JP2021524103A - 画像内のオブジェクトの代表特性を抽出する方法、装置及びコンピュータプログラム - Google Patents
画像内のオブジェクトの代表特性を抽出する方法、装置及びコンピュータプログラム Download PDFInfo
- Publication number
- JP2021524103A JP2021524103A JP2020564337A JP2020564337A JP2021524103A JP 2021524103 A JP2021524103 A JP 2021524103A JP 2020564337 A JP2020564337 A JP 2020564337A JP 2020564337 A JP2020564337 A JP 2020564337A JP 2021524103 A JP2021524103 A JP 2021524103A
- Authority
- JP
- Japan
- Prior art keywords
- learning model
- query image
- weighted value
- image
- representative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004590 computer program Methods 0.000 title description 2
- 239000000284 extract Substances 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims description 35
- 238000013527 convolutional neural network Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 8
- 238000002372 labelling Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 abstract description 4
- 238000013528 artificial neural network Methods 0.000 description 8
- 239000004744 fabric Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/53—Querying
- G06F16/532—Query formulation, e.g. graphical querying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
- サーバが画像内のオブジェクトの代表特性を抽出する方法において、
クエリ画像を受信するステップと、
特定商品について学習した第1の学習モデルに前記クエリ画像を適用し、前記クエリ画像に含まれる前記特定商品に該当するオブジェクトの内部領域を抽出するサリエンシーマップ(saliency map)を生成するステップと、
オブジェクトの特性抽出のために学習した第2の学習モデルに前記サリエンシーマップを加重値として適用するステップと、
前記加重値を適用した第2の学習モデルに前記クエリ画像を入力し、前記オブジェクトの内部領域の特性分類情報を抽出するステップとを含む、代表特性抽出方法。 - 前記サリエンシーマップを加重値として適用するステップは、
前記サリエンシーマップの大きさを前記第2の学習モデルに含まれる第1の畳み込み層の大きさに変換及びスケーリングして加重値フィルタを生成するステップと、
前記第1の畳み込み層に前記加重値フィルタを要素ごとに乗算(element−wise multiplication)するステップとを含む、請求項1に記載の代表特性抽出方法。 - 前記第1の学習モデルは、エンコーダ(encoder)・デコーダ(decoder)構造を有する畳み込みニューラルネットワーク(Convolutional Neural Network)学習モデルであることを特徴とする、請求項1に記載の代表特性抽出方法。
- 前記第2の学習モデルは、標準分類の畳み込みニューラルネットワーク(Convolutional Neural Network)学習モデルであることを特徴とする、請求項1に記載の代表特性抽出方法。
- 前記第2の学習モデルは、前記特定商品の内部領域の色を学習するために、前記特定商品のサリエンシーマップと、前記特定商品のカラー画像、サリエンシーマップ及びカラーラベルの少なくとも1つとをデータセットとして適用した畳み込みニューラルネットワーク学習モデルであることを特徴とする、請求項1に記載の代表特性抽出方法。
- 前記特性分類情報を分析し、最も高い確率で存在する特性を前記オブジェクトの代表特性として設定するステップと、
前記代表特性を前記クエリ画像にラベリングするステップとをさらに含む、請求項1に記載の代表特性抽出方法。 - 請求項1〜6に記載の方法のいずれかの方法を行うためにコンピュータ可読媒体に保存された代表特性抽出アプリケーションプログラム。
- クエリ画像を受信する通信部と、
特定商品について学習した第1の学習モデルを用いて、前記クエリ画像内の前記特定商品に該当するオブジェクトの内部領域に対応するサリエンシーマップ(saliency map)を生成するマップ生成部と、
オブジェクトの特性抽出のために学習した第2の学習モデルに前記サリエンシーマップを加重値として適用する加重値適用部と、
前記加重値を適用した第2の学習モデルに前記クエリ画像を入力し、前記オブジェクトの内部領域の特性分類情報を抽出する特性抽出部とを含む、代表特性抽出装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180056826A KR102102161B1 (ko) | 2018-05-18 | 2018-05-18 | 이미지 내 객체의 대표 특성을 추출하는 방법, 장치 및 컴퓨터 프로그램 |
KR10-2018-0056826 | 2018-05-18 | ||
PCT/KR2019/005935 WO2019221551A1 (ko) | 2018-05-18 | 2019-05-17 | 이미지 내 객체의 대표 특성을 추출하는 방법, 장치 및 컴퓨터 프로그램 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021524103A true JP2021524103A (ja) | 2021-09-09 |
Family
