JP2021187733A - Coated composite particle - Google Patents

Coated composite particle Download PDF

Info

Publication number
JP2021187733A
JP2021187733A JP2021066056A JP2021066056A JP2021187733A JP 2021187733 A JP2021187733 A JP 2021187733A JP 2021066056 A JP2021066056 A JP 2021066056A JP 2021066056 A JP2021066056 A JP 2021066056A JP 2021187733 A JP2021187733 A JP 2021187733A
Authority
JP
Japan
Prior art keywords
coated composite
organic compound
compound layer
coated
composite particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021066056A
Other languages
Japanese (ja)
Inventor
イルワンシャ
Irwansyah
雅人 藤田
Masato Fujita
彬史 武田
Akifumi Takeda
祐司 伊藤
Yuji Ito
邦夫 近藤
Kunio Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JP2021187733A publication Critical patent/JP2021187733A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide coated composite particles having low electrical resistance at a low density (0.8 g/cm3).SOLUTION: The present invention pertains to coated composite particle (C) in which a surface of a composite material (A) containing a carbon material and silicon is coated with an organic compound layer (B) containing polyaniline, where the nitrogen atom content and the phosphorus atom content of the organic compound layer (B) relative to the coated composite particle (C) are 0.2-0.7 mass% and 0.08-0.6 mass%, respectively.SELECTED DRAWING: Figure 1

Description

本発明は、被覆複合粒子に関する。 The present invention relates to coated composite particles.

スマートフォンやタブレットPCなどのIT機器、掃除機、電動工具、電気自転車、ドローン、自動車に使用される二次電池には、高容量および高出力を兼ね備えた負極活物質が必要とされる。負極活物質として、現在使用されている黒鉛(理論比容量:372mAh/g)よりも高い理論比容量を有するシリコン(理論比容量:4200mAh/g)が注目されている。 Secondary batteries used in IT devices such as smartphones and tablet PCs, vacuum cleaners, electric tools, electric bicycles, drones, and automobiles require negative electrode active materials having high capacity and high output. As a negative electrode active material, silicon (theoretical specific capacity: 4200 mAh / g) having a higher theoretical specific capacity than graphite (theoretical specific capacity: 372 mAh / g) currently used is attracting attention.

しかし、シリコン(Si)は電気化学的なリチウム挿入・脱離に伴って、最大で約3〜4倍まで体積が膨張・収縮する。これによりシリコン粒子が自壊したり、電極から剥離したりするため、シリコンを用いたリチウムイオン二次電池はサイクル特性が著しく低いことが知られている。このため、シリコンを単に黒鉛から置き換えて使うのではなく、負極材全体として膨張・収縮の程度を低減させた構造にして用いることが、現在盛んに研究されている。中でも炭素質材料との複合化が多く試みられている。 However, the volume of silicon (Si) expands and contracts up to about 3 to 4 times with the electrochemical insertion and desorption of lithium. It is known that a lithium ion secondary battery using silicon has extremely low cycle characteristics because the silicon particles self-destruct or peel off from the electrode due to this. For this reason, it is currently being actively studied to use silicon as a whole with a structure in which the degree of expansion and contraction is reduced, instead of simply replacing it with graphite. Among them, many attempts have been made to combine with carbonaceous materials.

高容量かつ長寿命な負極材としては、例えば特許文献1には、高温下で多孔質炭素粒子とシランガスとを接触させることによって、多孔質炭素の細孔内にケイ素を生成させる方法によって得られた、シリコン−カーボン複合材料(Si−C複合材料)が開示されている。特許文献1には、前記Si−C複合材料を、さらに化学気相成長(CVD)法により炭素質層で被覆した材料や、シリコン−カーボン複合材料(以下、Si−C複合材料と称することがある。)にフィチン酸を混合した複合材料が開示されている。
また特許文献2には、シリコン微粒子がポリアニリンとフィチン酸で形成されるネットワークで取り囲まれている複合材料が開示されている。
As a negative electrode material having a high capacity and a long life, for example, Patent Document 1 is obtained by a method of producing silicon in the pores of porous carbon by contacting porous carbon particles with silane gas at a high temperature. Further, a silicon-carbon composite material (Si-C composite material) is disclosed. In Patent Document 1, the Si—C composite material is further coated with a carbonaceous layer by a chemical vapor deposition (CVD) method, or a silicon-carbon composite material (hereinafter, referred to as a Si—C composite material). There is.) Discloses a composite material mixed with phytic acid.
Further, Patent Document 2 discloses a composite material in which silicon fine particles are surrounded by a network formed of polyaniline and phytic acid.

