CN111295687B - 对磁共振成像数据中的运动伪影的基于深度学习的处理 - Google Patents

对磁共振成像数据中的运动伪影的基于深度学习的处理 Download PDF

Info

Publication number
CN111295687B
CN111295687B CN201880070588.4A CN201880070588A CN111295687B CN 111295687 B CN111295687 B CN 111295687B CN 201880070588 A CN201880070588 A CN 201880070588A CN 111295687 B CN111295687 B CN 111295687B
Authority
CN
China
Prior art keywords
magnetic resonance
resonance imaging
deep learning
learning network
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880070588.4A
Other languages
English (en)
Chinese (zh)
Other versions
CN111295687A (zh
Inventor
K·佐默
T·布罗施
T·P·哈德
J·库普
I·格雷斯林
R·维姆科
A·扎尔巴赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN111295687A publication Critical patent/CN111295687A/zh
Application granted granted Critical
Publication of CN111295687B publication Critical patent/CN111295687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/60Image enhancement or restoration using machine learning, e.g. neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/100764D tomography; Time-sequential 3D tomography
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
CN201880070588.4A 2017-10-31 2018-10-22 对磁共振成像数据中的运动伪影的基于深度学习的处理 Active CN111295687B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17199301.7 2017-10-31
EP17199301.7A EP3477583A1 (en) 2017-10-31 2017-10-31 Deep-learning based processing of motion artifacts in magnetic resonance imaging data
PCT/EP2018/078863 WO2019086284A1 (en) 2017-10-31 2018-10-22 Deep-learning based processing of motion artifacts in magnetic resonance imaging data

Publications (2)

Publication Number Publication Date
CN111295687A CN111295687A (zh) 2020-06-16
CN111295687B true CN111295687B (zh) 2024-05-21

Family

ID=60269642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880070588.4A Active CN111295687B (zh) 2017-10-31 2018-10-22 对磁共振成像数据中的运动伪影的基于深度学习的处理

Country Status (5)

Country Link
US (1) US11320508B2 (enExample)
EP (2) EP3477583A1 (enExample)
JP (1) JP6907410B2 (enExample)
CN (1) CN111295687B (enExample)
WO (1) WO2019086284A1 (enExample)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11633123B2 (en) 2017-10-31 2023-04-25 Koninklijke Philips N.V. Motion artifact prediction during data acquisition
US10698063B2 (en) * 2017-11-01 2020-06-30 Siemens Healthcare Gmbh Motion artifact reduction of magnetic resonance images with an adversarial trained network
WO2019169393A1 (en) * 2018-03-02 2019-09-06 The General Hospital Corporation Improved multi-shot echo planar imaging through machine learning
US11681001B2 (en) * 2018-03-09 2023-06-20 The Board Of Trustees Of The Leland Stanford Junior University Deep learning method for nonstationary image artifact correction
AU2019268404B2 (en) * 2018-05-15 2025-04-17 Monash University Method and system of motion correction for magnetic resonance imaging
TW202011893A (zh) 2018-07-30 2020-04-01 美商超精細研究股份有限公司 用於核磁共振影像重建之深度學習技術
US11995800B2 (en) * 2018-08-07 2024-05-28 Meta Platforms, Inc. Artificial intelligence techniques for image enhancement
CA3107776A1 (en) 2018-08-15 2020-02-20 Hyperfine Research, Inc. Deep learning techniques for suppressing artefacts in magnetic resonance images
US11011257B2 (en) * 2018-11-21 2021-05-18 Enlitic, Inc. Multi-label heat map display system
CN113811921A (zh) 2019-03-14 2021-12-17 海珀菲纳股份有限公司 用于根据空间频率数据来生成磁共振图像的深度学习技术
EP3745153A1 (en) * 2019-05-28 2020-12-02 Koninklijke Philips N.V. A method for motion artifact detection
US11726209B2 (en) 2019-06-25 2023-08-15 Faro Technologies, Inc. Artifact filtering using artificial intelligence
EP3757940B1 (de) * 2019-06-26 2025-04-16 Siemens Healthineers AG Ermittlung einer patientenbewegung während einer medizinischen bildgebungsmessung
EP3839547A1 (en) * 2019-12-16 2021-06-23 Koninklijke Philips N.V. Sense magnetic resonance imaging reconstruction using neural networks
CN111223066B (zh) * 2020-01-17 2024-06-11 上海联影医疗科技股份有限公司 运动伪影校正方法、装置、计算机设备和可读存储介质
CN111325161B (zh) * 2020-02-25 2023-04-18 四川翼飞视科技有限公司 一种基于注意力机制的人脸检测神经网络的构建方法
US12131548B2 (en) * 2020-04-15 2024-10-29 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi Method for training shallow convolutional neural networks for infrared target detection using a two-phase learning strategy
EP3916417A1 (en) 2020-05-28 2021-12-01 Koninklijke Philips N.V. Correction of magnetic resonance images using multiple magnetic resonance imaging system configurations
EP3910359A1 (en) * 2020-05-12 2021-11-17 Koninklijke Philips N.V. Machine learning based detection of motion corrupted magnetic resonance imaging data
JP7551336B2 (ja) * 2020-05-21 2024-09-17 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
EP3933758B1 (en) 2020-07-02 2025-11-19 Siemens Healthineers AG Method and system for generating a medical image with localized artifacts using machine learning
US20220013231A1 (en) * 2020-07-13 2022-01-13 Corsmed Ab Method for ai applications in mri simulation
CN111815730B (zh) * 2020-07-15 2024-03-29 东软教育科技集团有限公司 生成含有运动伪影的ct图像的方法、装置及存储介质
US11346912B2 (en) * 2020-07-23 2022-05-31 GE Precision Healthcare LLC Systems and methods of generating robust phase images in magnetic resonance images
EP3975125A1 (en) * 2020-09-24 2022-03-30 Koninklijke Philips N.V. Anonymous fingerprinting of medical images
US11360179B2 (en) 2020-10-29 2022-06-14 The Mitre Corporation Systems and methods for estimating magnetic susceptibility through continuous motion in an MRI scanner
CN113192014B (zh) * 2021-04-16 2024-01-30 深圳市第二人民医院(深圳市转化医学研究院) 改进脑室分割模型的训练方法、装置、电子设备和介质
US11948288B2 (en) * 2021-06-07 2024-04-02 Shanghai United Imaging Intelligence Co., Ltd. Motion artifacts simulation
US12045958B2 (en) * 2021-07-16 2024-07-23 Shanghai United Imaging Intelligence Co., Ltd. Motion artifact correction using artificial neural networks
US12136484B2 (en) 2021-11-05 2024-11-05 Altis Labs, Inc. Method and apparatus utilizing image-based modeling in healthcare
EP4202427A1 (en) 2021-12-23 2023-06-28 Orbem GmbH Direct inference based on undersampled mri data of industrial samples
EP4202468A1 (en) 2021-12-23 2023-06-28 Orbem GmbH Direct inference based on undersampled mri data of humans or animals
US12475564B2 (en) 2022-02-16 2025-11-18 Proscia Inc. Digital pathology artificial intelligence quality check
CN114862680B (zh) * 2022-05-12 2025-10-21 上海电气控股集团有限公司智惠医疗装备分公司 一种图像重建方法、装置及电子设备
CN115100310A (zh) * 2022-06-27 2022-09-23 杭州微影医疗科技有限公司 一种磁共振磁敏感伪影的自动提示方法及系统
CN115797729B (zh) * 2023-01-29 2023-05-09 有方(合肥)医疗科技有限公司 模型训练方法及装置、运动伪影识别及提示的方法及装置
EP4545954A1 (en) 2023-10-26 2025-04-30 Orbem GmbH Method for enabling high-throughput imaging of industrial samples

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541179A (zh) * 2012-06-05 2015-04-22 皇家飞利浦有限公司 并行mri中的逐通道伪影减少

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919408B2 (ja) * 2007-01-12 2012-04-18 富士フイルム株式会社 放射線画像処理方法および装置ならびにプログラム
CN102016922A (zh) * 2008-01-10 2011-04-13 新加坡科技研究局 从核磁共振成像扫描数据的伪像中区别梗塞的方法
CN102077108B (zh) * 2008-04-28 2015-02-25 康奈尔大学 分子mri中的磁敏度精确量化
US20110077484A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Ireland Systems And Methods For Identifying Non-Corrupted Signal Segments For Use In Determining Physiological Parameters
US10321892B2 (en) 2010-09-27 2019-06-18 Siemens Medical Solutions Usa, Inc. Computerized characterization of cardiac motion in medical diagnostic ultrasound
US9636019B2 (en) * 2010-10-07 2017-05-02 The Medical Research, Infrastructure, And Health Services Fund Of The Tel-Aviv Medical Center Device for use in electro-biological signal measurement in the presence of a magnetic field
US9788761B2 (en) * 2014-02-27 2017-10-17 Toshiba Medical Systems Corporation Motion correction for magnetic resonance angiography (MRA) with 3D radial acquisitions
WO2015175806A1 (en) 2014-05-16 2015-11-19 The Trustees Of The University Of Pennsylvania Applications of automatic anatomy recognition in medical tomographic imagery based on fuzzy anatomy models
DE102015212953B4 (de) 2015-07-10 2024-08-22 Siemens Healthineers Ag Künstliche neuronale Netze zur Klassifizierung von medizinischen Bilddatensätzen
US10521902B2 (en) 2015-10-14 2019-12-31 The Regents Of The University Of California Automated segmentation of organ chambers using deep learning methods from medical imaging
EP3694413B1 (en) * 2017-10-09 2025-06-11 The Board of Trustees of the Leland Stanford Junior University Contrast dose reduction for medical imaging using deep learning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541179A (zh) * 2012-06-05 2015-04-22 皇家飞利浦有限公司 并行mri中的逐通道伪影减少

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Automatic detection of motion artifacts in MR images using CNNS;KristoJ Meding et al.;《2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)》;第811-815页 *

Also Published As

Publication number Publication date
JP6907410B2 (ja) 2021-07-21
WO2019086284A1 (en) 2019-05-09
US11320508B2 (en) 2022-05-03
CN111295687A (zh) 2020-06-16
EP3477583A1 (en) 2019-05-01
JP2021501015A (ja) 2021-01-14
EP3704666A1 (en) 2020-09-09
EP3704666B1 (en) 2021-06-16
US20210181287A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN111295687B (zh) 对磁共振成像数据中的运动伪影的基于深度学习的处理
CN111542853B (zh) 数据采集期间的运动伪影预测
Küstner et al. Automated reference-free detection of motion artifacts in magnetic resonance images
US11333732B2 (en) Automatic artifact detection and pulse sequence modification in magnetic resonance imaging
JP5992624B2 (ja) ナビゲータベースのモーション検知を備えるmriシステム
CN112292732A (zh) 用于实现对对象的磁共振成像的方法
US20230394652A1 (en) Sequential out of distribution detection for medical imaging
JP2019520863A (ja) 磁気共鳴イメージングのためのパルスシーケンスパラメータの変更
EP3564962A1 (en) Motion artifact prediction during data acquisition
CN113892149B (zh) 用于运动伪影检测的方法
EP4508595B1 (en) Monitoring medical images using a neural network generated image assessment
US20240355094A1 (en) Saliency maps for medical imaging
CN115552273A (zh) 基于机器学习的运动损坏数据检测
US20240288523A1 (en) Out of distribution testing for magnetic resonance imaging
WO2025176519A1 (en) Adjustment recommendation for scan parameters
EP4569343A1 (en) Reconstruction parameter determination for the reconstruction of synthesized magnetic resonance images
CN118805094A (zh) 利用神经网络检测磁共振图像中的虚假结构
CN119654569A (zh) 磁共振成像中的神经网络引导的运动校正

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant