JP2012227345A - Power conversion apparatus - Google Patents
Power conversion apparatus Download PDFInfo
- Publication number
- JP2012227345A JP2012227345A JP2011093256A JP2011093256A JP2012227345A JP 2012227345 A JP2012227345 A JP 2012227345A JP 2011093256 A JP2011093256 A JP 2011093256A JP 2011093256 A JP2011093256 A JP 2011093256A JP 2012227345 A JP2012227345 A JP 2012227345A
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- radiator
- semiconductor
- power conversion
- main surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Inverter Devices (AREA)
Abstract
Description
本発明は、電力変換装置に係り、複数の冷却器を用いずに高い冷却性能を確保するための技術に関するものである。 The present invention relates to a power conversion device and relates to a technique for ensuring high cooling performance without using a plurality of coolers.
近年、ハイブリッド車や電気自動車には車両の駆動用に高出力の交流モータが搭載されている。高出力の交流モータを駆動するには、大電力が必要となるため、車載電源より供給される直流電力を交流電力に変換して交流モータに供給する電力変換装置にも大電力が流れる。電力変換装置に大電力が流れると、電力変換装置に設けられた半導体の発熱量が大きくなり、半導体が高温になってしまうという課題があった。 In recent years, high-power AC motors are mounted on hybrid vehicles and electric vehicles for driving vehicles. In order to drive a high-output AC motor, a large amount of power is required, so that a large amount of power also flows through a power conversion device that converts DC power supplied from a vehicle-mounted power source into AC power and supplies the AC motor. When large power flows through the power conversion device, there is a problem that the amount of heat generated by the semiconductor provided in the power conversion device increases and the semiconductor becomes high temperature.
そこで、電力変換装置に設けられた半導体を効率良く冷却するために、半導体と、半導体を冷却するための冷却器とを交互に積層するように配置した電力変換装置が知られている(例えば、特許文献1参照)。 Therefore, in order to efficiently cool the semiconductor provided in the power conversion device, a power conversion device is known in which a semiconductor and a cooler for cooling the semiconductor are alternately stacked (for example, Patent Document 1).
この電力変換装置は、半導体を複数の冷却器を用いて冷却するので、半導体を効率良く冷却することを可能としている。 Since this power converter cools a semiconductor using a plurality of coolers, it is possible to cool the semiconductor efficiently.
また、電力変換装置に設けられた半導体を簡素な構造で冷却するために、半導体を冷却するための冷却器の平面上に半導体を配置し、さらに半導体を覆うように放熱体を設けて冷却器に固定する電力変換装置も知られている(例えば、特許文献2参照)。 Moreover, in order to cool the semiconductor provided in the power converter with a simple structure, the semiconductor is arranged on the plane of the cooler for cooling the semiconductor, and a radiator is provided so as to cover the semiconductor. Also known is a power conversion device that is fixed to (see, for example, Patent Document 2).
この電力変換装置は、半導体を冷却器と放熱体とをそれぞれ用いて冷却するため、上記電力変換装置と比較的簡素な構造で半導体を冷却することを可能としている。 In this power conversion device, the semiconductor is cooled by using a cooler and a radiator, respectively, so that the semiconductor can be cooled with the power conversion device and a relatively simple structure.
上記の特許文献1に開示された電力変換装置のように半導体と冷却器とを交互に積層し、複数の冷却器を用いて半導体を冷却するようにすれば優れた冷却性能を確保出来る。しかしながら、半導体を冷却するために複数の冷却器が必要となるため、簡素な構造とするのは困難であった。 If the semiconductor and the cooler are alternately stacked as in the power conversion device disclosed in the above-mentioned Patent Document 1, and the semiconductor is cooled by using a plurality of coolers, excellent cooling performance can be ensured. However, since a plurality of coolers are required to cool the semiconductor, it has been difficult to obtain a simple structure.
また、上記の特許文献2に開示された電力変換装置のように冷却器の平面上に半導体を配置し、さらに半導体を覆うように放熱体を配置すれば簡素な構造で半導体を冷却することが出来る。しかし、設計誤差や振動等が原因で放熱体と冷却器の間に隙間が生じると、半導体の熱を効率良く冷却器へ伝達することが出来ないため、高い冷却性能を確保することは困難であった。 Moreover, the semiconductor can be cooled with a simple structure by disposing a semiconductor on the plane of the cooler as in the power conversion device disclosed in Patent Document 2 and further disposing a radiator so as to cover the semiconductor. I can do it. However, if there is a gap between the radiator and the cooler due to design error or vibration, it is difficult to ensure high cooling performance because the heat of the semiconductor cannot be efficiently transferred to the cooler. there were.
本発明は、上記の課題を解決するためのものであって、その目的は、複数の冷却器を用いずに、簡素な構造で高い冷却性能を確保出来る電力変換装置を提供することである。 This invention is for solving said subject, The objective is to provide the power converter device which can ensure high cooling performance with a simple structure, without using several cooler.
第1の発明に係る電力変換装置は、冷却器と、冷却器の主面に並べられる半導体と、半導体が冷却器と接する面と対向する面に接し、半導体を覆うように設けられる断面がコの字型の放熱体と、冷却器の主面側を覆うように設けられる冷却器のカバー部材と、カバー部材と放熱体との間に介在し、放熱体と半導体とを接触させる方向に付勢力を付与するバネ部材とを備える電力変換装置であって、少なくとも一部が冷却器と放熱体の端部とに接し、放熱体の端部に、冷却器の主面と平行な方向に付勢力を付与する接続部材とを更に備えることを特徴とする。 A power converter according to a first aspect of the present invention includes a cooler, a semiconductor arranged on the main surface of the cooler, and a cross section provided so as to cover the semiconductor in contact with the surface facing the surface where the semiconductor contacts the cooler. A heat sink, a cover member of the cooler provided so as to cover the main surface side of the cooler, and a cover member and the heat sink are interposed between the heat sink and the semiconductor. A power conversion device including a spring member for applying a force, at least part of which is in contact with the cooler and the end of the radiator, and attached to the end of the radiator in a direction parallel to the main surface of the cooler. It is further provided with the connection member which provides power.
第2の発明に係る電力変換装置は、冷却器と、冷却器の主面に並べられる複数の半導体と、半導体が冷却器と接する面と対向する面に接し、半導体を覆うようにそれぞれの半導体に設けられる断面がコの字型の放熱体と、冷却器の主面側を覆うように設けられる冷却器のカバー部材と、カバー部材とそれぞれの放熱体との間に介在し、放熱体と半導体とを接触させる方向に付勢力を付与するバネ部材とを備える電力変換装置であって、少なくとも一部が冷却器と放熱体の端部とに接し、放熱体のそれぞれの端部に、冷却器の主面と平行な方向に付勢力を付与する接続部材とを更に備えることを特徴とする。 The power conversion device according to the second invention includes a cooler, a plurality of semiconductors arranged on a main surface of the cooler, and a semiconductor in contact with a surface facing the surface in contact with the cooler and covering each semiconductor The cross section provided in the U-shaped radiator, the cover member of the cooler provided so as to cover the main surface side of the cooler, the cover member and the respective heat sink, A power conversion device including a spring member that applies a biasing force in a direction in which the semiconductor is brought into contact, at least a part of which is in contact with the cooler and the end of the radiator, and a cooling at each end of the radiator And a connecting member for applying an urging force in a direction parallel to the main surface of the vessel.
本発明によれば、複数の冷却器を用いずに、簡素な構造で冷却性能を確保できる電力変換装置を提供することが出来る。 ADVANTAGE OF THE INVENTION According to this invention, the power converter device which can ensure cooling performance with a simple structure can be provided, without using several cooler.
以下、本発明の実施例を、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第1の実施例)
図1は、本発明の第1の実施例に係る電力変換装置100の構造を示す図である。電力変換装置100は、冷却器101と、半導体104と、放熱体105と、カバー部材108と、バネ部材109と、放熱体接続部材110から成る。
(First embodiment)
FIG. 1 is a diagram illustrating a structure of a power conversion device 100 according to a first embodiment of the present invention. The power conversion device 100 includes a cooler 101, a semiconductor 104, a radiator 105, a cover member 108, a spring member 109, and a radiator connecting member 110.
冷却器101は、内部に列状に等間隔配置された図示しない冷却フィンを有し、隣り合う冷却フィン間に冷媒流路102を形成する。冷却器101を構成する部材としては高熱伝導性を有したアルミ等を適用することが望ましい。また、冷媒としては液体及び気体のいずれを用いても良い。 The cooler 101 has cooling fins (not shown) arranged in a row in the interior at equal intervals, and forms a coolant channel 102 between adjacent cooling fins. As a member constituting the cooler 101, it is desirable to apply aluminum or the like having high thermal conductivity. Further, either a liquid or a gas may be used as the refrigerant.
半導体104は電力変換回路を構成する電子部品であって、IGBT(Insulated Gate Bipolar Transistor)等が用いられる。半導体104は高熱伝導性を有した図示しないグリス等を介して冷却器101の主面103に実装され、半田付けによって接続される。尚、車載用の電力変換装置には多くの半導体が搭載されているが、本明細書では説明を簡略化するために一部のみを図示している。 The semiconductor 104 is an electronic component constituting a power conversion circuit, and an IGBT (Insulated Gate Bipolar Transistor) or the like is used. The semiconductor 104 is mounted on the main surface 103 of the cooler 101 via grease (not shown) having high thermal conductivity and connected by soldering. Although many semiconductors are mounted on the in-vehicle power conversion device, only a part is illustrated in this specification for the sake of simplicity.
放熱体105は、図2に表されているように断面がコの字の形状をしており、半導体104が冷却器101と接している面と対向する面と接する平面部106と、放熱体105の平面部106の両端より冷却器101の方向へ向け略垂直に伸びる脚部107から成り、高熱伝導性を有した図示しないグリス等を介して半導体104に実装される。上記の通り、半導体104に大電力が流れると半導体104は発熱するので、半導体104の熱は放熱体105へと伝達し冷却器101へ放熱される。尚、放熱体105を構成する部材としては、高熱伝導性を有したアルミを適用することが望ましい。 As shown in FIG. 2, the heat radiator 105 has a U-shaped cross section, and a flat surface portion 106 that contacts a surface facing the surface where the semiconductor 104 is in contact with the cooler 101, and a heat radiator The leg part 107 extends substantially vertically from both ends of the flat part 106 toward the cooler 101, and is mounted on the semiconductor 104 via grease (not shown) having high thermal conductivity. As described above, when a large amount of power flows through the semiconductor 104, the semiconductor 104 generates heat, so that the heat of the semiconductor 104 is transmitted to the radiator 105 and radiated to the cooler 101. In addition, it is desirable to apply aluminum having high thermal conductivity as a member constituting the radiator 105.
カバー部材108は、半導体104や放熱体105等の冷却器101に実装される部品を保護するために、冷却器101の主面103を覆うように設けられ、ボルト111等によって冷却器101に固定される。尚、カバー部材108を構成する部材としては、高熱伝導性と高い剛性とを有したアルミを適用することが望ましい。 The cover member 108 is provided so as to cover the main surface 103 of the cooler 101 in order to protect the components mounted on the cooler 101 such as the semiconductor 104 and the radiator 105 and is fixed to the cooler 101 with a bolt 111 or the like. Is done. As a member constituting the cover member 108, it is desirable to apply aluminum having high thermal conductivity and high rigidity.
バネ部材109は、カバー部材108と、放熱体105の間に介在して設けられる。バネ部材109は、冷却器101の主面103に実装される半導体104や放熱体105を冷却器101の主面103に固定するために、図1に表されているように放熱体105が半導体104に接する面と対向する面に付勢力Faを付与する。尚、この付勢力Faは、バネ部材109のバネ定数を変更することで調整することが出来る。また、バネ部材109は一体的にカバー108に形成されても良い。 The spring member 109 is provided between the cover member 108 and the heat radiating body 105. As shown in FIG. 1, the spring member 109 is configured so that the semiconductor 104 and the heat radiating body 105 mounted on the main surface 103 of the cooler 101 are fixed to the main surface 103 of the cooler 101. A biasing force Fa is applied to the surface facing the surface in contact with 104. The biasing force Fa can be adjusted by changing the spring constant of the spring member 109. Further, the spring member 109 may be integrally formed on the cover 108.
放熱体接続部材110は図3(a)及び図4に表されているように角錐台のような形状を有し、放熱体接続部材110の底面に対して略垂直に交わる平面で2分割され、放熱体部113(a)及び114(a)と、それらを結合する弾性体部115とから構成される。そして、一方の放熱体部113(a)が冷却器101の主面103に半田付け等によって固定され、他方の放熱体部114(a)は図3(a)及び図4(a)に表されている矢印Aの方向(放熱体接続部材110の弾性体部115が付勢力Fbを付与する方向)にのみ平行移動可能となるよう冷却器101の主面103に配置される。 As shown in FIG. 3A and FIG. 4, the radiator connecting member 110 has a shape like a truncated pyramid, and is divided into two by a plane that intersects with the bottom surface of the radiator connecting member 110 substantially perpendicularly. The heat dissipating body portions 113 (a) and 114 (a) and the elastic body portion 115 for coupling them are configured. One heat dissipating member 113 (a) is fixed to the main surface 103 of the cooler 101 by soldering or the like, and the other heat dissipating member 114 (a) is shown in FIGS. 3 (a) and 4 (a). Is arranged on the main surface 103 of the cooler 101 so as to be movable only in the direction of the arrow A (the direction in which the elastic body portion 115 of the radiator connecting member 110 applies the urging force Fb).
このような構成により、放熱体105が所定の位置に配置された場合には、図5に表されているように放熱体接続部材110の放熱体部114(a)に形成された斜面112が放熱体105の脚部107を介してバネ部材109の付勢力Faを受け、熱体接続部材110の放熱体部114(a)が図3(a)及び図4(a)に表されている位置から図3(b)及び図4(b)に表されている位置へと平行移動する。 With such a configuration, when the radiator 105 is disposed at a predetermined position, the slope 112 formed on the radiator part 114 (a) of the radiator connecting member 110 as shown in FIG. The heat radiating member 114 (a) of the heat connecting member 110 is shown in FIGS. 3 (a) and 4 (a) upon receiving the biasing force Fa of the spring member 109 via the legs 107 of the heat radiating member 105. The position is translated from the position to the position shown in FIGS. 3B and 4B.
つまり、放熱体105を所定位置に配置することで、放熱体接続部材110の弾性体部115は収縮するため放熱体接続部材110は図5の状態で冷却器101の主面103に固定される。その間、放熱体接続部材110の弾性体部115は図3(b)及び図4(b)に表されているように、冷却器101の主面103と平行する方向に伸張しようと付勢力Fbを発生させる。この放熱体接続部材110の弾性体部115の付勢力Fbによって、放熱体接続部材110の放熱体部114(a)が放熱体105の脚部107に押圧される。従って、放熱体接続部材110の放熱体部114(a)と、放熱体105の脚部107との接圧を確保出来るため、放熱体105の脚部107から放熱体接続部材110の放熱体部114(a)への熱伝達性を高く保つことが出来る。また、冷却器101と放熱体105との間に放熱体接続部材110が介在しているので、設計誤差や振動によって生じる隙間を最小限に抑えることが出来、高い冷却性能を確保することが出来る。尚、放熱体部113(a)及び114(a)の間に隙間が生じているのは、各部品の寸法のばらつきを吸収するためである。 That is, by disposing the radiator 105 at a predetermined position, the elastic body portion 115 of the radiator connecting member 110 contracts, so that the radiator connecting member 110 is fixed to the main surface 103 of the cooler 101 in the state of FIG. . Meanwhile, as shown in FIGS. 3B and 4B, the elastic body portion 115 of the radiator connecting member 110 is biased to extend in a direction parallel to the main surface 103 of the cooler 101. Is generated. The heat radiating member 114 (a) of the heat radiating member connecting member 110 is pressed against the leg portion 107 of the heat radiating member 105 by the urging force Fb of the elastic member 115 of the heat radiating member connecting member 110. Accordingly, since the contact pressure between the radiator part 114 (a) of the radiator connecting member 110 and the leg part 107 of the radiator 105 can be secured, the radiator part of the radiator connecting member 110 is connected from the leg part 107 of the radiator 105. The heat transfer property to 114 (a) can be kept high. Further, since the radiator connecting member 110 is interposed between the cooler 101 and the radiator 105, a gap caused by a design error or vibration can be minimized, and high cooling performance can be secured. . The reason why the gap is generated between the radiator portions 113 (a) and 114 (a) is to absorb the dimensional variation of each component.
次に、図6を用いて、半導体104の熱がどのような経路で冷却器101まで伝達されるかを説明する。図6(a)は第1の経路を、図6(b)は第2の経路を表している。 Next, the path through which the heat of the semiconductor 104 is transferred to the cooler 101 will be described with reference to FIG. 6A shows the first route, and FIG. 6B shows the second route.
第1の経路は、半導体104の熱が直接冷却器101に伝達する経路である。冷却器101は、高伝導性を有するアルミ等によって形成されるため、半導体104からの熱が効率よく冷却器101へと伝達し、半導体104を冷却することが可能である。 The first path is a path through which the heat of the semiconductor 104 is directly transferred to the cooler 101. Since the cooler 101 is formed of aluminum or the like having high conductivity, heat from the semiconductor 104 can be efficiently transferred to the cooler 101 and the semiconductor 104 can be cooled.
第2の経路は、半導体104の熱が放熱体105と放熱体接続部110とを介して冷却器101へと伝達する経路である。まず、半導体104の熱は、半導体104が冷却器101と接する面と対向する面に設けられた放熱体105の平面部106に伝達する。そして、放熱体105の平面部106より脚部107へ、そして放熱体接続部材110へと伝達し、放熱体接続部材110より冷却器101へと放熱される。上記したように、放熱体105の脚部107と放熱体接続部材110とは、バネ部材109の付勢力Faと、放熱体105の弾性体部115の付勢力Fbとによって接圧されているので、高い熱伝導性を確保することが出来る。 The second path is a path through which the heat of the semiconductor 104 is transmitted to the cooler 101 via the radiator 105 and the radiator connecting portion 110. First, the heat of the semiconductor 104 is transferred to the flat portion 106 of the heat radiating body 105 provided on the surface facing the surface where the semiconductor 104 is in contact with the cooler 101. Then, the heat is transmitted from the flat portion 106 of the radiator 105 to the leg 107 and to the radiator connecting member 110, and is radiated from the radiator connecting member 110 to the cooler 101. As described above, the leg 107 of the radiator 105 and the radiator connecting member 110 are contacted by the biasing force Fa of the spring member 109 and the biasing force Fb of the elastic body 115 of the radiator 105. High thermal conductivity can be ensured.
尚、図7のように冷却器101の上に平面状に複数の半導体104を実装する場合は、半導体104それぞれに放熱体105とバネ部材109とを設け、それぞれの放熱体105の間に放熱体接続部材110を設けることが望ましい。1つの放熱体接続部材110に2つの放熱体105が接するように配置することで冷却器101に実装される放熱体接続部材110の数を減らすことが出来る。また、1つの放熱体接続部材110に2つの放熱体105が接することで、バネ部材109より放熱体接続部材110に付与される付勢力Faが増加するので、放熱体接続部材110の放熱体部114(a)と、放熱体105の脚部107との接圧をより大きくすることが出来、高い熱伝導性を確保することが出来る。この場合、2つの放熱体105に接する放熱体接続部材110は、冷却器101の主面103に半田付けされることなく実装されることとなるが、上記の通り2つの放熱体105の脚部107よりバネ部材109の付勢力Faを付与されるので、位置ずれを起こすことなく実装される。
(第2の実施例)
次に、図8及び図9を用いて、本発明の第2の実施例に係る電力変換装置100の構造を説明する。第2の実施例に係る電力変換装置100は、放熱体接続部材110の弾性体部115が放熱体105の脚部107に対して付与する付勢力の向きと、放熱体接続部材110を2分割する場合に用いられる平面とが第1の実施例に係る電力変換装置100と異なる。
In the case where a plurality of semiconductors 104 are mounted on the cooler 101 in a planar shape as shown in FIG. It is desirable to provide the body connecting member 110. By disposing the two radiators 105 in contact with one radiator connecting member 110, the number of radiator connecting members 110 mounted on the cooler 101 can be reduced. Further, since the two radiators 105 are in contact with one radiator connecting member 110, the urging force Fa applied to the radiator connecting member 110 from the spring member 109 is increased, so that the radiator portion of the radiator connecting member 110 The contact pressure between 114 (a) and the leg 107 of the radiator 105 can be increased, and high thermal conductivity can be ensured. In this case, the radiator connecting member 110 in contact with the two radiators 105 is mounted without being soldered to the main surface 103 of the cooler 101, but the leg portions of the two radiators 105 as described above. Since the urging force Fa of the spring member 109 is applied from 107, the mounting is performed without causing positional displacement.
(Second embodiment)
Next, the structure of the power conversion apparatus 100 according to the second embodiment of the present invention will be described with reference to FIGS. 8 and 9. In the power converter 100 according to the second embodiment, the direction of the urging force that the elastic body 115 of the radiator connecting member 110 applies to the leg 107 of the radiator 105 and the radiator connecting member 110 are divided into two. The plane used in this case is different from the power converter 100 according to the first embodiment.
図8(a)及び図9(a)は、電力変換装置100の冷却器101の主面103に実装される放熱体接続部材110の形状を表している。放熱体接続部材110は、底面に対して略垂直に交わり、かつ半導体104や放熱体105などが冷却器101に積層される方向と斜行する平面で2分割された形状を有し、放熱体113(b)及び114(b)と、弾性体部115とから成る。第1の実施例の場合は、電力変換装置100に実装される放熱体接続部材110の弾性体部115が、図3(a)及び図4(a)に表されている矢印Aの方向(半導体104や放熱体105等が積層される方向と垂直に交わる方向)に付勢力Fbを付与するように放熱体接続部材110に設けられるのに対し、本実施例の電力変換装置100に実装される放熱体接続部材110の弾性体部115は、図8(b)及び図9(b)に表されているように、矢印Bの方向(放熱体接続部材110を分割した平面に沿う方向)に付勢力Fbを付与するよう放熱体接続部材110の弾性体部115が設けられる。 FIG. 8A and FIG. 9A show the shape of the radiator connecting member 110 mounted on the main surface 103 of the cooler 101 of the power conversion device 100. The radiator connecting member 110 has a shape that intersects substantially perpendicularly to the bottom surface and is divided into two parts by a plane that is oblique to the direction in which the semiconductor 104, the radiator 105, and the like are stacked on the cooler 101. 113 (b) and 114 (b), and an elastic body 115. In the case of the first embodiment, the elastic body portion 115 of the radiator connecting member 110 mounted on the power conversion device 100 is in the direction of the arrow A shown in FIGS. 3A and 4A ( It is mounted on the radiator connecting member 110 so as to apply the urging force Fb in a direction perpendicular to the direction in which the semiconductor 104, the radiator 105, and the like are stacked, but is mounted on the power conversion device 100 of the present embodiment. As shown in FIGS. 8B and 9B, the elastic body portion 115 of the radiator connecting member 110 is in the direction of arrow B (the direction along the plane in which the radiator connecting member 110 is divided). The elastic body portion 115 of the heat radiating member connecting member 110 is provided so as to apply the urging force Fb.
従って、放熱体105が所定位置に配置された場合には、放熱体接続部材110の放熱体部114(b)に形成された斜面112が放熱体105の脚部107を介してバネ部材109の付勢力Faを受け、放熱体接続部材110の放熱体部114(b)が図8(a)及び図9(a)に表されている位置から図8(b)及び図9(b)に表されている位置へと、放熱体接続部材110を分割した平面に沿う方向に移動する。 Therefore, when the heat radiator 105 is disposed at a predetermined position, the slope 112 formed on the heat radiator portion 114 (b) of the heat radiator connection member 110 is formed on the spring member 109 via the leg portion 107 of the heat radiator 105. In response to the urging force Fa, the heat radiating member 114 (b) of the heat radiating member connecting member 110 is moved from the position shown in FIGS. 8 (a) and 9 (a) to FIGS. 8 (b) and 9 (b). It moves to the position shown along the plane along which the radiator connecting member 110 is divided.
このような構成とすることによって、放熱体接続部材110の弾性体部115から放熱体105に掛かる応力により、半導体104と放熱体105とが離間する方向(バネ部材109の付勢力Faを付与する方向と逆の方向)に放熱体105が変形することを防止することが出来る。また、各部品の寸法のばらつきを吸収するために設けていた放熱体部113(a)及び114(a)間の隙間が不要となるので、放熱体接続部材110の熱伝導性をより高くすることが出来る。 With such a configuration, a direction in which the semiconductor 104 and the heat dissipating body 105 are separated from each other by the stress applied to the heat dissipating body 105 from the elastic body 115 of the heat dissipating member connecting member 110 (the biasing force Fa of the spring member 109 is applied) It is possible to prevent the heat radiator 105 from being deformed in the direction opposite to the direction). In addition, since the gap between the radiator portions 113 (a) and 114 (a) provided to absorb the dimensional variation of each component is not required, the thermal conductivity of the radiator connecting member 110 is further increased. I can do it.
以上のように、本発明に係る電力変換装置100は、冷却器101と、冷却器101の主面103に並べられる半導体104と、半導体104が冷却器101と接する面と対向する面に接し、半導体104を覆うように設けられる断面がコの字型の放熱体105と、冷却器101の主面側103を覆うように設けられる冷却器101のカバー部材108と、カバー部材108と放熱体105との間に介在し、放熱体105と半導体104とを接触させる方向に付勢力Faを付与するバネ部材109とを備え、少なくとも一部が冷却器101と放熱体105の端部に接し、放熱体105の端部に、冷却器101の主面103と平行な方向に付勢力Fbを付与する放熱体接続部材110とを更に備えるので、複数の冷却器を用いずに、簡素な構造で高い冷却性能を確保することが出来る。 As described above, the power conversion device 100 according to the present invention is in contact with the cooler 101, the semiconductor 104 arranged on the main surface 103 of the cooler 101, and the surface facing the surface where the semiconductor 104 is in contact with the cooler 101, A radiator 105 having a U-shaped cross section provided to cover the semiconductor 104, a cover member 108 of the cooler 101 provided to cover the main surface side 103 of the cooler 101, the cover member 108, and the radiator 105 And a spring member 109 that applies an urging force Fa in a direction in which the radiator 105 and the semiconductor 104 are in contact with each other, at least a part of which is in contact with the cooler 101 and the end of the radiator 105 to dissipate heat. Since it further includes a radiator connecting member 110 that applies an urging force Fb in a direction parallel to the main surface 103 of the cooler 101 at the end of the body 105, a simple structure without using a plurality of coolers It is possible to ensure a high cooling performance.
また、本発明に係る電力変換装置100は、冷却器101と、冷却器101の主面103に並べられる複数の半導体104と、半導体104が冷却器101と接する面と対向する面に接し、半導体104を覆うようにそれぞれの半導体104に設けられる断面がコの字型の放熱体105と、冷却器101の主面側103を覆うように設けられる冷却器101のカバー部材108と、カバー部材108とそれぞれ放熱体105との間に介在し、放熱体105と半導体104とを接触させる方向に付勢力Faを付与するバネ部材109とを備え 少なくとも一部が冷却器101と放熱体105の端部に接し、放熱体105のそれぞれの端部に、冷却器101の主面103と平行な方向に付勢力Fbを付与する放熱体接続部材110とを更に備えるので、複数の冷却器を用いずに、簡素な構造で高い冷却性能を確保することが出来る。 The power conversion device 100 according to the present invention is in contact with a cooler 101, a plurality of semiconductors 104 arranged on the main surface 103 of the cooler 101, and a surface facing the surface where the semiconductor 104 is in contact with the cooler 101. The cross section provided in each semiconductor 104 so as to cover 104 has a U-shaped radiator 105, the cover member 108 of the cooler 101 provided so as to cover the main surface side 103 of the cooler 101, and the cover member 108 And a spring member 109 that applies an urging force Fa in a direction in which the radiator 105 and the semiconductor 104 are brought into contact with each other, at least a part of which is an end of the cooler 101 and the radiator 105. And a radiator connecting member 110 that applies an urging force Fb in a direction parallel to the main surface 103 of the cooler 101 to each end of the radiator 105. In, without using a plurality of coolers, it is possible to ensure a high cooling performance with a simple structure.
100:電力変換装置、101:冷却器、104:半導体、105:放熱体、107:脚部、109:バネ部材、110:放熱体接続部材、112:斜面、113,114:放熱体部、115:弾性体部 100: power conversion device, 101: cooler, 104: semiconductor, 105: radiator, 107: leg, 109: spring member, 110: radiator connecting member, 112: slope, 113, 114: radiator body, 115 : Elastic body
Claims (2)
前記冷却器の主面に並べられる半導体と、
前記半導体が前記冷却器と接する面と対向する面と接し、前記半導体を覆うように設けられる断面がコの字型の放熱体と、
前記冷却器の主面側を覆うように設けられる前記冷却器のカバー部材と、
前記カバー部材と前記放熱体との間に介在し、前記放熱体と前記半導体とを接触させる方向に付勢力を付与するバネ部材とを備える電力変換装置であって、
少なくとも一部が前記冷却器と前記放熱体の端部とに接し、前記放熱体の端部に、前記冷却器の主面と平行な方向に付勢力を付与する接続部材とを更に備えることを特徴とする電力変換装置。 A cooler,
Semiconductors arranged on the main surface of the cooler;
The semiconductor is in contact with the surface opposite to the surface in contact with the cooler, and the cross-section provided to cover the semiconductor is a U-shaped radiator,
A cover member of the cooler provided to cover the main surface side of the cooler;
A power conversion device comprising a spring member interposed between the cover member and the heat dissipator, and applying a biasing force in a direction in which the heat dissipator and the semiconductor are brought into contact with each other,
At least a part is in contact with the cooler and the end of the radiator, and further includes a connection member that applies a biasing force to the end of the radiator in a direction parallel to the main surface of the cooler. A power conversion device.
前記冷却器の主面に並べられる複数の半導体と、
前記半導体が前記冷却器と接する面と対向する面と接し、前記半導体を覆うようにそれぞれの前記半導体に設けられる断面がコの字型の放熱体と、
前記冷却器の主面側を覆うように設けられる前記冷却器のカバー部材と、
前記カバー部材とそれぞれ前記放熱体との間に介在し、前記放熱体と前記半導体とを接触させる方向に付勢力を付与するバネ部材とを備える電力変換装置であって、
少なくとも一部が前記冷却器と前記放熱体のそれぞれの端部とに接し、前記放熱体のそれぞれの端部に、前記冷却器の主面と平行な方向に付勢力を付与する接続部材とを更に備えることを特徴とする電力変換装置。 A cooler,
A plurality of semiconductors arranged on the main surface of the cooler;
The semiconductor is in contact with the surface facing the cooler, and the cross-section provided on each semiconductor so as to cover the semiconductor is a U-shaped radiator,
A cover member of the cooler provided to cover the main surface side of the cooler;
A power conversion device comprising a spring member interposed between the cover member and the heat dissipator and applying a biasing force in a direction in which the heat dissipator and the semiconductor are brought into contact with each other,
At least a part is in contact with the cooler and each end of the radiator, and a connection member that applies a biasing force to each end of the radiator in a direction parallel to the main surface of the cooler. The power conversion device further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011093256A JP2012227345A (en) | 2011-04-19 | 2011-04-19 | Power conversion apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011093256A JP2012227345A (en) | 2011-04-19 | 2011-04-19 | Power conversion apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012227345A true JP2012227345A (en) | 2012-11-15 |
Family
ID=47277173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011093256A Withdrawn JP2012227345A (en) | 2011-04-19 | 2011-04-19 | Power conversion apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012227345A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150001206U (en) * | 2013-09-12 | 2015-03-20 | 엘에스산전 주식회사 | Power converter |
-
2011
- 2011-04-19 JP JP2011093256A patent/JP2012227345A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150001206U (en) * | 2013-09-12 | 2015-03-20 | 엘에스산전 주식회사 | Power converter |
JP2015057037A (en) * | 2013-09-12 | 2015-03-23 | エルエス産電株式会社Lsis Co., Ltd. | Power conversion device |
US9554492B2 (en) | 2013-09-12 | 2017-01-24 | Lsis Co., Ltd. | Power converter |
KR200484015Y1 (en) | 2013-09-12 | 2017-07-20 | 엘에스산전 주식회사 | Power converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5634621B2 (en) | Semiconductor device and in-vehicle power converter | |
JP6263311B2 (en) | Power converter | |
US7019395B2 (en) | Double-sided cooling type semiconductor module | |
JP6286543B2 (en) | Power module device, power conversion device, and method of manufacturing power module device | |
JP2017195687A (en) | Electric power conversion system | |
WO2021053975A1 (en) | Power converter and motor-integrated power converter | |
JP2010135697A (en) | Lamination module structure | |
US20200068749A1 (en) | Cooling structure of power conversion device | |
JP6180489B2 (en) | Power converter | |
JP2010140969A (en) | Stacked module structure | |
JP6286541B2 (en) | Power module device and power conversion device | |
WO2013061786A1 (en) | Power conversion device | |
JP2012227344A (en) | Power conversion apparatus | |
JP5070877B2 (en) | Semiconductor power converter | |
JP6115430B2 (en) | Power converter | |
JP2021082804A (en) | Semiconductor module | |
JP4968150B2 (en) | Semiconductor element cooling device | |
JP2012227345A (en) | Power conversion apparatus | |
JP4150647B2 (en) | Electronic component cooling system | |
JP5807482B2 (en) | Power converter | |
JP2012243808A (en) | Cooling device | |
JP2020171196A (en) | Electric power conversion apparatus of railway vehicle | |
JP2016101071A (en) | Semiconductor device | |
JP6321883B2 (en) | Electronic component unit and heat conduction mounting member | |
JP6266544B2 (en) | Inverter module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140701 |