JP2021188810A - Self-oscillating heat pipe, cooling device, and power conversion device - Google Patents
Self-oscillating heat pipe, cooling device, and power conversion device Download PDFInfo
- Publication number
- JP2021188810A JP2021188810A JP2020093291A JP2020093291A JP2021188810A JP 2021188810 A JP2021188810 A JP 2021188810A JP 2020093291 A JP2020093291 A JP 2020093291A JP 2020093291 A JP2020093291 A JP 2020093291A JP 2021188810 A JP2021188810 A JP 2021188810A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- self
- heat pipe
- sealing member
- side sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 65
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 22
- 238000007789 sealing Methods 0.000 claims abstract description 69
- 238000004891 communication Methods 0.000 claims abstract description 40
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000002347 injection Methods 0.000 claims description 32
- 239000007924 injection Substances 0.000 claims description 32
- 239000012530 fluid Substances 0.000 claims description 24
- 239000011295 pitch Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims 3
- 238000005304 joining Methods 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 10
- 238000005452 bending Methods 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 238000005219 brazing Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical class FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、自励振動ヒートパイプ、冷却装置及び電力変換装置に関する。 The present invention relates to a self-excited oscillating heat pipe, a cooling device and a power conversion device.
自励振動ヒートパイプは、一般的に、ミリメートル・オーダーの径を有する細径流路を備えており、この細径流路内に、表面張力により液柱と気柱が交互に存在する状態で作動液が封入されている。細径流路に沿って、複数の受熱部(高温部)および放熱部(低温部)が交互に設けられており、受熱部における沸騰あるいは蒸発による圧力上昇と、放熱部における凝縮による圧力減少により、液柱と気柱が自励的に振動し、それにより受熱部と放熱部との間で熱を輸送することができる。 A self-excited oscillating heat pipe generally has a small-diameter flow path having a diameter on the order of millimeters, and a hydraulic fluid is provided in a state where liquid columns and air columns are alternately present in the small-diameter flow path due to surface tension. Is enclosed. A plurality of heat receiving parts (high temperature parts) and heat radiating parts (low temperature parts) are alternately provided along the small diameter flow path. The liquid column and the air column vibrate self-excitedly, whereby heat can be transferred between the heat receiving section and the heat radiating section.
自励振動ヒートパイプは、一般的なヒートパイプとは異なり、重力による還流を必要としないため、設置姿勢の自由度が高いという利点を持つ。また、一般的なヒートパイプに比べて流路を細径化しても伝熱性能を維持できることから、小型化が可能であるといった利点を持つ。 Unlike general heat pipes, self-excited oscillating heat pipes do not require reflux due to gravity, so they have the advantage of having a high degree of freedom in the installation posture. Further, since the heat transfer performance can be maintained even if the diameter of the flow path is made smaller than that of a general heat pipe, there is an advantage that the size can be reduced.
特許文献1には、それぞれ複数の流路を備えたストレートな複数本の扁平管を二つの流体分配要素で挟むことによって密閉流路を構成し、熱伝達要素(受熱ブロック)に扁平管長手方向の一部を挿入させた構造の自励振動ヒートパイプが記載されている。 In Patent Document 1, a closed flow path is formed by sandwiching a plurality of straight flat tubes each having a plurality of flow paths between two fluid distribution elements, and the heat transfer element (heat receiving block) is formed in the longitudinal direction of the flat tube. A self-excited oscillating heat pipe having a structure in which a part of the heat pipe is inserted is described.
本願発明者は、自励振動ヒートパイプを、鉄道車両等の移動体に搭載される電力変換装置の冷却装置に適用する際の課題について鋭意検討した結果、次の知見を得た。 The inventor of the present application has obtained the following findings as a result of diligent studies on the problems in applying the self-excited oscillating heat pipe to the cooling device of the power conversion device mounted on a moving body such as a railroad vehicle.
自励振動ヒートパイプは流路内に複数存在する受熱部において、他の受熱部に比べて極端に受熱量が少ないまたは全くない個所があると、受熱部・放熱部が交互に存在する状態が実現されず、また、受熱量のばらつきにより、液柱長さのばらつきや液分布の偏りが生じ、自励振動が妨げられるという課題がある。例えば、長尺の扁平管を多数回折り曲げて再成型し、扁平管折り曲げ部分を受熱板に接合して自励振動ヒートパイプを形成した場合、扁平管の曲げ高さのばらつきや、受熱板に対する扁平管の平面度のばらつきにより、接合状態が悪化する恐れがある。接合状態にばらつきがあると、接合の悪い箇所の受熱量が小さくなるため、先に述べたような理由から、自励振動が妨げられる。さらに、接合状態の良い箇所に局所的に入熱するため、受熱部が常に蒸気で満たされ、流体が供給されなくなる、いわゆるドライアウトが起こりやすくなり、自励振動ヒートパイプの冷却性能が悪化することが懸念される。 In the self-excited oscillating heat pipe, if there are multiple heat receiving parts in the flow path where the amount of heat received is extremely small or none at all compared to other heat receiving parts, the heat receiving parts and the heat radiating parts may exist alternately. It is not realized, and there is a problem that the variation in the amount of heat received causes the variation in the length of the liquid column and the bias in the liquid distribution, and the self-excited vibration is hindered. For example, when a long flat tube is bent a large number of times and remolded, and the bent portion of the flat tube is joined to a heat receiving plate to form a self-excited oscillating heat pipe, the bending height of the flat tube varies and the heat receiving plate is affected. Due to the variation in the flatness of the flat tube, the joint state may deteriorate. If the bonding state varies, the amount of heat received at the poorly bonded portion becomes small, and the self-excited vibration is hindered for the reasons described above. Furthermore, since heat is locally applied to a part with a good joint condition, the heat receiving part is always filled with steam and fluid is not supplied, so-called dryout is likely to occur, and the cooling performance of the self-excited oscillating heat pipe deteriorates. Is a concern.
また、自励振動ヒートパイプは、流路に接する高温部と低温部の数が多い程、重力依存性が小さくなる傾向がある。鉄道車両などの移動体の搭載装置のようにサイズ制限がある中で流路往復回数を増やす場合、例えば、扁平管の曲げピッチを小さくする方法が考えられる。しかし、扁平管が破損しないようにする必要があるため、流路往復回数は制限される。また、曲げピッチが小さいと折り曲げ部に平面を設けることが難しいため、受熱板との接合面が小さくなり、接合の難易度が上がる。 Further, the self-excited oscillating heat pipe tends to have less gravity dependence as the number of high temperature portions and low temperature portions in contact with the flow path increases. When increasing the number of reciprocating flow paths in a limited size such as a device mounted on a moving body such as a railroad vehicle, for example, a method of reducing the bending pitch of a flat pipe can be considered. However, since it is necessary to prevent the flat tube from being damaged, the number of round trips in the flow path is limited. Further, if the bending pitch is small, it is difficult to provide a flat surface in the bent portion, so that the joint surface with the heat receiving plate becomes small and the difficulty of joining increases.