特表2018−534720号公報Special Table 2018-534720 Publication No. 国際公開第2014/026112号International Publication No. 2014/026112

特許文献1に開示されたSi−C複合材料に炭素質層を被覆した材料を負極活物質に用いた場合、低温処理ではSi−C複合材料の炭素被覆率が低く表面シリコン(Si)の露出が抑制されず、Si−C複合材料が酸化してしまい初回クーロン効率が低下した。また高温処理では炭化ケイ素(SiC)生成に伴いリチウムイオン二次電池の比容量は低下してしまった。
また特許文献2には、シリコン微粒子が、ポリアニリンとフィチン酸が結合したネットワークによって取り囲まれた複合材料が開示されている。この複合材料をリチウムイオン二次電池の活物質として使用した場合、シリコン微粒子が膨張及び/または収縮時の体積変動により、シリコン微粒子とネットワーク間の距離が変動し、電気抵抗が増大するといった問題があった。また、粒子状のシリコンを用いているため、充放電による膨張収縮によるシリコン微粒子の構造崩壊を抑制するには、シリコン微粒子をポリアニリンとフィチン酸が結合したネットワークで取り囲むだけでは不十分であった。
本発明では、放電容量、初回クーロン効率、サイクル特性の高いリチウムイオン二次電池を得るために、低密度(0.8g/cm)における電気抵抗を低くすることが可能な被覆複合粒子を提供することを課題とする。
When the material in which the carbonaceous layer is coated on the Si—C composite material disclosed in Patent Document 1 is used as the negative electrode active material, the carbon coverage of the Si—C composite material is low in the low temperature treatment and the surface silicon (Si) is exposed. Was not suppressed, and the Si—C composite material was oxidized, resulting in a decrease in the initial Coulomb efficiency. Further, in the high temperature treatment, the specific capacity of the lithium ion secondary battery decreased due to the formation of silicon carbide (SiC).
Further, Patent Document 2 discloses a composite material in which silicon fine particles are surrounded by a network in which polyaniline and phytic acid are bonded. When this composite material is used as an active material for a lithium-ion secondary battery, there is a problem that the distance between the silicon fine particles and the network fluctuates due to the volume fluctuation during expansion and / or contraction of the silicon fine particles, and the electrical resistance increases. there were. In addition, since particulate silicon is used, it is not sufficient to surround the silicon fine particles with a network in which polyaniline and phytic acid are bound in order to suppress the structural collapse of the silicon fine particles due to expansion and contraction due to charge and discharge.
The present invention provides coated composite particles capable of lowering electrical resistance at low densities (0.8 g / cm 3 ) in order to obtain lithium ion secondary batteries with high discharge capacity, initial Coulomb efficiency, and cycle characteristics. The task is to do.

本発明は以下の構成からなる。
[1]炭素材料およびシリコンを含む複合材料(A)の表面が、ポリアニリンを含む有機化合物層(B)によって被覆された被覆複合粒子(C)であって、
前記被覆複合粒子(C)に対する前記有機化合物層(B)中の窒素原子含有量が0.2〜0.7質量%、リン原子含有量が0.08〜0.6質量%である被覆複合粒子。
[2]前記被覆複合粒子(C)中の窒素原子含有量が0.4〜3.6質量%、リン原子含有量が0.08〜9.6質量%である前記[1]に記載の被覆複合粒子。
[3]前記被覆複合粒子(C)中の窒素原子含有量が0.5〜1.2質量%、リン原子含有量が0.08〜0.6質量%である前記[2]に記載の被覆複合粒子。
[4]前記被覆複合粒子(C)のリン原子が、複数のリン酸基を有する化合物由来である前記[1]〜[3]のいずれか1項に記載の被覆複合粒子。
[5]前記被覆複合粒子(C)のリン原子が、フィチン酸由来である前記[1]〜[4]に記載の被覆複合粒子。
[6]前記有機化合物層(B)の窒素原子が、ポリアニリン由来である前記[1]〜[5]のいずれか1項に記載の被覆複合粒子。
[7]前記有機化合物層(B)において、ポリアニリンとフィチン酸が結合している前記[6]に記載の被覆複合粒子。
[8]前記有機化合物層(B)は、ラマン分光分析法において、1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1の波数範囲のいずれにもピークを有する、前記[1]〜[7]のいずれか1項に記載の被覆複合粒子。
[9]前記有機化合物層(B)が、ラマン分光分析法において、1592±5cm−1、1494±5cm−1、1165±5cm−1及び806±5cm−1の各波数範囲にそれぞれピークを有する、前記[1]〜[7]のいずれか1項に記載の被覆複合粒子。
The present invention has the following configuration.
[1] The surface of the composite material (A) containing a carbon material and silicon is a coated composite particle (C) coated with an organic compound layer (B) containing polyaniline.
The coated composite having a nitrogen atom content of 0.2 to 0.7% by mass and a phosphorus atom content of 0.08 to 0.6% by mass in the organic compound layer (B) with respect to the coated composite particles (C). particle.
[2] The above-mentioned [1], wherein the nitrogen atom content in the coated composite particle (C) is 0.4 to 3.6% by mass, and the phosphorus atom content is 0.08 to 9.6% by mass. Coated composite particles.
[3] The above-mentioned [2], wherein the nitrogen atom content in the coated composite particle (C) is 0.5 to 1.2% by mass, and the phosphorus atom content is 0.08 to 0.6% by mass. Coated composite particles.
[4] The coated composite particle according to any one of the above [1] to [3], wherein the phosphorus atom of the coated composite particle (C) is derived from a compound having a plurality of phosphoric acid groups.
[5] The coated composite particle according to the above [1] to [4], wherein the phosphorus atom of the coated composite particle (C) is derived from phytic acid.
[6] The coated composite particle according to any one of the above [1] to [5], wherein the nitrogen atom of the organic compound layer (B) is derived from polyaniline.
[7] The coated composite particle according to the above [6], wherein the polyaniline and phytic acid are bonded in the organic compound layer (B).
[8] The organic compound layer (B), in the Raman spectroscopy, 1475~1525cm -1, 1140~1190cm -1, also has a peak in any of the wavenumber range 785~835Cm -1, wherein [1] The coated composite particle according to any one of [7].
[9] The organic compound layer (B), in the Raman spectroscopy, 1592 ± 5cm -1, 1494 ± 5cm -1, a peak to each wave number range of 1165 ± 5 cm -1 and 806 ± 5 cm -1 , The coated composite particle according to any one of the above [1] to [7].

本発明の被覆複合粒子によれば、炭素材料およびシリコンを含む複合材料の表面に、ポリアニリンを含む有機化合物の被覆層が薄く形成されることで、低密度(0.8g/cm)における電気抵抗が低いリチウムイオン二次電池の負極活物質を提供することができる。 According to the coated composite particles of the present invention, a thin coating layer of an organic compound containing polyaniline is formed on the surface of a composite material containing a carbon material and silicon, so that electricity at a low density (0.8 g / cm 3 ) is obtained. It is possible to provide a negative electrode active material of a lithium ion secondary battery having a low resistance.

実施例4で得られた被覆複合粒子のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of the coated composite particle obtained in Example 4. FIG. 比較例1で得られた被覆複合粒子のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of the coated composite particle obtained in the comparative example 1. FIG. 実施例1で得られた被覆複合粒子の走査型電子顕微鏡の観察像を示す図である。It is a figure which shows the observation image of the coating composite particle obtained in Example 1 with a scanning electron microscope. 実施例4で得られた被覆複合粒子の走査型電子顕微鏡の観察像を示す図である。It is a figure which shows the observation image of the coating composite particle obtained in Example 4 with a scanning electron microscope. 比較例5で得られた被覆複合粒子の走査型電子顕微鏡の観察像を示す図である。It is a figure which shows the observation image of the coating composite particle obtained in the comparative example 5 with a scanning electron microscope. 比較例7で得られた被覆複合粒子の走査型電子顕微鏡の観察像を示す図である。It is a figure which shows the observation image of the coating composite particle obtained in the comparative example 7 with a scanning electron microscope. 比較例5〜7で得られた被覆複合粒子のラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum of the coated composite particle obtained in the comparative example 5-7.

以下、本発明の実施形態について説明する。
以下の説明において、「ピーク強度」はピークの高さを表す。
Hereinafter, embodiments of the present invention will be described.
In the following description, "peak intensity" represents the height of the peak.

[1]被覆複合粒子(C)
本発明の一実施形態にかかる被覆複合粒子(C)は、炭素材料およびシリコンを含む複合材料(A)の表面が、ポリアニリンを含む有機化合物層(B)によって被覆された被覆複合粒子(C)であって、酸素・窒素元素分析法によって測定された窒素原子含有量が、被覆複合粒子(C)の0.4〜3.6質量%、好ましくは0.5〜1.2質量%、高周波誘導結合プラズマ発光分光分析法(ICP-AES法)によって測定されたリン原子含有量が被覆複合粒子(C)の0.08〜9.6質量%、好ましくは0.08〜0.6質量%である。さらに、被覆複合粒子(C)をレーザー回折法によって測定した体積基準の累積粒度分布における50%粒子径(DV50)が2〜30μmである被覆複合粒子である。
[1] Coated composite particles (C)
The coated composite particle (C) according to the embodiment of the present invention is a coated composite particle (C) in which the surface of the composite material (A) containing a carbon material and silicon is coated with an organic compound layer (B) containing polyaniline. The nitrogen atom content measured by the oxygen / nitrogen elemental analysis method is 0.4 to 3.6% by mass, preferably 0.5 to 1.2% by mass, and high frequency of the coated composite particle (C). The phosphorus atom content measured by inductively coupled plasma emission spectroscopic analysis (ICP-AES method) is 0.08 to 9.6% by mass, preferably 0.08 to 0.6% by mass of the coated composite particle (C). Is. Furthermore, the 50% particle size in cumulative particle size distribution on the volume basis as determined coated complex particles (C) by a laser diffraction method (D V50) is coated complex particles is 2 to 30 m.

シリコンは理論容量が高いが充放電に伴う膨張収縮が大きく、電極活物質として使用した場合には充放電サイクルに伴い電極の密度が低下し、導電性が低下する。本発明の被覆複合粒子は、シリコンの代わりにシリコンと炭素材料を含む複合材料(A)を用いており、さらにこの複合材料は、ポリアニリンを含む導電性を有する有機化合物層(B)で被覆されているため、低粉体密度での電気抵抗を低くすることが出来る。そのため電極密度が低下した際でも導電性の低下を抑制し、性能低下を抑制することが期待される。 Although silicon has a high theoretical capacity, it expands and contracts greatly with charge and discharge, and when used as an electrode active material, the density of the electrode decreases with the charge and discharge cycle, and the conductivity decreases. The coated composite particles of the present invention use a composite material (A) containing silicon and a carbon material instead of silicon, and the composite material is further coated with a conductive organic compound layer (B) containing polyaniline. Therefore, it is possible to reduce the electric resistance at a low powder density. Therefore, even when the electrode density decreases, it is expected to suppress the decrease in conductivity and suppress the decrease in performance.

一実施形態では、有機化合物層(B)に含まれるポリアニリンのアミノ基に、複数のリン酸基を有する化合物がイオン結合し、ポリアニリンが架橋構造を形成するため、炭素材料およびシリコンを含む複合材料(A)の表面にポリアニリンの3次元のネットワーク構造を構成することができる。ここでポリアニリンが形成する架橋構造とは、ポリアニリンのアミノ基と、複数のリン酸基を有する化合物がイオン結合することにより網目構造を形成した状態をいう。この架橋構造はポリアニリンのネットワーク構造とも称する。 In one embodiment, a compound having a plurality of phosphate groups is ionically bonded to the amino group of polyaniline contained in the organic compound layer (B), and the polyaniline forms a crosslinked structure. Therefore, a composite material containing a carbon material and silicon. A three-dimensional network structure of polyaniline can be constructed on the surface of (A). Here, the crosslinked structure formed by polyaniline refers to a state in which a network structure is formed by ionic bonding between an amino group of polyaniline and a compound having a plurality of phosphate groups. This crosslinked structure is also referred to as a polyaniline network structure.

