JP2012079582A - Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery - Google Patents

Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery Download PDF

Info

Publication number
JP2012079582A
JP2012079582A JP2010224834A JP2010224834A JP2012079582A JP 2012079582 A JP2012079582 A JP 2012079582A JP 2010224834 A JP2010224834 A JP 2010224834A JP 2010224834 A JP2010224834 A JP 2010224834A JP 2012079582 A JP2012079582 A JP 2012079582A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
secondary battery
negative electrode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010224834A
Other languages
Japanese (ja)
Inventor
Motoaki Yasui
基陽 安井
Kentaro Nakahara
謙太郎 中原
Shigeyuki Iwasa
繁之 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010224834A priority Critical patent/JP2012079582A/en
Publication of JP2012079582A publication Critical patent/JP2012079582A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery in which each resistance of a positive electrode and a negative electrode can be measured individually and highly precisely, so that the degree of deterioration can be diagnosed easily and highly precisely.SOLUTION: The secondary batty comprises: a positive electrode 101; a negative electrode 102; and an electrolyte-containing phase. The positive electrode 101 and the negative electrode 102 transfer charges via the electrolyte-containing phase, so that the secondary battery can be charged and discharged. The secondary batty further comprises: a reference electrode 103; and a counter electrode 104, while the reference electrode 103 and the counter electrode 104 are electrically connected with each other via the electrolyte-containing phase, and also are electrically connected to the positive electrode 101 and a negative electrode 102 via the electrolyte-containing phase.

Description

本発明は、二次電池、二次電池の正極または負極の抵抗測定方法、および、二次電池の正極または負極の劣化程度診断方法に関する。   The present invention relates to a secondary battery, a resistance measurement method for a positive electrode or a negative electrode of a secondary battery, and a diagnostic method for a degree of deterioration of a positive electrode or a negative electrode of a secondary battery.

近年、電気自動車用二次電池や家庭用二次電池などに代表されるように、二次電池が、長時間使用される傾向がある。二次電池は、長時間の使用により劣化する。このため、二次電池の劣化の程度を容易にかつ精度良く診断できることが求められている。   In recent years, secondary batteries tend to be used for a long time, as typified by secondary batteries for electric vehicles and household secondary batteries. Secondary batteries deteriorate with long-term use. For this reason, it is required that the degree of deterioration of the secondary battery can be diagnosed easily and accurately.

特許文献1では、二次電池に充電電流パルスまたは放電電流パルスを印加し、所定の周波数経過後の入力電流と応答電圧から抵抗(内部抵抗)を算出することで、劣化を診断し、継続して利用が可能か否かを判別する方法が提案されている。   In Patent Document 1, a charge current pulse or a discharge current pulse is applied to a secondary battery, and a resistance (internal resistance) is calculated from an input current and a response voltage after a predetermined frequency has elapsed, thereby diagnosing deterioration and continuing. There has been proposed a method for determining whether or not it can be used.

特許文献2では、正極(作用極)と負極(対極)のそれぞれの近傍に、参照極を有する4極式の電気化学セルが提案されている。この電気化学セルでは、正極(作用極)単身の電位、および、負極(対極)単身の電位をより正確に把握できるとともに、正極(作用極)と負極(対極)との間に生じる電位勾配を把握することができる。   Patent Document 2 proposes a four-pole electrochemical cell having a reference electrode in the vicinity of each of a positive electrode (working electrode) and a negative electrode (counter electrode). In this electrochemical cell, the potential of the positive electrode (working electrode) alone and the potential of the negative electrode (counter electrode) alone can be grasped more accurately, and the potential gradient generated between the positive electrode (working electrode) and the negative electrode (counter electrode) I can grasp it.

特開2010−156702号公報JP 2010-156702 A 特開2006−179329号公報JP 2006-179329 A

特許文献1の劣化程度診断方法では、正極と負極のそれぞれの抵抗(内部抵抗)を個別に測定することができないため、正極と負極のどちらがどの程度劣化しているのか調べることができず、精度の良い診断をすることができない。   In the deterioration degree diagnosis method of Patent Document 1, since the resistance (internal resistance) of each of the positive electrode and the negative electrode cannot be measured individually, it is impossible to examine how much the positive electrode or the negative electrode has deteriorated, and the accuracy. Can not make a good diagnosis.

一方、特許文献2の電気化学セルによれば、前記のとおり、正極および負極のそれぞれの電位を、個別に、かつ精度良く測定することが可能である。しかし、対極(負極)の抵抗が作用極(正極)に対して大きい場合、作用極の交流インピーダンス(内部インピーダンスまたは単にインピーダンスともいうことがある)を測定するときに、対極で電極反応が律速してしまい、精度良く作用極の抵抗を測定することができない。   On the other hand, according to the electrochemical cell of Patent Document 2, as described above, the potentials of the positive electrode and the negative electrode can be measured individually and accurately. However, when the resistance of the counter electrode (negative electrode) is larger than that of the working electrode (positive electrode), the electrode reaction is rate-controlled at the counter electrode when measuring the AC impedance of the working electrode (sometimes referred to as internal impedance or simply impedance). Therefore, the resistance of the working electrode cannot be measured with high accuracy.

このように、従来の二次電池、または二次電池の劣化程度診断方法では、正極と負極のそれぞれの抵抗を個別に、かつ精度良く測定することができないために、二次電池の劣化の程度を精度良く診断することができない。   As described above, since the conventional secondary battery or the secondary battery deterioration degree diagnosis method cannot measure the resistances of the positive electrode and the negative electrode individually and accurately, the degree of deterioration of the secondary battery. Cannot be diagnosed accurately.

そこで、本発明は、正極と負極のそれぞれの抵抗を個別に、かつ精度良く測定できて、劣化の程度を容易にかつ精度良く診断可能な二次電池、二次電池の正極または負極の抵抗測定方法、および、二次電池の正極または負極の劣化程度診断方法を提供することを目的とする。   Therefore, the present invention can measure the resistance of each of the positive electrode and the negative electrode individually and accurately, and can measure the degree of deterioration easily and accurately, and the resistance measurement of the positive electrode or the negative electrode of the secondary battery. It is an object to provide a method and a method for diagnosing the degree of deterioration of a positive electrode or a negative electrode of a secondary battery.

前記目的を達成するために、本発明の二次電池は、
正極、負極および電解質含有相を含み、
前記正極と前記負極が前記電解質含有相を介して電荷を授受することにより、充放電可能であり、
さらに、参照極および対極を含み、
前記参照極および前記対極は、前記電解質含有相を介して互いに電気的に接続され、かつ、前記電解質含有相を介して前記正極および前記負極と電気的に接続されていることを特徴とする。
In order to achieve the above object, the secondary battery of the present invention comprises:
Including a positive electrode, a negative electrode and an electrolyte-containing phase,
The positive electrode and the negative electrode can be charged and discharged by transferring charge through the electrolyte-containing phase,
Furthermore, including a reference electrode and a counter electrode,
The reference electrode and the counter electrode are electrically connected to each other via the electrolyte-containing phase, and are electrically connected to the positive electrode and the negative electrode via the electrolyte-containing phase.

本発明による、二次電池の正極または負極の抵抗測定方法は、
前記正極または前記負極を作用極として用い、さらに、前記参照極および前記対極を用いて前記正極または前記負極の交流インピーダンスを測定する交流インピーダンス測定工程と、
前記交流インピーダンスに基づき、前記正極または前記負極の抵抗を算出する抵抗算出工程を含むことを特徴とする、前記本発明の二次電池の前記正極または前記負極の抵抗測定方法である。
According to the present invention, a method for measuring resistance of a positive electrode or a negative electrode of a secondary battery is as follows:
AC impedance measurement step of measuring the AC impedance of the positive electrode or the negative electrode using the positive electrode or the negative electrode as a working electrode, and further using the reference electrode and the counter electrode;
The method of measuring resistance of the positive electrode or the negative electrode of the secondary battery of the present invention, comprising a resistance calculating step of calculating the resistance of the positive electrode or the negative electrode based on the AC impedance.

本発明による、二次電池の正極または負極の劣化程度診断方法は、
前記本発明の二次電池に対し、充電および放電の少なくとも一方を所定の時間および所定の回数行った後の前記正極または前記負極の抵抗を、前記本発明の測定方法により測定する抵抗測定工程と、
前記抵抗測定工程において測定した前記正極または前記負極の抵抗を、前記充電および放電の少なくとも一方を行う前の抵抗と比較することで、前記正極または前記負極の劣化の程度を診断する劣化程度診断工程を含むことを特徴とする。
According to the present invention, a method for diagnosing the degree of deterioration of a positive electrode or negative electrode of a secondary battery is as follows:
A resistance measuring step of measuring the resistance of the positive electrode or the negative electrode after performing at least one of charging and discharging for a predetermined time and a predetermined number of times on the secondary battery of the present invention by the measuring method of the present invention; ,
Deterioration degree diagnosis step of diagnosing the degree of deterioration of the positive electrode or the negative electrode by comparing the resistance of the positive electrode or the negative electrode measured in the resistance measurement step with the resistance before performing at least one of the charging and discharging. It is characterized by including.

本発明の二次電池、二次電池の正極または負極の抵抗測定方法、および、二次電池の正極または負極の劣化程度診断方法によれば、正極と負極のそれぞれの抵抗を個別に、かつ精度良く測定できて、劣化の程度を容易にかつ精度良く診断可能である。   According to the secondary battery, the method for measuring the resistance of the positive electrode or the negative electrode of the secondary battery, and the method for diagnosing the deterioration degree of the positive electrode or the negative electrode of the secondary battery, the resistance of each of the positive electrode and the negative electrode is individually and accurately It can be measured well and the degree of deterioration can be diagnosed easily and accurately.

本発明における二次電池の一例の構造を示す斜視図である。It is a perspective view which shows the structure of an example of the secondary battery in this invention. 図1の二次電池の分解斜視図である。FIG. 2 is an exploded perspective view of the secondary battery of FIG. 1. 実施例1および2の二次電池における交流インピーダンス測定結果を例示するグラフである。図3(a)は、ナイキスト線図である。図3(b)は、ボード線図である。3 is a graph illustrating AC impedance measurement results in the secondary batteries of Examples 1 and 2. FIG. 3A is a Nyquist diagram. FIG. 3B is a Bode diagram. 実施例1の二次電池における正極および負極の交流インピーダンス測定結果を例示するグラフである。図4(a)は、ナイキスト線図である。図4(b)は、ボード線図である。4 is a graph illustrating an AC impedance measurement result of a positive electrode and a negative electrode in the secondary battery of Example 1. FIG. 4A is a Nyquist diagram. FIG. 4B is a Bode diagram.

以下、本発明の実施形態について説明する。ただし、本発明は、以下の説明により限定されない。なお、本発明において、二次電池の各電極(正極、負極、作用極または対極)の「抵抗」は、場合により「内部抵抗」、「電気抵抗」または「電荷移動抵抗」ともいうことがあるが、いずれも同義である。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited by the following description. In the present invention, the “resistance” of each electrode (positive electrode, negative electrode, working electrode or counter electrode) of the secondary battery is sometimes referred to as “internal resistance”, “electric resistance” or “charge transfer resistance”. However, all are synonymous.

[二次電池]
図1および図2に、本発明の二次電池の一例の構造を模式的に示す。図1は、斜視図であり、図2は、分解斜視図である。
[Secondary battery]
1 and 2 schematically show an example of the structure of the secondary battery of the present invention. FIG. 1 is a perspective view, and FIG. 2 is an exploded perspective view.

図1に示すとおり、本例の二次電池110は、各構成要素(同図においては、図示せず)が、外装体109により封止され、外装体109の端部から、4枚の電極用リード106が突出している。外装体109に封止された前記各構成要素は、正極、負極、参照極、対極、および電解質含有相を含む。前記正極と前記負極は、前記電解質含有相を介して電荷を授受することにより、充放電可能である。前記参照極および前記対極は、前記電解質含有相を介して互いに電気的に接続され、かつ、前記電解質含有相を介して前記正極および負極と電気的に接続されている。   As shown in FIG. 1, in the secondary battery 110 of this example, each component (not shown in the figure) is sealed by an exterior body 109, and four electrodes are formed from the end of the exterior body 109. The lead 106 protrudes. Each of the constituent elements sealed in the outer package 109 includes a positive electrode, a negative electrode, a reference electrode, a counter electrode, and an electrolyte-containing phase. The positive electrode and the negative electrode can be charged and discharged by transferring charge through the electrolyte-containing phase. The reference electrode and the counter electrode are electrically connected to each other via the electrolyte-containing phase, and are electrically connected to the positive electrode and the negative electrode via the electrolyte-containing phase.

図2に示すとおり、本例の二次電池110は、集電体105を3つ有し、正極101、負極102、および対極104は、それぞれ、個別の集電体105上に形成されている。参照極103は、参照極集電体111上に形成されている。前記4枚の電極用リード106のうち3枚は、正極101、負極102、または対極104用の集電体105に、それぞれ接続され、残りの1枚は、参照極集電体111に接続されている。さらに、この二次電池110は、セパレータ107を2枚と、対極用セパレータ108を1枚有する。各セパレータ107および対極用セパレータ108は、多孔質であり、それぞれ、その細孔内に、電解質含有相(図示せず)を含む。   As shown in FIG. 2, the secondary battery 110 of this example includes three current collectors 105, and the positive electrode 101, the negative electrode 102, and the counter electrode 104 are each formed on individual current collectors 105. . The reference electrode 103 is formed on the reference electrode current collector 111. Three of the four electrode leads 106 are connected to the current collector 105 for the positive electrode 101, the negative electrode 102, or the counter electrode 104, respectively, and the remaining one is connected to the reference electrode current collector 111. ing. Further, the secondary battery 110 includes two separators 107 and one counter electrode separator 108. Each separator 107 and counter electrode separator 108 are porous, and each includes an electrolyte-containing phase (not shown) in the pores.

電極リード106を有する集電体105の上に形成された正極101と、電極リード106を有する集電体105の上に形成された負極102とは、2枚のセパレータ107のうち1枚を挟んで対向するように重ね合わせられている。電極リード106を有する集電体111の上に形成された参照極103は、負極102を挟んで正極1と反対側に配置され、かつ、負極102との間に、もう1枚のセパレータ107を挟んで、負極102と重ね合わせられている。電極リード106を有する集電体105の上に形成された対極104は、参照極103を挟んで負極102と反対側に配置され、かつ、参照極103との間に、対極用セパレータ108を挟んで、参照極103と重ね合わせられている。これらの積層体が、2枚の外装体109で封止されて、二次電池110が形成されている。   The positive electrode 101 formed on the current collector 105 having the electrode lead 106 and the negative electrode 102 formed on the current collector 105 having the electrode lead 106 sandwich one of the two separators 107. Are superimposed so that they face each other. The reference electrode 103 formed on the current collector 111 having the electrode lead 106 is disposed on the opposite side of the positive electrode 1 with the negative electrode 102 interposed therebetween, and another separator 107 is interposed between the negative electrode 102 and the reference electrode 103. The anode 102 is overlapped with the anode 102. The counter electrode 104 formed on the current collector 105 having the electrode lead 106 is disposed on the opposite side of the negative electrode 102 with the reference electrode 103 interposed therebetween, and the counter electrode separator 108 is interposed between the counter electrode 103 and the reference electrode 103. Thus, it is superimposed on the reference electrode 103. These laminated bodies are sealed with two exterior bodies 109 to form a secondary battery 110.

二次電池110を構成する各構成要素の形成材料、構成等は、特に限定されないが、例えば以下のとおりである。   Although the formation material of each component which comprises the secondary battery 110, a structure, etc. are not specifically limited, For example, it is as follows.

正極101は、例えば、正極活物質、導電性付与剤、および接着剤を有する。前記正極活物質としては、金属酸化物、有機ラジカル化合物、ジスルフィド化合物等を用いることができる。前記金属酸化物としては、例えば、LiMnO、LiMn(0<x<2)等のマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、MnO、LiCoO、LiNiO、Li(0<y<2)、オリビン系材料LiFePO、スピネル構造中のMnの一部を他の遷移金属で置換した材料LiNi0.5Mn1.5、LiCr0.5Mn1.5、LiCo0.5Mn1.5、LiCoMnO、LiNi0.5Mn0.5、LiNi0.33Mn0.33Co0.33、LiNi0.8Co0.2、LiN0.5Mn1.5−zTi(0<z<1.5)、等が挙げられる。前記有機ラジカル化合物としては、酸化状態において、下記反応式(A)中の式(1)で示されるN−オキソ−アンモニウムカチオン部分構造をとり、還元状態において、下記反応式(A)中の式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物等が挙げられる。前記ジスルフィド化合物としては、ジチオグリコール、2,5−ジメルカプト−1,3,4−チアジアゾール、S−トリアジン−2,4,6−トリチオール等が挙げられる。これらの正極活物質は、単独で用いても良いし、二種類以上併用しても良い。 The positive electrode 101 includes, for example, a positive electrode active material, a conductivity imparting agent, and an adhesive. As the positive electrode active material, a metal oxide, an organic radical compound, a disulfide compound, or the like can be used. Examples of the metal oxide include lithium manganate such as LiMnO 2 and Li x Mn 2 O 4 (0 <x <2) or lithium manganate having a spinel structure, MnO 2 , LiCoO 2 , LiNiO 2 , Li y. V 2 O 5 (0 <y <2), olivine-based material LiFePO 4 , materials obtained by substituting a part of Mn in the spinel structure with other transition metals LiNi 0.5 Mn 1.5 O 4 , LiCr 0.5 Mn 1.5 O 4 , LiCo 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 , LiNi 0. 8 Co 0.2 O 2 , LiN 0.5 Mn 1.5-z Ti z O 4 (0 <z <1.5), and the like. The organic radical compound has an N-oxo-ammonium cation partial structure represented by the formula (1) in the following reaction formula (A) in the oxidized state, and the formula in the following reaction formula (A) in the reduced state. Examples thereof include a nitroxyl compound having a nitroxyl radical partial structure represented by (2). Examples of the disulfide compound include dithioglycol, 2,5-dimercapto-1,3,4-thiadiazole, S-triazine-2,4,6-trithiol and the like. These positive electrode active materials may be used alone or in combination of two or more.

Figure 2012079582
Figure 2012079582

前記導電性付与剤の材料としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、カーボンナノチューブ等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。   Examples of the material for the conductivity imparting agent include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as carbon nanotubes, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. .

前記接着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、部分カルボキシ化セルロース、各種ポリウレタン等の樹脂バインダーが挙げられる。   Examples of the adhesive include polytetrafluoroethylene (PTFE), polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, and polypropylene. , Resin binders such as polyethylene, polyimide, partially carboxylated cellulose, and various polyurethanes.

負極102は、例えば、負極活物質、導電性付与剤、および接着剤を有する。前記負極活物質としては、リチウム金属やリチウム合金、グラファイト等を用いることができる。これらの形状は特に限定されず、例えば、薄膜状、粉末を固めたもの、繊維状のもの、フレーク状のもの等であっても良い。また、これらの負極活物質は、単独で用いても良いし、二種類以上併用しても良い。   The negative electrode 102 includes, for example, a negative electrode active material, a conductivity imparting agent, and an adhesive. As the negative electrode active material, lithium metal, lithium alloy, graphite or the like can be used. These shapes are not particularly limited, and may be, for example, a thin film, a powdered product, a fiber, or a flake. Moreover, these negative electrode active materials may be used independently and may be used together 2 or more types.

参照極103としては、リチウム金属等を用いることができる。リチウム金属による参照極103の作製方法は、特に限定されないが、例えば、参照極集電体111表面の一部に対する、リチウム金属の圧着、張り付け、電析、またはコーティング等が挙げられる。   As the reference electrode 103, lithium metal or the like can be used. A method for manufacturing the reference electrode 103 using lithium metal is not particularly limited, and examples thereof include pressure bonding, pasting, electrodeposition, or coating of lithium metal on a part of the surface of the reference electrode current collector 111.

対極104の形成材料は、特に限定されないが、炭素材料、リチウム金属、白金等が挙げられ、炭素材料が好ましい。炭素材料は、比表面積が大きいため、比抵抗が小さく、対極の投影面積を小さくすることができる。前記炭素材料としては、グラファイト、活性炭等が挙げられ、活性炭が特に好ましい。活性炭は、炭素材料の中でも特に比表面積が大きいため、さらに比抵抗が小さく、対極の投影面積をさらに小さくすることができる。なお、対極104の比抵抗は、好ましくは200Ω・cm以下、より好ましくは100Ω・cm以下、特に好ましくは50Ω・cm以下である。対極104の比抵抗の下限は特に限定されないが、例えば、0Ω・cmを超える値である。   Although the forming material of the counter electrode 104 is not specifically limited, A carbon material, lithium metal, platinum, etc. are mentioned, A carbon material is preferable. Since the carbon material has a large specific surface area, the specific resistance is small and the projected area of the counter electrode can be reduced. Examples of the carbon material include graphite and activated carbon, and activated carbon is particularly preferable. Activated carbon has a large specific surface area among carbon materials, so that the specific resistance is further reduced and the projected area of the counter electrode can be further reduced. The specific resistance of the counter electrode 104 is preferably 200 Ω · cm or less, more preferably 100 Ω · cm or less, and particularly preferably 50 Ω · cm or less. Although the minimum of the specific resistance of the counter electrode 104 is not specifically limited, For example, it is a value exceeding 0 Ω · cm.

集電体105としては、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなるメッシュ等を用いることができる。   As the current collector 105, a mesh made of nickel, aluminum, copper, gold, silver, an aluminum alloy, stainless steel, carbon, or the like can be used.

電極リード106としては、アルミ金属、ニッケル金属等を用いることができる。   As the electrode lead 106, aluminum metal, nickel metal, or the like can be used.

セパレータ107としては、ポリエチレン、ポリプロピレン等から形成された多孔質フィルム、セルロース膜、不織布等を用いることができる。セパレータ107により、正極101、負極102、参照極103を互いに非接触状態とすることができる。   As the separator 107, a porous film formed from polyethylene, polypropylene, or the like, a cellulose film, a nonwoven fabric, or the like can be used. With the separator 107, the positive electrode 101, the negative electrode 102, and the reference electrode 103 can be in a non-contact state.

前記電解質含有相は、水系の相でも非水系の相でも良いが、非水系の相であることが好ましい。また、前記電解質含有相は、固体でも液体でも良く、固体の場合は、例えば、ゲル(ゲル電解質)等であっても良い。前記電解質含有相は、電解質自体により形成されていても良いし、電解質を含む溶液(電解液)または電解質を含む固体であっても良い。また、前記電解質含有相が、固体(いわゆる固体電解質、ゲル電解質等)である場合は、セパレータ107または対極用セパレータ108の一部または全部を省略することも可能である。すなわち、この場合、セパレータ107または対極用セパレータ108に代えて前記電解質含有相自体を電極間に介在させ、セパレータとしても良い。   The electrolyte-containing phase may be an aqueous phase or a non-aqueous phase, but is preferably a non-aqueous phase. The electrolyte-containing phase may be solid or liquid, and in the case of a solid, for example, a gel (gel electrolyte) may be used. The electrolyte-containing phase may be formed by the electrolyte itself, or may be a solution (electrolyte) containing an electrolyte or a solid containing an electrolyte. When the electrolyte-containing phase is solid (so-called solid electrolyte, gel electrolyte, etc.), part or all of the separator 107 or the counter electrode separator 108 can be omitted. That is, in this case, instead of the separator 107 or the counter electrode separator 108, the electrolyte-containing phase itself may be interposed between the electrodes to form a separator.

セパレータ107または対極用セパレータ108中に前記電解質含有相を含ませて用いる場合は、前記電解質含有相は、固体でも液体でも良いが、電解質を含む溶液(電解液)であることが好ましい。正極101、負極102、参照極103、および対極104の各電極に前記電解液が含浸し、前記各電極に前記電解液が接触することで、前記電解液による前記各電極間の荷電担体輸送を行うことができる。前記荷電担体は、例えば、イオンまたは電子である。   When the electrolyte-containing phase is included in the separator 107 or the counter electrode separator 108, the electrolyte-containing phase may be solid or liquid, but is preferably a solution (electrolyte) containing an electrolyte. The electrolyte solution is impregnated in each electrode of the positive electrode 101, the negative electrode 102, the reference electrode 103, and the counter electrode 104, and the electrolyte solution is in contact with each electrode, thereby transporting charge carriers between the electrodes by the electrolyte solution. It can be carried out. The charge carrier is, for example, an ion or an electron.

前記電解液のイオン伝導性は、例えば、20℃で10−5〜10−1S/cmである。電解液としては、例えば、電解質塩を溶剤に溶解した有機溶媒を利用することができる。前記電解質塩は特に限定されず、公知の電解質塩等を適宜用いることができる。前記電解質は、例えば、リチウム塩等のアルカリ金属塩が挙げられる。前記リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、Li(CFSOC、Li(CSOC等が挙げられる。なお、LiN(CFSOを、以下において、「LiTFSI」ということがある。また、LiN(CSOを、以下において、「LiBETI」ということがある。 The ionic conductivity of the electrolytic solution is, for example, 10 −5 to 10 −1 S / cm at 20 ° C. As the electrolytic solution, for example, an organic solvent in which an electrolyte salt is dissolved in a solvent can be used. The electrolyte salt is not particularly limited, and a known electrolyte salt or the like can be appropriately used. Examples of the electrolyte include alkali metal salts such as lithium salts. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Li (CF 3 SO 2 ) 3. C, Li (C 2 F 5 SO 2 ) 3 C and the like. Hereinafter, LiN (CF 3 SO 2 ) 2 may be referred to as “LiTFSI”. In addition, LiN (C 2 F 5 SO 2 ) 2 may be referred to as “LiBETI” below.

非水系の前記電解液に用いる有機溶媒としては、例えば、カーボネート、エステル、エーテル、スルホン、アミド等を用いることができる。前記カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等が挙げられる。前記エステルとしては、例えば、γ−ブチロラクトン等が挙げられる。前記エーテルとしては、例えば、テトラヒドロフラン、ジオキソラン等が挙げられる。前記スルホンとしては、例えば、スルホラン等が挙げられる。前記アミドとしては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等が挙げられる。これらの有機溶媒は、単独で用いても良いし、二種類以上併用しても良い。   Examples of the organic solvent used for the non-aqueous electrolyte include carbonate, ester, ether, sulfone, and amide. Examples of the carbonate include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. Examples of the ester include γ-butyrolactone. Examples of the ether include tetrahydrofuran and dioxolane. Examples of the sulfone include sulfolane. Examples of the amide include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like. These organic solvents may be used alone or in combination of two or more.

前記電解液は、例えば、高分子化合物のゲルに含浸させて、ゲル電解質として用いることもできる。前記高分子化合物としては、例えば、フッ化ビニリデン系重合体、アクリロニトリル系重合体等が挙げられる。前記フッ化ビニリデン系重合体としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等が挙げられる。前記アクリロニトリル系重合体としては、例えば、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等が挙げられる。さらに、前記高分子化合物としては、ポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体等も挙げられる。これらの高分子化合物は、単独で用いても良いし、二種類以上併用しても良い。   For example, the electrolytic solution can be impregnated in a gel of a polymer compound and used as a gel electrolyte. Examples of the polymer compound include a vinylidene fluoride polymer and an acrylonitrile polymer. Examples of the vinylidene fluoride-based polymer include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and vinylidene fluoride. -Trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and the like. Examples of the acrylonitrile-based polymer include acrylonitrile-methyl methacrylate copolymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, Examples include acrylonitrile-acrylic acid copolymer and acrylonitrile-vinyl acetate copolymer. Furthermore, examples of the polymer compound include polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates. These polymer compounds may be used alone or in combination of two or more.

対極用セパレータ108としては、特に限定されないが、セルロース、ガラス繊維(ガラスフィルター)、ろ紙等を用いることができ、ろ紙が特に好ましい。対極用セパレータ108として、ろ紙を用いる場合は、前記ろ紙は、1枚でも、2枚以上の任意の枚数を重ねて用いても良い。前記ろ紙の枚数により、対極104と作用極103との間の距離を調節することができる。また、ろ紙は、電解液がしみ込みやすいため、セパレータ108の厚みが大きくても、電解液中のイオンの移動が阻害されにくい。   Although it does not specifically limit as the separator 108 for counter electrodes, A cellulose, glass fiber (glass filter), a filter paper etc. can be used, A filter paper is especially preferable. When a filter paper is used as the counter electrode separator 108, the filter paper may be used singly or in an arbitrary number of two or more. The distance between the counter electrode 104 and the working electrode 103 can be adjusted by the number of the filter papers. In addition, the filter paper is likely to soak in the electrolytic solution, so that even if the thickness of the separator 108 is large, the movement of ions in the electrolytic solution is not easily inhibited.

外装体109は、アルミニウム箔等の金属箔と合成樹脂フィルムとから形成されたラミネートフィルム等を用いることができる。コスト面、使い勝手等から、アルミニウム箔と合成樹脂フィルムとから形成されたアルミラミネート外装体が特に好ましい。   As the exterior body 109, a laminate film or the like formed from a metal foil such as an aluminum foil and a synthetic resin film can be used. In view of cost, usability, etc., an aluminum laminate outer package formed from an aluminum foil and a synthetic resin film is particularly preferable.

参照極集電体111は、特に限定されないが、例えば、白金、ニッケル、銅、鉄、ステンレス等の金属箔、または金属線等を用いることができる。   The reference electrode current collector 111 is not particularly limited. For example, a metal foil such as platinum, nickel, copper, iron, and stainless steel, a metal wire, or the like can be used.

[抵抗測定方法および劣化程度診断方法]
本発明の二次電池は、前述のとおり、正極および負極とは別に、参照極および対極を有する。これにより、正極および負極の抵抗を個別に、かつ精度良く測定できて、劣化の程度を容易にかつ精度良く診断可能である。
[Resistance measurement method and degradation degree diagnosis method]
As described above, the secondary battery of the present invention has a reference electrode and a counter electrode separately from the positive electrode and the negative electrode. As a result, the resistances of the positive electrode and the negative electrode can be measured individually and accurately, and the degree of deterioration can be easily and accurately diagnosed.

本発明による、二次電池の正極または負極の抵抗測定方法は、前記のとおり、本発明の二次電池の、正極または負極を作用極とし、さらに参照極と対極を加えた3電極を用いて、各周波数における交流インピーダンスを測定し(交流インピーダンス測定工程)、前記交流インピーダンスに基づき、前記正極または前記負極の抵抗を算出する(抵抗算出工程)。前記交流インピーダンス測定工程は、前記3電極を用いる以外は特に限定されず、例えば、通常の交流インピーダンス測定法と同様にして行うことができる。前記抵抗算出工程も特に限定されないが、例えば、各周波数における前記交流インピーダンス測定結果に基づいてナイキスト線図をプロットし、同図中に描かれた半円の直径の値を電荷移動抵抗とすることができる。   As described above, the method for measuring the resistance of the positive electrode or the negative electrode of the secondary battery according to the present invention uses the three electrodes of the secondary battery of the present invention, the positive electrode or the negative electrode being a working electrode, and further adding a reference electrode and a counter electrode. The AC impedance at each frequency is measured (AC impedance measurement step), and the resistance of the positive electrode or the negative electrode is calculated based on the AC impedance (resistance calculation step). The AC impedance measurement step is not particularly limited except that the three electrodes are used. For example, the AC impedance measurement step can be performed in the same manner as a normal AC impedance measurement method. Although the resistance calculation step is not particularly limited, for example, a Nyquist diagram is plotted based on the AC impedance measurement result at each frequency, and the value of the diameter of the semicircle drawn in the figure is set as the charge transfer resistance. Can do.

本発明における、前記正極または前記負極の劣化程度診断方法は、前記本発明の二次電池の正極または負極の抵抗測定方法を用いて、例えば、以下のようにして行うことができる。すなわち、まず、前記本発明の二次電池に対し、充電および放電の少なくとも一方を所定の時間および所定の回数行った後の前記正極または前記負極の抵抗を、前記本発明の測定方法により測定する(抵抗測定工程)。さらに、前記抵抗測定工程において測定した前記正極または前記負極の抵抗を、前記充電および放電の少なくとも一方を行う前の抵抗と比較することで、前記正極または前記負極の劣化の程度を診断する(劣化程度診断工程)。前記充放電(充電および放電の少なくとも一方)における、前記「所定の時間」および「所定の回数」は、特に限定されない。前記充放電を行う前の抵抗は、例えば、あらかじめ、前記本発明の測定方法により測定しておいても良い。また、例えば、前記充放電を行う前の抵抗の値が既知である場合、その値を用いても良い。   The method for diagnosing the degree of deterioration of the positive electrode or the negative electrode in the present invention can be performed, for example, as follows using the resistance measurement method for the positive electrode or the negative electrode of the secondary battery of the present invention. That is, first, the resistance of the positive electrode or the negative electrode after measuring at least one of charging and discharging for a predetermined time and a predetermined number of times with respect to the secondary battery of the present invention is measured by the measurement method of the present invention. (Resistance measurement process). Furthermore, the degree of deterioration of the positive electrode or the negative electrode is diagnosed by comparing the resistance of the positive electrode or the negative electrode measured in the resistance measurement step with the resistance before performing at least one of the charging and discharging (deterioration). Degree diagnosis process). The “predetermined time” and “predetermined number of times” in the charging / discharging (at least one of charging and discharging) are not particularly limited. The resistance before the charge / discharge may be measured in advance by the measurement method of the present invention, for example. For example, when the value of the resistance before the charge / discharge is known, the value may be used.

つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例により、なんら限定されない。   Next, examples of the present invention will be described. However, the present invention is not limited at all by the following examples.

[実施例1]
以下のようにして、本発明の二次電池を製造した。
[Example 1]
The secondary battery of the present invention was manufactured as follows.

まず、正極活物質としてのポリ(2,2,6,6−テトラメチルピペリジノキシルメタクリレート)(PTMA)2.1g、導電付与剤としての炭素材料0.63g、接着剤としてのカルボキシメチルセルロース(CMC)0.24gとポリテトラフルオロエチレン(PTFE)0.03g、および水15mlを、ホモジェナイザーに撹拌し、均一なスラリーを調整した。なお、前記PTMAは、ニトロキシル化合物であり、有機ラジカル化合物である。つぎに、このスラリーを、正極集電体であるアルミメッシュ上に塗布し、さらに80℃で5分間乾燥し、さらに、ロールプレス機により200μmの厚さに加工した。このようにして得られた電極を正極として用いた。   First, 2.1 g of poly (2,2,6,6-tetramethylpiperidinoxyl methacrylate) (PTMA) as a positive electrode active material, 0.63 g of a carbon material as a conductivity-imparting agent, and carboxymethyl cellulose as an adhesive ( CMC) 0.24 g, polytetrafluoroethylene (PTFE) 0.03 g, and water 15 ml were stirred in a homogenizer to prepare a uniform slurry. The PTMA is a nitroxyl compound and an organic radical compound. Next, this slurry was applied on an aluminum mesh as a positive electrode current collector, further dried at 80 ° C. for 5 minutes, and further processed into a thickness of 200 μm by a roll press. The electrode thus obtained was used as a positive electrode.

なお、本実施例で用いた前記ニトロキシル高分子(ポリ(2,2,6,6−テトラメチルピペリジノキシルメタクリレート)(PTMA))は、特開2009−238612号公報に記載の方法に従って合成した。すなわち、まず、還流管を付けた100mlナスフラスコ中に、2,2,6,6−テトラメチルピペリジンメタクリレートモノマー20g(0.089mol)を入れ、乾燥テトラヒドロフラン80mlに溶解させた。そこへ、アゾビスイソブチロニトリル(AIBN)0.29g(0.00187mol)(モノマー/AIBN=50/l)を加え、アルゴン雰囲気下、75〜80℃で攪拌しながら反応させた。6時間反応後、室温まで放冷した。その後、へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)18g(収率90%)を得た。つぎに、得られたポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)10gを乾操ジクロロメタン100mlに溶解させた。ここへm−クロロ過安息香酸15.2g(0.088mol)のジクロロメタン溶液100mlを室温で攪拌しながら1時間かけて滴下した。さらに6時間攪拌後、沈殿したm−クロロ安息香酸を濾別して除き、ろ液を炭酸ナトリウム水溶液および水で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジエチルカーボネート(DEC)で洗浄し、減圧下乾燥させて、ポリ(2,2,6,6−テトラメチルピペリジノキシルメタクリレート)(PTMA)7.2gを得た(収率68.2%、茶褐色粉末)。得られた高分子化合物の構造はIRで確認した。また、GPCにより測定した結果、重量平均分子量Mw=89000、分散度Mw/Mn=3.30という値が得られた。   The nitroxyl polymer (poly (2,2,6,6-tetramethylpiperidinoxyl methacrylate) (PTMA)) used in this example was synthesized according to the method described in JP-A-2009-238612. did. That is, first, 20 g (0.089 mol) of 2,2,6,6-tetramethylpiperidine methacrylate monomer was placed in a 100 ml eggplant flask equipped with a reflux tube and dissolved in 80 ml of dry tetrahydrofuran. Thereto, 0.29 g (0.00187 mol) (monomer / AIBN = 50 / l) of azobisisobutyronitrile (AIBN) was added, and the mixture was reacted at 75 to 80 ° C. with stirring in an argon atmosphere. After reacting for 6 hours, it was allowed to cool to room temperature. Thereafter, the polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain 18 g (yield 90%) of poly (2,2,6,6-tetramethylpiperidine methacrylate). Next, 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry-treated dichloromethane. To this, 100 ml of a dichloromethane solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid was added dropwise over 1 hour with stirring at room temperature. After further stirring for 6 hours, the precipitated m-chlorobenzoic acid was removed by filtration, and the filtrate was washed with an aqueous sodium carbonate solution and water, and then dichloromethane was distilled off. The remaining solid was pulverized, and the resulting powder was washed with diethyl carbonate (DEC) and dried under reduced pressure to obtain poly (2,2,6,6-tetramethylpiperidinoxyl methacrylate) (PTMA) 7 0.2 g was obtained (yield 68.2%, brown powder). The structure of the resulting polymer compound was confirmed by IR. Moreover, as a result of measuring by GPC, the value of weight average molecular weight Mw = 89000 and dispersion degree Mw / Mn = 3.30 was obtained.

前記のようにして得られた正極を、縦横22×20mmの長方形に打ち抜き、アルミメッシュ面に長さ25mm、幅0.4mmのアルミ製の電極リードを溶接した。   The positive electrode obtained as described above was punched into a 22 × 20 mm rectangle, and an aluminum electrode lead having a length of 25 mm and a width of 0.4 mm was welded to the aluminum mesh surface.