さらに、自励振動ヒートパイプでは、流路内部に封入された作動液が、受熱部における沸騰あるいは蒸発による圧力上昇と、放熱部における凝縮による圧力減少により生じる圧力差により自励振動するが、流路内の圧力の不均衡を生じさせるために、受熱量あるいは放熱量が他と比べて不均衡となる箇所を設けることで、作動液の始動性および冷却性能が向上する。受熱量・放熱量を不均衡にする方法として、例えば、扁平管ピッチ、高さの変更が考えられるが、扁平管を曲げて製作する場合、扁平管ピッチや高さが変わると曲げ治具も別個に必要になるため、最適設計の自由度が制限される。 Further, in the self-excited vibration heat pipe, the hydraulic fluid enclosed in the flow path self-excited and vibrates due to the pressure difference caused by the pressure increase due to boiling or evaporation in the heat receiving part and the pressure decrease due to condensation in the heat dissipation part. In order to cause an imbalance in the pressure in the path, the startability and cooling performance of the working fluid are improved by providing a portion where the amount of heat received or the amount of heat dissipated is unbalanced as compared with the others. As a method of making the amount of heat received and the amount of heat dissipated unbalanced, for example, it is conceivable to change the flat tube pitch and height. Since it is required separately, the degree of freedom in optimal design is limited.
また、移動体の一例である鉄道車両などの電力変換装置は、ほかの搭載機器とともに床下に設置されることが多く、車両の艤装限界を守る必要があるため、スペース面の制約が厳しいことが多い。また、電力変換装置では大容量電力を扱うため、電力変換に要する半導体素子の個数が比較的多く、発熱量が大きくなりやすい。これらの理由から、電力変換装置用の冷却装置は、広い受熱面積と、高い冷却性能を持ちながら、さらに小型であることが求められる。 In addition, power conversion devices such as railroad vehicles, which are an example of moving objects, are often installed under the floor together with other on-board equipment, and it is necessary to keep the vehicle's mounting limits, so space restrictions are severe. many. Further, since the power conversion device handles a large amount of power, the number of semiconductor elements required for power conversion is relatively large, and the amount of heat generated tends to be large. For these reasons, the cooling device for the power conversion device is required to have a large heat receiving area, high cooling performance, and a smaller size.
例えば、特許文献1のような構成では、冷却性能を上げるために、扁平管(フィンおよび受熱ブロック)を長手方向あるいは短手方向に拡張すると、冷却装置のアスペクト比が大きくなるため、艤装限界を守りながら冷却性能を上昇させることが難しい。また、半導体素子を1列に整列させたとき、バスバーにより周辺の電子機器(例えばコンデンサ)と電気的に接続する場合、電子機器からの距離にばらつきが生じるため、電流アンバランスを引き起こす可能性がある。 For example, in the configuration as in Patent Document 1, if the flat tube (fin and heat receiving block) is expanded in the longitudinal direction or the lateral direction in order to improve the cooling performance, the aspect ratio of the cooling device becomes large, so that the mounting limit is limited. It is difficult to improve the cooling performance while protecting it. In addition, when semiconductor elements are arranged in a row and electrically connected to surrounding electronic devices (for example, capacitors) by a bus bar, the distance from the electronic devices varies, which may cause current imbalance. be.
このような問題を避けるために、半導体素子を複数列配置する場合、扁平管長手方向に受熱ブロックを拡張する必要があるが、それにより冷却装置の重量・サイズの増大を招く。また、半導体素子を受熱ブロックの両面に配置する構成も考えられるが、この構成の場合、バスバーを例えばコの字型にする必要があり、電子機器と組み合わせる際にデッドスペースが生じ、電力変換装置全体として小型化が難しくなるといった課題もある。 In order to avoid such a problem, when a plurality of rows of semiconductor elements are arranged, it is necessary to expand the heat receiving block in the longitudinal direction of the flat tube, which causes an increase in the weight and size of the cooling device. It is also conceivable to arrange semiconductor elements on both sides of the heat receiving block, but in this configuration, the bus bar must be U-shaped, for example, and a dead space is created when combining with an electronic device, resulting in a power conversion device. There is also the problem that miniaturization becomes difficult as a whole.
さらに、特許文献1の構成では、扁平管が比較的長い距離にわたって加熱ブロック内に嵌入しており、それにより加熱ブロックから扁平管への熱流束が増大してドライアウトが生じやすくなるという問題もある。また、その構成上、扁平管に温度分布が生じるため冷却性能に偏りが生じ、冷却装置に用いるには好ましくなく、全体的に十分な冷却性能を持たせるためには構成を大型化しなくてはならない。 Further, in the configuration of Patent Document 1, there is also a problem that the flat tube is fitted in the heating block over a relatively long distance, whereby the heat flux from the heating block to the flat tube is increased and dryout is likely to occur. be. In addition, due to its configuration, the cooling performance is biased due to the temperature distribution in the flat tube, which is not preferable for use in a cooling device, and the configuration must be enlarged in order to have sufficient cooling performance as a whole. It doesn't become.
本発明は、生産性の良い簡素な構造で、受熱部の接合状態を良好なものとし、かつ冷却性能が良く、小型な自励振動ヒートパイプ、冷却装置及び電力変換装置を提供することを目的とする。 It is an object of the present invention to provide a small self-excited oscillating heat pipe, a cooling device and a power conversion device having a simple structure with good productivity, a good bonding state of heat receiving portions, and good cooling performance. And.
上記課題を解決するために、代表的な本発明にかかる自励振動ヒートパイプの一つは、作動液を封入した複数の管内流路を備えた複数の複流路構造体と、前記複流路構造体の一方の端部に接合され、隣接する前記複流路構造体の前記管内流路同士を連結する連通流路を備えた第1の端部側封止部材と、前記複流路構造体の他方の端部に接合され、隣接する前記複流路構造体の前記管内流路同士を連結する連通流路を備えた第2の端部側封止部材と、を有することにより達成される。 In order to solve the above problems, one of the typical self-excited vibration heat pipes according to the present invention is a plurality of multi-channel structures having a plurality of in-pipe channels filled with a working fluid, and the multi-channel structure. A first end-side sealing member provided with a communication flow path that is joined to one end of the body and connects the in-pipe flow paths of the adjacent double flow path structures, and the other of the double flow path structures. It is achieved by having a second end-side sealing member, which is joined to the end of the structure and has a communication flow path connecting the in-pipe flow paths of the adjacent double flow path structure.
本発明によれば、受熱板接合面が平面のため、受熱板と扁平管の接合状態を良好なものとし、かつ冷却性能の良い小型な自励振動ヒートパイプ、冷却装置及び電力変換装置を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, since the heat receiving plate joint surface is flat, a small self-excited oscillating heat pipe, a cooling device, and a power conversion device, which have a good joint state between the heat receiving plate and the flat tube and have good cooling performance, are provided. can do.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
以下、図面を参照しながら、本発明の実施形態について説明する。なお、本明細書で「複流路構造体」とは、各軸線が所定方向に沿って並べられた複数の流路を備えた構造体であって、各流路の少なくとも一端が開放されたものをいう。前記所定方向を流路並列方向といい、複流路構造体の長手方向を流路直進方向という。以下で説明する多穴扁平管は、複流路構造体の一例である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification, the "multi-channel structure" is a structure having a plurality of channels in which each axis is arranged along a predetermined direction, and at least one end of each channel is open. To say. The predetermined direction is referred to as a flow path parallel direction, and the longitudinal direction of the double flow path structure is referred to as a flow path straight direction. The multi-hole flat tube described below is an example of a multi-channel structure.
[実施形態1]
図1は、本実施形態における、移動体としての鉄道車両に搭載された電力変換装置を進行方向から見た図である。電力変換装置1は、鉄道車両2の床下等に設置され、鉄道車両2を駆動する電動機(図示せず)に供給する電力の周波数を変えることにより、電動機の回転速度の制御を行う機能を備える。電力変換装置1の内部には、電力変換回路を構成する複数の半導体素子3と、電気部品群4が設置される。半導体素子3は、通電時およびオン/オフ切替時に熱損失が生じ、この時発生した熱が放熱することで発熱源(発熱体)となる。半導体素子3は過熱により特性が劣化したり、製品寿命が短縮されるおそれがあるため、これらを回避すべく通常は冷却装置5を取り付けて冷却が行われる。
[Embodiment 1]
FIG. 1 is a view of the power conversion device mounted on a railway vehicle as a mobile body in the present embodiment as viewed from the traveling direction. The power conversion device 1 is installed under the floor of the
冷却装置5は、鉄道車両2が走行した際に発生する走行風10が、図1の紙面垂直方向に供給されたとき、半導体素子3から発生する熱を放熱し、それにより空冷が行われる。鉄道車両2は、前後いずれの方向にも移動するので、それに伴う方向に走行風10が生じることになる。半導体素子3は、例えば、IGBT(Insulated Gate Bipolar Transistor)や、MOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)等である。
The
冷却装置5について説明する。図2は本実施形態における、冷却装置5を示す斜視図、図3は1ユニット分の自励振動ヒートパイプ6を示す斜視図、図4は自励振動ヒートパイプ6の分解図である。図3において、多穴扁平管8の流路直進方向を矢印30で示し、多穴扁平管8の流路並列方向を矢印31で示し、多穴扁平管8の整列方向を矢印32で示す。
The
冷却装置5は、受熱板12、多穴扁平管8、コルゲートフィン11、受熱部側扁平管端部封止部材7、放熱部側扁平管端部封止部材9により構成される。受熱板12、多穴扁平管8、コルゲートフィン11は、例えば、アルミニウム合金、銅、等の金属から成る。複数の半導体素子3が、グリース等の部材(図示せず)を介して、ねじ等(図示せず)によって、受熱板12の一方の面に固定される。受熱板12の他方の面には、複数の自励振動ヒートパイプ6がロウ付け等により接合される。
The
自励振動ヒートパイプ6は、複数本のストレート状の細長い多穴扁平管8と、受熱部側扁平管端部封止部材(第1の端部側封止部材)7および放熱部側扁平管端部封止部材(第2の端部側封止部材)9とを有する。詳細は後述するが、受熱部側扁平管端部封止部材7は、隣接する多穴扁平管8の上端同士を交互に接合して連通流路15(図8A)を形成し、また放熱部側扁平管端部封止部材9は、隣接する多穴扁平管8の下端同士を交互に接合して連通流路15(図8B)を形成する。多穴扁平管8の端面は、長手方向に直交する平面となっていると好ましい。
The self-excited
本実施形態では、nを1以上の整数としたときに、(2n−1)番目の多穴扁平管8と、(2n)番目の多穴扁平管8と、(2n+1)番目の多穴扁平管8とがこの順序で並列に設けられており、(2n−1)番目の多穴扁平管8と(2n)番目の多穴扁平管8の上端(または下端)同士が連通流路15を介して連通し、(2n)番目の多穴扁平管8と(2n+1)番目の多穴扁平管8の下端(または上端)同士が連通流路15を介して連通する。これにより、多穴扁平管8内の流路と、受熱部側扁平管端部封止部材7および放熱部側扁平管端部封止部材9の連通流路15とから、作動液が移動可能な密閉された密閉流路が形成される。この密閉流路は、矩形波状に蛇行する(密閉流路に沿って進行したときに交互に折り曲げられる)。
In the present embodiment, when n is an integer of 1 or more, the (2n-1) th multi-hole
自励振動ヒートパイプ6は、並列に並べられた多穴扁平管8の向かい合う表面同士を連結するようにして、コルゲートフィン11がロウ付けなどにより接合される。この自励振動ヒートパイプ6とコルゲートフィン11の間に走行風10が供給されて熱交換が行われ、放熱される。このような構成とすることで、自励振動ヒートパイプ6には、受熱部と放熱部とが交互に設けられることとなる。
In the self-excited
自励振動ヒートパイプ6の内部構造について説明する。図5は、本実施形態における、自励振動ヒートパイプの流路構造、図3における点線で囲われた部分のA矢視断面図を示し、図6は図5におけるC−C断面図である。
多穴扁平管8の内部には、隔壁14により仕切られた複数の流路(管内流路)13が並行して整列している。各流路13の断面形状は矩形あるいは円形で、各流路13の断面寸法および隔壁14の厚さはミリメートル・オーダーであり、各流路13の長さは流路径に比べて十分に長い。多穴扁平管8の端部には、連通流路を有する受熱部側扁平管端部封止部材(第1の端部封止部材)7、放熱部側扁平管端部封止部材(第2の端部封止部材)が接合され、多穴扁平管8の内部の流路13は連通流路15(図8A、図8B)により各々相互に連通される。多穴扁平管8が4つ以上ある場合、受熱部側扁平管端部封止部材7および/または放熱部側扁平管端部封止部材9は、2つの多穴扁平管8の流路13を連通する第1の連通流路15と、別の2つの多穴扁平管8の流路13を連通する第2の連通流路15とを有することができる。
The internal structure of the self-excited
Inside the multi-hole
自励振動ヒートパイプ6の密封された流路13および連通流路15内には、作動液(図示せず)が所定量封入される。作動液としては、例えば、水、アルコール類、ブタン等の炭化水素類、ハイドロフルオロカーボン類、ハイドロフルオロエーテル類、ハイドロフルオロオレフィン類、パーフルオロケトン類等を用いることができる。
A predetermined amount of a working liquid (not shown) is sealed in the sealed
受熱部側扁平管端部封止部材7および放熱部側扁平管端部封止部材9について説明する。図7〜9は本実施形態における端部封止部材の一例であり、図7は第一のスリット板の断面図、図8は第二、第三のスリット板の断面図、図9は受熱部側、放熱部側天板の断面図であり、図4における点線で囲われた部分のB矢視断面図である。図7において、スリット板の長手方向を矢印33(32)で示し、スリット板の短手方向を矢印34(31)で示す。
The flat tube
受熱部側扁平管端部封止部材7は例えば、第一のスリット板(間隔保持板)16、第二のスリット板(流路連通板)17、受熱部側天板19から構成され、放熱部側扁平管端部封止部材9は、第一のスリット板(間隔保持板)16、第三のスリット板(流路連通板)18および放熱部側天板20から構成される。受熱部側扁平管端部封止部材7または放熱部側扁平管端部封止部材9を一体部品としてもよい。また、スリット板および天板を一体部品としても良く、例えば、第一のスリット板16と第二のスリット板17、第一のスリット板16と第三のスリット板18、第二のスリット板17と受熱部側天板19、第三のスリット板18と放熱部側天板20などの組合せで一体部品としても良い。この場合、受熱部側天板19を受熱板とすることもできる。
第一のスリット板16は、多穴扁平管8を並行に整列して保持する役割を持ち、多穴扁平管8が挿入できるように、多穴扁平管8の端部外周形状と同等の大きさの開口部16aを複数個、等ピッチで有している。また、第二のスリット板17および第三のスリット板18の開口部17a、18aをそれぞれ覆い、流路13を密閉する役割を持つ。ここで、第一のスリット板16は多穴扁平管8の根元の強度向上のため、厚くすると好ましい。
The heat receiving portion side flat tube
The
第二のスリット板17、および第三のスリット板18は、多穴扁平管8内部の流路13および隣接する少なくとも一つの多穴扁平管の流路を連結する開口部17a、18aをそれぞれ有する。ここで、自励振動ヒートパイプ6の流路が矩形波状に蛇行するように、第二のスリット板17と第三のスリット板18の開口部17a、18aは、B矢視断面において交互に設けられる。第二のスリット板17と第三のスリット板18は、同一のものを向きを変えて使用してもよい。ここで、第二のスリット板17および第三のスリット板18の開口部17a、18aは複数の隣接する多穴扁平管8を連結しても良い。
The
また、第二のスリット板17および第三のスリット板18の開口部17a、18aにおけるスリット板の長手方向33の長さを、第一のスリット板16の開口部16a(すなわち多穴扁平管8の幅)の長さよりも短くし、第一のスリット板16と第二のスリット板17の間に段差を設けて、多穴扁平管8を端部封止部材と接合する際の位置合わせとして利用しても良い。第二のスリット板17、第三のスリット板18に作動液注入用の開口を形成しても良い。
Further, the length of the slit plate in the
受熱部側天板19および放熱部側天板20は、第二のスリット板17および第三のスリット板18の開口部17a、18aをそれぞれ覆い、流路13を密閉する役割を持つ。ここで、開口部17a、18aと、これを覆う受熱部側天板19および放熱部側天板20により、連通流路15を形成する。受熱部側天板19および放熱部側天板20は、作動液注入管(図示せず)を有しても良い。また、受熱板12で流路を密閉する場合は、受熱部側天板19を設けなくても良い。また、一つの受熱板12上に、複数の自励振動ヒートパイプ6を配置しても良い。
The heat receiving portion side
第一のスリット板16、第二のスリット板17、第三のスリット板18は、例えば、パンチング加工、押し出し加工、切削加工により形成される。各スリット板、天板、受熱板は、例えばロウ付けやはんだ付けにより接合される。接合面にフラックスを塗布しても良い。
The
実施形態1の効果について説明する。本実施形態によれば、第一のスリット板16、第二のスリット板17、第三のスリット板18、受熱部側天板19、放熱部側天板20および受熱板12の接合面が平面であるため、接合品質が安定することに加え、接合面積が均一化されることで受熱板12からの入熱が一様になるため、冷却性能が向上する。また、多穴扁平管8をストレートのまま使用するため、多穴扁平管を折り曲げたような折り曲げ構造とは違い、全長をそろえやすく、加工難易度が下がりコスト低減を図れる。
The effect of the first embodiment will be described. According to the present embodiment, the joint surfaces of the
また、多穴扁平管8内の流路が各加熱部(受熱板と接する面)で連結しており、多穴扁平管8内の流路間で均等に液が分配されやすいため、一筆書き状の蛇行流路構造に比べて液偏りが少なく、冷却性能が良い。
Further, since the flow paths in the multi-hole
自励振動ヒートパイプは一般的に、流路ターン回数が多いほど、重力依存性が小さくなる。流路ターン回数を増やす方法として、例えば、多穴扁平管の数を増やすことができる。これにより放熱面積も拡大するため、冷却性能も向上する。 In general, the self-excited oscillating heat pipe becomes less dependent on gravity as the number of flow path turns increases. As a method of increasing the number of flow path turns, for example, the number of multi-hole flat tubes can be increased. As a result, the heat dissipation area is expanded, and the cooling performance is also improved.
特に、鉄道車両などの移動体に搭載する冷却装置は、他の様々な電気部品とともに床下に設置されるため、設置スペースに制約が存在する。限られたスペース内で、多穴扁平管の数を増やすためには、多穴扁平管の配置ピッチを狭くする必要がある。ところが、多穴扁平管を折り曲げたような折り曲げ構造では、多穴扁平管が破損せず、内部流路が変形しない折り曲げピッチの最小限界値が存在するため、これにより折り曲げ回数が制限される。また、曲げピッチを小さくすると、折り曲げ部に平坦な面を設けることが難しく、ロウ付け接合難易度が上がる。これに対し、本実施形態では、多穴扁平管8のピッチを小さくしても受熱面は平面のままであるから、ロウ付け接合は容易である。これにより、より小型で冷却性能の高い自励振動ヒートパイプを備えた冷却装置を製作できる。
In particular, the cooling device mounted on a moving body such as a railroad vehicle is installed under the floor together with various other electric parts, so that the installation space is limited. In order to increase the number of multi-hole flat tubes in a limited space, it is necessary to narrow the arrangement pitch of the multi-hole flat tubes. However, in a bending structure such as bending a multi-hole flat tube, there is a minimum limit value of the bending pitch in which the multi-hole flat tube is not damaged and the internal flow path is not deformed, so that the number of times of bending is limited. Further, if the bending pitch is made small, it is difficult to provide a flat surface in the bent portion, and the difficulty of brazing and joining increases. On the other hand, in the present embodiment, the heat receiving surface remains flat even if the pitch of the multi-hole
また、従来(特許文献1)のようなストレート構造では、半導体素子の受熱面に対して多穴扁平管は短手方向に垂直に配置されるため、多穴扁平管内の各流路において、半導体素子からの伝熱距離に差がある。半導体素子に近い側の流路が局所的に加熱されるため、多穴扁平管内流路で液が偏り、冷却性能が悪化する可能性がある。また、多穴扁平管が比較的長い距離にわたって加熱ブロック内に嵌入しており、それにより加熱ブロックから扁平管への熱流束が増大してドライアウトが生じやすくなる。さらに、従来(特許文献1)のようなストレート構造では、半導体素子は自励振動ヒートパイプの伝熱方向に対して水平に配置されるため伝熱方向に温度分布を持つ。この場合、半導体素子の温度最高点においても十分に冷却されるよう冷却器を設計する必要があるため、半導体素子温度分布が一様な場合に比べて、高い冷却性能が必要になり、冷却器サイズが大きくなる。また、熱負荷の大きい部品ほど早く劣化するため、半導体素子の寿命が短くなる。 Further, in the straight structure as in the conventional case (Patent Document 1), since the multi-hole flat tube is arranged perpendicular to the heat receiving surface of the semiconductor element in the lateral direction, the semiconductor is used in each flow path in the multi-hole flat tube. There is a difference in the heat transfer distance from the element. Since the flow path on the side close to the semiconductor element is locally heated, the liquid may be biased in the flow path in the multi-hole flat tube, and the cooling performance may deteriorate. In addition, the multi-hole flat tube is fitted into the heating block over a relatively long distance, which increases the heat flux from the heating block to the flat tube and facilitates dryout. Further, in the straight structure as in the conventional case (Patent Document 1), since the semiconductor element is arranged horizontally with respect to the heat transfer direction of the self-excited vibration heat pipe, it has a temperature distribution in the heat transfer direction. In this case, since it is necessary to design the cooler so that it is sufficiently cooled even at the highest temperature point of the semiconductor element, higher cooling performance is required as compared with the case where the temperature distribution of the semiconductor element is uniform, and the cooler The size increases. In addition, the larger the heat load, the faster the deterioration, and the shorter the life of the semiconductor element.
