JP2021501015A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2021501015A5 JP2021501015A5 JP2020524193A JP2020524193A JP2021501015A5 JP 2021501015 A5 JP2021501015 A5 JP 2021501015A5 JP 2020524193 A JP2020524193 A JP 2020524193A JP 2020524193 A JP2020524193 A JP 2020524193A JP 2021501015 A5 JP2021501015 A5 JP 2021501015A5
- Authority
- JP
- Japan
- Prior art keywords
- magnetic resonance
- resonance imaging
- deep learning
- dataset
- learning network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002595 magnetic resonance imaging Methods 0.000 claims 104
- 230000033001 locomotion Effects 0.000 claims 61
- 238000013135 deep learning Methods 0.000 claims 50
- 238000001914 filtration Methods 0.000 claims 11
- 238000000034 method Methods 0.000 claims 9
- 238000003384 imaging method Methods 0.000 claims 6
- 238000004590 computer program Methods 0.000 claims 2
- 238000001514 detection method Methods 0.000 claims 2
- 238000013527 convolutional neural network Methods 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims 1
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP17199301.7 | 2017-10-31 | ||
| EP17199301.7A EP3477583A1 (en) | 2017-10-31 | 2017-10-31 | Deep-learning based processing of motion artifacts in magnetic resonance imaging data |
| PCT/EP2018/078863 WO2019086284A1 (en) | 2017-10-31 | 2018-10-22 | Deep-learning based processing of motion artifacts in magnetic resonance imaging data |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2021501015A JP2021501015A (ja) | 2021-01-14 |
| JP2021501015A5 true JP2021501015A5 (enExample) | 2021-04-22 |
| JP6907410B2 JP6907410B2 (ja) | 2021-07-21 |
Family
ID=60269642
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020524193A Active JP6907410B2 (ja) | 2017-10-31 | 2018-10-22 | 磁気共鳴イメージングデータ内の動きアーティファクトの深層学習に基づく処理 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11320508B2 (enExample) |
| EP (2) | EP3477583A1 (enExample) |
| JP (1) | JP6907410B2 (enExample) |
| CN (1) | CN111295687B (enExample) |
| WO (1) | WO2019086284A1 (enExample) |
Families Citing this family (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11633123B2 (en) | 2017-10-31 | 2023-04-25 | Koninklijke Philips N.V. | Motion artifact prediction during data acquisition |
| US10698063B2 (en) * | 2017-11-01 | 2020-06-30 | Siemens Healthcare Gmbh | Motion artifact reduction of magnetic resonance images with an adversarial trained network |
| WO2019169393A1 (en) * | 2018-03-02 | 2019-09-06 | The General Hospital Corporation | Improved multi-shot echo planar imaging through machine learning |
| US11681001B2 (en) * | 2018-03-09 | 2023-06-20 | The Board Of Trustees Of The Leland Stanford Junior University | Deep learning method for nonstationary image artifact correction |
| WO2019218000A1 (en) * | 2018-05-15 | 2019-11-21 | Monash University | Method and system of motion correction for magnetic resonance imaging |
| CN120370238A (zh) | 2018-07-30 | 2025-07-25 | 海珀菲纳股份有限公司 | 用于磁共振图像重建的深度学习技术的系统、方法、存储介质以及磁共振成像系统 |
| JP7443366B2 (ja) * | 2018-08-07 | 2024-03-05 | メタ プラットフォームズ, インク. | 画像強調のための人工知能技法 |
| US11789104B2 (en) | 2018-08-15 | 2023-10-17 | Hyperfine Operations, Inc. | Deep learning techniques for suppressing artefacts in magnetic resonance images |
| US10818386B2 (en) * | 2018-11-21 | 2020-10-27 | Enlitic, Inc. | Multi-label heat map generating system |
| US11324418B2 (en) | 2019-03-14 | 2022-05-10 | Hyperfine Operations, Inc. | Multi-coil magnetic resonance imaging using deep learning |
| EP3745153A1 (en) * | 2019-05-28 | 2020-12-02 | Koninklijke Philips N.V. | A method for motion artifact detection |
| US11726209B2 (en) | 2019-06-25 | 2023-08-15 | Faro Technologies, Inc. | Artifact filtering using artificial intelligence |
| EP3757940B1 (de) | 2019-06-26 | 2025-04-16 | Siemens Healthineers AG | Ermittlung einer patientenbewegung während einer medizinischen bildgebungsmessung |
| EP3839547A1 (en) * | 2019-12-16 | 2021-06-23 | Koninklijke Philips N.V. | Sense magnetic resonance imaging reconstruction using neural networks |
| CN111223066B (zh) * | 2020-01-17 | 2024-06-11 | 上海联影医疗科技股份有限公司 | 运动伪影校正方法、装置、计算机设备和可读存储介质 |
| CN111325161B (zh) * | 2020-02-25 | 2023-04-18 | 四川翼飞视科技有限公司 | 一种基于注意力机制的人脸检测神经网络的构建方法 |
| WO2021211068A1 (en) * | 2020-04-15 | 2021-10-21 | Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ | A method for training shallow convolutional neural networks for infrared target detection using a two-phase learning strategy |
| EP3916417A1 (en) | 2020-05-28 | 2021-12-01 | Koninklijke Philips N.V. | Correction of magnetic resonance images using multiple magnetic resonance imaging system configurations |
| EP3910359A1 (en) * | 2020-05-12 | 2021-11-17 | Koninklijke Philips N.V. | Machine learning based detection of motion corrupted magnetic resonance imaging data |
| JP7551336B2 (ja) * | 2020-05-21 | 2024-09-17 | キヤノン株式会社 | 情報処理装置、情報処理方法、およびプログラム |
| EP3933758B1 (en) | 2020-07-02 | 2025-11-19 | Siemens Healthineers AG | Method and system for generating a medical image with localized artifacts using machine learning |
| US20220013231A1 (en) * | 2020-07-13 | 2022-01-13 | Corsmed Ab | Method for ai applications in mri simulation |
| CN111815730B (zh) * | 2020-07-15 | 2024-03-29 | 东软教育科技集团有限公司 | 生成含有运动伪影的ct图像的方法、装置及存储介质 |
| US11346912B2 (en) * | 2020-07-23 | 2022-05-31 | GE Precision Healthcare LLC | Systems and methods of generating robust phase images in magnetic resonance images |
| EP3975125A1 (en) * | 2020-09-24 | 2022-03-30 | Koninklijke Philips N.V. | Anonymous fingerprinting of medical images |
| US11360179B2 (en) | 2020-10-29 | 2022-06-14 | The Mitre Corporation | Systems and methods for estimating magnetic susceptibility through continuous motion in an MRI scanner |
| CN113192014B (zh) * | 2021-04-16 | 2024-01-30 | 深圳市第二人民医院(深圳市转化医学研究院) | 改进脑室分割模型的训练方法、装置、电子设备和介质 |
| US11948288B2 (en) * | 2021-06-07 | 2024-04-02 | Shanghai United Imaging Intelligence Co., Ltd. | Motion artifacts simulation |
| US12045958B2 (en) * | 2021-07-16 | 2024-07-23 | Shanghai United Imaging Intelligence Co., Ltd. | Motion artifact correction using artificial neural networks |
| US12136484B2 (en) | 2021-11-05 | 2024-11-05 | Altis Labs, Inc. | Method and apparatus utilizing image-based modeling in healthcare |
| EP4202468A1 (en) | 2021-12-23 | 2023-06-28 | Orbem GmbH | Direct inference based on undersampled mri data of humans or animals |
| EP4202427A1 (en) | 2021-12-23 | 2023-06-28 | Orbem GmbH | Direct inference based on undersampled mri data of industrial samples |
| US12475564B2 (en) | 2022-02-16 | 2025-11-18 | Proscia Inc. | Digital pathology artificial intelligence quality check |
| CN114862680B (zh) * | 2022-05-12 | 2025-10-21 | 上海电气控股集团有限公司智惠医疗装备分公司 | 一种图像重建方法、装置及电子设备 |
| CN115100310A (zh) * | 2022-06-27 | 2022-09-23 | 杭州微影医疗科技有限公司 | 一种磁共振磁敏感伪影的自动提示方法及系统 |
| CN115797729B (zh) * | 2023-01-29 | 2023-05-09 | 有方(合肥)医疗科技有限公司 | 模型训练方法及装置、运动伪影识别及提示的方法及装置 |
| EP4545954A1 (en) | 2023-10-26 | 2025-04-30 | Orbem GmbH | Method for enabling high-throughput imaging of industrial samples |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4919408B2 (ja) * | 2007-01-12 | 2012-04-18 | 富士フイルム株式会社 | 放射線画像処理方法および装置ならびにプログラム |
| EP2232443A4 (en) * | 2008-01-10 | 2012-07-04 | Agency Science Tech & Res | DISTINCTION OF INFARTS AND ARTIFACTS IN MRI COLLECTION DATA |
| CN102077108B (zh) * | 2008-04-28 | 2015-02-25 | 康奈尔大学 | 分子mri中的磁敏度精确量化 |
| US20110077484A1 (en) * | 2009-09-30 | 2011-03-31 | Nellcor Puritan Bennett Ireland | Systems And Methods For Identifying Non-Corrupted Signal Segments For Use In Determining Physiological Parameters |
| US10321892B2 (en) | 2010-09-27 | 2019-06-18 | Siemens Medical Solutions Usa, Inc. | Computerized characterization of cardiac motion in medical diagnostic ultrasound |
| EP2624748B1 (en) * | 2010-10-07 | 2024-05-01 | The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center | Device for use in electro-biological signal measurement in the presence of a magnetic field |
| JP2015518769A (ja) * | 2012-06-05 | 2015-07-06 | コーニンクレッカ フィリップス エヌ ヴェ | 画像処理システム及び画像処理方法 |
| US9788761B2 (en) * | 2014-02-27 | 2017-10-17 | Toshiba Medical Systems Corporation | Motion correction for magnetic resonance angiography (MRA) with 3D radial acquisitions |
| WO2015175806A1 (en) | 2014-05-16 | 2015-11-19 | The Trustees Of The University Of Pennsylvania | Applications of automatic anatomy recognition in medical tomographic imagery based on fuzzy anatomy models |
| DE102015212953B4 (de) | 2015-07-10 | 2024-08-22 | Siemens Healthineers Ag | Künstliche neuronale Netze zur Klassifizierung von medizinischen Bilddatensätzen |
| US10521902B2 (en) | 2015-10-14 | 2019-12-31 | The Regents Of The University Of California | Automated segmentation of organ chambers using deep learning methods from medical imaging |
| CA3078728A1 (en) * | 2017-10-09 | 2019-04-18 | The Board Of Trustees Of The Leland Stanford Junior University | Contrast dose reduction for medical imaging using deep learning |
-
2017
- 2017-10-31 EP EP17199301.7A patent/EP3477583A1/en not_active Withdrawn
-
2018
- 2018-10-22 JP JP2020524193A patent/JP6907410B2/ja active Active
- 2018-10-22 CN CN201880070588.4A patent/CN111295687B/zh active Active
- 2018-10-22 EP EP18786366.7A patent/EP3704666B1/en active Active
- 2018-10-22 WO PCT/EP2018/078863 patent/WO2019086284A1/en not_active Ceased
- 2018-10-22 US US16/759,778 patent/US11320508B2/en active Active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2021501015A5 (enExample) | ||
| CN111356930B (zh) | 用于定位预定义的解剖结构的解剖界标的方法和系统 | |
| US11633123B2 (en) | Motion artifact prediction during data acquisition | |
| JP6907410B2 (ja) | 磁気共鳴イメージングデータ内の動きアーティファクトの深層学習に基づく処理 | |
| CN110135582B (zh) | 神经网络训练、图像处理方法及装置、存储介质 | |
| JP2021503319A5 (enExample) | ||
| US10627470B2 (en) | System and method for learning based magnetic resonance fingerprinting | |
| CN108291950B (zh) | Sense-mri中的图像伪影的去除 | |
| CN113167849B (zh) | 实时fMRI | |
| EP3179263B1 (en) | Dictionary-free magnetic resonance parameter inference for fingerprinting reconstruction | |
| US12066513B2 (en) | Scout acquisition enables rapid motion estimation and reduction (SAMER) systems and methods for retrospective motion mitigation | |
| JP2020513975A5 (enExample) | ||
| US11961004B2 (en) | Predicting brain data using machine learning models | |
| JP2017535363A (ja) | 磁気共鳴フィンガープリントデータ収集及び分析システム | |
| CN113450423B (zh) | 减少磁共振成像中的噪声和伪影的系统和方法 | |
| JP6636676B1 (ja) | 強度補正された磁気共鳴画像 | |
| WO2022184736A1 (en) | Processing medical imaging data generated by a medical imaging device | |
| JP2022529944A (ja) | ディクソン磁気共鳴イメージングにおける水-脂肪スワップの自動検出 | |
| CN113892149B (zh) | 用于运动伪影检测的方法 | |
| CN112137621B (zh) | 医学成像测量期间的患者运动的确定 | |
| CN114926366B (zh) | 使用人工神经网络的运动伪影校正的方法和设备 | |
| EP3564962A1 (en) | Motion artifact prediction during data acquisition | |
| CN113853526B (zh) | 用于磁共振成像的自动视场对准 | |
| US20100130849A1 (en) | System and method for patient motion compensation during magnetic resonance scans | |
| EP3764118A1 (en) | An apparatus and method for medical image correction |