一方、負極は、以下のようにして作製した。すなわち、まず、難黒鉛化炭素スラリー(日立化成工業社製、GA1100)を、集電体である銅メッシュ上に塗布し、さらに80℃で5分間乾燥した。これをロールプレス機により50μmの厚さに加工し、負極を作製した。得られた負極を縦横23×21mmの長方形に打ち抜き、銅メッシュ面に長さ25mm、幅0.4mmのニッケル製の電極リードを溶接した。   On the other hand, the negative electrode was produced as follows. That is, first, a non-graphitizable carbon slurry (manufactured by Hitachi Chemical Co., Ltd., GA1100) was applied on a copper mesh as a current collector and further dried at 80 ° C. for 5 minutes. This was processed into a thickness of 50 μm by a roll press to produce a negative electrode. The obtained negative electrode was punched into a rectangle of 23 × 21 mm in length and width, and a nickel electrode lead having a length of 25 mm and a width of 0.4 mm was welded to the copper mesh surface.

参照極としては、リチウム張り合わせ銅箔(リチウム厚30μm)を8×5mmの長方形に打ち抜いたものに、長さ25mm、幅0.4mmのニッケル製の電極リードを銅箔面に溶接したものを用いた。   As a reference electrode, a lithium-laminated copper foil (lithium thickness 30 μm) punched into an 8 × 5 mm rectangle, and a nickel electrode lead 25 mm long and 0.4 mm wide welded to the copper foil surface is used. It was.

対極は、以下のようにして作製した。すなわち、まず、活性炭スラリー(日立化成工業社製、GA1200)を集電体であるアルミメッシュ上に塗布し、さらに80℃で5分間乾燥した。これをロールプレス機により100μmの厚さに加工し、対極を作製した。このようにして得られた対極(負対極)を、縦横23×21mmの長方形に打ち抜き、アルミメッシュ面に長さ25mm、幅0.4mmのアルミ製の電極リードを溶接した。   The counter electrode was produced as follows. That is, first, activated carbon slurry (manufactured by Hitachi Chemical Co., Ltd., GA1200) was applied on an aluminum mesh as a current collector and further dried at 80 ° C. for 5 minutes. This was processed into a thickness of 100 μm by a roll press machine to produce a counter electrode. The counter electrode (negative counter electrode) thus obtained was punched into a rectangle of 23 × 21 mm in length and width, and an aluminum electrode lead having a length of 25 mm and a width of 0.4 mm was welded to the aluminum mesh surface.

前記正極、多孔質ポリプロピレンセパレータ(27×25mmの長方形)、前記負極、多孔質ポリプロピレンセパレータ(27×25mmの長方形)、前記参照極、ガラス繊維ろ紙(27×25mmの長方形)、前記対極の順に重ね合わせ、蓄電体を作製した。そして、2枚の熱融着可能なアルミラミネートフィルム(縦35mm×横40mm×厚さ0.12mm)の三方を熱融着することにより袋状のアルミラミネートケースとし、その中に前記蓄電体を入れた。さらに、前記アルミラミネートケースの中に、電解液[1.0mol/LのLiPF電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(混合体積比3:7)]を500mL加えた。このとき、前記アルミ製電極リードおよびニッケル製電極リードの端を2.7cm、前記アルミラミネートケースの端部から突出させて(外に出して)おいた。その状態で、前記アルミラミネートケースの未溶着の一辺を、1.6mmHg(2.1×10Pa)の低圧化で熱融着した。これにより、前記各電極を含む前記蓄電体と前記電解液とを、前記アルミラミネートケース中に完全に密閉した。このようにして、本実施例(実施例1)の二次電池を製造した。 The positive electrode, porous polypropylene separator (27 × 25 mm rectangle), the negative electrode, porous polypropylene separator (27 × 25 mm rectangle), the reference electrode, glass fiber filter paper (27 × 25 mm rectangle), and the counter electrode are stacked in this order. In addition, a power storage unit was produced. Then, three sheets of two aluminum laminate films (length 35 mm × width 40 mm × thickness 0.12 mm) that can be heat-sealed are heat-sealed to form a bag-like aluminum laminate case, in which the power storage unit is placed. I put it in. Further, 500 mL of an electrolytic solution [ethylene carbonate / diethyl carbonate mixed solution containing 1.0 mol / L LiPF 6 electrolyte salt (mixing volume ratio 3: 7)] was added to the aluminum laminate case. At this time, the ends of the aluminum electrode lead and the nickel electrode lead were protruded (exited) by 2.7 cm from the end of the aluminum laminate case. In that state, one side of the aluminum laminate case that was not welded was heat-sealed at a low pressure of 1.6 mmHg (2.1 × 10 2 Pa). Thus, the power storage unit including the electrodes and the electrolytic solution were completely sealed in the aluminum laminate case. In this way, the secondary battery of this example (Example 1) was manufactured.

[実施例2]
実施例1の対極に代えて、リチウム張り合わせ銅箔(リチウム厚30μm)を23×21mmの長方形に打ち抜いたものに、長さ25mm、幅0.4mmのニッケル製の電極リードを銅箔面に溶接したものを対極として用いる以外は、実施例1と同様にして、本実施例(実施例2)の二次電池を製造した。
[Example 2]
Instead of the counter electrode of Example 1, lithium-bonded copper foil (lithium thickness 30 μm) was punched into a 23 × 21 mm rectangle, and a nickel electrode lead having a length of 25 mm and a width of 0.4 mm was welded to the copper foil surface. A secondary battery of this example (Example 2) was manufactured in the same manner as Example 1 except that the obtained battery was used as the counter electrode.

[実施例3(抵抗測定)]
実施例1および実施例2の二次電池中の前記正極を作用極とし、これに前記参照極および前記対極を加えた3極を用いて、交流インピーダンス法により、10mHz〜100kHzの範囲におけるインピーダンスを測定し、ナイキスト線図およびボード線図を描いた。各周波数のインピーダンスは、インピーダンス測定装置(ソーラトロン社製1260型)を使用し、印加電圧は−10〜10mVの範囲で行った。図3に、前記ナイキスト線図および前記ボード線図を示す。図3(a)は、ナイキスト線図であり、図3(b)は、ボード線図である。図3(a)のナイキスト線図のx軸は、インピーダンスの実部(Ω)を表し、y軸は、インピーダンスの虚部(Ω)を表す。図3(b)のボード線図(上図)のx軸は、周波数(Hz)を表し、y軸は、インピーダンスの絶対値(Ω)を表す。図3(b)のボード線図(下図)のx軸は、周波数(Hz)を表し、y軸は、位相差(°)を表す。図3(a)のナイキスト線図に描かれた半円の直径の長さが、電荷移動抵抗の大きさを示す。
[Example 3 (resistance measurement)]
Using the positive electrode in the secondary batteries of Example 1 and Example 2 as a working electrode, and using the three electrodes obtained by adding the reference electrode and the counter electrode to this, the impedance in the range of 10 mHz to 100 kHz is obtained by the AC impedance method. Measured and drawn Nyquist and Bode diagrams. The impedance of each frequency was measured using an impedance measuring device (1260 type manufactured by Solartron), and the applied voltage was in the range of −10 to 10 mV. FIG. 3 shows the Nyquist diagram and the Bode diagram. FIG. 3A is a Nyquist diagram, and FIG. 3B is a Bode diagram. In the Nyquist diagram of FIG. 3A, the x-axis represents the real part (Ω) of the impedance, and the y-axis represents the imaginary part (Ω) of the impedance. The x-axis of the Bode diagram (upper figure) in FIG. 3B represents the frequency (Hz), and the y-axis represents the absolute value (Ω) of the impedance. The x-axis of the Bode diagram (below) in FIG. 3B represents the frequency (Hz), and the y-axis represents the phase difference (°). The length of the diameter of the semicircle drawn in the Nyquist diagram of FIG. 3A indicates the magnitude of the charge transfer resistance.

図3に示す通り、実施例1および実施例2のいずれも、正極のインピーダンス測定に基づいて、正極の抵抗(電荷移動抵抗)の大きさを測定することができた。また、ボード線図(下図)より、実施例2では、10〜10Hzにおいて2つのピークが現れたが、実施例1では前記ピークは観測されなかった。また、図3(a)に示すとおり、実施例1における抵抗の測定値は、実施例2よりも小さかった。すなわち、実施例1のほうが、実施例2よりも、さらに精度の良い測定が可能であった。これは、実施例1の対極(活性炭)が、実施例2のリチウム対極よりも抵抗が小さく、作用極である正極と比較しても抵抗が小さいために、対極の抵抗の影響が小さかったためと考えられる。 As shown in FIG. 3, in both Example 1 and Example 2, the magnitude of the positive electrode resistance (charge transfer resistance) could be measured based on the positive electrode impedance measurement. From the Bode diagram (below), in Example 2, two peaks appeared at 10 2 to 10 5 Hz, but in Example 1, the peak was not observed. Further, as shown in FIG. 3A, the measured resistance value in Example 1 was smaller than that in Example 2. That is, the measurement in Example 1 was possible with higher accuracy than in Example 2. This is because the resistance of the counter electrode (activated carbon) of Example 1 is smaller than that of the lithium counter electrode of Example 2 and is smaller than that of the positive electrode that is the working electrode, and therefore the influence of the resistance of the counter electrode is small. Conceivable.

[実施例4(正極および負極の個別の抵抗測定)]
実施例1の二次電池中の正極と負極とを、個別に10mHz〜100kHzの範囲において交流インピーダンスを測定し、ナイキスト線図およびボード線図を描いた。各周波数の交流インピーダンスは、インピーダンス測定装置(ソーラトロン社製1260型)を使用し、印加電圧は−10〜10mVの範囲で行った。また、前記正極または前記負極を作用極とし、さらに参照極と対極を加えた3電極を用いて測定した。図4に、ナイキスト線図とボード線図を示す。図4(a)は、ナイキスト線図であり、図4(b)は、ボード線図である。図4(a)のナイキスト線図のx軸は、インピーダンスの実部(Ω)を表し、y軸は、インピーダンスの虚部(Ω)を表す。図4(b)のボード線図(上図)のx軸は、周波数(Hz)を表し、y軸は、インピーダンスの絶対値(Ω)を表す。図4(b)のボード線図(下図)のx軸は、周波数(Hz)を表し、y軸は、位相差(°)を表す。
[Example 4 (individual resistance measurement of positive electrode and negative electrode)]
AC impedance was measured individually in the range of 10 mHz to 100 kHz for the positive electrode and the negative electrode in the secondary battery of Example 1, and a Nyquist diagram and a Bode diagram were drawn. For the AC impedance of each frequency, an impedance measuring device (1260 type manufactured by Solartron) was used, and the applied voltage was in the range of −10 to 10 mV. Moreover, it measured using the said positive electrode or the said negative electrode as a working electrode, and also using 3 electrodes which added the reference electrode and the counter electrode. FIG. 4 shows a Nyquist diagram and a Bode diagram. FIG. 4A is a Nyquist diagram, and FIG. 4B is a Bode diagram. In the Nyquist diagram of FIG. 4A, the x-axis represents the real part (Ω) of the impedance, and the y-axis represents the imaginary part (Ω) of the impedance. The x-axis of the Bode diagram (upper figure) in FIG. 4B represents the frequency (Hz), and the y-axis represents the absolute value (Ω) of the impedance. The x-axis of the Bode diagram (below) in FIG. 4B represents the frequency (Hz), and the y-axis represents the phase difference (°).

図4に示すとおり、実施例1の正極の電荷移動抵抗は46.0Ω、負極の電荷移動抵抗は53.0Ωであった。このように、本実施例によれば、正極および負極のそれぞれの抵抗を、個別に、かつ精度良く測定可能であった。   As shown in FIG. 4, the charge transfer resistance of the positive electrode of Example 1 was 46.0Ω, and the charge transfer resistance of the negative electrode was 53.0Ω. Thus, according to the present Example, each resistance of a positive electrode and a negative electrode was measurable individually and accurately.

さらに、同様の方法で、実施例の二次電池の前記正極および前記負極の、使用前(充放電前)および使用後(所定の時間および所定の回数の充放電後)の交流インピーダンス測定に基づき、抵抗を、個別に算出した。前記正極および前記負極について、前記使用前後の抵抗の測定値(算出値)をそれぞれ比較することにより、前記正極および前記負極の個別の劣化の程度を、容易にかつ精度良く診断可能であった。   Furthermore, in the same manner, based on the alternating current impedance measurement of the positive electrode and the negative electrode of the secondary battery of the example before use (before charge / discharge) and after use (after a predetermined time and a predetermined number of times of charge / discharge). Resistance was calculated individually. By comparing the measured values (calculated values) of the resistance before and after use for the positive electrode and the negative electrode, respectively, the degree of individual deterioration of the positive electrode and the negative electrode could be easily and accurately diagnosed.

101 正極
102 負極
103 参照極
104 対極
105 集電体
106 電極リード
107 セパレータ
108 対極用セパレータ
109 外装体
110 二次電池
111 参照極集電体
DESCRIPTION OF SYMBOLS 101 Positive electrode 102 Negative electrode 103 Reference electrode 104 Counter electrode 105 Current collector 106 Electrode lead 107 Separator 108 Counter electrode separator 109 Outer package 110 Secondary battery 111 Reference electrode current collector

Claims (10)

正極、負極および電解質含有相を含み、
前記正極と前記負極が前記電解質含有相を介して電荷を授受することにより、充放電可能であり、
さらに、参照極および対極を含み、
前記参照極および前記対極は、前記電解質含有相を介して互いに電気的に接続され、かつ、前記電解質含有相を介して前記正極および前記負極と電気的に接続されていることを特徴とする二次電池。
Including a positive electrode, a negative electrode and an electrolyte-containing phase,
The positive electrode and the negative electrode can be charged and discharged by transferring charge through the electrolyte-containing phase,
Furthermore, including a reference electrode and a counter electrode,
The reference electrode and the counter electrode are electrically connected to each other via the electrolyte-containing phase, and are electrically connected to the positive electrode and the negative electrode via the electrolyte-containing phase. Next battery.
前記電解質含有相が、非水系の相であることを特徴とする請求項1記載の二次電池。   The secondary battery according to claim 1, wherein the electrolyte-containing phase is a non-aqueous phase. 前記対極が、炭素材料により形成されていることを特徴とする請求項1または2記載の二次電池。   The secondary battery according to claim 1, wherein the counter electrode is made of a carbon material. 前記炭素材料が、活性炭であることを特徴とする請求項3記載の二次電池。   The secondary battery according to claim 3, wherein the carbon material is activated carbon. 前記対極の比抵抗が、200Ω・cm以下であることを特徴とする請求項1から4のいずれか一項に記載の二次電池。   5. The secondary battery according to claim 1, wherein a specific resistance of the counter electrode is 200 Ω · cm or less. 前記参照極が、リチウム金属により形成されていることを特徴とする請求項1から5のいずれか一項に記載の二次電池。   The secondary battery according to claim 1, wherein the reference electrode is made of lithium metal. さらに、対極用セパレータを含み、
前記対極用セパレータは、多孔質であり、かつ、その孔内に前記電解質含有相を含み、
前記対極は、前記対極用セパレータを介して、前記正極、前記負極および前記参照極と非接触状態で配置されていることを特徴とする請求項1から6のいずれか一項に記載の二次電池。
In addition, a counter electrode separator is included,
The counter electrode separator is porous, and includes the electrolyte-containing phase in its pores.
The secondary electrode according to any one of claims 1 to 6, wherein the counter electrode is arranged in a non-contact state with the positive electrode, the negative electrode, and the reference electrode via the counter electrode separator. battery.
前記対極用セパレータが、ろ紙であることを特徴とする請求項7記載の二次電池。   The secondary battery according to claim 7, wherein the counter electrode separator is filter paper. 前記正極または前記負極を作用極として用い、さらに、前記参照極および前記対極を用いて前記正極または前記負極の交流インピーダンスを測定する交流インピーダンス測定工程と、
前記交流インピーダンスに基づき、前記正極または前記負極の抵抗を算出する抵抗算出工程を含むことを特徴とする、請求項1から8のいずれか一項に記載の二次電池の前記正極または前記負極の抵抗測定方法。
AC impedance measurement step of measuring the AC impedance of the positive electrode or the negative electrode using the positive electrode or the negative electrode as a working electrode, and further using the reference electrode and the counter electrode;
The resistance of the positive electrode or the negative electrode according to any one of claims 1 to 8, further comprising a resistance calculation step of calculating a resistance of the positive electrode or the negative electrode based on the AC impedance. Resistance measurement method.
請求項1から8のいずれか一項に記載の二次電池に対し、充電および放電の少なくとも一方を所定の時間および所定の回数行った後の前記正極または前記負極の抵抗を、請求項9記載の測定方法により測定する抵抗測定工程と、
前記抵抗測定工程において測定した前記正極または前記負極の抵抗を、前記充電および放電の少なくとも一方を行う前の抵抗と比較することで、前記正極または前記負極の劣化の程度を診断する劣化程度診断工程を含むことを特徴とする、前記二次電池の前記正極または前記負極の劣化程度診断方法。
The resistance of the positive electrode or the negative electrode after the secondary battery according to any one of claims 1 to 8 is subjected to at least one of charging and discharging for a predetermined time and a predetermined number of times. A resistance measuring step of measuring by the measuring method of
Deterioration degree diagnosis step of diagnosing the degree of deterioration of the positive electrode or the negative electrode by comparing the resistance of the positive electrode or the negative electrode measured in the resistance measurement step with the resistance before performing at least one of the charging and discharging. A method for diagnosing the degree of deterioration of the positive electrode or the negative electrode of the secondary battery.
JP2010224834A 2010-10-04 2010-10-04 Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery Withdrawn JP2012079582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010224834A JP2012079582A (en) 2010-10-04 2010-10-04 Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224834A JP2012079582A (en) 2010-10-04 2010-10-04 Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery

Publications (1)

Publication Number Publication Date
JP2012079582A true JP2012079582A (en) 2012-04-19

Family

ID=46239580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224834A Withdrawn JP2012079582A (en) 2010-10-04 2010-10-04 Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery

Country Status (1)

Country Link
JP (1) JP2012079582A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107032A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Battery system, estimation method of internal resistance of lithium ion secondary battery
JP2014207174A (en) * 2013-04-15 2014-10-30 本田技研工業株式会社 Method for manufacturing lithium ion battery
JP2015032572A (en) * 2013-08-07 2015-02-16 昭和電工株式会社 Method for analyzing deterioration in battery
JP2016048213A (en) * 2014-08-28 2016-04-07 学校法人東京理科大学 Evaluation method of battery and battery characteristic evaluation device
CN110176561A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Terminal shell and its battery pack with improved secondary cell state estimation function
CN110176645A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Secondary cell and battery pack including the secondary cell
JP2019191030A (en) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 Battery information processing system, battery pack, battery module characteristics evaluation method, and battery pack manufacturing method
KR20200064751A (en) * 2018-11-29 2020-06-08 주식회사 엘지화학 Cell performance measuring method
CN113314698A (en) * 2020-02-27 2021-08-27 通用汽车环球科技运作有限责任公司 Composite reference electrode substrate and associated methods
US11977124B2 (en) 2022-03-23 2024-05-07 Honda Motor Co., Ltd Measurement device, measurement method, and storage medium

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107032A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Battery system, estimation method of internal resistance of lithium ion secondary battery
JP2014207174A (en) * 2013-04-15 2014-10-30 本田技研工業株式会社 Method for manufacturing lithium ion battery
JP2015032572A (en) * 2013-08-07 2015-02-16 昭和電工株式会社 Method for analyzing deterioration in battery
JP2016048213A (en) * 2014-08-28 2016-04-07 学校法人東京理科大学 Evaluation method of battery and battery characteristic evaluation device
JP7027630B2 (en) 2018-02-19 2022-03-02 エルジー エナジー ソリューション リミテッド Secondary battery and battery pack containing it
CN110176645A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Secondary cell and battery pack including the secondary cell
JP2020528644A (en) * 2018-02-19 2020-09-24 エルジー・ケム・リミテッド Rechargeable battery and battery pack containing it
US11705587B2 (en) 2018-02-19 2023-07-18 Lg Energy Solution, Ltd. Terminal case having the improved function of estimating state of secondary battery
CN110176561B (en) * 2018-02-19 2023-01-13 株式会社Lg新能源 Terminal housing having improved secondary battery state estimating function and battery pack having the same
CN110176561A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Terminal shell and its battery pack with improved secondary cell state estimation function
US11545705B2 (en) 2018-02-19 2023-01-03 Lg Energy Solution, Ltd. Secondary battery and battery pack including the same
CN110416635B (en) * 2018-04-26 2022-09-20 丰田自动车株式会社 Battery information processing system, battery pack, method for evaluating characteristics of battery module, and method for manufacturing battery pack
JP2019191030A (en) * 2018-04-26 2019-10-31 トヨタ自動車株式会社 Battery information processing system, battery pack, battery module characteristics evaluation method, and battery pack manufacturing method
CN110416635A (en) * 2018-04-26 2019-11-05 丰田自动车株式会社 Battery information processing system, battery pack, the manufacturing method of the evaluating characteristics of battery module and battery pack
KR20200064751A (en) * 2018-11-29 2020-06-08 주식회사 엘지화학 Cell performance measuring method
KR102412587B1 (en) * 2018-11-29 2022-06-23 주식회사 엘지에너지솔루션 Cell performance measuring method
EP3865887A4 (en) * 2018-11-29 2021-12-15 Lg Energy Solution, Ltd. Cell performance measuring method
CN113314698A (en) * 2020-02-27 2021-08-27 通用汽车环球科技运作有限责任公司 Composite reference electrode substrate and associated methods
US11977124B2 (en) 2022-03-23 2024-05-07 Honda Motor Co., Ltd Measurement device, measurement method, and storage medium

Similar Documents

Publication Publication Date Title
JP2012079582A (en) Secondary battery, method for measuring resistance of positive electrode or negative electrode of secondary battery, and method for diagnosing degree of deterioration in positive electrode or negative electrode of secondary battery
US10978683B2 (en) Method of manufacturing battery cell including reference electrode for measuring relative electrode potential, and battery cell manufactured therefrom
JP6198380B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery including the same
JP6100385B2 (en) Non-aqueous electrolyte battery positive electrode, non-aqueous electrolyte battery, battery pack and vehicle
JP5549516B2 (en) Secondary battery and electrolyte and membrane used therefor
JP5076560B2 (en) Electricity storage device
JP3687513B2 (en) battery
JP2015084320A (en) Active material for batteries, electrode, nonaqueous electrolyte battery and battery pack
JP5710533B2 (en) Nonaqueous electrolyte secondary battery, electrode for battery, and battery pack
JP5259662B2 (en) Electrode assembly and secondary battery including the same
JP2013089422A (en) Lithium secondary battery manufacturing method
CN105981199B (en) Nonaqueous electrolyte battery and battery pack
WO2017187707A1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP6406267B2 (en) Lithium ion battery system
JP5176130B2 (en) Polyradical compounds, electrode active materials and batteries
JP2000228199A (en) Nonaqueous electrolyte solution secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
JP2020145062A (en) Negative electrode mixture for secondary battery, negative electrode for secondary battery, and secondary battery
JP4492039B2 (en) Water-based lithium secondary battery
JP5050346B2 (en) Water-based lithium secondary battery
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JPH08124597A (en) Solid electrolytic secondary cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107