これに対し、本実施形態では、多穴扁平管8は半導体素子の受熱面に対して短手方向に水平に配置され、また自励振動ヒートパイプ6の伝熱方向に対して垂直に半導体素子が配置されるため、多穴扁平管8内の各流路13から半導体素子3までの伝熱距離が等しく、局所的に加熱される個所がないため、ドライアウトが生じにくく、冷却性能が向上する。また、半導体素子内に温度分布が生じないため、冷却器を小型にでき、半導体素子寿命も長い。特に受熱板12に接する受熱部側扁平管端部封止部材7において、流体が通過する連結流路15が流路13に対して直交する扁平空間状となっており、受熱板12からの距離が一様であるから、流路13全体で受熱量(受熱板12からの熱流束)が一様になり、局所加熱が抑えられ流路内の液分布が一様になるため、特許文献1の構成に比してドライアウトが起きにくくなっている。
On the other hand, in the present embodiment, the multi-hole
また、従来(特許文献1)のストレート構造においては、多穴扁平管周囲から受熱する(例えば、受熱ブロックに多穴扁平管を挿入する)構造のため、冷却性能を向上する場合、多穴扁平管を短手方向(多穴扁平管内の流路整列方向)に拡張すると、その分受熱ブロックも厚くする必要があり、質量が大きくなる。これに対し、本実施形態では、受熱板12と多穴扁平管8の接触面は、多穴扁平管の長手方向端部のため、多穴扁平管8の幅の拡張に合わせて受熱板12を厚くする必要がなく重量を小さくすることができる。
Further, in the conventional straight structure (Patent Document 1), since the structure receives heat from the periphery of the multi-hole flat tube (for example, the multi-hole flat tube is inserted into the heat receiving block), the multi-hole flat tube is used when the cooling performance is improved. When the tube is expanded in the lateral direction (direction in which the flow path is aligned in the multi-hole flat tube), the heat receiving block needs to be thickened accordingly, and the mass increases. On the other hand, in the present embodiment, since the contact surface between the
[実施形態2]
図10A,10Bは、実施形態2における、自励振動ヒートパイプの第二のスリット板17および第三のスリット板18の断面図の一例をそれぞれ示す、図4における点線で囲われた部分に相当するB矢視断面図である。実施形態1との相違点として、本実施形態では、第二のスリット板17、第三のスリット板18の開口部が多穴扁平管8内の流路に対して複数に分割されており、矩形に蛇行する流路ターンを持つ自励振動ヒートパイプが複数形成されている。
[Embodiment 2]
10A and 10B correspond to the portions surrounded by the dotted line in FIG. 4, respectively, showing an example of the cross-sectional view of the
より具体的には、mを1以上の整数としたときに、第二のスリット板17、第三のスリット板18の長手方向に沿って、(2m−1)番目の流路13と、(2m)番目の流路13と、(2m+1)番目の流路13とがこの順序で並列に設けられており、(2m−1)番目の流路13と(2m)番目の流路13の上端(図10Aに図示)同士が連通流路15を介して連通し、(2m)番目の流路13と(2m+1)番目の流路13の下端(図10Bに図示)同士が連通流路15を介して連通する。また、第二のスリット板17、第三のスリット板18の短手方向に隣接する(2m)番目の流路13において、一方の流路13の上端が(2m−1)番目の流路13の上端と連通しているときは、他方の流路13の上端が(2m+1)番目の流路13の上端と連通している。流路13の下端についても、同様である。このような構成により、実施形態1と同様の効果を得ることができる。
More specifically, when m is an integer of 1 or more, the (2m-1)
さらに、作動液を封入した流路が独立して複数存在するため、例えば、鉄道車両などの移動体の床下に搭載する場合において、仮に冷却器の一部が飛来物の衝突などにより破損したときも、作動液が漏れだす被害を衝突箇所の流路にとどめ、冷却器全体の性能低下を小さく抑えることができる。なお、第二のスリット板17、第三のスリット板18の強度を維持するため、開口部(連通流路)を多穴扁平管8内の流路方向に交互に設けてもよい。また、第二のスリット板17、第三のスリット板18の端部に位置する多穴扁平管8内の流路を延長して作動液注入用流路を形成し、注入管付きキャップなどを接合して密閉し、パイプ圧潰により封止しても良い。また、第一、第二、第三のスリット板を用いず、受熱部側、放熱部側の流路ターン部を一つの部材で構成しても良い。
Furthermore, since there are multiple independent channels containing the hydraulic fluid, for example, when the condenser is mounted under the floor of a moving object such as a railroad vehicle, if a part of the cooler is damaged due to a collision of flying objects or the like. However, the damage caused by the leakage of the hydraulic fluid can be limited to the flow path at the collision point, and the deterioration of the performance of the entire cooler can be suppressed to a small extent. In addition, in order to maintain the strength of the
[実施形態3]
図11は、実施形態3における、冷却装置を示す斜視図であるが、受熱板12が下方に位置するように図示している。実施形態1および実施形態2に対する相違点として、本実施形態では、自励振動ヒートパイプ6の端部に、多穴扁平管8よりも短尺(好ましくは1/2以下)の多穴扁平管22を配置し、一方を受熱部側扁平管端部封止部材7に接合し、他方を注入管付きキャップ21により接合し、密閉している。注入管付きキャップ21は、外部から作動液を注入可能な注入管21aを有する。本実施形態によれば、実施形態1と同様の効果を得ることができる。
[Embodiment 3]
FIG. 11 is a perspective view showing the cooling device in the third embodiment, but is shown so that the
加えて本実施形態によれば、短尺の多穴扁平管22を設けたため、多穴扁平管8同士の間のコルゲートフィン11と、多穴扁平管8と多穴扁平管22に接合されるコルゲートフィン11との表面積の差、及び多穴扁平管8と注入管付きキャップ21および多穴扁平管22の表面積の差により、放熱能力の不均衡が生じる。これにより、流路13内の圧力の不均衡が生じやすくなるため、作動液の始動性および冷却性能が向上する。また、注入管21aを圧潰することで、自励振動ヒートパイプを封止できる。注入管21aを圧潰する際に、圧潰用工具(不図示)が受熱板12と干渉しないため、作業性が良い。ここで、注入管付きキャップ21は、一体部品として例えば鍛造で製作してもよい。また、注入管とキャップを分けて加工し、ロウ付けなどにより接合して製作しても良い。また、隣接する自励振動ヒートパイプ6のすべてまたは一部をまとめて一つの注入管付きキャップ21により密閉しても良い。
In addition, according to the present embodiment, since the short multi-hole
[実施形態4]