さらに、上記のような架橋構造が形成されると、炭素材料およびシリコンを含む複合材料(A)の表面に形成された有機化合物層(B)は、表面に微細な凹凸を有するため、低粉体密度(以下、低密度ともいう)でも導電性を発現していると考えられる。
前記被覆複合粒子(C)の窒素原子含有量は0.5〜1.2質量%が好ましく、より好ましくは0.6〜1.0質量%、更に好ましくは0.8〜1.0質量%である。またリン原子含有量は0.08〜0.6質量%が好ましく、より好ましくは0.2〜0.6質量%、更に好ましくは0.3〜0.6質量%である。
またポリアニリンのアミノ基とイオン結合する複数のリン酸基を有する化合物としては、ポリリン酸、フィチン酸や、2−メタクロイロキシエチルアシッドホスフェートあるいは2−アクリロイルオキシエチルアシッドフォスフェートなどのリン酸基を有する(メタ)アクリレートの(共)重合体や、それらの塩などが挙げられる。好ましくはフィチン酸である。1つの分子中に多くのリン酸基を有すると、ポリアニリンとイオン結合し、炭素材料およびシリコンを含む複合材料(A)の表面に好適にポリアニリンのネットワーク構造を形成することができる。
被覆複合粒子(C)の窒素を含む化合物としては、リン酸機とイオン結合するアミノ基由来の官能基を有する化合物が好ましく、例として有機化合物層のポリアニリンが挙げられる。アニリンモノマーを含んでいても良い。有機化合物層(B)は、ポリアニリンとフィチン酸がイオン結合していることが好ましい。
Further, when the crosslinked structure as described above is formed, the organic compound layer (B) formed on the surface of the composite material (A) containing the carbon material and silicon has fine irregularities on the surface, so that the powder is low. It is considered that the conductivity is exhibited even at the body density (hereinafter, also referred to as low density).
The nitrogen atom content of the coated composite particle (C) is preferably 0.5 to 1.2% by mass, more preferably 0.6 to 1.0% by mass, and further preferably 0.8 to 1.0% by mass. Is. The phosphorus atom content is preferably 0.08 to 0.6% by mass, more preferably 0.2 to 0.6% by mass, and even more preferably 0.3 to 0.6% by mass.
Examples of the compound having a plurality of phosphoric acid groups ionically bonded to the amino group of polyaniline include phosphoric acid groups such as polyphosphoric acid, phytic acid, 2-methacryloxyethyl acid phosphate or 2-acryloyloxyethyl acid phosphate. Examples thereof include (co) polymers of (meth) acrylates having and salts thereof. Phytic acid is preferred. Having many phosphate groups in one molecule can ionically bond with polyaniline and preferably form a polyaniline network structure on the surface of the composite material (A) containing the carbon material and silicon.
As the nitrogen-containing compound of the coated composite particle (C), a compound having a functional group derived from an amino group ionically bonded to a phosphoric acid machine is preferable, and examples thereof include polyaniline in an organic compound layer. It may contain an aniline monomer. The organic compound layer (B) preferably has an ionic bond between polyaniline and phytic acid.

本発明の一実施態様にかかる被覆複合粒子(C)は、BET比表面積が40.0m/g以下であることが好ましく、30.0m/g以下がより好ましく、20.0m/g以下がさらに好ましい。BET比表面積が40.0m2/g以下であれば、副反応である電解液の分解反応が起こりづらく、初回クーロン効率を高くできる。BET比表面積は0.50m/g以上であることが好ましい。BET比表面積が0.50m/g以上であれば、リチウムイオンの挿入・脱離が容易になり、サイクル特性を高くできる。BET比表面積の測定は実施例に記載の方法で行うことができる。 Coated complex particles according to an embodiment of the present invention (C) is preferably a BET specific surface area is less than 40.0m 2 / g, more preferably not more than 30.0m 2 / g, 20.0m 2 / g The following is more preferable. When the BET specific surface area is 40.0 m 2 / g or less, the decomposition reaction of the electrolytic solution, which is a side reaction, is unlikely to occur, and the initial Coulomb efficiency can be increased. The BET specific surface area is preferably 0.50 m 2 / g or more. When the BET specific surface area is 0.50 m 2 / g or more, lithium ions can be easily inserted and removed, and the cycle characteristics can be improved. The BET specific surface area can be measured by the method described in Examples.

