JP2021197517A - SiC complementary field effect transistor - Google Patents

SiC complementary field effect transistor Download PDF

Info

Publication number
JP2021197517A
JP2021197517A JP2020104834A JP2020104834A JP2021197517A JP 2021197517 A JP2021197517 A JP 2021197517A JP 2020104834 A JP2020104834 A JP 2020104834A JP 2020104834 A JP2020104834 A JP 2020104834A JP 2021197517 A JP2021197517 A JP 2021197517A
Authority
JP
Japan
Prior art keywords
channel
effect transistor
sic
field
jfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020104834A
Other languages
Japanese (ja)
Inventor
恒暢 木本
Tsunenobu Kimoto
光顕 金子
Mitsuaki Kaneko
誠志 中島
Seishi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2020104834A priority Critical patent/JP2021197517A/en
Priority to PCT/JP2021/020585 priority patent/WO2021256230A1/en
Publication of JP2021197517A publication Critical patent/JP2021197517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/098Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being PN junction gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

To provide a SiC complementary field effect transistor capable of achieving a stable operation over a wide temperature range.SOLUTION: There is provided a SiC complementary field effect transistor in which a normally off type n-channel field effect transistor 1a and a normally off type p-channel field effect transistor 1b are formed on a SiC substrate 10. In the SiC complementary field effect transistor, the ratio Wn/Wp of the channel width Wn of the n-channel field effect transistor and the channel width Wp of the p-channel field effect transistor, or the ratio Ln/Lp of the channel length Ln of the n-channel field effect transistor and the channel length Lp of the p-channel field effect transistor is set such that the n-channel field effect transistor and the p-channel field effect transistor have the saturation currents of the same magnitude at a temperature of 450K or above.SELECTED DRAWING: Figure 5

Description

本発明は、炭化珪素(SiC)基板を用いて形成されたSiC相補型電界効果トランジスタに関する。 The present invention relates to a SiC complementary field effect transistor formed using a silicon carbide (SiC) substrate.

現在の半導体集積回路は、主にシリコン(Si)で作製されているが、産業分野においては、自動車や航空機のエンジン制御、自動車タイヤのモニター、宇宙用エレクトロニクスなど、Siでは実現不可能な200℃以上の高温において動作する集積回路が渇望されている。 Current semiconductor integrated circuits are mainly made of silicon (Si), but in the industrial field, 200 ° C that cannot be realized with Si, such as engine control of automobiles and aircraft, automobile tire monitors, and space electronics, etc. There is a craving for integrated circuits that operate at these high temperatures.

SiCは、バンドギャップがSiに比べて約3倍高いため、500℃以上の高温環境下で動作する集積回路が作製可能である。 Since the band gap of SiC is about 3 times higher than that of Si, an integrated circuit that operates in a high temperature environment of 500 ° C. or higher can be manufactured.

SiC基板を用いて作製した集積回路として、例えば、非特許文献1には、相補型MOSFETで構成された集積回路が開示されている。また、特許文献1には、nチャネルJFETとpチャネルJFETとを半絶縁性のSiC層で絶縁分離した相補型JFETが開示されている。 As an integrated circuit manufactured by using a SiC substrate, for example, Non-Patent Document 1 discloses an integrated circuit composed of a complementary MOSFET. Further, Patent Document 1 discloses a complementary JFET in which an n-channel JFET and a p-channel JFET are isolated and separated by a semi-insulating SiC layer.

特開2011−166025号公報Japanese Unexamined Patent Publication No. 2011-166025

S.H. Ryu et al., IEEE Trans. Electron Devices, vol.45 (1998), p.45.S.H. Ryu et al., IEEE Trans. Electron Devices, vol.45 (1998), p.45.

非特許文献1に開示された相補型MOSFETは、SiC基板とゲート酸化膜との界面に高密度の欠陥や電荷が存在するため、しきい値電圧が温度により大きく変動し、安定した動作ができないという問題がある。また、ゲート酸化膜が高温で劣化するという問題もある。 Since the complementary MOSFET disclosed in Non-Patent Document 1 has high-density defects and charges at the interface between the SiC substrate and the gate oxide film, the threshold voltage fluctuates greatly depending on the temperature, and stable operation cannot be performed. There is a problem. There is also a problem that the gate oxide film deteriorates at a high temperature.

特許文献1に開示された相補型JFETは、nチャネルJFETとpチャネルJFETとを、ホットウォールCVD法で形成されたイントリンシックSiC層で絶縁分離する構造になっており、微細なトレンチ形成、埋め込み成長、表面平坦化研磨を繰り返す必要があるため、作製プロセスが非常に複雑になるという問題がある。 The complementary JFET disclosed in Patent Document 1 has a structure in which an n-channel JFET and a p-channel JFET are insulated and separated by an intrinsic SiC layer formed by a hot wall CVD method, and a fine trench is formed and embedded. Since it is necessary to repeat growth and surface flattening polishing, there is a problem that the fabrication process becomes very complicated.

今まで、SiC基板を用いた相補型電界効果トランジスタに関する研究はいくつか報告されているが、高温動作が確認されたに留まり、広い温度範囲において、安定した動作が可能な相補型電界効果トランジスタは実現できていない。 Although some studies on complementary field-effect transistors using SiC substrates have been reported so far, only complementary field-effect transistors that can operate stably over a wide temperature range have been confirmed to operate at high temperatures. It has not been realized.

本発明は、上記課題に鑑みなされたもので、その主な目的は、広い温度範囲において、安定した動作が可能なSiC相補型電界効果トランジスタを提供することにある。 The present invention has been made in view of the above problems, and a main object thereof is to provide a SiC complementary field effect transistor capable of stable operation in a wide temperature range.

本発明に係るSiC相補型電界効果トランジスタは、SiC基板に、ノーマリオフ型のnチャネル電界効果トランジスタ、及びpチャネル電界効果トランジスタが形成されたSiC相補型電界効果トランジスタであって、450K以上の温度において、nチャネル電界効果トランジスタ、及びpチャネル電界効果トランジスタの飽和電流が同じ大きさになるように、nチャネル電界効果トランジスタのチャネル幅Wn、及びpチャネル電界効果トランジスタのチャネル幅Wpの比Wn/Wp、または、nチャネル電界効果トランジスタのチャネル長Ln、及びpチャネル電界効果トランジスタのチャネル長Lpの比Ln/Lpが設定されている。 The SiC complementary field effect transistor according to the present invention is a SiC complementary field effect transistor in which a normally-off type n-channel field effect transistor and a p-channel field effect transistor are formed on a SiC substrate at a temperature of 450 K or higher. , The ratio Wn / Wp of the channel width Wn of the n-channel field-effect transistor and the channel width Wp of the p-channel field-effect transistor so that the saturation currents of the n-channel field-effect transistor and the p-channel field-effect transistor have the same magnitude. Or, the ratio Ln / Lp of the channel length Ln of the n-channel field-effect transistor and the channel length Lp of the p-channel field-effect transistor is set.

本発明に係る他のSiC相補型電界効果トランジスタは、SiC基板に、ノーマリオフ型のnチャネル電界効果トランジスタ、及びpチャネル電界効果トランジスタが形成されたSiC相補型電界効果トランジスタであって、pチャネル電界効果トランジスタのチャネル領域にドープされたp型不純物がAlであって、nチャネル電界効果トランジスタのチャネル領域にドープされたn型不純物のエネルギー準位が、伝導帯端から0.13eV以上離れている。 The other SiC complementary field effect transistor according to the present invention is a SiC complementary field effect transistor in which a normally-off type n-channel field effect transistor and a p-channel field effect transistor are formed on a SiC substrate, and is a p-channel electric field. The p-type impurity doped in the channel region of the effect transistor is Al, and the energy level of the n-type impurity doped in the channel region of the n-channel field effect transistor is 0.13 eV or more away from the conduction band end. ..

本発明によれば、広い温度範囲において、安定した動作が可能なSiC相補型電界効果トランジスタを提供することができる。 According to the present invention, it is possible to provide a SiC complementary field effect transistor capable of stable operation in a wide temperature range.

(A)〜(C)は、先の出願の明細書に開示したSiC JFETの構造を示した図である。(A) to (C) are diagrams showing the structure of the SiC JFET disclosed in the specification of the previous application. 相補型JFETからなるインバータ回路を示した回路図である。It is a circuit diagram which showed the inverter circuit which consists of a complementary type JFET. 論理閾値電圧の温度特性を示したグラフである。It is a graph which showed the temperature characteristic of a logical threshold voltage. インバータ回路の入出力特性の温度特性を示したグラフである。It is a graph which showed the temperature characteristic of the input / output characteristic of an inverter circuit. 論理閾値電圧の温度特性を示したグラフである。It is a graph which showed the temperature characteristic of a logical threshold voltage. インバータ回路の入出力特性の温度特性を示したグラフである。It is a graph which showed the temperature characteristic of the input / output characteristic of an inverter circuit. キャリア密度の温度依存性を示したグラフである。It is a graph which showed the temperature dependence of a carrier density. キャリア密度の温度依存性を示したグラフである。It is a graph which showed the temperature dependence of a carrier density. 論理閾値電圧の温度特性を示したグラフである。It is a graph which showed the temperature characteristic of a logical threshold voltage. インバータ回路の入出力特性の温度特性を示したグラフである。It is a graph which showed the temperature characteristic of the input / output characteristic of an inverter circuit. インバータ回路の入出力特性を示したグラフである。It is a graph which showed the input / output characteristic of an inverter circuit. SiC基板にJFETと抵抗が形成された構造を示した断面図である。It is sectional drawing which showed the structure which JFET and resistance were formed on the SiC substrate. 相補型JFETからなるn入力NAND回路を示した図である。It is a figure which showed the n input NAND circuit which consists of a complementary type JFET. 相補型JFETからなるn入力NOR回路を示した図である。It is a figure which showed the n input NOR circuit which consists of a complementary type JFET.

本願出願人は、ノーマリオフ化を容易にするSiC接合型電界効果トランジスタ(以下、「SiCJFET」という)の構造を、先の出願の明細書(特開2019−091873)に開示している。図1は、その明細書に開示したSiCJFETの構造を示した図で、図1(A)は、nチャネルJFETの平面図、図1(B)は、図1(A)の線B−Bに沿った断面図、図1(C)は、図1(A)の線C−Cに沿った断面図である。 The applicant of the present application discloses the structure of a SiC junction type field effect transistor (hereinafter referred to as "SiCJFET") that facilitates normalization in the specification of the previous application (Japanese Patent Laid-Open No. 2019-091873). 1A and 1B are views showing the structure of the SiC JFET disclosed in the specification, FIG. 1A is a plan view of an n-channel JFET, and FIG. 1B is a line BB of FIG. 1A. 1 (C) is a cross-sectional view taken along the line CC of FIG. 1 (A).

図1(A)〜(C)に示すように、nチャネルJFET1は、SiC基板10に形成されたn型の埋込チャネル領域13と、埋込チャネル領域13を挟んで、互いに対向して形成されたn型のソース領域11及びドレイン領域12と、ソース領域11及びドレイン領域12が対向する方向と垂直な方向に形成された一対のp型のゲート領域14a、14bとを備えている。pチャネルJFETも、同様の構造を備えている。 As shown in FIGS. 1A to 1C, the n-channel JFET1 is formed so as to face each other with the embedded channel region 13 formed on the SiC substrate 10 and the embedded channel region 13 interposed therebetween. The n + -shaped source region 11 and the drain region 12 are provided, and a pair of p + -shaped gate regions 14a and 14b formed in a direction perpendicular to the direction in which the source region 11 and the drain region 12 face each other. .. The p-channel JFET also has a similar structure.

nチャネルJFET1において、一対のゲート領域14a、14bの幅Lがチャネル長、一対のゲート領域14a、14bに挟まれた距離Dがチャネル厚さ、埋込チャネル領域13の深さ方向の距離Wがチャネル幅となる。 In the n-channel JFET 1, the width L of the pair of gate regions 14a and 14b is the channel length, the distance D sandwiched between the pair of gate regions 14a and 14b is the channel thickness, and the distance W of the embedded channel region 13 in the depth direction is. It becomes the channel width.

埋込チャネル領域13内の空乏層の広がりは、埋込チャネル領域13の両側に形成された一対のゲート領域14a、14bに印加するゲート電圧によって制御される。埋込チャネル領域13の不純物濃度N、及び厚さDを調整することによって、ノーマリオフ型のSiCJFETを実現することができる。具体的には、埋込チャネル領域13の不純物濃度N(cm−3)、及び厚さD(cm)を、N(D/2)<3×10cm−1を満たすように設定すればよい。 The spread of the depletion layer in the embedded channel region 13 is controlled by the gate voltage applied to the pair of gate regions 14a and 14b formed on both sides of the embedded channel region 13. By adjusting the impurity concentration N and the thickness D of the embedded channel region 13, a normally-off type SiC JFET can be realized. Specifically, the impurity concentration N (cm -3 ) and the thickness D (cm) of the embedded channel region 13 should be set so as to satisfy N (D / 2) 2 <3 × 10 7 cm -1. Just do it.

図2は、ノーマリオフ型のnチャネルJFET1aと、ノーマリオフ型のpチャネルJFET1bとで構成した相補型JFETからなるインバータ回路を示す。nチャネルJFET1a及びpチャネルJFET1bのゲート電極は、インバータ回路の入力端子Vinに接続されている。nチャネルJFET1a及びpチャネルJFET1bのドレイン電極Dは、インバータ回路の出力端子Voutに接続されている。nチャネルJFET1aのソース電極Sはグランドに接続され、pチャネルJFET1bのソース電極Sは電源(VDD)に接続されている。 FIG. 2 shows an inverter circuit including a complementary JFET composed of a normally-off type n-channel JFET1a and a normally-off type p-channel JFET1b. The gate electrode of the n-channel JFET1a and p-channel JFET1b is connected to the input terminal V in of the inverter circuit. The drain electrode D of the n-channel JFET1a and the p-channel JFET1b is connected to the output terminal V out of the inverter circuit. The source electrode S of the n-channel JFET1a is connected to the ground, and the source electrode S of the p-channel JFET1b is connected to the power supply (VDD).

通常、インバータ回路は、論理閾値電圧Vthが、電源電圧VDDの1/2になるように設計される。この場合、nチャネルJFET1a及びpチャネルJFET1bの飽和電流IDn、IDpは等しい。ここで、IDn、IDpは、以下の式(1)、(2)で表される。 Normally, the inverter circuit is designed so that the logic threshold voltage Vth is ½ of the power supply voltage VDD. In this case, the saturation currents I Dn and I Dp of the n-channel JFET1a and the p-channel JFET1b are equal. Here, I Dn and I Dp are represented by the following equations (1) and (2).

Figure 2021197517
Figure 2021197517


Figure 2021197517
Figure 2021197517


上記式(1)、(2)において、Vはゲート電圧、VTn、VTpは、nチャネルJFET1a及びpチャネルJFET1bの閾値電圧、β、βは、nチャネルJFET1a及びpチャネルJFET1bのベータ値(利得)である。 In the above formula (1), (2), V G is the gate voltage, V Tn, V Tp is n-channel JFET1a and the threshold voltage of the p-channel JFET1b, β n, β p is a n-channel JFET1a and p-channel JFET1b Beta value (gain).

nチャネルJFET1aのゲート電極にはVin、pチャネルJFET1bのゲート電極にはVin−VDDの電圧が印加されるため、上記式(1)、(2)を用いて、IDn=IDpから、以下の式(3)が得られる。 Since V in the gate electrode of the n-channel JFET1a, voltage V in -V DD to the gate electrode of the p-channel JFET1b is applied, the formula (1), with (2), I Dn = I Dp Therefore, the following equation (3) is obtained.

Figure 2021197517
Figure 2021197517


SiC JFETでは、電源電圧VDDを2.5V以上にすると、ゲートリークが発生するため、通常、VDDは2V程度に設定される。この場合、VthはVDDの半分である1Vとすることが妥当であるため、上記式(3)は、以下の式(4)で表される。 In a SiC JFET, when the power supply voltage VDD is 2.5V or more, a gate leak occurs, so the VDD is usually set to about 2V. In this case, since it is appropriate that V th is 1 V, which is half of V DD , the above equation (3) is expressed by the following equation (4).

Figure 2021197517
Figure 2021197517


式(4)の左辺は、図1(A)〜(C)に示した構造のJFETにおける物性値や構造寸法を用いて、以下の式(5)で求められる。 The left side of the formula (4) is obtained by the following formula (5) using the physical property values and structural dimensions of the JFET having the structures shown in FIGS. 1 (A) to 1 (C).

Figure 2021197517
Figure 2021197517


上記式(5)において、各パラメータは、以下の通りである。なお、添字n、pは、nチャネルJFET、pチャネルJFETのパラメータを示す。 In the above equation (5), each parameter is as follows. The subscripts n and p indicate the parameters of the n-channel JFET and the p-channel JFET.

μ、μ:電子、正孔の移動度
、p:電子密度、正孔密度
、W:チャネル幅
、L:チャネル長
、D:チャネル厚さ
、N:チャネル領域13のドーピング密度
一方、式(4)の右辺は、以下の式(6)で求められる。
μ n, μ p: electrons, hole mobility n n, p p: electron density, hole density W n, W p: channel width L n, L p: channel length D n, D p: channel thickness N D, N a: whereas doping density of the channel region 13, the right side of the equation (4) is obtained by the following equation (6).

Figure 2021197517
Figure 2021197517


上記の式(6)において、ψjn、ψjpは、nチャネルJFET1a及びpチャネルJFET1bのゲート部の拡散電位、ψpn、ψppは、nチャネルJFET1a及びpチャネルJFET1bのピンチオフ電位である。 In the above equation (6), ψ jn and ψ jp are the diffusion potentials of the gate portions of the n-channel JFET1a and p-channel JFET1b, and ψ pn and ψ pp are the pinch-off potentials of the n-channel JFET1a and p-channel JFET1b.

上述したように、論理閾値電圧Vthが、電源電圧VDDの1/2になるように設計するためには、nチャネルJFET1a及びpチャネルJFET1bの飽和電流IDn、IDpを等しくするために、上記の式(4)が成立するように設計すればよい。この場合、式(6)に示した右辺のパラメータは調整が難しいため、式(5)に示した右辺のパラメータを調整して、式(4)が成立するように設計される。 As described above, in order to design the logic threshold voltage Vth to be 1/2 of the power supply voltage VDD , in order to make the saturation currents I Dn and I Dp of the n-channel JFET1a and the p-channel JFET1b equal. , The above equation (4) may be designed to hold. In this case, since it is difficult to adjust the parameters on the right side shown in the equation (6), the parameters on the right side shown in the equation (5) are adjusted so that the equation (4) is established.

従来、MOSFETをSiで構成した場合、室温での電子の移動度μが、正孔の移動度μの約2倍であることから、nチャネルJFETのチャネル幅Wを、nチャネルJFETのチャネル幅Wの1/2に設定することによって、式(4)が室温で成立するように設計されている。 Conventionally, when the MOSFET is composed of Si, the electron mobility μ n at room temperature is about twice the hole mobility μ p , so that the channel width W n of the n-channel JFET is set to the n-channel JFET. The equation (4) is designed to hold at room temperature by setting the channel width W p to 1/2 of.

JFETをSiCで構成した場合も、Siの場合と同様の設計指針により、式(4)が室温で成立するように設計することができる。この場合、室温での電子の移動度μが、正孔の移動度μの約38倍であることから、nチャネルJFETのチャネル幅Wを、pチャネルJFETのチャネル幅Wの1/38(W=0.4μm、W=15μm)に設定することによって、式(4)が室温で成立するように設計することができる。 Even when the JFET is composed of SiC, it can be designed so that the equation (4) holds at room temperature according to the same design guideline as in the case of Si. In this case, since the electron mobility μ n at room temperature is about 38 times the hole mobility μ p , the channel width W n of the n-channel JFET is 1 of the channel width W p of the p-channel JFET. By setting / 38 (W n = 0.4 μm, W p = 15 μm), the equation (4) can be designed to hold at room temperature.

なお、pチャネルJFETのチャネル幅Wpを15μmに設定する代わりに、例えば、チャネル幅Wpを1.5μmに設定したpチャネルJFETを10個並列に接続してもよい。 Instead of setting the channel width W p of the p-channel JFET to 15 μm, for example, 10 p-channel JFETs having the channel width W p set to 1.5 μm may be connected in parallel.

図3は、図1(A)〜(C)に示した構造のSiC JFETを、式(4)が室温で成立するように設計した場合の論理閾値電圧Vthの温度特性を計算で求めたグラフ(Aで示したグラフ)である。また、図4は、インバータ回路の入出力特性の温度特性をシミュレーションにより求めたグラフである。ここで、Vthの温度特性は、上記の式(3)を変形して得られる下記の式(7)を用いて計算した。また、インバータ回路の入出力特性の温度特性は、周知の電流−電圧特性の式を用いて計算した。 FIG. 3 shows the temperature characteristics of the logic threshold voltage Vth when the SiC JFET having the structures shown in FIGS. 1 (A) to 1 (C) is designed so that the equation (4) holds at room temperature. It is a graph (graph shown by A). Further, FIG. 4 is a graph obtained by simulating the temperature characteristics of the input / output characteristics of the inverter circuit. Here, the temperature characteristic of V th was calculated using the following equation (7) obtained by modifying the above equation (3). The temperature characteristics of the input / output characteristics of the inverter circuit were calculated using the well-known current-voltage characteristic equation.

Figure 2021197517
Figure 2021197517


なお、計算は、図1(A)〜(C)に示したSiC JFETの構造において、下記のパラメータの数値を用いた。なお、移動度μ、μは、文献(H. Matsuura et al., J. Appl. Phys. 96 (2004) 2708, S. Kagamihara et al., J. Appl. Phys. 96 (2004) 5601)で与えられた式を用いて計算した。また、キャリア密度n、pは、一般の教科書(例えば、S. M. Sze and K. K. Ng, Physics of Semiconductor (John Wiley $ Sons)に載っている周知の方程式を用いて計算した。 In the calculation, the numerical values of the following parameters were used in the structure of the SiC JFET shown in FIGS. 1 (A) to 1 (C). The mobilities μ n and μ p are described in the literature (H. Matsuura et al., J. Appl. Phys. 96 (2004) 2708, S. Kagamihara et al., J. Appl. Phys. 96 (2004) 5601. ) Was calculated using the formula given in. Further, the carrier density n n, p p is generally textbooks (e.g., calculated using well known equations resting on SM Sze and KK Ng, Physics of Semiconductor (John Wiley $ Sons).

、W:0.4μm、15μm
、L:4μm、4μm
、D:425nm、428nm
、N:5×1016cm−3、5×1016cm−3
なお、図3には、式(4)の右辺の温度特性を、式(6)を用いて計算した結果(Bで示したグラフ)、及び、式(4)の左辺の温度特性を、式(5)を用いて計算した結果(Cで示した曲線)も示している。
W n , W p : 0.4 μm, 15 μm
L n , L p : 4 μm, 4 μm
D n , D p : 425 nm, 428 nm
N D, N A: 5 × 10 16 cm -3, 5 × 10 16 cm -3
In FIG. 3, the temperature characteristics on the right side of the equation (4) are calculated using the equation (6) (graph shown by B), and the temperature characteristics on the left side of the equation (4) are shown in the equation. The result calculated using (5) (curve shown by C) is also shown.

図3に示すように、矢印Pで示す室温(300K)において、Bで示したグラフと、Cで示したグラフは一致しており、論理閾値電圧Vthは1Vに設定されている。しかしながら、図3及び図4に示すように、論理閾値電圧Vthは、温度が高くなるにつれて、1Vから大きくシフトしている。これは、式(4)の右辺と左辺の値が、それぞれ、図3のグラフB、Cに示すように、異なる温度特性を有するため、式(4)が高温側で成立しなくなったためである。 As shown in FIG. 3, at room temperature (300K) indicated by the arrow P, the graph indicated by B and the graph indicated by C are in agreement, and the logic threshold voltage Vth is set to 1V. However, as shown in FIGS. 3 and 4, the logic threshold voltage Vth largely shifts from 1V as the temperature increases. This is because the values on the right side and the left side of the equation (4) have different temperature characteristics as shown in the graphs B and C of FIG. 3, so that the equation (4) does not hold on the high temperature side. ..

このように、広い温度範囲で、論理閾値電圧Vthの変動を抑えるためには、既存のSi論理回路で採用されていた設計指針とは異なる構造設計が必要となる。そのためには、論理閾値電圧Vthを決定するパラメータの物性値の温度依存性を考慮した設計を行うことが必要となる。 As described above, in order to suppress the fluctuation of the logic threshold voltage Vth in a wide temperature range, a structural design different from the design guideline adopted in the existing Si logic circuit is required. For that purpose, it is necessary to design in consideration of the temperature dependence of the physical property value of the parameter that determines the logical threshold voltage Vth.

(第1の実施形態)
本願発明者等は、上記の式(7)において、論理閾値電圧Vthを決定するパラメータとして、nチャネルJFETの閾値電圧VTn、及びpチャネルJFETの閾値電圧VTpに着目した。すなわち、室温付近では、VTnとVTpの差は小さいため、式(4)が成立していなくても、論理閾値電圧Vthは、電源電圧VDDの1/2ほどに定まる。一方、高温では、VTnとVTpの差が大きくなるが、高温側で、式(4)が成立するように構造設計しておけば、高温側においても、論理閾値電圧Vthを、電源電圧VDDの1/2ほどに定めることができる。
(First Embodiment)
The present inventors have found that in the above formula (7), as a parameter to determine the logical threshold voltage V th, the threshold voltage V Tn of the n-channel JFET, and focused on the threshold voltage V Tp of the p-channel JFET. That is, since the difference between VTn and VTp is small near room temperature, the logic threshold voltage Vth is determined to be about 1/2 of the power supply voltage VDD even if the equation (4) does not hold. On the other hand, at high temperatures, the difference between VTn and VTp becomes large, but if the structure is designed so that equation (4) holds on the high temperature side, the logic threshold voltage Vth can be used as a power source even on the high temperature side. It can be set to about 1/2 of the voltage VDD.

図5は、図1(A)〜(C)に示した構造のSiC JFETを、式(4)が高温側(700K)で成立するように設計した場合の論理閾値電圧Vthの温度特性を上記式(7)を用いて計算で求めたグラフ(Aで示したグラフ)である。また、図6は、インバータ回路の入出力特性の温度特性を周知の電流−電圧特性の式を用いて計算で求めたグラフである。ここで、700Kでの電子の移動度μが、正孔の移動度μの約12倍であることから、nチャネルJFETのチャネル幅Wを、pチャネルJFETのチャネル幅Wの1/12(W=0.4μm、W=5μm)に設定することによって、式(4)が700Kで成立するように設計した。それ以外のパラメータは、図3で示した場合と同じである。 FIG. 5 shows the temperature characteristics of the logical threshold voltage Vth when the SiC JFET having the structures shown in FIGS. 1A to 1C is designed so that the equation (4) holds on the high temperature side (700K). It is a graph (graph shown by A) obtained by calculation using the above formula (7). Further, FIG. 6 is a graph obtained by calculating the temperature characteristics of the input / output characteristics of the inverter circuit using a well-known current-voltage characteristic equation. Here, since the electron mobility μ n at 700 K is about 12 times the hole mobility μ p , the channel width W n of the n-channel JFET is 1 of the channel width W p of the p-channel JFET. By setting to / 12 (W n = 0.4 μm, W p = 5 μm), the equation (4) was designed to hold at 700K. Other parameters are the same as those shown in FIG.

なお、pチャネルJFETのチャネル幅Wpを5μmに設定する代わりに、例えば、チャネル幅Wpを1μmに設定したpチャネルJFETを5個並列に接続してもよい。 Instead of setting the channel width W p of the p-channel JFET in 5 [mu] m, for example, it may be connected to p-channel JFET set the channel width W p to 1μm in five parallel.

また、図5には、式(4)の右辺の温度特性を、式(6)を用いて計算した結果(Bで示したグラフ)、及び、式(4)の左辺の温度特性を、式(5)を用いて計算した結果(Cで示した曲線)も示している。 Further, in FIG. 5, the temperature characteristics on the right side of the equation (4) are calculated using the equation (6) (graph shown by B), and the temperature characteristics on the left side of the equation (4) are shown in the equation. The result calculated using (5) (curve shown by C) is also shown.

図5に示すように、矢印Qで示す高温(700K)において、Bで示したグラフと、Cで示したグラフは一致しており、論理閾値電圧Vthは1Vに設定されている。また、Bで示したグラフと、Cで示したグラフが、室温側で一致していなくても、図5及び図6に示すように、論理閾値電圧Vthは、室温側でもほぼ1Vになっている。 As shown in FIG. 5, at the high temperature (700K) indicated by the arrow Q, the graph indicated by B and the graph indicated by C are in agreement, and the logic threshold voltage Vth is set to 1V. Further, even if the graph shown by B and the graph shown by C do not match on the room temperature side, the logic threshold voltage Vth becomes almost 1 V even on the room temperature side as shown in FIGS. 5 and 6. ing.

このように、高温側で、式(4)が成立するように構造設計することによって、広い温度範囲において、論理閾値電圧Vthの変動を大幅に抑制することができる。すなわち、室温よりも高温側において、nチャネルJFET、及びpチャネルJFETの飽和電流IDn、IDpが同じ大きさになるように、nチャネルJFETのチャネル幅Wn、及びpチャネルJFETのチャネル幅Wpの比Wn/Wpを設定することによって、広い温度範囲において、論理閾値電圧Vthの変動を大幅に抑制することができる。これにより、広い温度範囲において、安定した動作が可能なSiC相補型電界効果トランジスタが得られる。 As described above, by designing the structure so that the equation (4) holds on the high temperature side, the fluctuation of the logic threshold voltage Vth can be significantly suppressed in a wide temperature range. That is, the channel width Wn of the n-channel JFET and the channel width Wp of the p-channel JFET so that the saturation currents I Dn and I Dp of the n-channel JFET and the p-channel JFET have the same magnitude on the higher temperature side than room temperature. By setting the ratio Wn / Wp of, the fluctuation of the logic threshold voltage Vth can be significantly suppressed in a wide temperature range. As a result, a SiC complementary field effect transistor capable of stable operation over a wide temperature range can be obtained.

なお、図5では、nチャネルJFETとpチャネルJFETのチャネル比Wn/Wpを、700Kで式(4)が成立するように設計した例を説明したが、図5において、450K以上では、グラフBとグラフCとの差が、450K以下の差に比べて少ないことから、450K以上で、式(4)が成立するように、すなわち、nチャネルJFET、及びpチャネルJFETの飽和電流IDn、IDpが同じ大きさになるように設計すればよい。 In addition, in FIG. 5, an example in which the channel ratio Wn / Wp of the n-channel JFET and the p-channel JFET is designed so that the equation (4) holds at 700K has been described. Since the difference between the graph C and the graph C is smaller than the difference of 450K or less, the equation (4) holds at 450K or more, that is, the saturation currents I Dn , I of the n-channel JFET and the p-channel JFET. It may be designed so that Dp has the same size.

また、上記の説明では、nチャネルJFETとpチャネルJFETのチャネル比Wn/Wpを、高温側(450K以上)で、nチャネルJFET、及びpチャネルJFETの飽和電流IDn、IDpが一致するように設計したが、必ずしも一致させる必要はなく、広い温度範囲で論理閾値電圧Vthの変動が抑制できる範囲で、飽和電流IDn、IDpを揃えればよい。 Further, in the above description, the channel ratio Wn / Wp of the n-channel JFET and the p-channel JFET is set so that the saturation currents I Dn and I Dp of the n-channel JFET and the p-channel JFET match on the high temperature side (450 K or more). However, it is not always necessary to match them, and the saturation currents I Dn and I Dp may be aligned within a range in which the fluctuation of the logic threshold voltage Vth can be suppressed in a wide temperature range.

なお、チャネル幅の比Wn/Wpを設定する代わりに、nチャネルJFETのチャネル長Ln、及びpチャネルJFETのチャネル長Lpの比Ln/Lpを設定してもよい。 Instead of setting the ratio Wn / Wp of the channel width, the ratio Ln / Lp of the channel length Ln of the n-channel JFET and the channel length Lp of the p-channel JFET may be set.

(第2の実施形態)
上記実施形態では、論理閾値電圧Vthを決定するパラメータとして、nチャネルJFETの閾値電圧VTn、及びpチャネルJFETの閾値電圧VTpに着目したが、本願発明者等は、上記の式(5)に示したβのパラメータのうち、温度変化に最も影響があるパラメータとして、埋込チャネル領域13にドープされたp型不純物の正孔密度pに着目した。
(Second embodiment)
In the above embodiment, the parameter for determining the logic threshold voltage V th, the threshold voltage V Tn of the n-channel JFET, and was focused on the threshold voltage V Tp of the p-channel JFET, the present inventors have found that the above equation (5 ) to β among the parameters of R shown, as parameters that most affect the temperature change, focusing on the hole density p p a p-type impurity doped in the buried channel region 13.

図7は、SiC JFETにおいて、電子及び正孔のキャリア密度の温度依存性を示したグラフである。ここで、Aで示したグラフが電子密度n、Bで示したグラフが正孔密度pを示す。n型不純物は、P(リン)、p型不純物はAl(アルミニウム)である。 FIG. 7 is a graph showing the temperature dependence of the carrier densities of electrons and holes in a SiC JFET. Here, the graph chart shown in A showed electron density n n, and B represents a hole density p p. The n-type impurity is P (phosphorus) and the p-type impurity is Al (aluminum).

図7に示すように、電子密度nは、広い温度範囲においてほぼ一定であるのに対し、正孔密度pは、室温から高温にかけて大きく変化している。これは、n型不純物のエネルギー準位が、伝導帯端から浅く(約0.06eV)、イオン化率が大きいのに対し、p型不純物のエネルギー準位が、価電子帯端から深く(約0.2eV)、イオン化率が小さいためである。そのため、正孔密度pのみが温度変化が大きく、式(5)に示すように、正孔密度pの温度変化が、β(∝n/p)の温度変化に大きく影響する。 As shown in FIG. 7, the electron density n n is contrast is nearly constant over a wide temperature range, a hole density p p is significantly changed over the hot from room. This is because the energy level of the n-type impurity is shallow from the conduction band end (about 0.06 eV) and the ionization rate is large, while the energy level of the p-type impurity is deep from the valence band end (about 0). .2eV), because the ionization rate is small. Therefore, only the hole density p p is the temperature change is large, as shown in Equation (5), the temperature change of the hole density p p greatly affects the temperature change of the beta R (.alpha.n n / p p) ..

そこで、n型不純物として、p型不純物と同じように深いエネルギー準位を有する不純物を用いることによって、電子密度nの温度変化を、正孔密度pの温度変化と揃えることができる。 Therefore, the n-type impurity by using the impurity having a similar deep energy levels and the p-type impurity, the temperature variation of the electron density n n, can be aligned with the temperature change of the hole density p p.

図8は、n型不純物のエネルギー準位が、伝導帯端から深い不純物として、S(硫黄)を用いた場合の電子及び正孔のキャリア密度の温度依存性を示したグラフである。なお、SSのエネルギー準位は、伝導帯端から約0.26eVである。ここで、Aで示したグラフが正孔密度p、Bで示したグラフが電子密度nを示す。図8に示すように、電子密度n、及び正孔密度pは、室温から高温にかけて、広い温度範囲でほぼ同じように変化する。 FIG. 8 is a graph showing the temperature dependence of the carrier density of electrons and holes when the energy level of the n-type impurity is S (sulfur) as an impurity deep from the conduction band end. The energy level of SS is about 0.26 eV from the end of the conduction band. Here, the graph indicated by A indicates the hole density pp , and the graph indicated by B indicates the electron density n n . As shown in FIG. 8, the electron density n n, and hole density p p is toward the high temperature from room temperature, varies in substantially the same manner over a wide temperature range.

図9は、n型不純物としてS、p型不純物としてAlを用いた場合の論理閾値電圧Vthの温度特性を、上記式(7)を用いて計算で求めたグラフ(Aで示したグラフ)である。また、図10は、インバータ回路の入出力特性の温度特性を周知の電流−電圧特性の式を用いて計算で求めたグラフである。なお、図10には、式(4)の右辺の温度特性を、式(6)を用いて計算した結果(Bで示したグラフ)、及び、式(4)の左辺の温度特性を、式(5)を用いて計算した結果(Cで示した曲線)も示している。 FIG. 9 is a graph (graph shown by A) obtained by calculation using the above equation (7) for the temperature characteristics of the logical threshold voltage Vth when S is used as the n-type impurity and Al is used as the p-type impurity. Is. Further, FIG. 10 is a graph obtained by calculating the temperature characteristics of the input / output characteristics of the inverter circuit using a well-known current-voltage characteristic equation. In FIG. 10, the temperature characteristics on the right side of the equation (4) are calculated using the equation (6) (graph shown by B), and the temperature characteristics on the left side of the equation (4) are shown in the equation. The result calculated using (5) (curve shown by C) is also shown.

図9及び図10に示すように、論理閾値電圧Vthは、広い温度範囲で、約1Vになっている。これは、図9に示すように、Bで示したグラフと、Cで示したグラフが、広い温度範囲でほぼ重なっており、式(4)の右辺の温度特性と、式(4)の左辺の温度特性が、ほぼ一致し、式(4)が、広い温度範囲で成立しているためである。 As shown in FIGS. 9 and 10, the logic threshold voltage Vth is about 1 V over a wide temperature range. As shown in FIG. 9, the graph shown by B and the graph shown by C almost overlap in a wide temperature range, and the temperature characteristics on the right side of the equation (4) and the left side of the equation (4) are substantially overlapped. This is because the temperature characteristics of the above are almost the same, and the equation (4) is established in a wide temperature range.

このように、n型不純物として、p型不純物と同じように深いエネルギー準位を有する不純物を用いることによって、広い温度範囲において、論理閾値電圧Vthの変動を大幅に抑制することができる。ここで、nチャネルJFETの埋込チャネル領域13にドープされたn型不純物のエネルギー準位は、伝導帯端から0.13eV以上離れていることが好ましい。 As described above, by using an impurity having a deep energy level as the p-type impurity as the n-type impurity, the fluctuation of the logic threshold voltage Vth can be significantly suppressed in a wide temperature range. Here, the energy level of the n-type impurity doped in the embedded channel region 13 of the n-channel JFET is preferably separated from the conduction band end by 0.13 eV or more.

図8では、深いエネルギー準位を有するn型不純物として、S(硫黄)を用いる例を説明したが、S以外に、例えばAs(ヒ素)等を用いることができる。ここで、Asのエネルギー準位は、伝導帯端から約0.13eVである(文献:J. B. Tucker et al., Diamond and Related Materials 9 (2000) 1887)。図7のAで示したグラフのn型不純物(P)のエネルギー準位が0.06eVで、図8のAで示したグラフのn型不純物(S)のエネルギー準位が0.26eVであることから、エネルギー準位が0.13eVのAsのキャリア密度の温度依存性は、その中間付近であることから、Bで示したグラフのp型不純物(Al)のキャリア密度の温度依存性に近くなり、論理閾値電圧Vthの変動を抑えることができるものと推定される。 In FIG. 8, an example in which S (sulfur) is used as an n-type impurity having a deep energy level has been described, but for example, As (arsenic) or the like can be used in addition to S. Here, the energy level of As is about 0.13 eV from the end of the conduction band (Reference: JB Tucker et al., Diamond and Related Materials 9 (2000) 1887). The energy level of the n-type impurity (P) in the graph shown in FIG. 7A is 0.06 eV, and the energy level of the n-type impurity (S) in the graph shown in FIG. 8A is 0.26 eV. Therefore, the temperature dependence of the carrier density of As with an energy level of 0.13 eV is near the middle, and is close to the temperature dependence of the carrier density of the p-type impurity (Al) in the graph shown in B. Therefore, it is presumed that the fluctuation of the logic threshold voltage Vth can be suppressed.

本実施形態では、SiC JFETの新規な構造設計により、広い温度範囲において、論理閾値電圧Vthの変動を大幅に抑制することができるが、SiCJFETの作製プロセスのバラツキにより、デバイスパラメータが設計値からずれることによって、論理閾値電圧Vthが変動することがある。本実施形態では、このような場合でも、論理閾値電圧Vthの変動を抑制する効果が得られる。以下、SiCJFETのチャネル厚さDが設計値からずれた場合を例に説明する。 In the present embodiment, the fluctuation of the logic threshold voltage Vth can be significantly suppressed in a wide temperature range by the novel structural design of the SiC JFET, but the device parameters are changed from the design values due to the variation in the manufacturing process of the SiC JFET. The deviation may cause the logic threshold voltage Vth to fluctuate. In the present embodiment, even in such a case, the effect of suppressing the fluctuation of the logic threshold voltage Vth can be obtained. Hereinafter, a case where the channel thickness D of the SiC JFET deviates from the design value will be described as an example.

論理閾値電圧Vthは、上記の式(7)で決まるが、式(7)中の閾値電圧Vは、以下の式(8)で求められる。 Logic threshold voltage V th is determined by the above equation (7), the threshold voltage V T in equation (7) is obtained by the following equation (8).

Figure 2021197517
Figure 2021197517


ここで、ψは拡散電位、ψはピンチオフ電位である。また、ピンチオフ電位ψは、以下の式(9)で求められる。 Here, ψ j is the diffusion potential and ψ p is the pinch-off potential. Further, the pinch-off potential ψ p is obtained by the following equation (9).

Figure 2021197517
Figure 2021197517


ここで、qは電子の電荷、εsはSiCの誘電率、Nは埋込チャネル領域13の不純物濃度、Dは埋込チャネル領域13の厚さである。 Here, q is the charge of electrons, ε s is the dielectric constant of SiC, N is the impurity concentration of the embedded channel region 13, and D is the thickness of the embedded channel region 13.

式(9)に示すように、チャネル厚みDが変化すると、ピンチオフ電位ψが変化し、式(8)に示すように、ピンチオフ電位ψが変化すると、閾値電圧Vも変化する。そのため、式(7)に示すように、論理閾値電圧Vthも変化する。 As shown in the equation (9), when the channel thickness D changes, the pinch-off potential ψ p changes, and as shown in the equation (8), when the pinch-off potential ψ p changes, the threshold voltage VT also changes. Therefore, as shown in the equation (7), the logic threshold voltage Vth also changes.

図11は、チャネル厚さDが、設計値425nmに対して、プロセスバラツキにより500nmになった場合のインバータ回路の入出力特性を示したグラフである。Aで示したグラフが、D=425nmの場合、Bに示したグラフが、D=500nmで、n型不純物にP(浅いエネルギー準位)を用いた場合、Cに示したグラフが、D=500nmで、n型不純物にS(深いエネルギー準位)を用いた場合を、それぞれ示す。 FIG. 11 is a graph showing the input / output characteristics of the inverter circuit when the channel thickness D becomes 500 nm due to process variation with respect to the design value of 425 nm. When the graph shown by A is D = 425 nm, the graph shown by B is D = 500 nm, and when P (shallow energy level) is used for the n-type impurity, the graph shown by C is D =. The case where S (deep energy level) is used for the n-type impurity at 500 nm is shown respectively.

図11に示すように、n型不純物にSを用いた場合の方が、Pを用いた場合よりも、論理閾値電圧Vthの変化が小さい。すなわち、エネルギー準位の深いn型不純物を用いることによって、プロセスバラツキにより、デバイスパラメータが設計値からずれても、論理閾値電圧Vthの変動を抑えることができる。 As shown in FIG. 11, the change in the logic threshold voltage Vth is smaller when S is used as the n-type impurity than when P is used. That is, by using n-type impurities having a deep energy level, it is possible to suppress fluctuations in the logic threshold voltage Vth even if the device parameters deviate from the design values due to process variation.

上記では、チャネル厚みDの変動を例に説明したが、他のデバイスパラメータが変動した場合にも、同様の効果を得ることができる。 In the above, the variation of the channel thickness D has been described as an example, but the same effect can be obtained even when other device parameters are varied.

(第3の実施形態)
上記実施形態では、nチャネルJFETの飽和電流IDnと、pチャネルJFETの飽和電流IDpが、広い温度範囲で一致するように、JFETの構造設計を行ったが、図12に示すように、SiC基板10に、nチャネルJFET1の埋込チャネル領域13と同じn型不純物のイオン注入領域22で抵抗20を形成し、JFET1に抵抗20を直列接続した構成にしてもよい。この場合、イオン注入領域22のn型不純物には、エネルギー準位の深い不純物(例えばS)を使用する。
(Third embodiment)
In the above embodiment , the structure of the JFET is designed so that the saturation current I Dn of the n-channel JFET and the saturation current I Dp of the p-channel JFET match in a wide temperature range. As shown in FIG. A resistor 20 may be formed on the SiC substrate 10 in the ion implantation region 22 of the same n-type impurity as the embedded channel region 13 of the n-channel JFET 1, and the resistor 20 may be connected in series to the JFET 1. In this case, impurities having a deep energy level (for example, S) are used as the n-type impurities in the ion implantation region 22.

抵抗20が直列接続されたnチャネルJFET1では、抵抗20による電圧降下分だけドレイン電圧が低下する。そのため、ドレイン電圧は、抵抗20の温度変化に応じて変化する。その結果、nチャネルJFETの飽和電流IDnと、pチャネルJFETの飽和電流IDpを、広い温度範囲で一致させることができる。これにより、広い温度範囲で、論理閾値電圧Vthの変動を抑えることができる。 In the n-channel JFET1 in which the resistors 20 are connected in series, the drain voltage drops by the amount of the voltage drop due to the resistors 20. Therefore, the drain voltage changes according to the temperature change of the resistor 20. As a result, the saturation current I Dn of the n-channel JFET and the saturation current I Dp of the p-channel JFET can be matched in a wide temperature range. Thereby, the fluctuation of the logic threshold voltage Vth can be suppressed in a wide temperature range.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。 Although the present invention has been described above in terms of preferred embodiments, such a description is not a limitation, and of course, various modifications can be made.

例えば、上記実施形態では、SiC相補型JFETをインバータ回路に適用した例を説明したが、他の論理ゲートにも適用することもできる。 For example, in the above embodiment, the example in which the SiC complementary JFET is applied to the inverter circuit has been described, but it can also be applied to other logic gates.

図13は、ノーマリオフ型のnチャネルJFETと、ノーマリオフ型のpチャネルJFETとで構成した相補型JFETからなるn入力(多入力)NAND回路を示した図である。 FIG. 13 is a diagram showing an n-input (multi-input) NAND circuit including a complementary JFET composed of a normally-off type n-channel JFET and a normally-off type p-channel JFET.

図13に示すように、nチャネルJFETが直列接続され、pチャネルJFETが並列接続されている。そのため、直列接続されたnチャネルJFETは、チャネル長がn倍されたと考えられ、IDn=IDpを満たすためには、nチャネルJFETのベータ値βをn倍する必要がある。従って、この場合、IDn=IDpを満たすために、上記式(3)の代わりに、以下の式(10)が成立するよう、チャネル幅の比Wn/Wp、または、チャネル長の比Ln/Lpを調整すればよい。 As shown in FIG. 13, n-channel JFETs are connected in series and p-channel JFETs are connected in parallel. Therefore, it is considered that the channel length of the n-channel JFETs connected in series is multiplied by n, and it is necessary to multiply the beta value β of the n-channel JFET by n in order to satisfy IDn = IDp. Therefore, in this case, in order to satisfy IDn = IDp , the channel width ratio Wn / Wp or the channel length ratio Ln so that the following equation (10) is established instead of the above equation (3). / Lp may be adjusted.

Figure 2021197517
Figure 2021197517


図14は、ノーマリオフ型のnチャネルJFETと、ノーマリオフ型のpチャネルJFETとで構成した相補型JFETからなるn入力NOR回路を示した図である。 FIG. 14 is a diagram showing an n-input NOR circuit including a complementary JFET composed of a normally-off type n-channel JFET and a normally-off type p-channel JFET.

図14に示すように、nチャネルJFETが並列接続され、pチャネルJFETが直列接続されている。そのため、直列接続されたpチャネルJFETは、チャネル長がn倍されたと考えられ、IDn=IDpを満たすためには、pチャネルJFETのベータ値βをn倍する必要がある。従って、この場合、IDn=IDpを満たすために、上記式(3)の代わりに、以下の式(11)が成立するよう、チャネル幅の比Wn/Wp、または、チャネル長の比Ln/Lpを調整すればよい。 As shown in FIG. 14, n-channel JFETs are connected in parallel and p-channel JFETs are connected in series. Therefore, it is considered that the channel length of the p-channel JFETs connected in series is multiplied by n, and it is necessary to multiply the beta value β of the p-channel JFET by n in order to satisfy IDn = IDp. Therefore, in this case, in order to satisfy IDn = IDp , the channel width ratio Wn / Wp or the channel length ratio Ln so that the following equation (11) is established instead of the above equation (3). / Lp may be adjusted.

Figure 2021197517
Figure 2021197517


また、上記実施形態では、上記式(3)から、電源電圧VDDを2V、Vthを1Vとして、式(4)を算出し、高温側(450K以上)において、式(4)が成立するよう、チャネル幅の比Wn/Wp、または、チャネル長の比Ln/Lpを調整したが、電源電圧を2.5V以下の任意の値VDDとして、以下の式(10)が高温側で成立するよう、チャネル幅の比Wn/Wp、または、チャネル長の比Ln/Lpを調整してもよい。 Further, in the above embodiment, the formula (4) is calculated from the above formula (3) with the power supply voltage VDD as 2V and Vth as 1V, and the formula (4) is established on the high temperature side (450K or higher). The following equation (10) holds on the high temperature side, assuming that the channel width ratio Wn / Wp or the channel length ratio Ln / Lp is adjusted, but the power supply voltage is an arbitrary value VDD of 2.5 V or less. As such, the ratio Wn / Wp of the channel width or the ratio Ln / Lp of the channel length may be adjusted.

Figure 2021197517
Figure 2021197517


また、上記実施形態では、SiC相補型JFETを例に説明したが、SiC相補型MOSFETにも適用することができる。 Further, in the above embodiment, the SiC complementary type JFET has been described as an example, but it can also be applied to the SiC complementary type MOSFET.

また、上記実施形態では、図1に示した構造のSiC JFETを例に説明したが、勿論、他の構造のSiC JFETまたはSiC MOSFETに適用することができる。 Further, in the above embodiment, the SiC JFET having the structure shown in FIG. 1 has been described as an example, but of course, it can be applied to a SiC JFET or a SiC MOSFET having another structure.

また、上記実施形態では、SiC基板を用いて形成されたSiC JFETを例に説明したが、ワイドギャップ半導体であるGaNやダイヤモンドを基板に用いて形成した電界効果トランジスタにも適用することができる。 Further, in the above embodiment, the SiC JFET formed by using a SiC substrate has been described as an example, but it can also be applied to a field effect transistor formed by using GaN or diamond, which is a wide-gap semiconductor, as an example.

1 JFET
1a nチャネルJFET
1b pチャネルJFET
10 SiC基板
11 ソース領域
12 ドレイン領域
13 埋込チャネル領域
14a、14b ゲート領域
20 抵抗
22 イオン注入領域
1 JFET
1an channel JFET
1b p channel JFET
10 SiC substrate
11 Source area
12 drain area
13 Embedded channel area
14a, 14b Gate area
20 resistance
22 Ion implantation area

Claims (5)

SiC基板に、ノーマリオフ型のnチャネル電界効果トランジスタ、及びpチャネル電界効果トランジスタが形成されたSiC相補型電界効果トランジスタであって、
450K以上の温度において、前記nチャネル電界効果トランジスタ、及び前記pチャネル電界効果トランジスタの飽和電流が同じ大きさになるように、前記nチャネル電界効果トランジスタのチャネル幅Wn、及び前記pチャネル電界効果トランジスタのチャネル幅Wpの比Wn/Wp、または、前記nチャネル電界効果トランジスタのチャネル長Ln、及び前記pチャネル電界効果トランジスタのチャネル長Lpの比Ln/Lpが設定されている、SiC相補型電界効果トランジスタ。
A SiC complementary field-effect transistor in which a normally-off type n-channel field-effect transistor and a p-channel field-effect transistor are formed on a SiC substrate.
The channel width Wn of the n-channel field-effect transistor and the p-channel field-effect transistor so that the saturation currents of the n-channel field-effect transistor and the p-channel field-effect transistor have the same magnitude at a temperature of 450 K or higher. The ratio Wn / Wp of the channel width Wp, or the ratio Ln / Lp of the channel length Ln of the n-channel field effect transistor and the channel length Lp of the p-channel field effect transistor is set. Transistor.
前記nチャネル電界効果トランジスタ、及び前記pチャネル電界効果トランジスタは、それぞれ、nチャネル接合型電界効果トランジスタ、及びpチャネル接合型電界効果トランジスタで構成されている、請求項1に記載のSiC相補型電界効果トランジスタ。 The SiC complementary electric field according to claim 1, wherein the n-channel field-effect transistor and the p-channel field-effect transistor are composed of an n-channel junction field-effect transistor and a p-channel junction field-effect transistor, respectively. Effect transistor. SiC基板に、ノーマリオフ型のnチャネル電界効果トランジスタ、及びpチャネル電界効果トランジスタが形成されたSiC相補型電界効果トランジスタであって、
前記pチャネル電界効果トランジスタのチャネル領域にドープされたp型不純物がAlであって、
前記nチャネル電界効果トランジスタのチャネル領域にドープされたn型不純物のエネルギー準位が、伝導帯端から0.13eV以上離れている、SiC相補型電界効果トランジスタ。
A SiC complementary field-effect transistor in which a normally-off type n-channel field-effect transistor and a p-channel field-effect transistor are formed on a SiC substrate.
The p-type impurity doped in the channel region of the p-channel field effect transistor is Al.
A SiC complementary field effect transistor in which the energy level of the n-type impurity doped in the channel region of the n-channel field effect transistor is separated from the conduction band end by 0.13 eV or more.
前記nチャネル電界効果トランジスタのチャネル領域にドープされたn型不純物は、SまたはAsである、請求項3に記載のSiC相補型電界効果トランジスタ。 The SiC complementary field effect transistor according to claim 3, wherein the n-type impurities doped in the channel region of the n-channel field effect transistor are S or As. 前記nチャネル電界効果トランジスタ、及び前記pチャネル電界効果トランジスタは、それぞれ、nチャネル接合型電界効果トランジスタ、及びpチャネル接合型電界効果トランジスタで構成されている、請求項3に記載のSiC相補型電界効果トランジスタ。 The SiC complementary electric field according to claim 3, wherein the n-channel field-effect transistor and the p-channel field-effect transistor are composed of an n-channel junction field-effect transistor and a p-channel junction field-effect transistor, respectively. Effect transistor.
JP2020104834A 2020-06-17 2020-06-17 SiC complementary field effect transistor Pending JP2021197517A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020104834A JP2021197517A (en) 2020-06-17 2020-06-17 SiC complementary field effect transistor
PCT/JP2021/020585 WO2021256230A1 (en) 2020-06-17 2021-05-31 SiC COMPLEMENTARY TYPE FIELD EFFECT TRANSISTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020104834A JP2021197517A (en) 2020-06-17 2020-06-17 SiC complementary field effect transistor

Publications (1)

Publication Number Publication Date
JP2021197517A true JP2021197517A (en) 2021-12-27

Family

ID=79196083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020104834A Pending JP2021197517A (en) 2020-06-17 2020-06-17 SiC complementary field effect transistor

Country Status (2)

Country Link
JP (1) JP2021197517A (en)
WO (1) WO2021256230A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126245B2 (en) * 2010-02-12 2013-01-23 株式会社デンソー Silicon carbide semiconductor device having complementary junction field effect transistor and method of manufacturing the same
JP6718612B2 (en) * 2016-05-27 2020-07-08 国立大学法人京都大学 SiC junction field effect transistor and SiC complementary junction field effect transistor
JP7074320B2 (en) * 2017-11-16 2022-05-24 国立大学法人京都大学 SiC junction field effect transistor and SiC complementary junction field effect transistor

Also Published As

Publication number Publication date
WO2021256230A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US4814839A (en) Insulated gate static induction transistor and integrated circuit including same
US7211845B1 (en) Multiple doped channel in a multiple doped gate junction field effect transistor
US6503782B2 (en) Complementary accumulation-mode JFET integrated circuit topology using wide (&gt;2eV) bandgap semiconductors
TWI746823B (en) Reference voltage generating device
US11569381B2 (en) Diamond MIS transistor
JP2022044813A (en) Semiconductor logic element and logic circuits
TWI813716B (en) Circuit and electronic device including an enhancement-mode transistor
JP7074320B2 (en) SiC junction field effect transistor and SiC complementary junction field effect transistor
JP6550869B2 (en) Semiconductor device
US11929402B2 (en) Field-effect transistor and method for designing same
US6124618A (en) Dynamic threshold MOSFET using accumulated base BJT level shifter for low voltage sub-quarter micron transistor
Chan et al. Comparative study of RESURF Si/SiC LDMOSFETs for high-temperature applications using TCAD modeling
WO2021256230A1 (en) SiC COMPLEMENTARY TYPE FIELD EFFECT TRANSISTOR
JP5594753B2 (en) Transistor and semiconductor device
US3436622A (en) Compound channel insulated gate triode
JP6718612B2 (en) SiC junction field effect transistor and SiC complementary junction field effect transistor
US3405330A (en) Remote-cutoff field effect transistor
US6262460B1 (en) Long channel MOS transistor that utilizes a schottky diode to increase the threshold voltage of the transistor
JP2023155985A (en) SiC complementary field effect transistor
JPS6241428B2 (en)
WO2024014510A1 (en) SiC JUNCTION FIELD EFFECT TRANSISTOR AND SiC COMPLEMENTARY JUNCTION FIELD EFFECT TRANSISTOR
Amarnath et al. TCAD-based comparative study of gallium-oxide based FinFET and MOSFET
EP0093557A2 (en) High-speed complementary semiconductor integrated circuit
Fujii et al. Analysis of the Effects of Boron Transient Enhanced Diffusion on Threshold Voltage Mismatch in Steep Retrograde Doping NMOSFETs with Inserted Oxygen Layers
US7253045B1 (en) Selective P-channel VT adjustment in SiGe system for leakage optimization

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240501