JP2021190339A - Solid state battery - Google Patents

Solid state battery Download PDF

Info

Publication number
JP2021190339A
JP2021190339A JP2020095586A JP2020095586A JP2021190339A JP 2021190339 A JP2021190339 A JP 2021190339A JP 2020095586 A JP2020095586 A JP 2020095586A JP 2020095586 A JP2020095586 A JP 2020095586A JP 2021190339 A JP2021190339 A JP 2021190339A
Authority
JP
Japan
Prior art keywords
active material
electrode active
layer
negative electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020095586A
Other languages
Japanese (ja)
Other versions
JP7294240B2 (en
Inventor
充 坂野
Mitsuru Sakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020095586A priority Critical patent/JP7294240B2/en
Publication of JP2021190339A publication Critical patent/JP2021190339A/en
Application granted granted Critical
Publication of JP7294240B2 publication Critical patent/JP7294240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a solid state battery using Si as a negative electrode active material, in which an increase in heating value hardly occurs.SOLUTION: A solid state battery 100 includes a positive electrode active material layer 10, a negative electrode active material layer 20, a solid electrolyte layer 30, and a polymer electrolyte layer 40. The solid electrolyte layer 30 is disposed between the positive electrode active material layer 10 and the negative electrode active material layer 20. The polymer electrolyte layer 40 is disposed at least one between the positive electrode active material layer 10 and the solid electrolyte layer 30 and between the negative electrode active material layer 20 and the solid electrolyte layer 30. The negative electrode active material layer 20 contains Si, as a negative electrode active material, the solid electrolyte layer 30 contains an inorganic solid electrolyte having Li, as a constituent element, and the polymer electrolyte layer 40 has an ionic conductivity at 120°C less than the ionic conductivity at 60°C.SELECTED DRAWING: Figure 1

Description

本願は固体電池を開示する。 The present application discloses a solid state battery.

特許文献1には、固体電池において吸熱層やPPTC膜を設けることで、電池の短絡時等における電池の温度上昇を抑制する技術が開示されている。具体的には、負極活物質としてカーボンと、固体電解質として硫化物固体電解質とを用いた固体電池において、マンニトール及び硫酸カルシウム・二水和物を含む吸熱層と、ファーネスブラック及びPVDFを含むPPTC膜とを配置している。 Patent Document 1 discloses a technique of suppressing a temperature rise of a solid-state battery by providing a heat absorbing layer or a PPTC film when the battery is short-circuited or the like. Specifically, in a solid battery using carbon as a negative electrode active material and a sulfide solid electrolyte as a solid electrolyte, a heat absorbing layer containing mannitol and calcium sulfate / dihydrate, and a PPTC film containing furnace black and PVDF. And are arranged.

特開2018−010848号公報Japanese Unexamined Patent Publication No. 2018-010848

電池の容量を高めるために負極活物質としてSiを用いる場合がある。一方で、本発明者の知見よると、Siはカーボンと比べて低温(例えば160〜220℃程度)で発熱し易い。そのため、負極活物質としてSiを用いた固体電池においては、短絡等によって電池の温度が上昇した際、特許文献1に開示されたような吸熱層やPPTC膜が十分な機能を発揮する温度に到達する前にSiの発熱が生じる虞があり、電池の発熱量の増大を抑制し難い。 Si may be used as the negative electrode active material in order to increase the capacity of the battery. On the other hand, according to the knowledge of the present inventor, Si tends to generate heat at a low temperature (for example, about 160 to 220 ° C.) as compared with carbon. Therefore, in a solid-state battery using Si as the negative electrode active material, when the temperature of the battery rises due to a short circuit or the like, the temperature reaches a temperature at which the heat absorbing layer and the PPTC film as disclosed in Patent Document 1 exert a sufficient function. There is a possibility that Si will generate heat before the battery is used, and it is difficult to suppress an increase in the amount of heat generated by the battery.

本願は上記課題を解決するための手段の一つとして、
正極活物質層と、負極活物質層と、固体電解質層と、ポリマー電解質層とを備え、
前記固体電解質層は、前記正極活物質層と前記負極活物質層との間に配置され、
前記ポリマー電解質層は、前記正極活物質層と前記固体電解質層との間、及び、前記負極活物質層と前記固体電解質層との間、のうちの少なくとも一方に配置され、
前記負極活物質層は、負極活物質としてSiを含み、
前記固体電解質層は、構成元素としてLiを有する無機固体電解質を含み、
前記ポリマー電解質層は、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さい、
固体電池
を開示する。
The present application is one of the means for solving the above problems.
A positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and a polymer electrolyte layer are provided.
The solid electrolyte layer is arranged between the positive electrode active material layer and the negative electrode active material layer.
The polymer electrolyte layer is arranged at least one of the positive electrode active material layer and the solid electrolyte layer, and the negative electrode active material layer and the solid electrolyte layer.
The negative electrode active material layer contains Si as the negative electrode active material and contains Si.
The solid electrolyte layer contains an inorganic solid electrolyte having Li as a constituent element, and contains
The polymer electrolyte layer has an ionic conductivity at 120 ° C. lower than that at 60 ° C.
Disclose solid-state batteries.

本開示の固体電池に設けられるポリマー電解質層は、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さい。そのため、例えば、短絡等によって電池の温度が上昇した場合に、Siの発熱が生じる温度に到達する前に、ポリマー電解質層のイオン伝導度が低下して、電池反応が抑制され得るとともに電池の発熱が抑制され得る。すなわち、本開示の固体電池は、短絡等によって電池の温度が上昇したとしても、Siの発熱が生じる温度に到達し難く、Siの発熱による発熱量の増大を抑制し易い。 The polymer electrolyte layer provided in the solid-state battery of the present disclosure has an ionic conductivity at 120 ° C. lower than that at 60 ° C. Therefore, for example, when the temperature of the battery rises due to a short circuit or the like, the ionic conductivity of the polymer electrolyte layer decreases before the temperature at which Si generates heat is reached, so that the battery reaction can be suppressed and the battery heat generation can be suppressed. Can be suppressed. That is, in the solid-state battery of the present disclosure, even if the temperature of the battery rises due to a short circuit or the like, it is difficult to reach the temperature at which Si heat generation occurs, and it is easy to suppress an increase in heat generation amount due to Si heat generation.

固体電池100の構成の一例を説明するための概略図である。It is a schematic diagram for demonstrating an example of the structure of a solid-state battery 100. Siを含む負極合材AのDSC発熱データとCを含む負極合材BのDSC発熱データとを比較した図である。It is a figure which compared the DSC heat generation data of the negative electrode mixture A containing Si and the DSC heat generation data of the negative electrode mixture B containing C. 実施例に係る固体電池において採用したポリマー固体電解質材料について、イオン伝導度の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the ionic conductivity about the polymer solid electrolyte material adopted in the solid state battery which concerns on Example. 内部短絡試験の条件を説明するための概略図である。It is a schematic diagram for demonstrating the condition of an internal short circuit test. 実施例に係る固体電池と比較例に係る固体電池とで、内部短絡試験時の最高到達温度を比較したグラフである。It is a graph which compared the maximum temperature reached at the time of an internal short circuit test between the solid-state battery which concerns on Example and the solid-state battery which concerns on a comparative example.

図1(A)〜(D)に示されるように、固体電池100は、正極活物質層10と、負極活物質層20と、固体電解質層30と、ポリマー電解質層40とを備える。固体電解質層30は、正極活物質層10と負極活物質層20との間に配置される。ポリマー電解質層40は、正極活物質層10と固体電解質層30との間、及び、負極活物質層20と固体電解質層30との間、のうちの少なくとも一方に配置される。負極活物質層20は、負極活物質としてSiを含む。固体電解質層30は、構成元素としてLiを有する無機固体電解質を含む。ポリマー電解質層40は、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さい。 As shown in FIGS. 1A to 1D, the solid-state battery 100 includes a positive electrode active material layer 10, a negative electrode active material layer 20, a solid electrolyte layer 30, and a polymer electrolyte layer 40. The solid electrolyte layer 30 is arranged between the positive electrode active material layer 10 and the negative electrode active material layer 20. The polymer electrolyte layer 40 is arranged between the positive electrode active material layer 10 and the solid electrolyte layer 30, and between the negative electrode active material layer 20 and the solid electrolyte layer 30. The negative electrode active material layer 20 contains Si as the negative electrode active material. The solid electrolyte layer 30 contains an inorganic solid electrolyte having Li as a constituent element. The polymer electrolyte layer 40 has an ionic conductivity at 120 ° C. lower than that at 60 ° C.

1.正極活物質層
正極活物質層10は、少なくとも正極活物質を含む。正極活物質層10は、正極活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含んでいてもよい。正極活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を正極活物質とし、卑な電位を示す物質を後述の負極活物質として、それぞれ用いることができる。正極活物質の具体例としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、LiNi1/3Co1/3Mn1/3、マンガン酸リチウム、リン酸鉄リチウム等の各種のリチウム含有酸化物が挙げられる。正極活物質の表面には、正極活物質と固体電解質との接触による反応を抑制するため、ニオブ酸リチウム層やチタン酸リチウム層やリン酸リチウム層等の被覆層が設けられていてもよい。正極活物質層10に含まれ得る固体電解質としては、例えば、無機固体電解質やポリマー電解質が挙げられる。無機固体電解質はポリマー電解質と比較してイオン伝導度が高い。また、ポリマー電解質と比較して耐熱性に優れる。好ましい無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2−X(PO、Li−SiO系ガラス、Li−Al−S−O系ガラス等の酸化物固体電解質;LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−SiS−P、LiS−P−LiI−LiBr、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P−GeS等の硫化物固体電解質を例示することができる。特に、構成元素としてLi及びSを有する硫化物固体電解質が好ましく、LiS−Pを含む硫化物固体電解質がより好ましい。正極活物質層10に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)系バインダー、ブチレンゴム(IIR)系バインダー、アクリレートブタジエンゴム(ABR)系バインダー、ポリフッ化ビニリデン(PVdF)系バインダー、ポリテトラフルオロエチレン(PTFE)系バインダー等が挙げられる。正極活物質層10に含まれ得る導電助剤としてはアセチレンブラックやケッチェンブラック等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。正極活物質層10における各成分の含有量は従来と同様とすればよい。正極活物質層10の形状も従来と同様とすればよい。固体電池100をより容易に構成できる観点から、シート状の正極活物質層10であってもよい。正極活物質層10の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。
1. 1. Positive electrode active material layer The positive electrode active material layer 10 contains at least a positive electrode active material. The positive electrode active material layer 10 may further optionally contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like, in addition to the positive electrode active material. As the positive electrode active material, a known active material may be used. From the known active materials, two substances having different potentials (charge / discharge potentials) for occluding and releasing predetermined ions are selected, a substance showing a noble potential is used as a positive electrode active material, and a substance showing a low potential is described later. Each can be used as a negative electrode active material. Specific examples of the positive electrode active material, for example, lithium cobaltate, lithium nickelate, LiNi 1/3 Co 1/3 Mn 1/3 O 2, lithium manganate, various lithium-containing oxide of lithium iron phosphate, etc. Can be mentioned. A coating layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer may be provided on the surface of the positive electrode active material in order to suppress the reaction due to contact between the positive electrode active material and the solid electrolyte. Examples of the solid electrolyte that can be contained in the positive electrode active material layer 10 include an inorganic solid electrolyte and a polymer electrolyte. Inorganic solid electrolytes have higher ionic conductivity than polymer electrolytes. In addition, it has excellent heat resistance as compared with polymer electrolytes. Preferred inorganic solid electrolytes include, for example, an oxide solid such as lithium lanthanum dilconate, LiPON, Li 1 + X Al X Ge 2-X (PO 4 ) 3 , Li-SiO-based glass, and Li-Al-SO-based glass. Electrolyte; Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Si 2 S-P 2 S 5 , Li 2 SP 2 S 5- LiI-LiBr , LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 -GeS sulfides such as 2 A solid electrolyte can be exemplified. In particular, a sulfide solid electrolyte having Li and S as constituent elements is preferable, and a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferable. Examples of the binder that can be contained in the positive electrode active material layer 10 include a butadiene rubber (BR) -based binder, a butylene rubber (IIR) -based binder, an acrylate butadiene rubber (ABR) -based binder, a polyvinylidene fluoride (PVdF) -based binder, and polytetra. Fluoroethylene (PTFE) -based binders and the like can be mentioned. Examples of the conductive auxiliary agent that can be contained in the positive electrode active material layer 10 include carbon materials such as acetylene black and ketjen black, and metal materials such as nickel, aluminum, and stainless steel. The content of each component in the positive electrode active material layer 10 may be the same as in the conventional case. The shape of the positive electrode active material layer 10 may be the same as in the conventional case. From the viewpoint that the solid-state battery 100 can be more easily configured, the sheet-shaped positive electrode active material layer 10 may be used. The thickness of the positive electrode active material layer 10 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

2.負極活物質層
負極活物質層20は、少なくとも負極活物質としてSiを含む。負極活物質層20は、負極活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含んでいてもよい。負極活物質層20に含まれる負極活物質は、Siのみからなってもよいし、SiとSi以外の負極活物質とを含んでいてもよい。Siは、Si単体の他、Si合金であってもよい。Si以外の負極活物質は、公知の活物質を用いればよい。例えば、酸化ケイ素等のSi以外のシリコン系活物質;グラファイトやハードカーボン等の炭素系活物質;チタン酸リチウム等の各種酸化物系活物質;金属リチウムやリチウム合金等を用いることができる。固体電解質、バインダー及び導電助剤は正極活物質層10に用いられるものとして例示したものの中から適宜選択して用いることができる。負極活物質層20における各成分の含有量は従来と同様とすればよい。負極活物質層20の形状も従来と同様とすればよい。固体電池100をより容易に構成できる観点から、シート状の負極活物質層20であってもよい。負極活物質層20の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。負極の容量が正極の容量よりも大きくなるように、負極活物質層20の厚みや積層面積(電極面積)が調整されてもよい。
2. 2. Negative electrode active material layer The negative electrode active material layer 20 contains at least Si as a negative electrode active material. The negative electrode active material layer 20 may further optionally contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like, in addition to the negative electrode active material. The negative electrode active material contained in the negative electrode active material layer 20 may be composed of only Si, or may contain Si and a negative electrode active material other than Si. Si may be a Si alloy or a Si alloy as well as Si alone. As the negative electrode active material other than Si, a known active material may be used. For example, silicon-based active materials other than Si such as silicon oxide; carbon-based active materials such as graphite and hard carbon; various oxide-based active materials such as lithium titanate; metallic lithium, lithium alloys and the like can be used. The solid electrolyte, the binder and the conductive auxiliary agent can be appropriately selected and used from those exemplified as those used for the positive electrode active material layer 10. The content of each component in the negative electrode active material layer 20 may be the same as in the conventional case. The shape of the negative electrode active material layer 20 may be the same as before. From the viewpoint that the solid-state battery 100 can be more easily configured, the sheet-shaped negative electrode active material layer 20 may be used. The thickness of the negative electrode active material layer 20 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less. The thickness and the laminated area (electrode area) of the negative electrode active material layer 20 may be adjusted so that the capacity of the negative electrode is larger than the capacity of the positive electrode.

3.固体電解質層
固体電解質層30は、正極活物質層10と負極活物質層20との間に配置される。固体電解質層30は、無機固体電解質と任意にバインダーとを含んでいてもよい。無機固体電解質は構成元素としてLiを有する。固体電解質層30に含まれ得る無機固体電解質やバインダーは、正極活物質層10に用いられるものとして例示した各種無機固体電解質やバインダーの中から適宜選択して用いることができる。例えば、構成元素としてLi及びSを有する硫化物固体電解質であってもよい。固体電解質層30における各成分の含有量は従来と同様とすればよい。固体電解質層30の形状も従来と同様とすればよい。固体電池100をより容易に構成できる観点から、シート状の固体電解質層30であってもよい。固体電解質層30の厚みは、例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。
3. 3. Solid electrolyte layer The solid electrolyte layer 30 is arranged between the positive electrode active material layer 10 and the negative electrode active material layer 20. The solid electrolyte layer 30 may contain an inorganic solid electrolyte and optionally a binder. The inorganic solid electrolyte has Li as a constituent element. The inorganic solid electrolyte or binder that can be contained in the solid electrolyte layer 30 can be appropriately selected and used from various inorganic solid electrolytes and binders exemplified as those used for the positive electrode active material layer 10. For example, it may be a sulfide solid electrolyte having Li and S as constituent elements. The content of each component in the solid electrolyte layer 30 may be the same as before. The shape of the solid electrolyte layer 30 may be the same as before. From the viewpoint that the solid-state battery 100 can be more easily configured, the sheet-shaped solid electrolyte layer 30 may be used. The thickness of the solid electrolyte layer 30 may be, for example, 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

4.ポリマー電解質層
ポリマー電解質層40は、正極活物質層10と固体電解質層30との間に配置されていてもよいし(図1(A))、負極活物質層20と固体電解質層30との間に配置されていてもよいし(図1(B))、これら双方の間に配置されていてもよい(図1(C))。また、図1(D)に示すように、固体電解質層30が2つ以上の層30a、30bを有する場合、正極活物質層10と固体電解質層30bとの間(或いは、負極活物質層20と固体電解質層30aとの間)にポリマー電解質層40が配置されていてもよい。さらに、ポリマー電解質層40は、正極活物質層10及び負極活物質層20のうち、より低温にて発熱する層と、固体電解質層30との間に配置されていてもよい。
4. Polymer electrolyte layer The polymer electrolyte layer 40 may be arranged between the positive electrode active material layer 10 and the solid electrolyte layer 30 (FIG. 1 (A)), or the negative electrode active material layer 20 and the solid electrolyte layer 30. It may be arranged between them (FIG. 1 (B)) or may be arranged between them (FIG. 1 (C)). Further, as shown in FIG. 1 (D), when the solid electrolyte layer 30 has two or more layers 30a and 30b, it is between the positive electrode active material layer 10 and the solid electrolyte layer 30b (or the negative electrode active material layer 20). And the solid electrolyte layer 30a), the polymer electrolyte layer 40 may be arranged. Further, the polymer electrolyte layer 40 may be arranged between the positive electrode active material layer 10 and the negative electrode active material layer 20 that generate heat at a lower temperature and the solid electrolyte layer 30.

ポリマー電解質層40は、120℃におけるイオン伝導度(リチウムイオン伝導度)が60℃におけるイオン伝導度よりも小さい。ポリマー電解質層40は、60℃から120℃にかけて、温度の上昇に伴ってイオン伝導度が連続に低下するものであってもよいし、断続的に低下するものであってもよいし、120℃近傍において急激にイオン伝導度が低下するものであってもよい。ポリマー電解質層40は、120℃におけるイオン伝導度が60℃におけるイオン伝導度の50%以下であってもよいし、40%以下であってもよいし、30%以下であってもよいし、20%以下であってもよいし、10%以下であってもよい。 In the polymer electrolyte layer 40, the ionic conductivity (lithium ion conductivity) at 120 ° C. is smaller than the ionic conductivity at 60 ° C. The polymer electrolyte layer 40 may have an ionic conductivity that continuously decreases with increasing temperature from 60 ° C. to 120 ° C., may decrease intermittently, or may decrease at 120 ° C. The ionic conductivity may decrease sharply in the vicinity. The polymer electrolyte layer 40 may have an ionic conductivity at 120 ° C. of 50% or less, 40% or less, or 30% or less of the ionic conductivity at 60 ° C. It may be 20% or less, or 10% or less.

ポリマー電解質層40を構成する材料は、例えば、ポリマーとドーパントとリチウム化合物との混合物が挙げられる。当該材料は、ポリマーとドーパントとを互いに反応させて得られる反応混合物と、リチウム化合物との混合物であってもよい。ポリマーの種類やドーパントの種類等を選択することで、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さいポリマー電解質層40を構成することができる。例えば、本発明者の知見では、ポリマーとしてポリフェニレンスルフィドと、ドーパントとしてクロラニルとを混合して混合物とし、当該混合物を加熱して反応混合物を得たうえで、当該反応混合物とリチウム化合物(例えばLiTFSI等のイミド塩)とを混合することで、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さいポリマー電解質材料が得られる。このようにして得られたポリマー電解質材料は、60℃から120℃にかけて、温度の上昇に伴ってイオン伝導度が徐々に低下し、120℃におけるイオン伝導度が60℃におけるイオン伝導度の10%以下にまで低下し得る。 Examples of the material constituting the polymer electrolyte layer 40 include a mixture of a polymer, a dopant, and a lithium compound. The material may be a mixture of a lithium compound and a reaction mixture obtained by reacting a polymer and a dopant with each other. By selecting the type of polymer, the type of dopant, and the like, the polymer electrolyte layer 40 having an ionic conductivity at 120 ° C. smaller than the ionic conductivity at 60 ° C. can be formed. For example, in the knowledge of the present inventor, polyphenylene sulfide as a polymer and chloranyl as a dopant are mixed to form a mixture, and the mixture is heated to obtain a reaction mixture, and then the reaction mixture and a lithium compound (for example, LiTFSI, etc.) are obtained. By mixing with the imide salt), a polymer electrolyte material having an ionic conductivity at 120 ° C. lower than the ionic conductivity at 60 ° C. can be obtained. In the polymer electrolyte material thus obtained, the ionic conductivity gradually decreases with increasing temperature from 60 ° C to 120 ° C, and the ionic conductivity at 120 ° C is 10% of the ionic conductivity at 60 ° C. It can drop to:

ポリマー電解質層40は、それ自身のイオン伝導度が低下した場合に、正極活物質層10と負極活物質層20との間のイオン伝導を抑制し得るものであればよく、そのような効果が発揮される限り、その厚みは特に限定されるものではない。ポリマー電解質層40の厚みは、例えば、0.1μm以上2mm以下としてもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。ポリマー電解質層40は、固体電解質層30よりも薄くてもよいし、厚くてもよい。電池の通常使用温度において高いイオン伝導度を確保する観点からは、ポリマー電解質層40は薄い方がよく、この点、ポリマー電解質層40は固体電解質層30よりも薄くてもよい。 The polymer electrolyte layer 40 may have any effect as long as it can suppress the ionic conduction between the positive electrode active material layer 10 and the negative electrode active material layer 20 when its own ionic conductivity is lowered. As long as it is exhibited, its thickness is not particularly limited. The thickness of the polymer electrolyte layer 40 may be, for example, 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less. The polymer electrolyte layer 40 may be thinner or thicker than the solid electrolyte layer 30. From the viewpoint of ensuring high ionic conductivity at the normal operating temperature of the battery, the polymer electrolyte layer 40 may be thinner, and in this respect, the polymer electrolyte layer 40 may be thinner than the solid electrolyte layer 30.

5.その他
固体電池100は、上記した層10〜40に加えて、正極活物質層10に接続された正極集電体層や負極活物質層20に接続された負極集電体層を備えていてもよい。集電体層は、電池の集電体層として一般的なものをいずれも採用可能である。また、固体電池100は、特許文献1に開示されたような吸熱層やPPTC膜(PPTC層)を備えていてもよい。これにより、電池の発熱量の増大を一層抑制することができるものと考えられる。また、固体電池100は、必要に応じて、端子、外装体、拘束部材、絶縁層、断熱層といったその他の部材や層を備えていてもよい。
5. Others In addition to the layers 10 to 40 described above, the solid-state battery 100 may include a positive electrode current collector layer connected to the positive electrode active material layer 10 and a negative electrode current collector layer connected to the negative electrode active material layer 20. good. As the current collector layer, any general current collector layer of a battery can be adopted. Further, the solid-state battery 100 may include a heat absorbing layer or a PPTC film (PPTC layer) as disclosed in Patent Document 1. It is considered that this makes it possible to further suppress the increase in the heat generation amount of the battery. Further, the solid-state battery 100 may be provided with other members or layers such as a terminal, an exterior body, a restraining member, an insulating layer, and a heat insulating layer, if necessary.

固体電池100の各層10〜40は、例えば、圧粉成形等の乾式成形や、スラリーを用いた湿式成形等によって作製可能である。固体電池100を構成する層10〜40を互いに積層したうえで、任意にプレス過程を経て、固体電池100を得てもよい。 Each layer 10 to 40 of the solid-state battery 100 can be manufactured, for example, by dry molding such as powder compaction, wet molding using a slurry, or the like. The solid-state batteries 100 may be obtained by laminating the layers 10 to 40 constituting the solid-state battery 100 on each other and optionally undergoing a pressing process.

以上の通り、固体電池100においては、短絡等によって電池の温度が上昇した場合に、負極活物質であるSiの発熱が生じる温度(例えば160〜220℃程度)に到達する前に、ポリマー電解質層40のイオン伝導度が低下して、電池反応が抑制され得るとともに電池の発熱が抑制され得る。すなわち、固体電池100は、短絡等によって電池の温度が上昇したとしても、Siの発熱が生じる温度に到達し難く、Siの発熱による発熱量の増大を抑制し易い。 As described above, in the solid-state battery 100, when the temperature of the battery rises due to a short circuit or the like, the polymer electrolyte layer reaches a temperature at which Si, which is a negative electrode active material, generates heat (for example, about 160 to 220 ° C.). The ionic conductivity of 40 can be reduced, the battery reaction can be suppressed, and the heat generation of the battery can be suppressed. That is, even if the temperature of the battery rises due to a short circuit or the like, the solid-state battery 100 does not easily reach the temperature at which the heat generated by Si is generated, and it is easy to suppress the increase in the amount of heat generated by the heat generated by Si.

1.負極材料の発熱量の確認
Siと硫化物固体電解質とからなる負極合材Aを用いて電池を構成し、4.4Vまで充電した後、当該負極合材Aを取り出し、DSCによって発熱ピーク温度を確認した。また、Cと硫化物固体電解質とを含む負極合材Bを用いて電池を構成し、4.55Vまで充電した後、当該負極合材Bを取り出し、DSCによって発熱ピーク温度を確認した。結果を図2に示す。図2に示されるように、Siを含む負極合材Aは、Cを含む負極合材Bと比較して、低温側(160〜220℃程度)に発熱ピークを有することがわかる。
1. 1. Confirmation of calorific value of negative electrode material A battery is constructed using a negative electrode mixture A composed of Si and a sulfide solid electrolyte, and after charging to 4.4 V, the negative electrode mixture A is taken out and the exothermic peak temperature is set by DSC. confirmed. Further, a battery was constructed using the negative electrode mixture B containing C and the sulfide solid electrolyte, and after charging to 4.55 V, the negative electrode mixture B was taken out and the exothermic peak temperature was confirmed by DSC. The results are shown in FIG. As shown in FIG. 2, it can be seen that the negative electrode mixture A containing Si has a heat generation peak on the low temperature side (about 160 to 220 ° C.) as compared with the negative electrode mixture B containing C.

2.ポリマー電解質層による効果の確認
図2に示される結果からすると、負極活物質としてSiを用いた固体電池においては、従来のPPTC膜等(特許文献1)の機能が十分に発揮される温度に到達する前に、Siの発熱が生じる虞がある。すなわち、固体電池がPPTC膜等を備えていたとしても、短絡等によって電池の温度が上昇した場合に、Siの発熱によって電池の発熱量の増大が懸念される。本発明者は、Siの発熱への対策として、ポリマー電解質層を用いることを着想した。すなわち、Siの発熱が生じる温度に到達する前にイオン伝導度が低下するようなポリマー電解質層を固体電池内に配置することで、短絡等によって固体電池の温度が上昇した場合でも、Siの発熱が生じる温度に到達し難くなり、Siの発熱による電池の発熱量の増大が抑えられるものと考えた。本発明者は、ポリマー電解質層を構成する材料として種々のポリマー電解質を検討した結果、固体電池において、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さいポリマー電解質層を採用することで、上記のSiの発熱による電池の発熱量の増大を抑制できることを見出した。以下、実施例の一例を示すが、本開示の固体電池の構成は、以下の構成に限定されるものではない。
2. 2. Confirmation of Effect by Polymer Electrolyte Layer From the results shown in FIG. 2, in the solid-state battery using Si as the negative electrode active material, the temperature reaches a temperature at which the functions of the conventional PPTC membrane and the like (Patent Document 1) are fully exhibited. Before this, there is a risk that Si will generate heat. That is, even if the solid-state battery is provided with a PPTC film or the like, when the temperature of the battery rises due to a short circuit or the like, there is a concern that the heat generation amount of the battery will increase due to the heat generation of Si. The present inventor has conceived of using a polymer electrolyte layer as a countermeasure against heat generation of Si. That is, by arranging a polymer electrolyte layer in the solid-state battery in which the ionic conductivity is lowered before reaching the temperature at which the heat generation of Si is generated, the heat generation of Si is generated even when the temperature of the solid-state battery rises due to a short circuit or the like. It is thought that it becomes difficult to reach the temperature at which the battery is generated, and the increase in the amount of heat generated by the battery due to the heat generated by Si can be suppressed. As a result of examining various polymer electrolytes as materials constituting the polymer electrolyte layer, the present inventor has adopted a polymer electrolyte layer in which the ionic conductivity at 120 ° C. is smaller than the ionic conductivity at 60 ° C. in a solid-state battery. It has been found that the increase in the amount of heat generated by the battery due to the heat generated by Si can be suppressed. Hereinafter, an example of the embodiment will be shown, but the configuration of the solid-state battery of the present disclosure is not limited to the following configuration.

2.1 実施例
以下の材料を用いて、実施例に係る固体電池を作製した。
2.1 Example A solid-state battery according to the example was produced using the following materials.

2.1.1 正極集電体層
平均一次粒子径66nmのファーネスブラック(東海カーボン社製)と、PVDF(クレハ社製)とを、体積比で、20:80となるように秤量し、これらをNMP(日本リファイン社製)と混合することにより、PPTC膜用ペーストを得た。得られたペーストをAl箔(厚さ10μm)の表面に塗工し、100℃で1時間乾燥することで、Al箔の表面にPPTC膜(10μm厚)を設け、これを正極集電体として用いた。
2.1.1 Positive Electrode Collector Layer Furness Black (manufactured by Tokai Carbon Co., Ltd.) with an average primary particle diameter of 66 nm and PVDF (manufactured by Kureha Corporation) are weighed so as to have a volume ratio of 20:80. Was mixed with NMP (manufactured by Nippon Refine Co., Ltd.) to obtain a paste for PPTC film. The obtained paste is applied to the surface of an Al foil (thickness 10 μm) and dried at 100 ° C. for 1 hour to provide a PPTC film (10 μm thickness) on the surface of the Al foil, which is used as a positive electrode current collector. Using.

2.1.2 正極活物質層
正極活物質と硫化物固体電解質と導電助剤とバインダーとを、質量比で、正極活物質:硫化物固体電解質:導電助剤:バインダー=85:13:1.3:0.7となるように秤量して成形することで、正極活物質層(厚さ80μm)を得た。尚、正極活物質としては、LiNi1/3Co1/3Mn1/3(住友金属鉱山社製)にLiNbOをコートしたものを用いた。硫化物固体電解質としては10LiI−90(0.75LiS−0.25P)を合成し、これを結晶化及び微粒化したものを用いた(10LiI−90(0.75LiS−0.25P)の合成については特開2012−48973号公報を参照、結晶化及び微粒化については特開2014−102987号公報を参照)。導電助剤としては気相法炭素繊維(VGCF、昭和電工社製)を用いた。バインダーとしてはPVDFを用いた。
2.1.2 Positive electrode active material layer Positive electrode active material, sulfide solid electrolyte, conductive auxiliary agent, and binder in mass ratio, positive electrode active material: sulfide solid electrolyte: conductive auxiliary agent: binder = 85: 13: 1. A positive electrode active material layer (thickness 80 μm) was obtained by weighing and molding so as to have a ratio of 3: 0.7. As the positive electrode active material, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Sumitomo Metal Mining Co., Ltd.) coated with LiNbO 3 was used. As the sulfide solid electrolyte, 10LiI-90 (0.75Li 2 S-0.25P 2 S 5 ) was synthesized, which was crystallized and atomized (10LiI-90 (0.75Li 2 S-). 0.25P see JP 2012-48973 for 2 S 5) synthesis of, see JP 2014-102987 for crystallization and atomization). Gas phase carbon fiber (VGCF, manufactured by Showa Denko KK) was used as the conductive auxiliary agent. PVDF was used as the binder.

2.1.3 負極活物質層
負極活物質と硫化物固体電解質と導電助剤とバインダーとを、質量比で、負極活物質:硫化物固体電解質:導電助剤:バインダー=53:41:4.5:1.5となるように秤量して成形することで、負極活物質層(厚さ80μm)を得た。尚、負極活物質としては、Si(三井金属社製、平均粒子径D50=2.5μm)を用いた。硫化物固体電解質、導電助剤及びバインダーは正極活物質層において用いたものと同様である。
2.1.3 Negative electrode active material layer Negative electrode active material, sulfide solid electrolyte, conductive auxiliary agent and binder in mass ratio, negative electrode active material: sulfide solid electrolyte: conductive auxiliary agent: binder = 53: 41: 4 A negative electrode active material layer (thickness 80 μm) was obtained by weighing and molding so as to have a ratio of 5.5: 1.5. As the negative electrode active material, Si (manufactured by Mitsui Mining & Smelting Co., Ltd., average particle diameter D 50 = 2.5 μm) was used. The sulfide solid electrolyte, the conductive auxiliary agent and the binder are the same as those used in the positive electrode active material layer.

2.1.4 負極集電体層
Ni箔(厚さ10μm)を負極集電体として用いた。
2.1.4 Negative electrode current collector layer Ni foil (thickness 10 μm) was used as the negative electrode current collector.

2.1.5 セパレータ層
特表2018−522083号公報の実施例1を参考に、ポリマー電解質材料を作製した。具体的には、ポリマーとしてポリフェニレンスルフィド(PPS)と、ドーパントとしてクロラニル粉末とを、重量比で、PPS:クロラニル=76:24となるように混合した。得られた混合物を、大気雰囲気下、350℃で24時間加熱し、反応混合物を得た。得られた反応混合物とリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)とを、重量比で、95:5で混合して、ポリマー電解質材料を得た。得られたポリマー電解質材料とバインダー(PVDF)とを、質量比で、ポリマー電解質材料:バインダー=99.4:0.6となるように混合してポリマー電解質合材とし、当該ポリマー電解質合材を成形してポリマー電解質層(厚さ5μm)を得た。一方で、上記と同様の硫化物固体電解質とバインダーとを、質量比で、99.6:0.4となるように混合して固体電解質合材とし、当該固体電解質合材を成形して固体電解質層(厚さ10μm)を得た。得られたポリマー電解質層と固体電解質層とは互いに積層されてセパレータ層(厚さ15μm)を構成するものとした。
2.1.5 Separator layer A polymer electrolyte material was prepared with reference to Example 1 of JP-A-2018-52083. Specifically, polyphenylene sulfide (PPS) as a polymer and chloranil powder as a dopant were mixed so as to have a weight ratio of PPS: chloranil = 76: 24. The obtained mixture was heated at 350 ° C. for 24 hours in an air atmosphere to obtain a reaction mixture. The obtained reaction mixture and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) were mixed at a weight ratio of 95: 5 to obtain a polymer electrolyte material. The obtained polymer electrolyte material and the binder (PVDF) are mixed so as to have a polymer electrolyte material: binder = 99.4: 0.6 in terms of mass ratio to obtain a polymer electrolyte mixture, and the polymer electrolyte mixture is obtained. Molding was performed to obtain a polymer electrolyte layer (thickness 5 μm). On the other hand, the same sulfide solid electrolyte and the binder as described above are mixed so as to have a mass ratio of 99.6: 0.4 to form a solid electrolyte mixture, and the solid electrolyte mixture is molded into a solid. An electrolyte layer (thickness 10 μm) was obtained. The obtained polymer electrolyte layer and solid electrolyte layer were laminated with each other to form a separator layer (thickness: 15 μm).

2.1.6 固体電池
上記の各層を用いて、「正極集電体層/正極活物質層/ポリマー電解質層/固体電解質層/負極活物質層/負極集電体層」の層構成を有する固体電池を得た。得られた固体電池に対して、初期活性化(3−4.55V(CCCV)、充電1/10C、放電2C、休止条件1/100C)を行い、初期容量の確認(3−4.35V(CCCV)、充電1/3C、放電1/3C、休止条件1/100C、5サイクル)を行い、その後、電圧調整(4.35V、CCCV、充電1/3C、休止条件1/100C)を行うことで、実施例に係る固体電池を得た。
2.1.6 Solid-state battery Each of the above layers has a layer structure of "positive electrode current collector layer / positive electrode active material layer / polymer electrolyte layer / solid electrolyte layer / negative electrode active material layer / negative electrode current collector layer". Obtained a solid state battery. Initial activation (3-4.55V (CCCV), charge 1 / 10C, discharge 2C, rest condition 1 / 100C) was performed on the obtained solid-state battery, and the initial capacity was confirmed (3-4.35V (3-4.35V). CCCV), charge 1 / 3C, discharge 1 / 3C, pause condition 1 / 100C, 5 cycles), and then voltage adjustment (4.35V, CCCV, charge 1 / 3C, pause condition 1 / 100C). Then, the solid-state battery according to the example was obtained.

2.2 比較例
セパレータ層の構成を以下の通り変更したこと以外は、実施例と同様にして固体電池を得た。
2.2 Comparative Example A solid-state battery was obtained in the same manner as in the examples except that the configuration of the separator layer was changed as follows.

硫化物固体電解質とバインダーとを、質量比で、99.6:0.4となるように混合して固体電解質合材とし、当該固体電解質合材を成形してセパレータ層(厚さ15μm)を得た。 The sulfide solid electrolyte and the binder are mixed so as to have a mass ratio of 99.6: 0.4 to form a solid electrolyte mixture, and the solid electrolyte mixture is molded to form a separator layer (thickness 15 μm). Obtained.

3.ポリマー電解質材料の物性評価
上記実施例にて採用したポリマー固体電解質材料について、イオン伝導度の温度依存性を確認した。結果を図3に示す。図3に示されるように、実施例に係るポリマー固体電解質は、60℃から120℃にかけて、温度の上昇に伴ってイオン伝導度が徐々に低下し、120℃におけるイオン伝導度が60℃におけるイオン伝導度の10%以下にまで低下し得ることがわかる。
3. 3. Evaluation of Physical Properties of Polymer Electrolyte Material The temperature dependence of the ionic conductivity of the polymer solid electrolyte material used in the above examples was confirmed. The results are shown in FIG. As shown in FIG. 3, in the polymer solid electrolyte according to the examples, the ionic conductivity gradually decreases as the temperature rises from 60 ° C. to 120 ° C., and the ionic conductivity at 120 ° C. is an ion at 60 ° C. It can be seen that the conductivity can be reduced to 10% or less.

4.電池の発熱量の評価
図4に示されるように、固体電池の中央部を直径8mm、先端角60°の釘で速度25mm/sにて刺し込む釘刺し試験を行った。実施例及び比較例に係る固体電池の各々について、釘刺し後の温度測定点における最高温度を測定した。結果を図5に示す。図5に示される結果から明らかなように、比較例に係る固体電池に比べて、実施例に係る固体電池は、最高温度が144℃低下した。上述したように、実施例にて用いたポリマー固体電解質は、120℃におけるイオン伝導度が60℃におけるイオン伝導度の10%以下であることから、実施例に係る固体電池においては、温度の上昇とともにセパレータ層の抵抗が上昇し、Siの発熱ピーク温度に到達する前にシャットダウン機能が働いた結果、負極活物質層中のSiの発熱が抑制されたものと考えられる。
4. Evaluation of the calorific value of the battery As shown in FIG. 4, a nail piercing test was conducted in which the central portion of the solid-state battery was pierced with a nail having a diameter of 8 mm and a tip angle of 60 ° at a speed of 25 mm / s. For each of the solid-state batteries according to Examples and Comparative Examples, the maximum temperature at the temperature measurement point after nailing was measured. The results are shown in FIG. As is clear from the results shown in FIG. 5, the maximum temperature of the solid-state battery according to the example was 144 ° C. lower than that of the solid-state battery according to the comparative example. As described above, since the polymer solid electrolyte used in the examples has an ionic conductivity at 120 ° C. of 10% or less of the ionic conductivity at 60 ° C., the temperature of the solid-state battery according to the examples rises. At the same time, the resistance of the separator layer increased, and as a result of the shutdown function working before reaching the peak temperature of Si heat generation, it is considered that the heat generation of Si in the negative electrode active material layer was suppressed.

本開示の固体電池は、例えば、携帯機器用等の小型電源から車搭載用等の大型電源まで広く利用することができる。 The solid-state battery of the present disclosure can be widely used, for example, from a small power source for mobile devices to a large power source for mounting on a vehicle.

10 正極活物質層
20 負極活物質層
30 固体電解質層
40 ポリマー電解質層
100 固体電池
10 Positive electrode active material layer 20 Negative electrode active material layer 30 Solid electrolyte layer 40 Polymer electrolyte layer 100 Solid-state battery

Claims (1)

正極活物質層と、負極活物質層と、固体電解質層と、ポリマー電解質層とを備え、
前記固体電解質層は、前記正極活物質層と前記負極活物質層との間に配置され、
前記ポリマー電解質層は、前記正極活物質層と前記固体電解質層との間、及び、前記負極活物質層と前記固体電解質層との間、のうちの少なくとも一方に配置され、
前記負極活物質層は、負極活物質としてSiを含み、
前記固体電解質層は、構成元素としてLiを有する無機固体電解質を含み、
前記ポリマー電解質層は、120℃におけるイオン伝導度が60℃におけるイオン伝導度よりも小さい、
固体電池。
A positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and a polymer electrolyte layer are provided.
The solid electrolyte layer is arranged between the positive electrode active material layer and the negative electrode active material layer.
The polymer electrolyte layer is arranged at least one of the positive electrode active material layer and the solid electrolyte layer, and the negative electrode active material layer and the solid electrolyte layer.
The negative electrode active material layer contains Si as the negative electrode active material and contains Si.
The solid electrolyte layer contains an inorganic solid electrolyte having Li as a constituent element, and contains
The polymer electrolyte layer has an ionic conductivity at 120 ° C. lower than that at 60 ° C.
Solid-state battery.
JP2020095586A 2020-06-01 2020-06-01 solid state battery Active JP7294240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020095586A JP7294240B2 (en) 2020-06-01 2020-06-01 solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020095586A JP7294240B2 (en) 2020-06-01 2020-06-01 solid state battery

Publications (2)

Publication Number Publication Date
JP2021190339A true JP2021190339A (en) 2021-12-13
JP7294240B2 JP7294240B2 (en) 2023-06-20

Family

ID=78847519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020095586A Active JP7294240B2 (en) 2020-06-01 2020-06-01 solid state battery

Country Status (1)

Country Link
JP (1) JP7294240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095511A1 (en) * 2022-11-01 2024-05-10 株式会社デンソー Secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531646A (en) * 2002-02-06 2005-10-20 バトル、メモリアル、インスティテュート Polymer electrolyte membranes used in fuel cells
KR20090090080A (en) * 2008-02-20 2009-08-25 현대자동차주식회사 High temperature blended polymer electrolyte membrane and method of preparing the same
JP2011029079A (en) * 2009-07-28 2011-02-10 Sharp Corp Nonaqueous electrolyte secondary battery
JP2014238925A (en) * 2013-06-06 2014-12-18 日本碍子株式会社 All-solid battery
JP2018181462A (en) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 All-solid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531646A (en) * 2002-02-06 2005-10-20 バトル、メモリアル、インスティテュート Polymer electrolyte membranes used in fuel cells
KR20090090080A (en) * 2008-02-20 2009-08-25 현대자동차주식회사 High temperature blended polymer electrolyte membrane and method of preparing the same
JP2011029079A (en) * 2009-07-28 2011-02-10 Sharp Corp Nonaqueous electrolyte secondary battery
JP2014238925A (en) * 2013-06-06 2014-12-18 日本碍子株式会社 All-solid battery
JP2018181462A (en) * 2017-04-05 2018-11-15 トヨタ自動車株式会社 All-solid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095511A1 (en) * 2022-11-01 2024-05-10 株式会社デンソー Secondary battery

Also Published As

Publication number Publication date
JP7294240B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US9214697B2 (en) Lithium secondary battery
US20170358816A1 (en) All-solid-state battery and method for producing the same
JP2013214494A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP2012079582A (en) Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery
JP2020174004A (en) All-solid battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP5677779B2 (en) Solid lithium ion secondary battery
JP6885353B2 (en) Power storage device
JP6295966B2 (en) All solid battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP7294240B2 (en) solid state battery
CN111164817A (en) Lithium ion secondary battery
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP4120439B2 (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
JP6503768B2 (en) Lithium ion secondary battery
CN111201638A (en) Electrode plate, electricity storage element, and method for manufacturing electrode plate
JP2018063916A (en) Lithium ion secondary battery
JP7188224B2 (en) All-solid battery
JP7243704B2 (en) All-solid secondary battery
JP7484884B2 (en) Nonaqueous electrolyte storage element and storage device
KR20190031978A (en) Lithium secondary battery
JP2001319636A (en) Nonaqueous electrolyte secondary battery
JP6979186B2 (en) Non-aqueous electrolyte secondary battery and charging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R151 Written notification of patent or utility model registration

Ref document number: 7294240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151