330’’からのインク材料のトップダウンインクジェット材料堆積、たとえばインクジェット印刷のためにスタックの第2の面が提示されるようにスタックの移動を誘導する配置構成をとるローラ1320a、1320b、1320cを備える。
より具体的には、図13に示されているように、スタックは、たとえば、リールツーリールタイプのプロセスの一部として、第1の進行方向1340に、ローラ1320a、1320b、1320cの上を移動する。スタックが第1のローラ1320aと第2のローラ1320bとの間を通過し、張力を受けることによって、スタックの第1の面が第1のノズル1330’の方へ上向きになる。スタックが第2のローラ1320bの上を通過すると、スタックは反転される。スタックが第2のローラ1320bと第3のローラ1320cとの間を通過し、張力を受けることによって、スタックの第2の面が第2のノズル1330’’の方へ上向きになる。このようにして、インク材料のトップダウン印刷は、たとえば、実質的に連続的であってもよい、リールツーリールタイプのプロセスで実現され得る。これは、効率的なセル生産をもたらし得る。インクジェット印刷をトップダウンで実行することは、インク材料の正確で効率的な堆積を可能にし得る。
1つの例に関して説明されている特徴は、単独で、または説明されている他の特徴と組み合わせて使用されてよく、これらの例のうちの他のものの1つまたは複数の特徴と組み合わせて、またはこれらの例の他のものと組み合わせても使用され得ることは理解されるべきである。さらに、上で説明されていない等価形態および修正形態も、付属の請求項の範囲から逸脱することなく採用され得る。
100 スタック
102 基板
104 第1の電極層
104a 第1の部分
104b 第2の部分
106 電解質層
106a 第1の部分
106b 第2の部分
106c 第3の部分
106d 第4の部分
108 第2の電極層
108a 第1の部分
108b 第2の部分
108c 第3の部分
108d 第4の部分
110 中間構造
112 ローラ
114 第1のレーザー
116 レーザービーム
118 材料堆積システム
120 液体
122 第2のレーザー
124 レーザービーム
126 表面
128 溝
128a 第1の溝
128b 第2の溝
128c 第3の溝
130 第1の面
132a 第1の露出表面
132b 第2の露出表面
136 電気的絶縁材料
138 第3の露出表面
142 エネルギー貯蔵デバイスのセル
142a 第1のセル
142b 第2のセル
142c 第3のセル
142d 第4のセル
144a〜144d、146a〜146c 電気絶縁体
148 プリカーサー溝
148a 第1のプリカーサー溝
148b 第2のプリカーサー溝
148c 第3のプリカーサー溝
150 中間構造
152、152’ 溝
152a 第1の溝
152b 第3の溝
152a’ 第2の溝
152b’ 第4の溝
152c 第5の溝
152c’ 第6の溝
154 リール
156 第1の進行方向
158 レジストレーション特徴
160 リボン
162 中間構造
164 リール
166 第2の方向
168 リボン
170 折り畳まれた中間構造
172 中間構造
174a 第1の軸
174b 第2の軸
174c 第3の軸
175a 第1の部分
175b 第3の部分
175c 第4の部分
175d 第5の部分
176a 第1のプリカーサー
176b 第2のプリカーサー
178a〜178d 電気絶縁体
200 スタック
202 基板
204 第1の電極層
204’ 第1の電極層
204a’ 第1の部分
204b’ 第2の部分
204c’ 第3の部分
206 電極層
206’、206’’ 電解質層
206’’ 第2の電解質層
206a、206b 電解質層
206a’ 第1の部分
206b’ 第2の部分
206a’’ 第1の部分
206b’’ 第2の部分
208 第2の電極層
208’ 第2の電極層
208a 第1の部分
208b 第2の部分
208a’ 第1の部分
208b’ 第2の部分
208c 第3の部分
226 表面
228 溝
228a 第1の溝
228b 第2の溝
236 電気的絶縁材料
240a 第1の軸
240b 第2の軸
244a、244b 第1の電気絶縁体
246a、246b 第2の電気絶縁体
300 第1のスタック
300’ 第2のスタック
300’’ 第3のスタック
300’’’ 第4のスタック
300’’’’ 第5のスタック
300’’’’’ 第6のスタック
302 基板
302a、302b 両面
304 第1の電極層
304’ 第1の電極層
304’’’ 第1の電極層
304’’’’’ 第1の電極層
304a、304a’ 第1の電極層
304a’’’ 第1の部分
304a’’’’’ 第1の部分
304aa 第1のサブ部分
304aa’ 第1のサブ部分
304aa’’’ 第1のサブ部分
304aa’’’’’ 第1のサブ部分
304ab 第2のサブ部分
304ba 第1のサブ部分
306a 電解質層
306a’ 電解質層
306a’’’ 電解質層
306a’’’’’ 電解質層
306b 電解質層
306c 電解質層
306d 電解質層
308’ 第2の電極層
308a 第2の電極層
308a’ 第2の電極層
308a’’’ 第2の電極層
308a’’’’’ 第2の電極層
308b 第2の電極層
308c 第2の電極層
308d 第2の電極層
326 第1の表面
326’ 第2の表面
336 絶縁材料
400 第1のスタック
400’ 第2のスタック
402 基板
404 第1の電極層
404a 第1の部分
404aa 第1のサブ部分
404aa’’ 第1のサブ部分
404’ 第1の電極層
404a’ 第1の部分
404b’ 第2の部分
404c’ 第3の部分
406d’ 第4の部分
406 電解質層
406’ 電解質層
406a 第1の部分
406a’ 第1の部分
406b’ 第2の部分
406c’ 第3の部分
406d’ 第4の部分
408 第2の電極層
408’ 第2の電極層
408a 第1の部分
408a’ 第1の部分
408b’ 第2の部分
408c’ 第3の部分
408d’ 第4の部分
426 第1の表面
426’ 第2の表面
450 中間構造
452a 第1の溝
452a’ 第2の溝
452b 第3の溝
452c 第5の溝
452b’ 第4の溝
452c’ 第6の溝
452c 第5の溝
452c’ 第6の溝
476 プリカーサー
478 プリカーサー
478a 第1の電気絶縁体
478b 第2の電気絶縁体
478c 第3の電気絶縁体
478d 第4の電気絶縁体
1310 堆積装置
1320a、1320b、1320c ローラ
1330’ インクジェット印刷ノズル
1330’’ インクジェット印刷ノズル
1340 第1の進行方向

Claims (29)

  1. エネルギー貯蔵デバイスを製造するための方法であって、
    基板の第1の面に第1のスタックを設けるステップであって、前記第1のスタックは第1の電極層、第2の電極層、および前記第1の電極層と前記第2の電極層との間の第1の電解質層を含み、前記第1の電極層は前記第2の電極層よりも前記基板の前記第1の面に近い、ステップと、
    前記基板の前記第1の面に対向する、前記基板の第2の面に第2のスタックを設けるステップであって、前記第2のスタックは第3の電極層、第4の電極層、および前記第3の電極層と前記第4の電極層との間の第2の電解質層を含み、前記第3の電極層は前記第4の電極層よりも前記基板の前記第2の面に近い、ステップと、
    前記第1のスタックの第1の面に第1の溝を形成するステップであって、前記第1のスタックの前記第1の面は、前記基板の前記第1の面と接触する前記第1のスタックの第2の面に対向し、前記第1の溝は第1の深さを有する、ステップと、
    前記第2のスタックの第1の面内に第2の溝を形成するステップであって、前記第2のスタックの前記第1の面は、前記基板の前記第2の面と接触する前記第2のスタックの第2の面に対向し、前記第2の溝は第2の深さを有する、ステップと、
    前記第1のスタックの前記第1の面内に第3の溝を形成するステップであって、前記第3の溝は前記第1の深さと異なる第3の深さを有する、ステップと、
    前記第2のスタックの前記第1の面内に第4の溝を形成するステップであって、前記第4の溝は前記第2の深さと異なる第4の深さを有する、ステップとを含む方法。
  2. 前記第1の溝は、前記第2の溝と実質的に整列しており、前記第3の溝は、前記第4の溝と実質的に整列している、請求項1に記載の方法。
  3. 前記第1の溝および前記第2の溝は、前記基板を切断することなく形成され、前記第3の溝は、前記第1の電極層を切断することなく形成され、前記第4の溝は、前記第3の電極層を切断することなく形成される、請求項1または請求項2に記載の方法。
  4. 前記第1の深さは、前記第2の深さと実質的に同じであり、前記第3の深さは、前記第4の深さと実質的に同じである、請求項1から3のいずれか一項に記載の方法。
  5. 前記第1の溝は、前記第1の電極層を切断することなく形成され、前記第2の溝は、前記基板を切断することなく形成され、前記第3の溝は、前記基板を切断することなく形成され、前記第4の溝は、前記第3の電極層を切断することなく形成される、請求項1または請求項2に記載の方法。
  6. 前記第1の深さは、前記第4の深さと実質的に同じであり、前記第3の深さは、前記第2の深さと実質的に同じである、請求項1、2、または5のいずれか一項に記載の方法。
  7. 前記第1の溝の前記第1の深さ、前記第2の溝の前記第2の深さ、前記第3の溝の前記第3の深さ、または前記第4の溝の前記第4の深さのうちの少なくとも1つは、前記基板の前記第1の面の平面に対して実質的に垂直である、請求項1から6のいずれか一項に記載の方法。
  8. 前記第1の溝を形成し、前記第3の溝を形成するステップでは、前記基板の前記第1の面に向けられた第1の少なくとも1つのレーザービームを使用し、
    前記第2の溝を形成し、前記第4の溝を形成するステップでは、前記基板の前記第2の面に向けられた第2の少なくとも1つのレーザービームを使用する、請求項1から7のいずれか一項に記載の方法。
  9. 前記基板を折り畳んでマルチスタック配置構成を形成するステップを含み、前記配置構成は
    前記基板の前記第1の面の第1の部分上の前記第1のスタックの第1の部分と、
    前記基板の前記第1の面の前記第1の部分に対向する、前記基板の前記第2の面の第1の部分上にある前記第2のスタックの第1の部分であって、前記第1のスタックの前記第1の部分と重なり合う、前記第2のスタックの第1の部分と、
    前記基板の前記第1の面の第2の部分上の前記第1のスタックの第2の部分であって、前記第1のスタックの前記第1の部分および前記第2のスタックの前記第1の部分と重なり合う、前記第1のスタックの第2の部分と、
    前記基板の前記第1の面の前記第2の部分に対向する、前記基板の前記第2の面の第2の部分上の前記第2のスタックの第2の部分であって、前記第1のスタックの前記第1の部分、前記第2のスタックの前記第1の部分、および前記第1のスタックの前記第2の部分と重なり合う、前記第2のスタックの第2の部分とを備える、請求項1から8のいずれか一項に記載の方法。
  10. 前記基板を折り畳んだ後、
    前記第1の溝は、前記第1のスタックの前記第1の部分と、前記第1のスタックの前記第1の部分と実質的に同じ平面内の前記基板の前記第1の面の第3の部分上の前記第1のスタックの第3の部分との間にあり、
    前記方法は、前記第1の溝に実質的に整列している長手方向軸に沿って前記マルチスタック配置構成を切断することを含む、請求項9に記載の方法。
  11. 前記エネルギー貯蔵デバイスは、第1のエネルギー貯蔵デバイスであり、前記マルチスタック配置構成を切断することで、
    前記第1のエネルギー貯蔵デバイスへの第1のプリカーサーを第2のエネルギー貯蔵装デバイスへの第2のプリカーサーから分離し、前記第1のプリカーサーは前記第1のスタックの前記第1の部分、前記第2のスタックの前記第1の部分、前記第1のスタックの前記第2の部分、および前記第2のスタックの前記第2の部分を含む、請求項10に記載の方法。
  12. エネルギー貯蔵デバイスを製造するための方法であって、
    基板の第1の面に第1のスタックを設けるステップであって、前記第1のスタックは第1の電極層、第2の電極層、および前記第1の電極層と前記第2の電極層との間の第1の電解質層を含み、前記第1の電極層は前記第2の電極層よりも前記基板の前記第1の面に近い、ステップと、
    前記基板の前記第1の面に対向する、前記基板の第2の面に第2のスタックを設けるステップであって、前記第2のスタックは第3の電極層、第4の電極層、および前記第3の電極層と前記第4の電極層との間の第2の電解質層を含み、前記第3の電極層は前記第4の電極層よりも前記基板の前記第2の面に近い、ステップと、
    前記第1のスタックの第1の面に第1の溝を形成するステップであって、前記第1のスタックの前記第1の面は、前記基板の前記第1の面と接触する前記第1のスタックの第2の面に対向し、前記第1の溝は第1の深さを有する、ステップと、
    前記第1の溝と実質的に整列するように、前記第2のスタックの第1の面に第2の溝を形成するステップであって、前記第2のスタックの前記第1の面は、前記基板の前記第2の面と接触する前記第2のスタックの第2の面に対向し、前記第2の溝は前記第1の深さと異なる第2の深さを有する、ステップとを含む方法。
  13. 前記第1の溝は、前記第1の電極層を切断することなく形成され、前記第2の溝は、前記基板を切断することなく形成される、請求項12に記載の方法。
  14. 前記第1の溝を形成するステップでは、前記基板の前記第1の面に向けられた第1の少なくとも1つのレーザービームを使用し、
    前記第2の溝を形成するステップでは、前記基板の前記第2の面に向けられた第2の少なくとも1つのレーザービームを使用する、請求項12または請求項13に記載の方法。
  15. 請求項1から14のいずれか一項に記載の前記方法に従って形成されるエネルギー貯蔵デバイス。
  16. エネルギー貯蔵デバイスに対するマルチスタック構造であって、
    基板の第1の面上の第1のスタックであって、
    第1の電極と、
    第2の電極と、
    前記第1の電極と前記第2の電極との間の第1の電解質であって、前記第1の電極は前記第2の電極よりも前記基板の前記第1の面に近い、第1の電解質とを備える、第1のスタックと、
    前記基板の前記第1の面に対向する、前記基板の第2の面上の第2のスタックであって、
    第3の電極と、
    第4の電極と、
    前記第3の電極と前記第4の電極との間の第2の電解質であって、前記第3の電極は前記第4の電極よりも前記基板の前記第2の面に近い、第2の電解質とを備える、第2のスタックと、
    前記第2の電極の第1の露出表面の少なくとも一部に接触することなく前記第1の電極の第1の露出表面および前記第1の電解質の第1の露出表面に接触している第1の電気絶縁体と、
    前記第4の電極の第1の露出表面の少なくとも一部に接触することなく前記第3の電極の第1の露出表面および前記第2の電解質の第1の露出表面に接触している第2の電気絶縁体と、
    前記第1の電極の第2の露出表面、前記第1の電解質の第2の露出表面、および前記第2の電極の第2の露出表面に接触している第3の電気絶縁体と、
    前記第3の電極の第2の露出表面、前記第2の電解質の第2の露出表面、および前記第4の電極の第2の露出表面に接触している第4の電気絶縁体と
    を具備するマルチスタック構造。
  17. 前記第1の電気絶縁体は、前記第2の電気絶縁体と実質的に整列し、前記第3の電気絶縁体は、前記第4の電気絶縁体と実質的に整列する、請求項16に記載のマルチスタック構造。
  18. 前記第1の電気絶縁体は、前記第1のスタックの第1の面に配置構成され、前記第2の電気絶縁体は、前記第2のスタックの第1の面に配置構成され、前記第3の電気絶縁体は、前記第1のスタックの前記第1の面に対向する、前記第1のスタックの第2の面に配置構成され、前記第4の電気絶縁体は、前記第2のスタックの前記第2の面に対向する、前記第2のスタックの第2の面に配置構成される、請求項17に記載のマルチスタック構造。
  19. 前記第1の電気絶縁体は、前記第4の電気絶縁体と実質的に整列し、前記第3の電気絶縁体は、前記第2の電気絶縁体と実質的に整列する、請求項16に記載のマルチスタック構造。
  20. 前記第1の電気絶縁体は、前記第1のスタックの第1の面に配置構成され、前記第4の電気絶縁体は、前記第2のスタックの第1の面に配置構成され、前記第3の電気絶縁体は、前記第1のスタックの前記第1の面に対向する、前記第1のスタックの第2の面に配置構成され、前記第2の電気絶縁体は、前記第2のスタックの前記第2の面に対向する、前記第2のスタックの第2の面に配置構成される、請求項19に記載のマルチスタック構造。
  21. 前記第3の電気絶縁体が、前記第1の電極の前記第2の露出表面と重なり合い、前記第1の電極の前記第2の露出表面の平面が、前記基板の前記第1の面の平面に実質的に平行であるか、または
    前記第4の電気絶縁体が、前記第3の電極の前記第2の露出表面と重なり合い、前記第3の電極の前記第2の露出表面の平面が、前記基板の前記第2の面の平面に実質的に平行である
    のうちの少なくとも一方である、請求項16から20のいずれか一項に記載のマルチスタック構造。
  22. 前記基板の前記第1の面の平面に垂直な方向の前記基板の厚さは、前記基板の前記第1の面の前記平面に垂直な前記方向で、前記第1のスタックの第1の厚さまたは前記第2のスタックの第2の厚さのうちの少なくとも一方と実質的に同じであるか、またはそれよりも大きい、請求項16から21のいずれか一項に記載のマルチスタック構造。
  23. エネルギー貯蔵デバイスに対するマルチスタック構造であって、
    基板の第1の面上の第1のスタックであって、
    第1の電極と、
    第2の電極と、
    前記第1の電極と前記第2の電極との間の第1の電解質であって、前記第1の電極は前記第2の電極よりも前記基板の前記第1の面に近い、第1の電解質とを備える、第1のスタックと、
    前記基板の前記第1の面に対向する、前記基板の第2の面上の第2のスタックであって、
    第3の電極と、
    第4の電極と、
    前記第3の電極と前記第4の電極との間の第2の電解質であって、前記第3の電極は前記第4の電極よりも前記基板の前記第2の面に近い、第2の電解質とを備える、第2のスタックと、
    前記第1の電極の露出表面、前記第1の電解質の露出表面、および前記第2の電極の露出表面に接触している第1の電気絶縁体と、
    前記第4の電極の露出表面の少なくとも一部に接触することなく前記第3の電極の露出表面および前記第2の電解質の露出表面に接触している第2の電気絶縁体とを備えるマルチスタック構造。
  24. 前記第1の電気絶縁体は、前記第2の電気絶縁体と実質的に整列する、請求項23に記載のマルチスタック構造。
  25. 前記第1の電気絶縁体は、前記第1の電極の前記露出表面と重なり合い、前記第1の電極の前記露出表面の平面は、前記基板の前記第1の面の平面に実質的に平行である、請求項23または請求項24に記載のマルチスタック構造。
  26. 前記基板の前記第1の面の平面に垂直な方向の前記基板の厚さは、前記基板の前記第1の面の前記平面に垂直な前記方向で、前記第1のスタックの第1の厚さまたは前記第2のスタックの第2の厚さのうちの少なくとも一方と実質的に同じであるか、またはそれよりも大きい、請求項23から25のいずれか一項に記載のマルチスタック構造。
  27. 請求項16から26のいずれか一項に記載の前記マルチスタック構造を備えるエネルギー貯蔵デバイス。
  28. 装置であって、
    エネルギー貯蔵デバイスのためのスタックの第1の面の上に材料を堆積するように配置構成されている第1のインクジェット材料堆積コンポーネントと、
    前記スタックの第2の面の上に材料を堆積するように配置構成されている第2のインクジェット材料堆積コンポーネントであって、前記第2の面は前記第1の面に対向する、第2のインクジェット材料堆積コンポーネントと、
    前記スタックの前記第1の面が前記第1のインクジェット材料堆積コンポーネントからの前記スタック上への前記材料のトップダウンインクジェット材料堆積用に提示され、前記スタックの前記第2の面が前記第2のインクジェット材料堆積コンポーネントからの前記スタック上への前記材料のトップダウンインクジェット材料堆積用に提示されるように前記第1のインクジェット材料堆積コンポーネントと前記第2のインクジェット材料堆積コンポーネントとの間の前記スタックの移動を誘導するように配置構成されている複数のローラとを備える装置。
  29. 請求項1から14のいずれか一項に記載の前記方法を実行するように配置構成される、請求項28に記載の装置。
JP2021502971A 2018-07-20 2019-07-19 エネルギー貯蔵デバイス Active JP7138765B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1811883.6 2018-07-20
GB1811883.6A GB2575789B (en) 2018-07-20 2018-07-20 Energy storage device
PCT/GB2019/052038 WO2020016607A1 (en) 2018-07-20 2019-07-19 Energy storage device

Publications (2)

Publication Number Publication Date
JP2021531624A true JP2021531624A (ja) 2021-11-18
JP7138765B2 JP7138765B2 (ja) 2022-09-16

Family

ID=63364376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021502971A Active JP7138765B2 (ja) 2018-07-20 2019-07-19 エネルギー貯蔵デバイス

Country Status (6)

Country Link
US (1) US20210273266A1 (ja)
JP (1) JP7138765B2 (ja)
KR (1) KR102526042B1 (ja)
CN (1) CN112470312A (ja)
GB (1) GB2575789B (ja)
WO (1) WO2020016607A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236424B2 (ja) * 2020-12-08 2023-03-09 本田技研工業株式会社 固体電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608754B2 (ja) * 2009-10-22 2014-10-15 エム−ソルヴ・リミテッド 薄膜デバイスを個別のセルに分割するための方法および装置
JP5680851B2 (ja) * 2006-07-18 2015-03-04 シンベット・コーポレイションCymbet Corporation フォトリソグラフィーによるソリッドステートマイクロ電池の製造、シンギュレーション及びパッシベーションの方法及び装置
JP2019511811A (ja) * 2016-03-15 2019-04-25 ダイソン・テクノロジー・リミテッド エネルギー貯蔵装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558261B2 (ja) * 2002-06-17 2010-10-06 三菱原子燃料株式会社 固体電解質型燃料電池
US7862627B2 (en) * 2007-04-27 2011-01-04 Front Edge Technology, Inc. Thin film battery substrate cutting and fabrication process
KR101492019B1 (ko) * 2012-08-17 2015-02-11 주식회사 엘지화학 벤팅 유도부를 포함하는 전지모듈
WO2014062676A1 (en) * 2012-10-15 2014-04-24 Cymbet Corporation Thin film batteries comprising a glass or ceramic substrate
US9786948B2 (en) * 2013-06-20 2017-10-10 Ying-Tsun Lin Thin film lithium-ion battery
US9748582B2 (en) * 2014-03-31 2017-08-29 X Development Llc Forming an interconnection for solid-state batteries
CN106797056A (zh) * 2014-09-04 2017-05-31 应用材料公司 激光图案化的薄膜电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680851B2 (ja) * 2006-07-18 2015-03-04 シンベット・コーポレイションCymbet Corporation フォトリソグラフィーによるソリッドステートマイクロ電池の製造、シンギュレーション及びパッシベーションの方法及び装置
JP5608754B2 (ja) * 2009-10-22 2014-10-15 エム−ソルヴ・リミテッド 薄膜デバイスを個別のセルに分割するための方法および装置
JP2019511811A (ja) * 2016-03-15 2019-04-25 ダイソン・テクノロジー・リミテッド エネルギー貯蔵装置の製造方法

Also Published As

Publication number Publication date
CN112470312A (zh) 2021-03-09
GB2575789B (en) 2021-11-03
WO2020016607A1 (en) 2020-01-23
KR102526042B1 (ko) 2023-04-27
US20210273266A1 (en) 2021-09-02
JP7138765B2 (ja) 2022-09-16
GB201811883D0 (en) 2018-09-05
GB2575789A (en) 2020-01-29
KR20210031503A (ko) 2021-03-19

Similar Documents

Publication Publication Date Title
US8999558B2 (en) Three-dimensional batteries and methods of manufacturing the same
JP7138765B2 (ja) エネルギー貯蔵デバイス
US11990587B2 (en) Stack for an energy storage device
JP7271747B2 (ja) エネルギー貯蔵デバイス
JP7154376B2 (ja) エネルギー貯蔵デバイス
US11476452B2 (en) Stack for an energy storage device
GB2597876A (en) Energy storage device
KR102526048B1 (ko) 에너지 저장 디바이스
US20210273211A1 (en) Stack for an energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220906

R150 Certificate of patent or registration of utility model

Ref document number: 7138765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150