本発明の一実施態様にかかる被覆複合粒子(C)は、体積基準の累積粒度分布における50%粒子径DV50は2〜30μmである。DV50はレーザー回折法によって測定することができる。前記複合粒子のDV50が2μm以上であれば、被覆複合粒子(C)の粉体がハンドリング性に優れ、塗工に適した粘度や密度のスラリーを調製しやすく、また電極を形成した際、電極の密度を上げやすい。
更に、被覆複合粒子(C)のDV50が30μm以下であれば、1つ1つの粒子におけるリチウムの拡散長が短くなるためリチウムイオン電池のレート特性が優れるほか、スラリーとして集電体に塗工する際に筋引きや異常な凹凸を発生しない。この観点から、DV50は25μm以下がより好ましく、20μm以下がさらに好ましい。
Coated complex particles according to an embodiment of the present invention (C) is the 50% particle diameter D V50 in cumulative particle size distribution on the volume basis is 2 to 30 m. DV50 can be measured by laser diffraction. When the DV50 of the composite particles is 2 μm or more, the powder of the coated composite particles (C) has excellent handleability, it is easy to prepare a slurry having a viscosity and density suitable for coating, and when an electrode is formed, it is easy to prepare. It is easy to increase the density of electrodes.
Furthermore, if D V50 is a 30μm following coated complex particles (C), one single addition diffusion length of lithium excellent in rate characteristics of the lithium ion battery to become shorter in the particles, applied to the current collector as a slurry No streaks or abnormal irregularities occur when doing so. From this point of view, the DV50 is more preferably 25 μm or less, and even more preferably 20 μm or less.

本発明の一実施態様にかかる被覆複合粒子において、Cu−Kα線を用いた粉末XRD測定によるXRDパターンにおいて、Siの111面のピークの半値幅が3.00deg.以上であることが好ましく、4.00deg.以上がより好ましく、5.00deg.以上がさらに好ましい。3.00deg.以上であると結晶子の大きさが小さくアモルファス性が高いことになり、充放電に伴うシリコン粒子の割れの抑制につながりサイクル特性を高くできる。 In the coated composite particle according to the embodiment of the present invention, in the XRD pattern by powder XRD measurement using Cu—Kα ray, the half width of the peak of the 111th surface of Si was 3.00 deg. The above is preferable, and 4.00 deg. The above is more preferable, and 5.00 deg. The above is more preferable. 3.00 deg. As described above, the size of the crystallites is small and the amorphousness is high, which leads to suppression of cracking of silicon particles due to charging and discharging, and can improve cycle characteristics.

本発明の一実施態様にかかる被覆複合粒子は、Cu−Kα線を用いた粉末XRD測定によるXRDパターンにおいて、(SiC111面のピーク強度)/(Si111面のピーク強度)が0.01以下であることが好ましい。これにより、被覆複合粒子中にはSiC(炭化ケイ素)が含まれていない、あるいはSiCの含有量が極めて低いことになるため、シリコンの電池活物質としての利用率が向上し、初回放電容量を高くできる。なお、前記(SiC111面のピーク強度)/(Si111面のピーク強度)を、ISiC111/ISi111とも表記する。ISiC/ISi111の下限は0である、すなわち、SiCのピーク強度が観察されないことがより好ましい。なお、SiCのピーク強度とは、SiCに由来する2θで35°付近に現れるピーク高さを意味する。またSiのピーク強度とはSiに由来する2θで28°付近に現れるピーク高さを意味する。 The coated composite particle according to one embodiment of the present invention has (peak intensity of SiC111 surface) / (peak intensity of Si111 surface) of 0.01 or less in an XRD pattern measured by powder XRD using Cu—Kα ray. Is preferable. As a result, SiC (silicon carbide) is not contained in the coated composite particles, or the content of SiC is extremely low, so that the utilization rate of silicon as a battery active material is improved and the initial discharge capacity is increased. Can be high. The (peak intensity of the SiC111 surface) / (peak intensity of the Si111 surface) is also referred to as I SiC111 / I Si111. It is more preferable that the lower limit of I SiC / I Si111 is 0, that is, no peak intensity of SiC is observed. The peak intensity of SiC means the peak height that appears in the vicinity of 35 ° at 2θ derived from SiC. The peak intensity of Si means the peak height that appears in the vicinity of 28 ° at 2θ derived from Si.

本発明の一実施態様にかかる被覆複合粒子(C)における複合材料(A)中の、シリコン(Si原子)の含有率は20質量%以上が好ましく、30質量%以上がより好ましい。シリコンの含有率が20質量%以上であることにより、理論的には1000mAh/g程度以上の、黒鉛の理論放電容量を大きく超える放電容量を得ることができる。シリコンの含有率は70質量%以下であることが好ましく、65質量%以下より好ましく、60質量%以下がさらに好ましい。前記被覆複合粒子は、前記シリコンの含有率が70質量%以下であることにより、担体となっている多孔質炭素によってその膨張・収縮による体積変化を吸収させることができる。 The content of silicon (Si atom) in the composite material (A) in the coated composite particle (C) according to one embodiment of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more. When the silicon content is 20% by mass or more, it is theoretically possible to obtain a discharge capacity of about 1000 mAh / g or more, which greatly exceeds the theoretical discharge capacity of graphite. The silicon content is preferably 70% by mass or less, more preferably 65% by mass or less, and even more preferably 60% by mass or less. When the silicon content of the coated composite particles is 70% by mass or less, the porous carbon as a carrier can absorb the volume change due to the expansion and contraction of the coated composite particles.

前記被覆複合粒子におけるシリコンの含有率は、蛍光X線分析装置におけるファンダメンタル・パラメーター法(FP法)によって求めることができる。 The silicon content in the coated composite particles can be determined by the fundamental parameter method (FP method) in the fluorescent X-ray analyzer.

[2]複合材料(A)
本発明の一実施形態における複合材料(A)は、炭素材料とシリコンを含んでいれば限定されない。炭素材料は、ソフトカーボン、ハードカーボン等の非晶質炭素材料や炭素繊維、気相法炭素繊維、マルチウォールカーボンナノチューブ、シングルウォールカーボンナノチューブ、ナノワイヤー、黒鉛材料、活性炭を用いることができる。電子伝導性が高く、サイクル特性に優れること、電極密度を高くできることから非晶質炭素材料、黒鉛材料が好ましく、非晶質炭素材料がより好ましい。
[2] Composite material (A)
The composite material (A) in one embodiment of the present invention is not limited as long as it contains a carbon material and silicon. As the carbon material, amorphous carbon materials such as soft carbon and hard carbon, carbon fibers, vapor phase carbon fibers, multi-wall carbon nanotubes, single-wall carbon nanotubes, nanowires, graphite materials, and activated carbon can be used. Amorphous carbon materials and graphite materials are preferable, and amorphous carbon materials are more preferable because they have high electron conductivity, excellent cycle characteristics, and high electrode density.