図12は、実施形態4における、冷却装置を示す斜視図であるが、受熱板12が下方に位置するように図示している。図13は第二のスリット板17の流路断面図であり、注入管付きキャップ21の接合側端部付近を示している。実施形態1〜3との相違点として、本実施形態では、第二のスリット板17を含む受熱部側扁平管端部封止部材7は、多穴扁平管8の整列方向に長く、受熱板12からはみ出すように配置され、第二のスリット板17は、連通流路15と外部とを連通する作動液注入用流路23を有しており、その外端部に注入管付きキャップ21が接合されている。このような構成においても、実施形態1と同様の効果を得ることができる。また、注入管21aを圧潰して封止する際に、圧潰用工具(不図示)が受熱板12と干渉しないため、作業性が良い。
[Embodiment 4]
FIG. 12 is a perspective view showing the cooling device in the fourth embodiment, but is shown so that the
[実施形態5]
図14は、実施形態5における、冷却装置を示す斜視図であるが、受熱板12が下方に位置するように図示している。実施形態1〜4との相違点として、本実施形態では、第二のスリット板17を含む受熱部側扁平管端部封止部材7は、多穴扁平管8の整列方向に長いが受熱板12からはみ出しておらず、内部の連通流路と外部とを連通する作動液注入用流路23(図13参照)が設けられており、その外端部に注入管付きキャップ21が接合されている。受熱板12の表面に凹部(多穴扁平管8の整列方向に延在する幅広溝)24が形成され、注入管付きキャップ21を含む受熱部側扁平管端部封止部材7を凹部24内に収容配置している。このような構成においても、実施形態1と同様の効果を得ることができる。
[Embodiment 5]
FIG. 14 is a perspective view showing the cooling device in the fifth embodiment, but is shown so that the
また、注入管21aを圧潰して封止した後に、注入管付きキャップ21を含む受熱部側扁平管端部封止部材7を凹部24内に取り付けることで、圧潰用工具(不図示)が受熱板12と干渉することがなくなり、作業性が良い。さらに、実施形態5における冷却装置を含む電力変換装置を鉄道車両などに取り付けた時に、車両の進行方向に対して注入管21aが受熱板12の凹部24内に隠れて配置されるため、飛来物などとの干渉を抑制できる。なお、実施形態3の自励振動ヒートパイプ6を、凹部24に収容してもよい。
Further, after the
[実施形態6]
図15は、実施形態6における、冷却装置を示す斜視図であるが、受熱板12が下方に位置するように図示している。実施形態1〜5との相違点として、本実施形態では、第三のスリット板18を含む放熱部側扁平管端部封止部材9が、多穴扁平管8の整列方向にはみ出して設けられ、内部の連通流路と外部とを連通する作動液注入用流路23(図13参照)が設けられており、その外端部に注入管付きキャップ21が接合されている。このような構成においても、実施形態1と同様の効果を得ることができる。また、注入管21aを圧潰して封止する際に、圧潰用工具(不図示)が他構成部品と干渉しないため、作業性が良い。
[Embodiment 6]
FIG. 15 is a perspective view showing the cooling device in the sixth embodiment, but is shown so that the
[実施形態7]
図16は、実施形態7における、冷却装置を示す斜視図であるが、受熱板12が下方に位置するように図示している。実施形態1〜6との相違点として、多穴扁平管8のピッチが一部狭く、または広くなっている。このように多穴扁平管8が不等ピッチを有する構成においても、実施形態1と同様の効果を得ることができる。また、ピッチが狭い箇所の受熱部と、ほかの受熱部との受熱面積の差により、受熱量の不均衡が生じる。これにより、流路13内の圧力の不均衡が生じやすくなるため、作動液の始動性および冷却性能が向上する。
[Embodiment 7]
FIG. 16 is a perspective view showing the cooling device in the seventh embodiment, but is shown so that the
[実施形態8]
図17は、実施形態8における、冷却装置を示す斜視図であるが、受熱板12が下方に位置するように図示している。実施形態1〜7との相違点として、自励振動ヒートパイプ6のコルゲートフィン11のピッチ(繰り返し周期)が一部広く、または狭くなっている。このようにコルゲートフィン11が異なる繰返し周期を有する構成においても、実施形態1と同様の効果を得ることができる。また、コルゲートフィン11のピッチが狭い箇所の放熱部は、ほかの放熱部との放熱面積の差により、放熱量の不均衡が生じる。これにより、流路13内の圧力の不均衡が生じやすくなるため、作動液の始動性および冷却性能が向上する。
[Embodiment 8]
FIG. 17 is a perspective view showing the cooling device in the eighth embodiment, but is shown so that the
[実施形態9]
図18は、実施形態9における、受熱板12を分解した状態での冷却装置を示す斜視図である。実施形態1〜8との相違点として、本実施形態では、矩形凹状の連通流路25が設けられた一枚の受熱板12により、複数の自励振動ヒートパイプ6の受熱部側扁平管端部を密閉している。本実施形態では、第三のスリット板を設けておらず、受熱板12が第三のスリット板を兼ねる。このような構成においても、実施形態1と同様の効果を得ることができる。また、スリット板を複数枚重ねる場合に比べて部品点数や接合箇所が減るため、軽量化が図れ、接合品質が安定し、冷却性能が向上する。ここで、受熱板12に多穴扁平管保持、整列用の凹部を設けても良い。また、単体の自励振動ヒートパイプ6の受熱部側扁平管端部を一枚の連通流路溝付き受熱板で密閉しても良い。連通流路25は例えば切削加工により製作してもよい。
[Embodiment 9]
FIG. 18 is a perspective view showing a cooling device in a state where the
[実施形態10]
図19は実施形態10における、移動体としての鉄道車両に搭載された電力変換装置を進行方向に直交する方向から見た時の断面図である。本実施形態では、受熱板12上の複数の半導体素子3が複数列に配置され、バスバー26により電気部品(コンデンサなど)27と電気的に接続されている。ここで、バスバー26は受熱板12と平行な面26aおよび受熱板12と垂直な面26bを持つようなL字型であり、L字の内側の空間に電気部品27が配置される。
[Embodiment 10]
FIG. 19 is a cross-sectional view of the power conversion device mounted on the railway vehicle as a moving body in the tenth embodiment when viewed from a direction orthogonal to the traveling direction. In the present embodiment, a plurality of
このようにL字のバスバー26を設けることで、冷却装置、半導体素子取り付け面(受熱面)、電気部品を一直線上に配置することができ、デッドスペースがないため、小型な電力変換装置が実現できる。
By providing the L-shaped
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態における構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態における構成の一部について、他の構成の追加・削除・置換をすることも可能である。例えば、本発明は鉄道車両のみならず、自動車、航空機、船舶などの移動体用の冷却装置に適用可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration in one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. .. Further, it is also possible to add / delete / replace a part of the configuration in each embodiment with another configuration. For example, the present invention is applicable not only to railroad vehicles but also to cooling devices for moving objects such as automobiles, aircraft, and ships.