ID=68540506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020564337A Pending JP2021524103A (ja) | 2018-05-18 | 2019-05-17 | 画像内のオブジェクトの代表特性を抽出する方法、装置及びコンピュータプログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210256258A1 (ja) |
JP (1) | JP2021524103A (ja) |
KR (1) | KR102102161B1 (ja) |
CN (1) | CN112154451A (ja) |
SG (1) | SG11202011439WA (ja) |
WO (1) | WO2019221551A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022191412A (ja) * | 2022-03-02 | 2022-12-27 | ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド | マルチターゲット画像テキストマッチングモデルのトレーニング方法、画像テキスト検索方法と装置 |
WO2023100929A1 (ja) * | 2021-12-02 | 2023-06-08 | 株式会社カネカ | 情報処理装置、情報処理システムおよび情報処理方法 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113168713B (zh) * | 2018-12-14 | 2024-09-06 | 富士胶片株式会社 | 小批量学习装置及其工作程序、工作方法及图像处理装置 |
US11755948B2 (en) * | 2019-12-18 | 2023-09-12 | Google Llc | Attribution and generation of saliency visualizations for machine-learning models |
US11450021B2 (en) | 2019-12-30 | 2022-09-20 | Sensetime International Pte. Ltd. | Image processing method and apparatus, electronic device, and storage medium |
SG10201913754XA (en) * | 2019-12-30 | 2020-12-30 | Sensetime Int Pte Ltd | Image processing method and apparatus, electronic device, and storage medium |
US11297244B2 (en) * | 2020-02-11 | 2022-04-05 | Samsung Electronics Co., Ltd. | Click-and-lock zoom camera user interface |
CN111317653B (zh) * | 2020-02-24 | 2023-10-13 | 江苏大学 | 一种交互式盲人智能辅助装置及方法 |
CN111368893B (zh) * | 2020-02-27 | 2023-07-25 | Oppo广东移动通信有限公司 | 图像识别方法、装置、电子设备及存储介质 |
KR20210111117A (ko) | 2020-03-02 | 2021-09-10 | 김종명 | 업로드된 미디어로부터 추출된 이미지 기반의 상품 거래 시스템 |
JP7444235B2 (ja) * | 2020-03-03 | 2024-03-06 | 日本電気株式会社 | 注意機構、画像認識システム、特徴変換方法およびプログラム |
CN111583293B (zh) * | 2020-05-11 | 2023-04-11 | 浙江大学 | 一种面向多色双光子图像序列的自适应图像分割方法 |
KR20210141150A (ko) | 2020-05-15 | 2021-11-23 | 삼성에스디에스 주식회사 | 이미지 분류 모델을 이용한 이미지 분석 방법 및 장치 |
WO2022025568A1 (ko) * | 2020-07-27 | 2022-02-03 | 옴니어스 주식회사 | 멀티 태스크 러닝을 이용하여 상품의 속성을 인식하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체 |
KR102622779B1 (ko) * | 2020-07-27 | 2024-01-10 | 옴니어스 주식회사 | 상품 이미지에 속성 관련 키워드를 부여하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체 |
WO2022025570A1 (ko) * | 2020-07-27 | 2022-02-03 | 옴니어스 주식회사 | 상품 이미지에 속성 관련 키워드를 부여하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체 |
KR102437193B1 (ko) | 2020-07-31 | 2022-08-30 | 동국대학교 산학협력단 | 복수의 배율에 따라 크기 변환된 영상으로 학습된 병렬 심층 신경망 장치 및 방법 |
CN112182262B (zh) * | 2020-11-30 | 2021-03-19 | 江西师范大学 | 一种基于特征分类的图像查询方法 |
KR20220114904A (ko) | 2021-02-09 | 2022-08-17 | 동서대학교 산학협력단 | 웹서버 기반으로 객체 추출 서비스 방법 |
US20230095137A1 (en) * | 2021-09-30 | 2023-03-30 | Lemon Inc. | Social networking based on asset items |
US11763496B2 (en) | 2021-09-30 | 2023-09-19 | Lemon Inc. | Social networking based on asset items |
US20240212311A1 (en) * | 2021-10-08 | 2024-06-27 | Rakuten Group, Inc. | Information processing apparatus, information processing method, and non-transitory computer readable medium |
