JP2021193700A - 固体撮像素子および固体撮像素子の制御方法 - Google Patents

固体撮像素子および固体撮像素子の制御方法 Download PDF

Info

Publication number
JP2021193700A
JP2021193700A JP2020099313A JP2020099313A JP2021193700A JP 2021193700 A JP2021193700 A JP 2021193700A JP 2020099313 A JP2020099313 A JP 2020099313A JP 2020099313 A JP2020099313 A JP 2020099313A JP 2021193700 A JP2021193700 A JP 2021193700A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
conversion unit
voltage
transfer electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020099313A
Other languages
English (en)
Inventor
昌也 荻野
Masaya Ogino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020099313A priority Critical patent/JP2021193700A/ja
Publication of JP2021193700A publication Critical patent/JP2021193700A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】光学系の瞳分割位置が可変である固体撮像素子を提供できるようにする。【解決手段】固体撮像素子は、第1の画素を有し、前記第1の画素は、光を電荷に変換し、前記変換された電荷を蓄積する第1の光電変換部(101)と、前記第1の光電変換部に蓄積されている電荷を転送する第1の転送電極(104)と、前記第1の転送電極とは別の一または複数の第1の電極(103)とを有し、前記第1の電極に異なる電圧を印加することにより、前記第1の光電変換部のポテンシャルが極大となる位置が変わる。【選択図】図1

Description

本発明は、固体撮像素子および固体撮像素子の制御方法に関する。
撮像素子自身を用いて焦点検出を行うことのできる、像面位相差検出機能を備えた撮像素子が知られている。像面位相差検出機能を備えた撮像素子は、特許文献1のように、画素上に部分的に遮光マスクを配置することや、特許文献2のように、画素のポテンシャル分布によって、光学系の瞳の特定の領域を透過した入射光の強度を個別に取得することができる。これらの遮光マスクや画素のポテンシャル分布とマイクロレンズの配置によって、光学系の瞳の分割位置が決まる。
特許文献3では、電荷排出部に印加する電圧によって、瞳分割しないで信号出力する状態と、瞳分割して信号出力する状態を切り替えることができる技術が開示されている。しかしながら、瞳分割位置は、素子分離領域の位置によって決まっており、後から変更することができない。
特開2000−156823号公報 特開2001−250931号公報 特開2012−49201号公報
レンズ交換式カメラにおいては、使用するレンズの瞳距離によって、撮像素子の画面周辺の画素に形成される瞳の像の位置が変化する。そのため、位相差検出機能を備えた撮像素子においては、ある瞳距離の光学系を設定し、その瞳距離に適した瞳像の分割がなされる位置に遮光マスクやポテンシャル分布が形成される。しかしながら、設定とは異なる瞳距離のレンズを用いた場合、光電変換を行う部材上にできる瞳像の中心がずれてしまい、瞳を分割して得られる出力信号にアンバランスが生じ、位相差検出性能が低下する。特に、小絞り(瞳径が小さい状態)では、中心が離れる側の領域からの出力信号が小さくなることによって、焦点検出性能が大きく低下または不能になるという課題がある。
本発明の目的は、光学系の瞳分割位置が可変である固体撮像素子を提供できるようにすることである。
本発明の固体撮像素子は、第1の画素を有し、前記第1の画素は、光を電荷に変換し、前記変換された電荷を蓄積する第1の光電変換部と、前記第1の光電変換部に蓄積されている電荷を転送する第1の転送電極と、前記第1の転送電極とは別の一または複数の第1の電極とを有し、前記第1の電極に異なる電圧を印加することにより、前記第1の光電変換部のポテンシャルが極大となる位置が変わる。
本発明によれば、光学系の瞳分割位置が可変である固体撮像素子を提供することができる。
画素の構成例を示す図である。 固体撮像素子の構成例を示す図である。 画素の構成例を示す回路図である。 画素の構成例を示す図である。 画素の構成例を示す図である。 MOD電極に印加する電圧を示す図である。 画素の構成例を示す図である。 画素の構成例を示す図である。
以下に、本発明の好ましい実施の形態を、図面に基づいて詳細に説明する。
(第1の実施形態)
図1(A)〜(F)は、第1の実施形態による固体撮像素子の画素の構成例を示す図である。図1(A)〜(C)は、画素の上面図である。図1(D)〜(F)は、それぞれ、図1(A)〜(C)における線X−X’上における画素内のポテンシャルを示す図である。画素は、光電変換部101と、オーバーフロードレイン(以下、OFDという)102と、OFD電極103と、転送電極104と、フローティングディフュージョン(以下、FDという)105とを有する。
光電変換部101は、光を電荷(電子またはホール)に変換し、変換された電荷を蓄積する。光電変換部101の形状は、半導体基板の不純物分布で作成される。光電変換部101の不純物は、画素内で密度に傾斜を持たせて分布させているため、図1(D)に示すように、光電変換部101内のポテンシャルも傾斜している。転送スイッチの転送電極104は、電圧が印加されることで、光電変換部101に蓄積されている電荷をFD105に転送する。光電変換部101は、OFDスイッチのOFD電極103を介して、OFD102に接続されている。OFD電極103は、OFDスイッチをオン/オフするための電極であり、転送電極104とは別の電極である。OFD電極103は、光電変換部101に蓄積されている電荷をOFD102に排出するための電極である。以下、固体撮像素子の制御方法を説明する。
図1(A)および(D)では、OFDスイッチのOFD電極103には電圧が印加されていない。そのため、図1(D)におけるポテンシャルは、半導体内の不純物分布で決まる。この状態では、光電変換部101の全領域106に入射した光によって生じた電子が転送スイッチの転送電極104によってFD105に転送される。OFD電極103に電圧を印加しない状態で、光電変換部101は、傾斜したポテンシャルを有する。
図1(B)および(E)は、OFDスイッチのOFD電極103に、例えば+2.0Vの電圧が印加された状態を示している。OFD電極103のつくる電場によって、光電変換部101内部のポテンシャルが影響を受け、図1(E)における光電変換部101内部のポテンシャルが、OFD電極103に近い場所ほど大きく変化し、ひしゃげた形状となる。この状態では、ポテンシャルが極大となる位置109より左に光が入射して光電変換された電子は、OFDスイッチがオンされると、OFD102に移動する。位置109より右側に光が入射して光電変換された電子は、転送スイッチがオンされると、FD105に転送される。すなわち、位置109の右側の領域108に入射した光の信号のみFD105に出力されることになり、位置109の左側の領域107に入射した光の信号は、OFD102に流れ、FD105に出力されない。OFD電極103に電圧を印加した状態で、転送電極104は、光電変換部101の領域108に蓄積されている電荷をFD105に転送する。
図1(C)および(F)は、OFDスイッチのOFD電極103に、例えば+3.5Vの電圧が印加された状態を示している。OFD電極103のつくる電場によって、光電変換部101内部のポテンシャルが影響を受け、図1(F)における光電変換部101内部のポテンシャルが、OFD電極103に近い場所ほど大きく変化し、ひしゃげた形状となる。ひしゃげの程度は、図1(B)および(E)の場合より大きい。この状態では、ポテンシャルが極大となる位置112より左に光が入射して光電変換された電子は、OFDスイッチがオンされると、OFD102に移動する。位置112より右側に光が入射して光電変換された電子は、転送スイッチがオンされると、FD105に転送される。すなわち、光電変換部101の右側の領域111に入射した光の信号のみFD105に出力されることになり、光電変換部101の左側の領域110に入射した光の信号は、OFD102に流れ、FD105に出力されない。OFD電極103に電圧を印加した状態で、転送電極104は、光電変換部101の領域111に蓄積されている電荷をFD105に転送する。