1:電力変換装置
2:鉄道車両
3:半導体素子
4:電気部品群
5:冷却装置
6:自励振動ヒートパイプ
7:受熱部側扁平管端部封止部材
8:多穴扁平管
9:放熱部側扁平管端部封止部材
10:走行風
11:コルゲートフィン
12:受熱板
13:流路
14:隔壁
15:連通流路
16:第一のスリット板
17:第二のスリット板
18:第三のスリット板
19:受熱部側天板
20:放熱部側天板
21:注入管付きキャップ
22:短尺の多穴扁平管
23:作動液注入用流路
24:凹部
25:連通流路
26:バスバー
27:電気部品
30:多穴扁平管の長手方向
31:多穴扁平管の短手方向
32:多穴扁平管の整列方向
33:スリット板の短手方向
1: Power conversion device 2: Railroad vehicle 3: Semiconductor element 4: Electrical component group 5: Cooling device 6: Self-excited vibration heat pipe 7: Heat receiving part side flat pipe end sealing member 8: Multi-hole flat pipe 9: Heat dissipation Part side flat pipe end sealing member 10: Running wind 11: corrugated fin 12: heat receiving plate 13: flow path 14: partition wall 15: communication flow path 16: first slit plate
17: Second slit plate 18: Third slit plate 19: Heat receiving part side top plate 20: Heat dissipation part side top plate 21: Cap with injection pipe 22: Short multi-hole flat tube 23: Flow path for hydraulic fluid injection 24: Recess 25: Communication flow path 26: Bus bar 27: Electrical component 30: Longitudinal direction of multi-hole flat pipe 31: Short direction of multi-hole flat pipe 32: Alignment direction of multi-hole flat pipe 33: Short side of slit plate direction
Claims (20)
前記複流路構造体の一方の端部に接合され、隣接する前記複流路構造体の前記管内流路同士を連結する連通流路を備えた第1の端部側封止部材と、
前記複流路構造体の他方の端部に接合され、隣接する前記複流路構造体の前記管内流路同士を連結する連通流路を備えた第2の端部側封止部材と、を有することを特徴とする自励振動ヒートパイプ。 A plurality of multi-channel structures having a plurality of in-pipe channels filled with a working fluid, and a plurality of multi-channel structures.
A first end-side sealing member having a communication flow path that is joined to one end of the double flow path structure and connects the in-pipe flow paths of the adjacent double flow path structures.
Having a second end-side sealing member joined to the other end of the multi-channel structure and provided with a communication flow path connecting the in-pipe channels of the adjacent multi-channel structure. A self-excited vibration heat pipe featuring.
前記第1の端部側封止部材または前記第2の端部側封止部材が一体部品で構成されることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to claim 1.
A self-excited oscillating heat pipe, wherein the first end-side sealing member or the second end-side sealing member is composed of an integral part.
前記第1の端部側封止部材または前記第2の端部側封止部材が受熱板であることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to claim 2.
A self-excited oscillating heat pipe, wherein the first end-side sealing member or the second end-side sealing member is a heat receiving plate.
前記第1の端部側封止部材および前記第2の端部側封止部材のうち少なくとも一方が、前記複流路構造体を並列に整列し固定するための間隔保持板と、隣接する前記複流路構造体の管内流路を連結する流路連通板と、天板とを重ねて構成されることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 3.
At least one of the first end-side sealing member and the second end-side sealing member has an interval holding plate for arranging and fixing the double flow path structure in parallel, and the adjacent double flow. A self-excited oscillating heat pipe characterized in that a flow path communication plate connecting a flow path in a pipe of a road structure and a top plate are overlapped with each other.
前記間隔保持板と前記流路連通板、または前記流路連通板と前記天板が一体部品で構成されることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to claim 4.
A self-excited oscillating heat pipe comprising the space holding plate and the flow path communication plate, or the flow path communication plate and the top plate as an integral part.
前記第1の端部側封止部材または前記第2の端部側封止部材の前記天板が受熱板であることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to claim 4 or 5.
A self-excited oscillating heat pipe, wherein the top plate of the first end-side sealing member or the second end-side sealing member is a heat receiving plate.
隣接する前記複流路構造体の間にコルゲートフィンを配置したことを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 6.
A self-excited oscillating heat pipe characterized in that corrugated fins are arranged between adjacent multi-channel structures.
前記複流路構造体が4つ以上設けられ、
前記第1の端部側封止部材または前記第2の端部側封止部材のうち少なくとも一方は、2つの前記複流路構造体の管内流路を連通する第1の連通流路と、別の2つの前記複流路構造体の管内流路を連通する第2の連通流路とを有することを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 7.
Four or more of the multi-channel structures are provided,
At least one of the first end-side sealing member and the second end-side sealing member is separate from the first communication flow path that communicates the in-pipe flow path of the two multi-flow path structures. A self-excited oscillating heat pipe having a second communication flow path that communicates the in-pipe flow path of the two double flow path structures.
前記複流路構造体よりも長さが短い短尺の複流路構造体を有し、
前記短尺の複流路構造体の一方の端部は、前記第1の端部側封止部材または前記第2の端部側封止部材に接合され、他方の端部は、作動液注入管付きキャップにより密閉されることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 8.
It has a short multi-channel structure having a length shorter than that of the multi-channel structure.
One end of the short multi-channel structure is joined to the first end-side sealing member or the second end-side sealing member, and the other end is provided with a working fluid injection tube. A self-excited oscillating heat pipe characterized by being sealed by a cap.
前記第1の端部側封止部材または前記第2の端部側封止部材が、前記複流路構造体の管内流路と外部とを連通する作動液注入用流路を有しており、前記作動液注入用流路は、作動液注入管付きキャップにより密閉されることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 9.
The first end-side sealing member or the second end-side sealing member has a flow path for injecting a working liquid that communicates the in-pipe flow path and the outside of the double flow path structure. The self-excited oscillating heat pipe, characterized in that the hydraulic fluid injection flow path is sealed by a cap with a hydraulic fluid injection pipe.
前記第1の端部側封止部材または前記第2の端部側封止部材が、前記複流路構造体の整列方向に受熱板からはみ出すように長く形成されていることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to claim 10.
The self-excited member is characterized in that the first end-side sealing member or the second end-side sealing member is formed long so as to protrude from the heat receiving plate in the alignment direction of the multi-channel structure. Vibration heat pipe.
前記第1の端部側封止部材または前記第2の端部側封止部材が、前記複流路構造体の整列方向端からはみ出しており、
前記第1の端部側封止部材または前記第2の端部側封止部材および前記作動液注入管付きキャップを収容する凹部を受熱板に形成したことを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to claim 10 or 11.
The first end-side sealing member or the second end-side sealing member protrudes from the alignment direction end of the multi-channel structure.
A self-excited oscillating heat pipe comprising a heat receiving plate having a recess for accommodating the first end-side sealing member or the second end-side sealing member and the cap with a hydraulic fluid injection tube.
前記作動液注入管付きキャップに設けた作動液注入管を圧潰することにより作動液注入用流路を密閉することを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 9 to 12.
A self-excited oscillating heat pipe characterized in that the flow path for injecting a working liquid is sealed by crushing the working liquid injection pipe provided in the cap with the working liquid injection pipe.
前記複流路構造体の整列方向ピッチが異なることを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 13.
A self-excited oscillating heat pipe characterized in that the alignment direction pitches of the multi-channel structure are different.
隣接する前記複流路構造体の間に配置されるコルゲートフィンが異なる繰返し周期を有することを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 14.
A self-excited oscillating heat pipe characterized in that corrugated fins arranged between adjacent multichannel structures have different repetition periods.
nを1以上の整数としたときに、(2n−1)番目の前記複流路構造体と、(2n)番目の前記複流路構造体と、(2n+1)番目の前記複流路構造体とがこの順序で並列に設けられており、前記第1の端部側封止部材の連通流路は、(2n−1)番目の前記複流路構造体と(2n)番目の前記複流路構造体の一端同士を連通し、前記第2の端部側封止部材の連通流路は、(2n)番目の前記複流路構造体と(2n+1)番目の前記複流路構造体の他端同士を連通することを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 15.
When n is an integer of 1 or more, the (2n-1) th compound channel structure, the (2n) th compound channel structure, and the (2n + 1) th compound channel structure are the same. It is provided in parallel in order, and the communication flow path of the first end side sealing member is one end of the (2n-1) th double flow path structure and the (2n) th double flow path structure. The communication flow path of the second end side sealing member communicates with each other, and the other end of the (2n + 1) th double flow path structure communicates with each other. A self-excited vibration heat pipe featuring.
mを1以上の整数としたときに、前記第1の端部側封止部材または前記前記第2の端部側封止部材の長手方向において、(2m−1)番目の前記管内流路と、(2m)番目の前記管内流路と、(2m+1)番目の前記管内流路とがこの順序で並列に設けられており、前記第1の端部側封止部材の連通流路は、(2m−1)番目の前記管内流路と(2m)番目の前記管内流路の上端同士を連通し、前記第2の端部側封止部材の連通流路は、(2m)番目の前記管内流路と(2m+1)番目の前記管内流路の下端同士を連通し、
さらに、前記第1の端部側封止部材または前記前記第2の端部側封止部材の短手方向において隣接した(2m)番目の前記管内流路のうち一方の前記管内流路の上端が、(2m−1)番目の前記管内流路と連通し、他方の(2m)番目の前記管内流路の上端が、(2m+1)番目の前記管内流路と連通することを特徴とする自励振動ヒートパイプ。 In the self-excited oscillating heat pipe according to any one of claims 1 to 15.
When m is an integer of 1 or more, the (2m-1) th in-pipe flow path in the longitudinal direction of the first end-side sealing member or the second end-side sealing member. , The (2m) th in-pipe flow path and the (2m + 1) th in-pipe flow path are provided in parallel in this order, and the communication flow path of the first end side sealing member is (2m + 1). The upper ends of the 2m-1) th in-pipe flow path and the (2m) th in-pipe flow path are communicated with each other, and the communication flow path of the second end side sealing member is in the (2 m) th in the pipe. Communicate between the flow path and the lower end of the (2m + 1) th in-pipe flow path,
Further, the upper end of the inner flow path of one of the (2 m) th in-pipe flow paths adjacent to each other in the lateral direction of the first end-side sealing member or the second end-side sealing member. Is characterized in that it communicates with the (2m-1) th in-pipe flow path, and the upper end of the other (2m) th in-pipe flow path communicates with the (2m + 1) th in-pipe flow path. Excited vibration heat pipe.
移動体に設置されたことを特徴とする冷却装置。 In the cooling device according to claim 18,
A cooling device characterized by being installed on a moving body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093291A JP7500277B2 (en) | 2020-05-28 | 2020-05-28 | Self-excited oscillating heat pipe, cooling device and power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093291A JP7500277B2 (en) | 2020-05-28 | 2020-05-28 | Self-excited oscillating heat pipe, cooling device and power conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021188810A true JP2021188810A (en) | 2021-12-13 |
JP7500277B2 JP7500277B2 (en) | 2024-06-17 |
Family
ID=78848317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020093291A Active JP7500277B2 (en) | 2020-05-28 | 2020-05-28 | Self-excited oscillating heat pipe, cooling device and power conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7500277B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161880A (en) | 1998-11-26 | 2000-06-16 | Toshiba Corp | Heat pipe type cooler |
WO2019151375A1 (en) | 2018-01-31 | 2019-08-08 | 株式会社日立製作所 | Electric power conversion apparatus and method for manufacturing self-excited vibration heat pipe |
-
2020
- 2020-05-28 JP JP2020093291A patent/JP7500277B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7500277B2 (en) | 2024-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8472193B2 (en) | Semiconductor device | |
JP4432892B2 (en) | Semiconductor cooling structure | |
JP2017112768A (en) | Electric power conversion system | |
US7054548B2 (en) | Vibration-flow-type heating-body cooling device | |
JPH0624279A (en) | Cooling device for electric automobile | |
JP7133044B2 (en) | Self-oscillating heat pipe cooler | |
WO2015198411A1 (en) | Power-module device, power conversion device, and method for manufacturing power-module device | |
WO2015194023A1 (en) | Power-module device and power conversion device | |
JP2008221951A (en) | Cooling system of electronic parts for automobile | |
WO2019151375A1 (en) | Electric power conversion apparatus and method for manufacturing self-excited vibration heat pipe | |
JP2021188810A (en) | Self-oscillating heat pipe, cooling device, and power conversion device | |
EP3352367B1 (en) | Thermoelectric power generation device | |
JP5838759B2 (en) | Semiconductor module | |
JP5114324B2 (en) | Semiconductor device | |
JP2012227344A (en) | Power conversion apparatus | |
JP2010010195A (en) | Cooling device for electronic component for automobile | |
JP7430521B2 (en) | Cooling devices and power conversion devices for mobile objects | |
JP6837565B2 (en) | Railroad vehicle power converters and railroad vehicles equipped with power converters | |
CN113710982A (en) | Self-oscillating heat pipe cooling device and railway vehicle equipped with same | |
KR20200037632A (en) | Thermoelectric module, frame for thermoelectric module, and vehicle including thermoelectric module | |
WO2020246240A1 (en) | Mobile body cooling device , railway vehicle power conversion device, and production method for moving body cooling device | |
CN221887021U (en) | Heat abstractor that heat conduction efficiency is high | |
JP2012227345A (en) | Power conversion apparatus | |
JPH0983164A (en) | Heat sink and its manufacture | |
JP2008159757A (en) | Cooling structure of heat generating substance, and manufacturing method of same cooling structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7500277 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |