JP2021510104A5 - - Google Patents

Download PDF

Info

Publication number
JP2021510104A5
JP2021510104A5 JP2020537171A JP2020537171A JP2021510104A5 JP 2021510104 A5 JP2021510104 A5 JP 2021510104A5 JP 2020537171 A JP2020537171 A JP 2020537171A JP 2020537171 A JP2020537171 A JP 2020537171A JP 2021510104 A5 JP2021510104 A5 JP 2021510104A5
Authority
JP
Japan
Prior art keywords
transducer
ultrasonic
controller
item
further configured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020537171A
Other languages
English (en)
Other versions
JP7321162B2 (ja
JP2021510104A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2019/000033 external-priority patent/WO2019135160A2/en
Publication of JP2021510104A publication Critical patent/JP2021510104A/ja
Publication of JP2021510104A5 publication Critical patent/JP2021510104A5/ja
Priority to JP2023120835A priority Critical patent/JP2023134811A/ja
Application granted granted Critical
Publication of JP7321162B2 publication Critical patent/JP7321162B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本明細書で使用されるように、用語「実質的に」は、±10%、いくつかの実施形態において、±5%を意味する。本明細書全体を通した「一例」、「ある例」、「一実施形態」、または「ある実施形態」という言及は、例に関連して説明される特定の特徴、構造、もしくは特性が、技術の少なくとも1つの例に含まれることを意味する。したがって、本明細書内全体を通した種々の場所における語句「一例では」、「ある例では」、「一実施形態」、または「ある実施形態」の表出は、必ずしも全て、同一の例を参照するわけではない。また、用語「焦点深度」および「焦点距離」は、本明細書では同義的に使用される。さらに、特定の特徴、構造、ルーチン、ステップ、または特性は、本技術の1つ以上の例において任意の好適な様式で組み合わせられ得る。本明細書に提供される見出しは、便宜のためにすぎず、請求される技術の範囲または趣意を限定もしくは解釈することを意図されるものではない。
本願明細書は、例えば、以下の項目も提供する。
(項目1)
複数の標的領域を備えている標的体積における標的組織を治療するためのシステムであって、前記システムは、
2つ以上の周波数を有する超音波を伝送するための超音波トランスデューサと、
コントローラと
を備え、
前記コントローラは、
(a)第1の周波数を有する第1の一連の超音波を標的領域のうちの第1のものに伝送することを前記超音波トランスデューサに行わせることと、
(b)前記標的領域のうちの前記第1のものと第2のものとの間の少なくとも1つの異なる解剖学的特性に基づいて、前記第1の周波数と異なる第2の周波数を有する第2の一連の超音波を前記標的領域のうちの前記第1のものと異なる前記標的領域のうちの前記第2のものに伝送することを前記超音波トランスデューサに行わせることと
を行うように構成されている、システム。
(項目2)
前記第1の周波数は、前記第2の周波数より高く、前記少なくとも1つの解剖学的特性は、相対的場所であり、前記第1の標的領域の場所は、前記第2の標的領域のそれより短い前記トランスデューサの焦点深度に対応する、項目1に記載のシステム。
(項目3)
前記第1の周波数は、前記第2の周波数より高く、前記少なくとも1つの解剖学的特性は、血管新生であり、前記第1の標的領域は、前記第2の標的領域より高い血管分布を有する、項目1に記載のシステム。
(項目4)
前記標的領域および/または非標的領域のうちの少なくとも1つに関連付けられた前記少なくとも1つの解剖学的特性を測定するための監視システムをさらに備えている、項目1に記載のシステム。
(項目5)
前記少なくとも1つの解剖学的特性は、組織のタイプ、サイズ、場所、属性、構造、厚さ、密度、または血管新生のうちの1つ以上を含む、項目4に記載のシステム。
(項目6)
治療計画を記憶するためのメモリをさらに備え、前記治療計画は、少なくとも部分的に前記少なくとも1つの解剖学的特性に基づいて、前記第1の一連の超音波および第2の一連の超音波を伝送するための前記超音波トランスデューサに関連付けられた前記少なくとも1つの解剖学的特性およびパラメータ値を規定する、項目4に記載のシステム。
(項目7)
前記コントローラは、
前記少なくとも1つの測定された解剖学的特性を前記治療計画において規定された前記対応する少なくとも1つの解剖学的特性と比較することと、
前記比較に基づいて、前記超音波トランスデューサに関連付けられた前記パラメータ値のうちの少なくとも1つを変動させることと
を行うようにさらに構成されている、項目6に記載のシステム。
(項目8)
前記パラメータ値は、前記超音波トランスデューサに関連付けられた前記周波数、位相、振幅、または超音波処理持続時間のうちの少なくとも1つを含む、項目7に記載のシステム。
(項目9)
前記コントローラは、前記超音波トランスデューサに関連付けられた前記周波数を前記2つ以上の周波数の間で変動させるようにさらに構成されている、項目8に記載のシステム。
(項目10)
前記監視システムは、磁気共鳴撮像デバイスを備えている、項目4に記載のシステム。
(項目11)
前記超音波トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記トランスデューサ要素を複数のトランスデューサ群に群化するようにさらに構成され、各群は、前記トランスデューサ要素のうちの少なくともいくつかを含み、各群は、他の群と異なる、項目1に記載のシステム。
(項目12)
前記トランスデューサ群のうちの少なくとも1つの前記トランスデューサ要素は、連続したエリアにわたって延びている、項目11に記載のシステム。
(項目13)
前記コントローラは、前記第1の周波数を有する前記第1の一連の超音波を伝送することを前記トランスデューサ群のうちの第1のものに行わせることと、前記第2の周波数を有する前記第2の一連の超音波を伝送することを前記トランスデューサ群のうちの前記第1のものと異なる第2のものに行わせることとを行うようにさらに構成されている、項目11に記載のシステム。
(項目14)
前記トランスデューサ群のうちの前記第1のものおよび前記第2のものの各々における前記トランスデューサ要素は、別々のエリアを形成している、項目13に記載のシステム。
(項目15)
前記第1および第2のトランスデューサ群における前記別々のエリアのうちの少なくともいくつかは、散在させられている、項目14に記載のシステム。
(項目16)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が異なるトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、項目1に記載のシステム。
(項目17)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が異なるトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、項目1に記載のシステム。
(項目18)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が異なるトランスデューサ要素から周期的に伝送されるようにするようにさらに構成されている、項目1に記載のシステム。
(項目19)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が同じトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、項目1に記載のシステム。
(項目20)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が同じトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、項目1に記載のシステム。
(項目21)
前記コントローラは、標的治療のための所定のレベルより大きいエネルギーレベルを有する前記第1の一連の超音波および第2の一連の超音波を伝送することを前記超音波トランスデューサに行わせるようにさらに構成されている、項目1に記載のシステム。
(項目22)
前記少なくとも1つの解剖学的特性は、組織音響パラメータと、前記第1の一連の超音波および第2の一連の超音波から結果として生じる前記組織音響パラメータの変化とを含む、項目1に記載のシステム。
(項目23)
前記組織音響パラメータは、組織吸収または組織インピーダンスのうちの少なくとも1つを含む、項目22に記載のシステム。
(項目24)
複数の標的領域を備えている標的体積における標的組織を治療する方法であって、前記方法は、
(a)第1の周波数を有する第1の一連の超音波が標的領域のうちの第1のものに伝送されるようにすることと、
(b)前記標的領域のうちの前記第1のものと第2のものとの間で異なる少なくとも1つの解剖学的特性に基づいて、前記第1の周波数と異なる第2の周波数を有する第2の一連の超音波が前記標的領域のうちの前記第1のものと異なる前記標的領域のうちの前記第2のものに伝送されるようにすることと
を含む、方法。
(項目25)
前記第1の周波数は、前記第2の周波数より高く、前記少なくとも1つの解剖学的特性は、相対的場所であり、前記第1の標的領域の場所は、前記第2の標的領域のそれより短い前記トランスデューサの焦点深度に対応する、項目24に記載の方法。
(項目26)
前記第1の周波数は、前記第2の周波数より高く、前記少なくとも1つの解剖学的特性は、血管新生であり、前記第1の標的領域は、前記第2の標的領域より高い血管分布を有する、項目24に記載の方法。
(項目27)
前記標的領域および/または非標的領域のうちの少なくとも1つに関連付けられた前記少なくとも1つの解剖学的特性を測定することをさらに含む、項目24に記載の方法。
(項目28)
前記少なくとも1つの解剖学的特性は、組織のタイプ、サイズ、場所、属性、構造、厚さ、密度、または血管新生のうちの1つ以上を含む、項目27に記載の方法。
(項目29)
治療計画を記憶することをさらに含み、前記治療計画は、少なくとも部分的に前記少なくとも1つの解剖学的特性に基づいて、前記第1の一連の超音波および第2の一連の超音波を伝送するための前記超音波トランスデューサに関連付けられた前記少なくとも1つの解剖学的特性およびパラメータ値を規定する、項目27に記載の方法。
(項目30)
前記少なくとも1つの測定された解剖学的特性を前記治療計画の中で規定された前記対応する少なくとも1つの解剖学的特性と比較することと、
前記比較に基づいて、前記超音波トランスデューサに関連付けられた前記パラメータ値のうちの少なくとも1つを変動させることと
をさらに含む、項目29に記載の方法。
(項目31)
前記パラメータ値は、前記超音波トランスデューサに関連付けられた前記周波数、位相、振幅、または超音波処理持続時間のうちの少なくとも1つを含む、項目30に記載の方法。
(項目32)
前記超音波トランスデューサに関連付けられた前記周波数を前記2つ以上の周波数の間で変動させることをさらに含む、項目31に記載の方法。
(項目33)
前記第1の一連の超音波および第2の一連の超音波は、複数のトランスデューサ要素を備えている超音波トランスデューサから伝送され、前記方法は、前記トランスデューサ要素を複数のトランスデューサ群に群化することをさらに含み、各群は、前記トランスデューサ要素のうちの少なくともいくつかを含み、各群は、他の群と異なる、項目24に記載の方法。
(項目34)
前記トランスデューサ群のうちの少なくとも1つの前記トランスデューサ要素は、連続したエリアにわたって延びている、項目33に記載の方法。
(項目35)
前記第1の周波数を有する前記第1の一連の超音波は、前記トランスデューサ群のうちの第1のものから伝送され、前記第2の周波数を有する前記第2の一連の超音波は、前記トランスデューサ群のうちの前記第1のものと異なる第2のものから伝送される、項目33に記載の方法。
(項目36)
前記トランスデューサ群のうちの前記第1のものおよび前記第2のものの各々における前記トランスデューサ要素は、別々のエリアを形成する、項目35に記載の方法。
(項目37)
前記第1および第2のトランスデューサ群における前記別々のエリアのうちの少なくともいくつかは、散在させられる、項目36に記載の方法。
(項目38)
前記第1の一連の超音波および第2の一連の超音波は、複数のトランスデューサ要素を備えている超音波トランスデューサから伝送され、前記方法は、前記第1の一連の超音波と第2の一連の超音波とが異なるトランスデューサ要素から実質的に同時に伝送されるようにすることをさらに含む、項目24に記載の方法。
(項目39)
前記第1の一連の超音波および第2の一連の超音波は、複数のトランスデューサ要素を備えている超音波トランスデューサから伝送され、前記方法は、前記第1の一連の超音波と第2の一連の超音波とが異なるトランスデューサ要素から順次伝送されるようにすることをさらに含む、項目24に記載の方法。
(項目40)
前記第1の一連の超音波および第2の一連の超音波は、複数のトランスデューサ要素を備えている超音波トランスデューサから伝送され、前記方法は、前記第1の一連の超音波と第2の一連の超音波とが異なるトランスデューサ要素から周期的に伝送されるようにすることをさらに含む、項目24に記載の方法。
(項目41)
前記第1の一連の超音波および第2の一連の超音波は、複数のトランスデューサ要素を備えている超音波トランスデューサから伝送され、前記方法は、前記第1の一連の超音波と第2の一連の超音波とが同じトランスデューサ要素から実質的に同時に伝送されるようにすることをさらに含む、項目24に記載の方法。
(項目42)
前記第1の一連の超音波および第2の一連の超音波は、複数のトランスデューサ要素を備えている超音波トランスデューサから伝送され、前記方法は、前記第1の一連の超音波と第2の一連の超音波とが同じトランスデューサ要素から順次伝送されるようにすることをさらに含む、項目24に記載の方法。
(項目43)
前記方法は、標的治療のための所定のレベルより大きいエネルギーレベルを有する前記第1の一連の超音波および第2の一連の超音波を伝送することを前記超音波トランスデューサに行わせることをさらに含む、項目24に記載の方法。
(項目44)
前記少なくとも1つの解剖学的特性は、組織音響パラメータと、前記第1の一連の超音波および第2の一連の超音波から結果として生じる前記組織音響パラメータの変化とを含む、項目24に記載の方法。
(項目45)
前記組織音響パラメータは、組織吸収または組織インピーダンスのうちの少なくとも1つを含む、項目44に記載の方法。
(項目46)
標的領域における標的組織を治療するためのシステムであって、前記システムは、
複数の周波数を有する超音波を伝送するための超音波トランスデューサと、
コントローラと
を備え、
前記コントローラは、
(a)前記標的領域において超音波ビームの2つ以上の最大角度操向範囲を決定することと、
(b)前記2つ以上の最大角度操向範囲に関連付けられた前記超音波の2つ以上の周波数を算出することと、
(c)前記算出された周波数のうちの第1のものを有する第1の超音波ビームを生成することを前記超音波トランスデューサに行わせることと、
(d)前記算出された周波数のうちの前記第1のものと異なる前記算出された周波数のうちの第2のものを有する第2の超音波ビームを生成することを前記超音波トランスデューサに行わせ、前記超音波ビームの前記最大角度操向範囲を変化させることと
を行うように構成されている、システム。
(項目47)
前記コントローラは、前記第1または第2の超音波ビームのうちの少なくとも1つを1つの向き、2つの向き、または3つの向きに操向するようにさらに構成されている、項目46に記載のシステム。
(項目48)
前記標的領域に関連付けられた解剖学的特性を入手するための撮像システムをさらに備え、前記コントローラは、少なくとも部分的に入手された解剖学的特性に基づいて、前記最大角度操向範囲を決定するようにさらに構成される、項目46に記載のシステム。
(項目49)
前記解剖学的特性は、組織のタイプ、サイズ、場所、属性、構造、厚さ、密度、または血管新生のうちの1つ以上を含む、項目48に記載のシステム。
(項目50)
前記超音波トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記トランスデューサ要素を複数のトランスデューサ群に群化するようにさらに構成され、各群は、前記トランスデューサ要素のうちの少なくともいくつかを含み、各群は、他の群と異なる、項目46に記載のシステム。
(項目51)
前記トランスデューサ群のうちの少なくとも1つの前記トランスデューサ要素は、連続したエリアにわたって延びている、項目50に記載のシステム。
(項目52)
前記コントローラは、前記トランスデューサ群のうちの第1のものに前記第1の超音波ビームを伝送させ、前記トランスデューサ群のうちの前記第1のものと異なる第2のものに前記第2の超音波ビームを伝送させるようにさらに構成されている、項目50に記載のシステム。
(項目53)
前記トランスデューサ群のうちの前記第1のものおよび前記第2のものの各々における前記トランスデューサ要素は、別々のエリアを形成している、項目52に記載のシステム。
(項目54)
前記第1および第2のトランスデューサ群における前記別々のエリアのうちの少なくともいくつかは、散在させられている、項目53に記載のシステム。
(項目55)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが異なるトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、項目46に記載のシステム。
(項目56)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが異なるトランスデューサ要素から周期的に伝送されるようにするようにさらに構成されている、項目46に記載のシステム。
(項目57)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが異なるトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、項目46に記載のシステム。
(項目58)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが同じトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、項目46に記載のシステム。
(項目59)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが同じトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、項目46に記載のシステム。
(項目60)
前記コントローラは、標的治療のための所定のレベルより大きいエネルギーレベルを有する前記第1および第2の超音波ビームを前記超音波トランスデューサに伝送させるようにさらに構成されている、項目46に記載のシステム。
(項目61)
標的領域における標的組織を治療する方法であって、前記方法は、
(a)前記標的領域において超音波ビームの2つ以上の最大角度操向範囲を決定することと、
(b)前記2つ以上の最大角度操向範囲に関連付けられた前記超音波の2つ以上の周波数を算出することと、
(c)前記算出された周波数のうちの第1のものを有する第1の超音波ビームを超音波トランスデューサに生成させることと、
(d)前記算出された周波数のうちの前記第1のものと異なる前記算出された周波数のうちの第2のものを有する第2の超音波ビームを前記超音波トランスデューサに生成させ、前記超音波ビームの前記最大角度操向範囲を変化させることと
を含む、方法。
(項目62)
前記第1または第2の超音波ビームのうちの少なくとも1つを1つの向き、2つの向き、または3つの向きに操向することをさらに含む、項目61に記載の方法。
(項目63)
前記標的領域に関連付けられた解剖学的特性を入手することをさらに含み、前記最大角度操向範囲は、少なくとも部分的に入手された解剖学的特性に基づいて決定される、項目61に記載の方法。
(項目64)
前記解剖学的特性は、組織のタイプ、サイズ、場所、属性、構造、厚さ、密度、または血管新生のうちの1つ以上を含む、項目63に記載の方法。
(項目65)
前記超音波トランスデューサは、複数のトランスデューサ要素を備え、前記方法は、前記トランスデューサ要素を複数のトランスデューサ群に群化することをさらに含み、各群は、前記トランスデューサ要素のうちの少なくともいくつかを含み、各群は、他の群と異なる、項目61に記載の方法。
(項目66)
前記トランスデューサ群のうちの少なくとも1つの前記トランスデューサ要素は、連続したエリアにわたって延びている、項目65に記載の方法。
(項目67)
前記トランスデューサ群のうちの第1のものに前記第1の超音波ビームを伝送させることと、前記トランスデューサ群のうちの前記第1のものと異なる第2のものに前記第2の超音波ビームを伝送させることとをさらに含む、項目65に記載の方法。
(項目68)
前記トランスデューサ群のうちの前記第1のものおよび前記第2のものの各々における前記トランスデューサ要素は、別々のエリアを形成する、項目67に記載の方法。
(項目69)
前記第1および第2のトランスデューサ群における前記別々のエリアのうちの少なくともいくつかは、散在させられる、項目68に記載の方法。
(項目70)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記方法は、前記第1および第2の超音波ビームが異なるトランスデューサ要素から実質的に同時に伝送されるようにすることをさらに含む、項目61に記載の方法。
(項目71)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記方法は、前記第1および第2の超音波ビームが異なるトランスデューサ要素から周期的に伝送されるようにすることをさらに含む、項目61に記載の方法。
(項目72)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記方法は、前記第1および第2の超音波ビームが異なるトランスデューサ要素から順次伝送されるようにすることをさらに含む、項目61に記載の方法。
(項目73)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記方法は、前記第1および第2の超音波ビームが同じトランスデューサ要素から実質的に同時に伝送されるようにすることをさらに含む、項目61に記載の方法。
(項目74)
前記トランスデューサは、複数のトランスデューサ要素を備え、前記方法は、前記第1および第2の超音波ビームが同じトランスデューサ要素から順次伝送されるようにすることをさらに含む、項目61に記載の方法。
(項目75)
標的治療のための所定のレベルより大きいエネルギーレベルを有する前記第1および第2の超音波ビームを前記超音波トランスデューサに伝送させることをさらに含む、項目61に記載の方法。

Claims (38)

  1. 複数の標的領域を備えている標的体積における標的組織を治療するためのシステムであって、前記システムは、
    2つ以上の周波数を有する超音波を伝送するための超音波トランスデューサと、
    コントローラと
    を備え、
    前記コントローラは、
    (a)第1の周波数を有する第1の一連の超音波を標的領域のうちの第1のものに伝送することを前記超音波トランスデューサに行わせることと、
    (b)前記標的領域のうちの前記第1のものと第2のものとの間の少なくとも1つの異なる解剖学的特性に基づいて、前記第1の周波数と異なる第2の周波数を有する第2の一連の超音波を前記標的領域のうちの前記第1のものと異なる前記標的領域のうちの前記第2のものに伝送することを前記超音波トランスデューサに行わせることと
    を行うように構成されている、システム。
  2. 前記第1の周波数は、前記第2の周波数より高く、前記少なくとも1つの解剖学的特性は、相対的場所であり、前記第1の標的領域の場所は、前記第2の標的領域のそれより短い前記トランスデューサの焦点深度に対応する、請求項1に記載のシステム。
  3. 前記第1の周波数は、前記第2の周波数より高く、前記少なくとも1つの解剖学的特性は、血管新生であり、前記第1の標的領域は、前記第2の標的領域より高い血管分布を有する、請求項1に記載のシステム。
  4. 前記標的領域および/または非標的領域のうちの少なくとも1つに関連付けられた前記少なくとも1つの解剖学的特性を測定するための監視システムをさらに備えている、請求項1に記載のシステム。
  5. 前記少なくとも1つの解剖学的特性は、組織のタイプ、サイズ、場所、属性、構造、厚さ、密度、または血管新生のうちの1つ以上を含む、請求項4に記載のシステム。
  6. 治療計画を記憶するためのメモリをさらに備え、前記治療計画は、少なくとも部分的に前記少なくとも1つの解剖学的特性に基づいて、前記第1の一連の超音波および第2の一連の超音波を伝送するための前記超音波トランスデューサに関連付けられた前記少なくとも1つの解剖学的特性およびパラメータ値を規定する、請求項4に記載のシステム。
  7. 前記コントローラは、
    前記少なくとも1つの測定された解剖学的特性を前記治療計画において規定された前記対応する少なくとも1つの解剖学的特性と比較することと、
    前記比較に基づいて、前記超音波トランスデューサに関連付けられた前記パラメータ値のうちの少なくとも1つを変動させることと
    を行うようにさらに構成されている、請求項6に記載のシステム。
  8. 前記パラメータ値は、前記超音波トランスデューサに関連付けられた前記周波数、位相、振幅、または超音波処理持続時間のうちの少なくとも1つを含む、請求項7に記載のシステム。
  9. 前記コントローラは、前記超音波トランスデューサに関連付けられた前記周波数を前記2つ以上の周波数の間で変動させるようにさらに構成されている、請求項8に記載のシステム。
  10. 前記監視システムは、磁気共鳴撮像デバイスを備えている、請求項4に記載のシステム。
  11. 前記超音波トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記トランスデューサ要素を複数のトランスデューサ群に群化するようにさらに構成され、各群は、前記トランスデューサ要素のうちの少なくともいくつかを含み、各群は、他の群と異なる、請求項1に記載のシステム。
  12. 前記トランスデューサ群のうちの少なくとも1つの前記トランスデューサ要素は、連続したエリアにわたって延びている、請求項11に記載のシステム。
  13. 前記コントローラは、前記第1の周波数を有する前記第1の一連の超音波を伝送することを前記トランスデューサ群のうちの第1のものに行わせることと、前記第2の周波数を有する前記第2の一連の超音波を伝送することを前記トランスデューサ群のうちの前記第1のものと異なる第2のものに行わせることとを行うようにさらに構成されている、請求項11に記載のシステム。
  14. 前記トランスデューサ群のうちの前記第1のものおよび前記第2のものの各々における前記トランスデューサ要素は、別々のエリアを形成している、請求項13に記載のシステム。
  15. 前記第1および第2のトランスデューサ群における前記別々のエリアのうちの少なくともいくつかは、散在させられている、請求項14に記載のシステム。
  16. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が異なるトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、請求項1に記載のシステム。
  17. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が異なるトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、請求項1に記載のシステム。
  18. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が異なるトランスデューサ要素から周期的に伝送されるようにするようにさらに構成されている、請求項1に記載のシステム。
  19. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が同じトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、請求項1に記載のシステム。
  20. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の一連の超音波が同じトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、請求項1に記載のシステム。
  21. 前記コントローラは、標的治療のための所定のレベルより大きいエネルギーレベルを有する前記第1の一連の超音波および第2の一連の超音波を伝送することを前記超音波トランスデューサに行わせるようにさらに構成されている、請求項1に記載のシステム。
  22. 前記少なくとも1つの解剖学的特性は、組織音響パラメータと、前記第1の一連の超音波および第2の一連の超音波から結果として生じる前記組織音響パラメータの変化とを含む、請求項1に記載のシステム。
  23. 前記組織音響パラメータは、組織吸収または組織インピーダンスのうちの少なくとも1つを含む、請求項22に記載のシステム。
  24. 標的領域における標的組織を治療するためのシステムであって、前記システムは、
    複数の周波数を有する超音波を伝送するための超音波トランスデューサと、
    コントローラと
    を備え、
    前記コントローラは、
    (a)前記標的領域において超音波ビームの2つ以上の最大角度操向範囲を決定することと、
    (b)前記2つ以上の最大角度操向範囲に関連付けられた前記超音波の2つ以上の周波数を算出することと、
    (c)前記算出された周波数のうちの第1のものを有する第1の超音波ビームを生成することを前記超音波トランスデューサに行わせることと、
    (d)前記算出された周波数のうちの前記第1のものと異なる前記算出された周波数のうちの第2のものを有する第2の超音波ビームを生成することを前記超音波トランスデューサに行わせ、前記超音波ビームの前記最大角度操向範囲を変化させることと
    を行うように構成されている、システム。
  25. 前記コントローラは、前記第1または第2の超音波ビームのうちの少なくとも1つを1つの向き、2つの向き、または3つの向きに操向するようにさらに構成されている、請求項24に記載のシステム。
  26. 前記標的領域に関連付けられた解剖学的特性を入手するための撮像システムをさらに備え、前記コントローラは、少なくとも部分的に入手された解剖学的特性に基づいて、前記最大角度操向範囲を決定するようにさらに構成される、請求項24に記載のシステム。
  27. 前記解剖学的特性は、組織のタイプ、サイズ、場所、属性、構造、厚さ、密度、または血管新生のうちの1つ以上を含む、請求項26に記載のシステム。
  28. 前記超音波トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記トランスデューサ要素を複数のトランスデューサ群に群化するようにさらに構成され、各群は、前記トランスデューサ要素のうちの少なくともいくつかを含み、各群は、他の群と異なる、請求項24に記載のシステム。
  29. 前記トランスデューサ群のうちの少なくとも1つの前記トランスデューサ要素は、連続したエリアにわたって延びている、請求項28に記載のシステム。
  30. 前記コントローラは、前記トランスデューサ群のうちの第1のものに前記第1の超音波ビームを伝送させ、前記トランスデューサ群のうちの前記第1のものと異なる第2のものに前記第2の超音波ビームを伝送させるようにさらに構成されている、請求項28に記載のシステム。
  31. 前記トランスデューサ群のうちの前記第1のものおよび前記第2のものの各々における前記トランスデューサ要素は、別々のエリアを形成している、請求項30に記載のシステム。
  32. 前記第1および第2のトランスデューサ群における前記別々のエリアのうちの少なくともいくつかは、散在させられている、請求項31に記載のシステム。
  33. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが異なるトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、請求項24に記載のシステム。
  34. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが異なるトランスデューサ要素から周期的に伝送されるようにするようにさらに構成されている、請求項24に記載のシステム。
  35. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが異なるトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、請求項24に記載のシステム。
  36. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが同じトランスデューサ要素から実質的に同時に伝送されるようにするようにさらに構成されている、請求項24に記載のシステム。
  37. 前記トランスデューサは、複数のトランスデューサ要素を備え、前記コントローラは、前記第1および第2の超音波ビームが同じトランスデューサ要素から順次伝送されるようにするようにさらに構成されている、請求項24に記載のシステム。
  38. 前記コントローラは、標的治療のための所定のレベルより大きいエネルギーレベルを有する前記第1および第2の超音波ビームを前記超音波トランスデューサに伝送させるようにさらに構成されている、請求項24に記載のシステム。
JP2020537171A 2018-01-05 2019-01-04 多周波数超音波トランスデューサ Active JP7321162B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023120835A JP2023134811A (ja) 2018-01-05 2023-07-25 多周波数超音波トランスデューサ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862613890P 2018-01-05 2018-01-05
US62/613,890 2018-01-05
PCT/IB2019/000033 WO2019135160A2 (en) 2018-01-05 2019-01-04 Multi-frequency ultrasound transducers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023120835A Division JP2023134811A (ja) 2018-01-05 2023-07-25 多周波数超音波トランスデューサ

Publications (3)

Publication Number Publication Date
JP2021510104A JP2021510104A (ja) 2021-04-15
JP2021510104A5 true JP2021510104A5 (ja) 2021-08-19
JP7321162B2 JP7321162B2 (ja) 2023-08-04

Family

ID=65409123

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020537171A Active JP7321162B2 (ja) 2018-01-05 2019-01-04 多周波数超音波トランスデューサ
JP2023120835A Pending JP2023134811A (ja) 2018-01-05 2023-07-25 多周波数超音波トランスデューサ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023120835A Pending JP2023134811A (ja) 2018-01-05 2023-07-25 多周波数超音波トランスデューサ

Country Status (5)

Country Link
US (1) US20210077834A1 (ja)
EP (1) EP3735294A2 (ja)
JP (2) JP7321162B2 (ja)
CN (2) CN111757769B (ja)
WO (1) WO2019135160A2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886737A4 (en) 2018-11-28 2022-08-24 Histosonics, Inc. HISTOTRIPSY SYSTEMS AND METHODS
KR102335321B1 (ko) * 2019-12-10 2021-12-08 한국과학기술연구원 탈부착 가능한 회로보드를 이용하여 복수의 기능들을 구현하는 초음파 치료 및 진단 장치
EP4096782A4 (en) 2020-01-28 2024-02-14 Univ Michigan Regents SYSTEMS AND METHODS FOR IMMUNOSENSITIZATION BY HISTOTRIPSY
US20210236858A1 (en) * 2020-02-04 2021-08-05 General Electric Company Automated ultrasound bleeding detection and treatment
KR102445056B1 (ko) * 2020-05-08 2022-09-21 (주)굿플 체외충격파 및 극초단파를 이용한 치료보조기
CN112284493A (zh) * 2020-11-03 2021-01-29 中电科技集团重庆声光电有限公司 一种液位测量方法及装置
CN116251306B (zh) * 2023-05-10 2023-09-01 深圳半岛医疗有限公司 超声治疗仪的控制装置、控制方法及超声治疗仪

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3434740A1 (de) * 1984-09-21 1986-04-03 Rudolf 6270 Idstein Mauser Diagnosegeraet
US5891041A (en) * 1996-11-27 1999-04-06 Hitachi Medical Corporation Ultrasonic imaging system adapted for use with ultrasonic probes having different center frequencies
US7722539B2 (en) * 1998-09-18 2010-05-25 University Of Washington Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
CN2355819Y (zh) * 1999-02-12 1999-12-29 清华大学 用于圆形旋转板的定距清洗的超声清洗设备
US6613004B1 (en) * 2000-04-21 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
JP2008509777A (ja) * 2004-08-17 2008-04-03 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 超音波を用いた画像誘導による組織損傷の処置
US7530958B2 (en) * 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US20070016039A1 (en) * 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
JP2007089992A (ja) * 2005-09-30 2007-04-12 Terumo Corp エネルギー照射装置、制御装置及び制御方法
US20100030076A1 (en) * 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
WO2010118307A1 (en) * 2009-04-09 2010-10-14 The Trustees Of The University Of Pennsylvania Methods and systems for image-guided treatment of blood vessels
WO2011020104A2 (en) * 2009-08-14 2011-02-17 University Of Southern California Extended depth-of-focus high intensity ultrasonic transducer
WO2011024074A2 (en) * 2009-08-26 2011-03-03 Insightec Ltd. Asymmetric phased-array ultrasound transducer
KR101929198B1 (ko) * 2011-02-25 2018-12-14 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 비집속식 초음파에 의한 초음파 바이브로메트리
CN104661707A (zh) * 2012-07-23 2015-05-27 拉热尔科学股份有限公司 用于精确高强度聚焦超声的系统、方法和设备
EP2692289A1 (en) * 2012-07-29 2014-02-05 Ultrawave Labs Inc. Multi-modality ultrasound and radio frequency system for imaging tissue
CN102937692A (zh) * 2012-11-15 2013-02-20 云南电力试验研究院(集团)有限公司电力研究院 一种电气设备用多角度超声超高频直流局部放电检测装置
CN105682739B (zh) 2013-01-29 2018-11-13 因赛泰克有限公司 基于模拟的聚焦超声治疗计划
WO2014135987A2 (en) * 2013-03-06 2014-09-12 Insightec, Ltd. Frequency optimization in ultrasound treatment
US20160114193A1 (en) 2014-10-23 2016-04-28 Oleg Prus Multilayer ultrasound transducers for high-power transmission
EP3258870A1 (en) * 2015-02-17 2017-12-27 Koninklijke Philips N.V. Device and method for assisting in tissue ablation
US9934570B2 (en) 2015-10-09 2018-04-03 Insightec, Ltd. Systems and methods for registering images obtained using various imaging modalities and verifying image registration
US20170281982A1 (en) * 2016-03-31 2017-10-05 Family Health International Methods and systems for generating an occlusion using ultrasound

Similar Documents

Publication Publication Date Title
JP2021510104A5 (ja)
US11793490B2 (en) Systems and methods for performing transcranial ultrasound therapeutic and imaging procedures
US6929608B1 (en) Apparatus for deposition of ultrasound energy in body tissue
US7587291B1 (en) Focusing of broadband acoustic signals using time-reversed acoustics
US20180177519A1 (en) Method and apparatus for generating focused ultrasonic waves with surface modulation
JP7321162B2 (ja) 多周波数超音波トランスデューサ
Lu et al. Focused beam control for ultrasound surgery with spherical-section phased array: sound field calculation and genetic optimization algorithm
CN110248606A (zh) 气穴定位
JP2004514521A (ja) 位相アレイ集束超音波システムを制御するためのシステムおよび方法
KR101955786B1 (ko) 동심원 전극을 적용한 집속 초음파 트랜스듀서 및 그 트랜스듀서의 제어방법
US8888706B2 (en) Dual-curvature phased array high-intensity focused ultrasound transducer for tumor therapy
Qiao et al. Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction
Xue et al. Optimization of a random linear ultrasonic therapeutic array based on a genetic algorithm
US11684335B2 (en) Acoustic transmission system
Zhang et al. Simulation of Standing Wave Reduction in HIFU Transcranial Tumors Therapy
Tan et al. High intensity ultrasound phased array for surgical applications
Kim et al. Development of an algorithm for HIFU focus visualization
Ramírez et al. Frequency Swept to Optimize Focalization at the Substantia Nigra in a Rat Head Model using a Semi-Spherical Ultrasound Transducer
Yuldashev et al. Enhanced focus steering abilities of multi-element therapeutic arrays operating in nonlinear regimes
Yin et al. P5E-9 A Fast Field Simulation Method for Longitudinal Ultrasound Wave Propagation and Transmission in Homogeneous and Layered Media
Gerhardson et al. Design of a histotripsy array for the treatment of intracerebral hemorrhage
VanBaren et al. A new algorithm for dynamic focusing of phased-array hyperthermia applicators through tissue inhomogeneities
Jeong Lesion expansion by using dual concentric-sectored HIFU transducer with phase-shifted ultrasound
Yin et al. A Hemispherical Sparse Phased Array Design For Low Frequency Transcranial Focused Ultrasound Applications Without Skull‐Specific Phase Aberration Correction
Yang et al. Beam steering and focusing ability of a contact ultrasound transducer for transskull brain disease therapy