以上から、OFDスイッチのOFD電極103に印加される電圧を変化させることで、光電変換部101のうち、信号を出力する領域を変化させることができる。すなわち、OFDスイッチのOFD電極103に印加される電圧によって、瞳分割せずに入射光量の信号を出力したり、瞳分割位置を変更することが可能になる。OFD電極103に異なる電圧を印加することにより、光電変換部101のポテンシャルが極大となる位置109または112が変わる。
図2は、第1の実施形態による固体撮像素子200の構成例を示す図である。画素アレイ217は、2次元配列したm行×n列の画素218を有する。図2では、4行×4列の画素218のみを示す。
固体撮像素子200は、OFD制御回路201と、電源電圧202,208と、OFD列制御回路203〜206と、行選択制御回路207と、列信号処理パルス209と、列信号処理回路210〜213とを有する。さらに、固体撮像素子200は、タイミング制御回路214と、水平走査回路215と、クロック信号216と、画素アレイ217と、画素218と、出力端子219とを有する。
図3は、図2の画素218の構成例を示す回路図である。画素218は、図1(A)〜(F)の画素に対応する。画素218は、電源電圧ノード301,304と、リセットスイッチ302と、OFDスイッチ303と、フォトダイオード305と、転送スイッチ306と、FD307とを有する。さらに、画素218は、ソースフォロアトランジスタ308と、行選択スイッチ309と、出力線310とを有する。
電源電圧ノード304は、図1(A)〜(F)のOFD102に対応する。OFDスイッチ303のゲート電極は、図1(A)〜(F)のOFD電極103に対応する。フォトダイオード305は、図1(A)〜(F)の光電変換部101に対応する。FD307は、図1(A)〜(F)のFD105に対応する。転送スイッチ306のゲート電極は、図1(A)〜(F)の転送電極104に対応する。
フォトダイオード305は、光が入射すると、光電変換によって電子を生成する。転送スイッチ306は、行選択制御回路207の転送信号に応じて、フォトダイオード305により生成された電子をFD307に転送する。すると、FD307の電位が変化する。ソースフォロアトランジスタ308は、FD307の電位の変化に応じた信号を、出力線310に電圧として出力する。各画素218は、行選択制御回路207によって行ごとに選択される。行選択スイッチ309は、行選択制御回路207の行選択信号に応じて、ソースフォロアトランジスタ308を出力線310に接続する。リセットスイッチ302は、行選択制御回路207のリセット信号に応じて、フォトダイオード305とFD307の電子をリセットする。OFDスイッチ303は、図1(A)〜(F)のように、OFD列制御回路203〜206からの電圧に応じて、ポテンシャルが変化する。
列信号処理回路210〜213は、画素218が出力線310に出力する信号を増幅する。水平走査回路215は、水平方向の走査を行い、列信号処理回路210〜213により増幅された信号を順に出力端子219に出力する。固体撮像素子200は、信号を出力端子219から順次出力する。出力された信号は、固体撮像素子200のXYアドレスに対応させて再配列することで、2次元画像が得られる。
タイミング制御回路214は、クロック信号216を基に、OFD制御回路201と行選択制御回路207と水平走査回路215を制御する。OFD制御回路201は、OFD列制御回路203〜206を制御する。OFD列制御回路203〜206は、図3のOFDスイッチ303のゲート電極の電圧を制御する。
OFD制御回路201は、各列のOFD列制御回路203〜206に対して、どのような電圧をOFDスイッチ303のOFD電極103に与えるかを示す信号を出力する。OFD列制御回路203〜206は、画素218のOFDスイッチ303のOFD電極103に印加される電圧を変化させる。OFD列制御回路203〜206は、OFD制御回路201からの信号に応じて、電源電圧202を調整し、列毎に、各画素218のOFDスイッチ303のOFD電極103の電圧を生成する。
画素218の左右で瞳分割する像面位相差検出画素の場合、瞳距離の変化による瞳の像のずれによる光量のアンバランスは、固体撮像素子200の左右の位置(水平像高)によって変化する。そのため、図2に示すように、列毎にOFDスイッチ303のOFD電極103の電位が制御できるようになっていれば、固体撮像素子200の左右の各位置(水平像高)で位相差検出に適した瞳分割位置が実現できる。
第1の列の画素218のOFD電極103に第1の電圧を印加し、第2の列の画素218のOFD電極103に第1の電圧とは異なる第2の電圧を印加する。第2の列の画素218のOFD電極103に印加する電圧は、第1の列の画素218のOFD電極103に印加する電圧とは異なる。
位相差検出画素が上下で瞳分割する画素の場合は、OFDスイッチ303のOFD電極103の電位を行毎に制御することで、位相差検出に適した瞳分割が実現できる。
瞳分割の特性を均等にするために、画面の中央を境に、画素218のOFDスイッチ303を瞳分割方向に対称に配置してもよい。そのようにすることで、画面内の各位置におけるOFDスイッチ303のOFD電極103に印加する電圧を対称にすることができ、特性の面内差が生じにくくなる。
複数の画素218が画面内に複数設けられる。複数の画素218は、瞳分割方向に対して、画面の中央を境界に対称である。複数の画素218のOFD電極に印加される電圧は、画面の中央から画素218までの距離に応じて変化する。
上記では、光電変換によって生じた電子によって入射光強度信号を出力するフォトダイオード305を有する固体撮像素子200の例を説明したが、ホールによって入射光強度信号を出力する素子でも同様の機能が実現できる。その場合、OFDスイッチ303のOFD電極103に印加される電圧は負の電圧となる。
(第2の実施形態)
図4(A)〜(F)は、第2の実施形態による画素218の構成例を示す図である。図4(A)〜(C)は、画素218の上面図である。図4(D)〜(F)は、それぞれ、図4(A)〜(C)における線X−X’上における画素218内のポテンシャルを示す図である。画素218は、光電変換部401と、画素内ポテンシャル調整部(以下、MOD電極という)403と、転送電極404と、FD405とを有する。
光電変換部401は、光を電荷(電子またはホール)に変換し、変換された電荷を蓄積する。光電変換部401は、半導体基板の不純物分布で作成される。光電変換部401の不純物は、画素218内で密度に傾斜を持たせて分布しているため、図4(D)に示すように、光電変換部401内のポテンシャルも傾斜している。転送スイッチ306の転送電極404は、電圧が印加されることで、光電変換部401に蓄積されている電荷をFD405に転送する。MOD電極403は、光電変換部401に隣接して、形成され、転送電極404とは別の電極である。
図4(A)および(D)では、MOD電極403に電圧が印加されていない。そのため、図4(D)におけるポテンシャルは、半導体内の不純物分布で決まる。この状態では、光電変換部401の全領域402に入射した光によって生じた電子が、転送スイッチ306の転送電極404によってFD405に転送される。
図4(B)および(E)では、MOD電極403に、例えば+2.0Vの電圧が印加された状態を示している。MOD電極403のつくる電場によって、光電変換部401内部のポテンシャルが影響を受け、図4(E)における光電変換部401内部のポテンシャルが、MOD電極403に近い場所ほど大きく変化し、ひしゃげた形状となる。この状態では、ポテンシャルが極大となる位置408より右に光が入射して光電変換された電子は、転送スイッチ306の転送電極404によってFD405に転送される。位置408より左に光が入射して光電変換された電子は、MOD電極403に電圧が印加されている状態では、保持されている。MOD電極403に電圧を印加した状態で、転送電極404は、転送スイッチ306をオンにし、位置408より右側の領域407に入射した光に対応する領域407に蓄積されている電子をFD405に転送する。その後、MOD電極403に電圧を印加しない状態で、転送電極404は、転送スイッチ306をオンにし、位置408より左側の領域406に入射した光に対応する光電変換部401に蓄積されている電子をFD405に転送する。
図4(C)および(F)では、MOD電極403に、例えば+3.5Vの電圧が印加された状態を示している。MOD電極403のつくる電場によって、光電変換部401内部のポテンシャルが影響を受け、図4(F)における光電変換部401内部のポテンシャルが、MOD電極403に近い場所ほど大きく変化し、ひしゃげた形状となる。ひしゃげの程度は、図4(B)および(E)の場合より大きい。この状態では、ポテンシャルが極大となる位置411より右側に光が入射して光電変換された電子は、転送スイッチ306の転送電極404によって、FD405に転送される。位置411より左に光が入射して光電変換された電子は、MOD電極403に電圧が印加されている状態では、保持されている。MOD電極403に電圧を印加した状態で、転送スイッチ306の転送電極404は、位置411より右側の領域410に入射した光に対応する領域410に蓄積されている電子をFD405に転送する。その後、MOD電極403に電圧を印加しない状態で、転送スイッチ306の転送電極404は、位置411より左側の領域409に入射した光に対応する光電変換部401に蓄積されている電子をFD405に転送する。
以上から、MOD電極403に印加される電圧を変化させ、MOD電極403に電圧を印加したときの転送と、MOD電極403に電圧を印加しないときの転送を行うことで、瞳分割位置を変更することが可能になる。
第1の実施形態では、図1(A)〜(F)の瞳分割位置109および112より左側に入射した光に対応する電子をFD105に転送することはできなかった。第2の実施形態では、図4(A)〜(F)の瞳分割位置408および411の左側および右側に入射した光に対応する電子をFD405に転送することができる。そのため、左側に入射した光に対応する電子の信号と右側に入射した光に対応する電子の信号を個別に利用することで、位相差検出を行い、オートフォーカス処理を行うことができる。また、左側に入射した光に対応する電子の信号と右側に入射した光に対応する電子の信号を合算することで、通常の撮像信号を得ることができる。
(第3の実施形態)
図5(A)〜(F)は、第3の実施形態による画素218の構成例を示す図である。図5(A)〜(C)は、画素218の上面図である。図5(D)〜(F)は、それぞれ、図5(A)〜(C)における線X−X’上における画素218内のポテンシャルを示す図である。画素218は、光電変換部501と、第2の転送スイッチの転送電極502と、画素内ポテンシャル調整部(以下、MOD電極という)503と、第1の転送スイッチの転送電極504と、FD505と、FD506とを有する。
光電変換部501は、光を電荷(電子またはホール)に変換し、変換された電荷を蓄積する。光電変換部501は、半導体基板の不純物分布で作成される。光電変換部501の不純物は、画素218内で密度に傾斜を持たせて分布しているため、図5(D)に示すように、光電変換部501内のポテンシャルも傾斜している。第1の転送スイッチの転送電極504は、電圧が印加されることで、光電変換部501に蓄積されている電荷をFD505に転送する。光電変換部501は、第1の転送スイッチの反対側にも第2の転送スイッチを備えている。第2の転送スイッチの転送電極502は、電圧が印加されることで、光電変換部501に蓄積されている電荷をFD506に転送する。第2の転送スイッチの転送電極502に隣接して、MOD電極503が形成されている。MOD電極503は、転送電極502および504とは別の電極である。
図5(A)および(D)では、MOD電極503に電圧が印加されていない。そのため、図5(D)におけるポテンシャルは、半導体内の不純物分布で決まる。この状態では、光電変換部501の全領域507に入射した光によって生じた電子が、第1の転送スイッチの転送電極504によって、FD505に転送される。
図5(B)および(E)では、MOD電極503に、例えば+2.0Vの電圧が印加された状態を示している。MOD電極503のつくる電場によって、光電変換部501内部のポテンシャルが影響を受け、図5(E)における光電変換部501内部のポテンシャルが、MOD電極503に近い場所ほど大きく変化し、ひしゃげた形状となる。この状態では、ポテンシャルが極大となる位置510より右に光が入射して光電変換された電子は、第1の転送スイッチの転送電極504によって、FD505に転送される。位置510より左に光が入射して光電変換された電子は、第2の転送スイッチの転送電極502によって、FD506に転送される。すなわち、光電変換部501の右側の領域509に入射した光に対応する電子は、第1の転送スイッチの転送電極504により、FD505に転送される。光電変換部501の左側の領域508に入射した光に対応する電子は、第2のスイッチの転送電極502により、FD506に転送される。
転送電極504は、光電変換部501のポテンシャルが極大となる位置と転送電極504との間に蓄積されている電荷をFD505に転送する。転送電極502は、光電変換部501のポテンシャルが極大となる位置と転送電極502との間に蓄積されている電荷をFD506に転送する。
図5(C)および(F)では、MOD電極503に、例えば+3.5Vの電圧が印加された状態を示している。MOD電極503のつくる電場によって、光電変換部501内部のポテンシャルが影響を受け、図5(F)における光電変換部501内部のポテンシャルが、MOD電極503に近い場所ほど大きく変化し、ひしゃげた形状となる。ひしゃげの程度は、図5(B)および(E)の場合より大きい。この状態では、ポテンシャルが極大となる位置513より右に光が入射して光電変換された電子は、第1の転送スイッチの転送電極504によって、FD505に転送される。位置513より左に光が入射して光電変換された電子は、第2の転送スイッチの転送電極502によって、FD506に転送される。すなわち、光電変換部501の右側の領域512に入射した光に対応する電子は、第1の転送スイッチの転送電極504により、FD505に転送される。光電変換部501の左側の領域511に入射した光に対応する電子は、第2の転送スイッチの転送電極502により、FD506に転送される。
以上から、MOD電極503に印加される電圧を変化させることで、瞳分割位置510および513を変更することが可能になる。第2の実施形態では、図4(A)〜(F)の瞳分割位置408および411の左右の領域に入射した光に対応する電子をFD405に転送するために、異なる時刻に転送を2回行う必要があった。第3の実施形態では、瞳分割位置510および513の左右の領域に入射した光に対応する電子は、異なる第1の転送スイッチの転送電極504と第2の転送スイッチの転送電極502によって、同時に転送することができ、高速な動作が可能になる。
次に、位相差検出に適した、瞳分割領域511および512毎の電子を均等にする方法を説明する。まず、MOD電極503に印加する電圧を変えて、任意のレンズを使用して複数の画像を取得する。画面の中央の画素218の瞳分割領域511および512の出力比S2/S1をMOD電極503の印加電圧の関数として、図6のような関係が得られる。この関係を各絞り値毎に求める。画面の中央の画素218を使用する理由は、瞳距離の影響を受けないようにするためである。
次に、使用したい光学系を装着し、その絞り値(例えばF5.6)に対応する図6の関係から読み取った、出力比S2/S1が1となるような電圧V2をMOD電極503に印加して画像を取得する。画面の中心から離れた画素218では、マイクロレンズ位置と使用したい光学系の瞳距離が一致しない限り、出力比S2/S1は1とはならない。
ある画素218の出力比S2/S1が0.8だったとする。出力比S2/S1が0.8の逆数1/0.8=1.25となるような位置の電圧V1を図6から読み取る。電圧V1をMOD電極503に印加することで、瞳分割領域511および512毎の出力差が抑制され、焦点検出性能が向上する。
上記の方法によれば、実測の出力比S2/S1とMOD電極503の電圧との関係を得ているため、瞳距離の影響だけでなく、配線やカラーフィルタによるケラレの影響まで含めて瞳分割領域511および512毎の出力差を抑制できる。
(第4の実施形態)
図7(A)〜(F)は、第4の実施形態による画素218の構成例を示す図である。図7(A)〜(C)は、画素218の上面図である。図7(D)〜(F)は、それぞれ、図7(A)〜(C)における線X−X'上における画素218内のポテンシャルを示す図である。画素218は、光電変換部701と、第2の転送スイッチの転送電極702と、第1の転送スイッチの転送電極704と、FD705と、傾斜形成電極707〜712と、FD713とを有する。
光電変換部701は、光を電荷(電子またはホール)に変換し、変換された電荷を蓄積する。光電変換部701は、半導体基板の不純物分布で作成される。第1の転送スイッチの転送電極704は、電圧が印加されることで、光電変換部701に蓄積されている電荷をFD705に転送する。光電変換部701は、第1のスイッチの反対側に第2の転送スイッチを備えている。第2の転送スイッチの転送電極702は、電圧が印加されることで、光電変換部701に蓄積されている電荷をFD713に転送する。光電変換部701の周囲には、傾斜形成電極707〜712が形成されている。傾斜形成電極707〜712は、転送電極702および704とは別の電極である。
図7(A)および(D)では、傾斜形成電極707〜712に電圧が印加されていない。そのため、図7(D)におけるポテンシャルは、半導体内の不純物分布で決まり、光電変換部701内で特定の方向に対して傾斜していない。この状態では、光電変換部701の全領域706に入射した光によって生じた電子が、第1の転送スイッチの転送電極704によって、FD705に転送される。複数の傾斜形成電極707〜712に電圧を印加しない状態で、光電変換部701は、傾斜していないポテンシャルを有する。
図7(B)および(E)では、傾斜形成電極707〜712に電圧が印加される。傾斜形成電極709および712に例えば+2.0Vの電圧が印加され、傾斜形成電極708および711に例えば−1.5Vの電圧が印加され、傾斜形成電極707および710に例えば−3.5Vの電圧が印加される。傾斜形成電極707〜712のつくる電場によって、光電変換部701内部のポテンシャルが影響を受け、画面の左右で傾斜したポテンシャルをもつ。
図7(C)および(F)では、傾斜形成電極707〜712に電圧が印加される。傾斜形成電極709および712に例えば3.0Vの電圧が印加され、傾斜形成電極708および711に例えば−3.5Vの電圧が印加され、傾斜形成電極707および710に例えば−2.0Vの電圧が印加される。傾斜形成電極707〜712で形成された図7(F)の光電変換部701内部のポテンシャルは、位置716で極大値を持つ。位置716より右側の領域715に入射した光に対応する電子は、第1の転送スイッチの転送電極704により、FD705に転送される。位置716より左側の領域714に入射した光に対応する電子は、第2の転送スイッチの転送電極702により、FD713に転送される。
転送電極704は、光電変換部701のポテンシャルが極大となる位置と転送電極704との間に蓄積されている電荷をFD705に転送する。転送電極702は、光電変換部701のポテンシャルが極大となる位置と転送電極702との間に蓄積されている電荷をFD713に転送する。
以上から、複数の傾斜形成電極707〜712に印加される電圧を変化させることで、瞳分割位置716を変更することが可能になる。すなわち、複数の傾斜形成電極707〜712に異なる電圧を印加することにより、光電変換部701のポテンシャルが極大となる位置716が変わる。第1および第2の実施形態では、傾斜したポテンシャルを変更するための入力は、OFD電極103またはMOD電極403へ印加する単一の電圧値であった。第4の実施形態では、複数の傾斜形成電極707〜712が配置されているため、傾斜形成電極707〜712のそれぞれに異なる電圧を印加することにより、ポテンシャルの変更させ方に自由度があり、より良好な特性を得ることができる。
(第5の実施形態)
図8(A)〜(H)は、第5の実施形態による画素218の構成例を示す図である。図8(A)〜(C)は、画素218の上面図である。図8(D)〜(F)は、それぞれ、図8(A)〜(C)における線X−X'上における画素218内のポテンシャルを示す図である。
画素218は、光電変換部801と、OFD802と、OFD電極803と、メモリスイッチのメモリ電極804と、メモリ部805と、転送スイッチの転送電極806とを有する。画素218は、第1の実施形態と同様の構成を有するが、第2〜第4の実施形態の画素218でも同等の機能が実現できる。
図8(A)および(D)は、OFD電極803に電圧V1が印加された場合の状態を示す。光電変換部801は、瞳分割位置809を境界に、瞳分割領域807および808に分割される。
図8(B)および(E)は、OFD電極803に電圧V2が印加された場合の状態を示す。光電変換部801は、瞳分割位置812を境界に、瞳分割領域810および811に分割される。
図8(C)および(F)は、OFD電極803に電圧V3が印加された場合の状態を示す。光電変換部801は、瞳分割位置815を境界に、瞳分割領域813および814に分割される。
ある画素218のOFD電極803に印加する電圧をV1からV2へ時間的に変化をさせる。または隣接する画素218のOFD電極803に電圧V1およびV2を空間的に変化させて印加する。OFD電極803に電圧V1が印加されている場合の出力信号からOFD電極803に電圧V2が印加されている場合の出力信号を引き算する。これにより、電圧V1とV2の印加時の瞳分割される位置809と812に挟まれた領域816の入射光に対応する出力信号を得ることができる。
OFD電極803に電圧V1を印加した状態で、転送電極806が光電変換部801の領域808から転送した電荷に基づく領域808の信号を得る。そして、OFD電極803に電圧V1とは異なる電圧V2を印加した状態で、転送電極806が光電変換部801の領域811から転送した電荷に基づく領域811の信号を得る。そして、領域808の信号から領域811の信号を減算する。
同様に、OFD電極803に電圧V2が印加されている場合の出力信号からOFD電極803に電圧V3が印加されている場合の出力信号を引き算する。これにより、電圧V2とV3の印加時の瞳分割される位置812と815に挟まれた領域817の入射光に対応する出力信号を得ることができる。
電圧V1からV3になるにしたがって、光電変換部801で蓄積できる電子の量が減少してしまう。転送電極806の前に、メモリ部805とメモリ電極804が設けられる。光電変換部801の電荷蓄積時間中に、メモリ部805に複数回の転送を行うことで、光電変換部801に蓄積できる電子の量を確保することができる。複数回の転送の回数は、全光電変換部801の大きさと瞳分割の各領域の最小の場合の大きさの比率から求めることができる。
以上のように、OFD電極803の印加電圧を複数の電圧に変化させ、上記の引き算により、光電変換部801の各領域816および817での瞳の出力信号を得ることができる。
第1〜第5の実施形態によれば、固体撮像素子200は、焦点検出機能を有し、測距性能を向上させることができる。固体撮像素子200は、デジタルカメラまたはビデオカメラの他、スマートフォン、タブレット、工業用カメラ、医療用カメラまたは車載カメラ等に適用可能である。
なお、1次元のポテンシャル分布の例を説明したが、これに限定されない。OFD電極103等に電圧を印加することにより、光電変換部101等は、2次元に傾斜したポテンシャルを有するようにしてもよい。光電変換部のポテンシャル分布をらせん状に形成したり、1画素に2つの光電変換部を形成することで、2次元で瞳の各領域の出力信号を得ることができる。これにより、各画素へ入射する光の光線の向きの情報を取得することを実現し、撮影後のリフォーカスなどの機能を実現することができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
101:光電変換部、102:オーバーフロードレイン(OFD)、103:OFD電極、104:転送電極、105:フローティングディフュージョン(FD)

Claims (15)

  1. 第1の画素を有し、
    前記第1の画素は、
    光を電荷に変換し、前記変換された電荷を蓄積する第1の光電変換部と、
    前記第1の光電変換部に蓄積されている電荷を転送する第1の転送電極と、
    前記第1の転送電極とは別の一または複数の第1の電極とを有し、
    前記第1の電極に異なる電圧を印加することにより、前記第1の光電変換部のポテンシャルが極大となる位置が変わることを特徴とする固体撮像素子。
  2. 第2の画素をさらに有し、
    前記第2の画素は、
    光を電荷に変換し、前記変換された電荷を蓄積する第2の光電変換部と、
    前記第2の光電変換部に蓄積されている電荷を転送する第2の転送電極と、
    前記第2の転送電極とは別の一または複数の第2の電極とを有し、
    前記第2の電極に異なる電圧を印加することにより、前記第2の光電変換部のポテンシャルが極大となる位置が変わり、
    前記第2の電極に印加する電圧は、前記第1の電極に印加する電圧とは異なることを特徴とする請求項1に記載の固体撮像素子。
  3. 前記第1の電極に電圧を印加しない状態で、前記第1の光電変換部は、傾斜したポテンシャルを有することを特徴とする請求項1または2に記載の固体撮像素子。
  4. 前記第1の電極は、前記第1の光電変換部に蓄積されている電荷をオーバーフロードレインに排出するための電極であることを特徴とする請求項1〜3のいずれか1項に記載の固体撮像素子。
  5. 前記第1の電極に電圧を印加した状態で、前記第1の転送電極は、前記第1の光電変換部に蓄積されている電荷を転送することを特徴とする請求項1〜4のいずれか1項に記載の固体撮像素子。
  6. 前記第1の電極に電圧を印加した状態で、前記第1の転送電極は、前記第1の光電変換部に蓄積されている電荷を転送し、
    その後、前記第1の電極に電圧を印加しない状態で、前記第1の転送電極は、前記第1の光電変換部に蓄積されている電荷を転送することを特徴とする請求項1〜3のいずれか1項に記載の固体撮像素子。
  7. 前記第1の画素は、前記第1の光電変換部に蓄積されている電荷を転送する第3の転送電極をさらに有し、
    前記第1の転送電極は、前記第1の光電変換部のポテンシャルが極大となる位置と前記第1の転送電極との間に蓄積されている電荷を転送し、
    前記第3の転送電極は、前記第1の光電変換部のポテンシャルが極大となる位置と前記第3の転送電極との間に蓄積されている電荷を転送することを特徴とする請求項1〜3のいずれか1項に記載の固体撮像素子。
  8. 前記複数の第1の電極に異なる電圧を印加することにより、前記第1の光電変換部のポテンシャルが極大となる位置が変わることを特徴とする請求項1または2に記載の固体撮像素子。
  9. 前記複数の第1の電極に電圧を印加しない状態で、前記第1の光電変換部は、傾斜していないポテンシャルを有することを特徴とする請求項8に記載の固体撮像素子。
  10. 前記第1の画素は、前記第1の光電変換部に蓄積されている電荷を転送する第3の転送電極をさらに有し、
    前記第1の転送電極は、前記第1の光電変換部のポテンシャルが極大となる位置と前記第1の転送電極との間に蓄積されている電荷を転送し、
    前記第3の転送電極は、前記第1の光電変換部のポテンシャルが極大となる位置と前記第3の転送電極との間に蓄積されている電荷を転送することを特徴とする請求項8または9に記載の固体撮像素子。
  11. 前記第1の画素が画面内に複数設けられ、
    前記複数の第1の画素は、瞳分割方向に対して、画面の中央を境界に対称であることを特徴とする請求項1、3〜10のいずれか1項に記載の固体撮像素子。
  12. 前記第1の画素が画面内に複数設けられ、
    前記複数の第1の画素の前記第1の電極に印加される電圧は、画面の中央から前記第1の画素までの距離に応じて変化することを特徴とする請求項1、3〜10のいずれか1項に記載の固体撮像素子。
  13. 前記第1の電極に第1の電圧を印加した状態で、前記第1の転送電極が前記第1の光電変換部から転送した電荷に基づく信号から、前記第1の電極に前記第1の電圧とは異なる第2の電圧を印加した状態で、前記第1の転送電極が前記第1の光電変換部から転送した電荷に基づく信号を減算することを特徴とする請求項1〜5のいずれか1項に記載の固体撮像素子。
  14. 前記第1の電極に電圧を印加することにより、前記第1の光電変換部は、2次元に傾斜したポテンシャルを有することを特徴とする請求項1〜13のいずれか1項に記載の固体撮像素子。
  15. 第1の画素と、
    第2の画素とを有する固体撮像素子の制御方法であって、
    前記第1の画素は、
    光を電荷に変換し、前記変換された電荷を蓄積する第1の光電変換部と、
    前記第1の光電変換部に蓄積されている電荷を転送する第1の転送電極と、
    前記第1の転送電極とは別の一または複数の第1の電極とを有し、
    前記第2の画素は、
    光を電荷に変換し、前記変換された電荷を蓄積する第2の光電変換部と、
    前記第2の光電変換部に蓄積されている電荷を転送する第2の転送電極と、
    前記第2の転送電極とは別の一または複数の第2の電極とを有し、
    前記第1の電極に異なる電圧を印加することにより、前記第1の光電変換部のポテンシャルが極大となる位置が変わり、
    前記第2の電極に異なる電圧を印加することにより、前記第2の光電変換部のポテンシャルが極大となる位置が変わり、
    前記第1の電極に第1の電圧を印加し、
    前記第2の電極に前記第1の電圧とは異なる第2の電圧を印加することを特徴とする固体撮像素子の制御方法。
JP2020099313A 2020-06-08 2020-06-08 固体撮像素子および固体撮像素子の制御方法 Pending JP2021193700A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020099313A JP2021193700A (ja) 2020-06-08 2020-06-08 固体撮像素子および固体撮像素子の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099313A JP2021193700A (ja) 2020-06-08 2020-06-08 固体撮像素子および固体撮像素子の制御方法

Publications (1)

Publication Number Publication Date
JP2021193700A true JP2021193700A (ja) 2021-12-23

Family

ID=79168840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099313A Pending JP2021193700A (ja) 2020-06-08 2020-06-08 固体撮像素子および固体撮像素子の制御方法

Country Status (1)

Country Link
JP (1) JP2021193700A (ja)

Similar Documents

Publication Publication Date Title
US10609320B2 (en) Photoelectric conversion device and method of driving photoelectric conversion device
US9955094B2 (en) Imaging apparatus and signal processing method
JP5895355B2 (ja) 撮像装置
US11159757B2 (en) Image sensor and image capturing apparatus
US11272130B2 (en) Image capturing apparatus
JP6413401B2 (ja) 固体撮像素子
JP2013258586A (ja) 撮像システムおよび撮像システムの駆動方法
JP6587123B2 (ja) 撮像装置
CN108802961B (zh) 焦点检测设备和成像系统
JP2008067241A (ja) 固体撮像装置及び撮像システム
JP2021193700A (ja) 固体撮像素子および固体撮像素子の制御方法
JP6825675B2 (ja) 撮像素子及び撮像装置
JP6702371B2 (ja) 撮像素子及び撮像装置
JP6256054B2 (ja) 固体撮像素子及び撮像装置
JP6217338B2 (ja) 固体撮像素子及び撮像装置
JP2018019139A (ja) 撮像装置及び撮像装置の制御方法
JP2020039176A (ja) 撮像素子
JP6623730B2 (ja) 撮像素子、焦点検出装置および撮像装置
JP6375613B2 (ja) 固体撮像素子及び撮像装置
JP7279746B2 (ja) 撮像ユニットおよび撮像装置
JP7167974B2 (ja) 撮像素子および撮像装置
JP6760907B2 (ja) 撮像素子及び撮像装置
JP2018117178A (ja) 撮像素子および撮像装置
JP2017184181A (ja) 撮像素子
JP6365568B2 (ja) 撮像素子および撮像装置