KR102471796B1 (ko) * | 2022-07-20 | 2022-11-29 | 블루닷 주식회사 | 세일리언시 맵을 이용한 인지적 비디오 전처리 방법 및 시스템 |
WO2024085352A1 (ko) * | 2022-10-18 | 2024-04-25 | 삼성전자 주식회사 | 인공 지능 모델의 학습을 위한 훈련용 데이터를 생성하는 방법 및 전자 장치 |
CN116071609B (zh) * | 2023-03-29 | 2023-07-18 | 中国科学技术大学 | 基于目标特征动态自适应提取的小样本图像分类方法 |
CN116993996B (zh) * | 2023-09-08 | 2024-01-12 | 腾讯科技(深圳)有限公司 | 对图像中的对象进行检测的方法及装置 |
KR102673347B1 (ko) * | 2023-12-29 | 2024-06-07 | 국방과학연구소 | 데이터 생성 방법 및 시스템 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017516197A (ja) * | 2015-03-31 | 2017-06-15 | バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド | 交通標識を認識する方法及び装置 |
WO2017158058A1 (en) * | 2016-03-15 | 2017-09-21 | Imra Europe Sas | Method for classification of unique/rare cases by reinforcement learning in neural networks |
JP2017169140A (ja) * | 2016-03-17 | 2017-09-21 | ヤフー株式会社 | 生成装置、生成方法、及び生成プログラム |
JP2018005520A (ja) * | 2016-06-30 | 2018-01-11 | クラリオン株式会社 | 物体検出装置及び物体検出方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8165407B1 (en) * | 2006-10-06 | 2012-04-24 | Hrl Laboratories, Llc | Visual attention and object recognition system |
KR101136330B1 (ko) * | 2009-12-02 | 2012-04-20 | 주식회사 래도 | 노면 상태 판별 장치 및 노면 상태 판별 방법 |
WO2011152893A1 (en) * | 2010-02-10 | 2011-12-08 | California Institute Of Technology | Methods and systems for generating saliency models through linear and/or nonlinear integration |
KR101715036B1 (ko) * | 2010-06-29 | 2017-03-22 | 에스케이플래닛 주식회사 | 객체 인식을 통한 상품 분류 검색 및 쇼핑 정보 제공 서비스 방법, 서버 및 시스템 |
US20140254922A1 (en) * | 2013-03-11 | 2014-09-11 | Microsoft Corporation | Salient Object Detection in Images via Saliency |
KR101513931B1 (ko) * | 2014-01-29 | 2015-04-21 | 강원대학교산학협력단 | 구도의 자동보정 방법 및 이러한 구도의 자동보정 기능이 탑재된 영상 장치 |
CN103955718A (zh) * | 2014-05-15 | 2014-07-30 | 厦门美图之家科技有限公司 | 一种图像主体对象的识别方法 |
KR101801846B1 (ko) * | 2015-08-26 | 2017-11-27 | 옴니어스 주식회사 | 상품 영상 검색 및 시스템 |
US10437878B2 (en) * | 2016-12-28 | 2019-10-08 | Shutterstock, Inc. | Identification of a salient portion of an image |
US11042586B2 (en) * | 2016-12-29 | 2021-06-22 | Shutterstock, Inc. | Clustering search results based on image composition |
CN107705306B (zh) * | 2017-10-26 | 2020-07-03 | 中原工学院 | 一种基于多特征矩阵低秩分解的织物疵点检测方法 |
CN107766890B (zh) * | 2017-10-31 | 2021-09-14 | 天津大学 | 一种细粒度识别中判别性图块学习的改进方法 |
-
2018
- 2018-05-18 KR KR1020180056826A patent/KR102102161B1/ko active IP Right Grant
-
2019
- 2019-05-17 JP JP2020564337A patent/JP2021524103A/ja active Pending
- 2019-05-17 US US17/055,990 patent/US20210256258A1/en not_active Abandoned
- 2019-05-17 WO PCT/KR2019/005935 patent/WO2019221551A1/ko active Application Filing
- 2019-05-17 CN CN201980033545.3A patent/CN112154451A/zh active Pending
- 2019-05-17 SG SG11202011439WA patent/SG11202011439WA/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017516197A (ja) * | 2015-03-31 | 2017-06-15 | バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド | 交通標識を認識する方法及び装置 |
WO2017158058A1 (en) * | 2016-03-15 | 2017-09-21 | Imra Europe Sas | Method for classification of unique/rare cases by reinforcement learning in neural networks |
JP2017169140A (ja) * | 2016-03-17 | 2017-09-21 | ヤフー株式会社 | 生成装置、生成方法、及び生成プログラム |
JP2018005520A (ja) * | 2016-06-30 | 2018-01-11 | クラリオン株式会社 | 物体検出装置及び物体検出方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023100929A1 (ja) * | 2021-12-02 | 2023-06-08 | 株式会社カネカ | 情報処理装置、情報処理システムおよび情報処理方法 |
JP2022191412A (ja) * | 2022-03-02 | 2022-12-27 | ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド | マルチターゲット画像テキストマッチングモデルのトレーニング方法、画像テキスト検索方法と装置 |
JP7403605B2 (ja) | 2022-03-02 | 2023-12-22 | ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド | マルチターゲット画像テキストマッチングモデルのトレーニング方法、画像テキスト検索方法と装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20190134933A (ko) | 2019-12-05 |
US20210256258A1 (en) | 2021-08-19 |
KR102102161B1 (ko) | 2020-04-20 |
CN112154451A (zh) | 2020-12-29 |
SG11202011439WA (en) | 2020-12-30 |
WO2019221551A1 (ko) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021524103A (ja) | 画像内のオブジェクトの代表特性を抽出する方法、装置及びコンピュータプログラム | |
JP6849824B2 (ja) | セルフィーを撮影するためにユーザをガイドするためのシステム及び方法 | |
Buslaev et al. | Fully convolutional network for automatic road extraction from satellite imagery | |
CN110059741B (zh) | 基于语义胶囊融合网络的图像识别方法 | |
CN112241731B (zh) | 一种姿态确定方法、装置、设备及存储介质 | |
CN110610509B (zh) | 可指定类别的优化抠图方法及系统 | |
CN108280426B (zh) | 基于迁移学习的暗光源表情识别方法及装置 | |
CN108229559B (zh) | 服饰检测方法、装置、电子设备、程序和介质 | |
JP7499280B2 (ja) | 人物の単眼深度推定のための方法およびシステム | |
CN107169508B (zh) | 一种基于融合特征的旗袍图像情感语义识别方法 | |
Chavan et al. | Real time emotion recognition through facial expressions for desktop devices | |
CN110827373B (zh) | 广告图片生成方法、装置以及存储介质 | |
CN115810197A (zh) | 一种多模态电力表单识别方法及装置 | |
Lipi et al. | Static-gesture word recognition in Bangla sign language using convolutional neural network | |
Nikam et al. | Bilingual sign recognition using image based hand gesture technique for hearing and speech impaired people | |
CN109064431B (zh) | 一种图片亮度调节方法、设备及其存储介质 | |
Carneiro et al. | Static gestures recognition for Brazilian sign language with kinect sensor | |
JP2023508641A (ja) | データ増強基盤事物分析モデル学習装置及び方法 | |
CN115661680B (zh) | 卫星遥感图像处理方法 | |
KR101484003B1 (ko) | 얼굴 분석 평가 시스템 | |
CN111047632A (zh) | 一种指甲图像的图色处理方法和装置 | |
EP3985620B1 (en) | Fine-grained classification of retail products | |
JP7362924B2 (ja) | データ増強基盤空間分析モデル学習装置及び方法 | |
CN111062862A (zh) | 基于颜色的数据增强方法和系统及计算机设备和存储介质 | |
Xu et al. | Uncovering the Metaverse within Everyday Environments: a Coarse-to-Fine Approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220118 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20220214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220218 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220225 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220913 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230210 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230509 |