また、炭素材料は多孔質炭素材料であることが好ましい。多孔質炭素材料およびシリコンを含む複合材料(A)の構造は限定しないが、多孔質炭素材料中の細孔内にシリコンが充填されている複合材料(A)が好ましい。多孔質炭素材料の例としては、活性炭や、樹脂や有機物を熱分解することにより得られる炭素、モレキュラーシービングカーボン、活性炭素繊維、気相成長炭素繊維の凝集体やカーボンナノチューブの凝集体、無機テンプレートカーボンが挙げられる。多孔質炭素材料は公知の製造方法で生成でき、例えば、活性炭と同様の製造方法や、ポリマーに対して適切な熱処理を行うことによって生成することができる。シリコンを含ませる方法は限定されないが、例えば化学気相成長(CVD)によって、シリコン含有ガス、好ましくはシランの存在下で、高温でシランガスに多孔質炭素材料(例えば、多孔質の非晶質炭素材料)を曝露することによって、多孔質炭素材料の細孔内にケイ素を生成させることによって得られる。この時多孔質炭素材料の表面にもケイ素が析出していてもよい。
なお、多孔質炭素材料は、BET比表面積が200m/g以上であることが好ましい。
Further, the carbon material is preferably a porous carbon material. The structure of the composite material (A) containing the porous carbon material and silicon is not limited, but the composite material (A) in which the pores in the porous carbon material are filled with silicon is preferable. Examples of porous carbon materials include activated carbon, carbon obtained by thermally decomposing resins and organic substances, molecular sieving carbon, activated carbon fiber, agglomerates of vapor-grown carbon fibers, agglomerates of carbon nanotubes, and inorganic materials. Template carbon can be mentioned. The porous carbon material can be produced by a known production method, for example, by the same production method as activated carbon or by performing an appropriate heat treatment on the polymer. The method of including silicon is not limited, but for example, by chemical vapor deposition (CVD), a porous carbon material (for example, porous amorphous carbon) is added to the silane gas at a high temperature in the presence of a silicon-containing gas, preferably silane. It is obtained by exposing the material) to form silicon in the pores of the porous carbon material. At this time, silicon may also be deposited on the surface of the porous carbon material.
The porous carbon material preferably has a BET specific surface area of 200 m 2 / g or more.

多孔質炭素の細孔分布を調べるには、例えばガス吸着法による吸脱着等温線を公知の方法で解析する。プローブガスは特に限定されないが、通常は窒素ガス、二酸化炭素、アルゴンが用いられる。 To investigate the pore distribution of porous carbon, for example, the adsorption isotherm by the gas adsorption method is analyzed by a known method. The probe gas is not particularly limited, but nitrogen gas, carbon dioxide, and argon are usually used.

[3]有機化合物層(B)
有機化合物層(B)は、複合材料(A)の表面を覆う層である。有機化合物層(B)は複合材料(A)表面全体を覆っていてもよく、一部を覆っていてもよい。有機化合物層(B)による複合材料(A)表面の被覆率は、高いほうが好ましい。有機化合物層は、複合材料(A)表面上で、アニリンモノマーを重合させ、ポリアニリンを生成させることによって得られる。詳細については後述する。有機化合物層(B)の形成方法は特に限定されないが、複合材料(A)との導電性を向上させるために、リン酸基含有化合物の存在下でアニリンモノマーを重合させることが好ましい。
[3] Organic compound layer (B)
The organic compound layer (B) is a layer that covers the surface of the composite material (A). The organic compound layer (B) may cover the entire surface of the composite material (A), or may cover a part of the surface. The coverage of the surface of the composite material (A) with the organic compound layer (B) is preferably high. The organic compound layer is obtained by polymerizing an aniline monomer on the surface of the composite material (A) to produce polyaniline. Details will be described later. The method for forming the organic compound layer (B) is not particularly limited, but it is preferable to polymerize the aniline monomer in the presence of the phosphoric acid group-containing compound in order to improve the conductivity with the composite material (A).

有機化合物層(B)は、リン酸基含有化合物とポリアニリンがイオン結合していることが好ましい。イオン結合することによってポリアニリンがリン酸基で架橋構造を形成し、ネットワークを作ることが出来る。この架橋構造により、導電性を向上させることが出来、圧密度(0.8g/cm)における電気抵抗を低くすることが可能になる。圧密度が0.8g/cmとは被覆複合粒子(C)の見かけ密度が0.8g/cmになるように圧縮したときの密度(圧密度)のことである。この架橋構造は、例えばリン酸基を有するフィチン酸の存在下でアニリンを重合させるとゲル状物が生成することや、有機化合物層(B)で被覆された被覆複合粒子(C)を走査型電子顕微鏡(SEM)で観察すると被覆複合粒子(C)の表面が凹凸形状になっていることにより、その存在を確認することが出来る。この凹凸は後述するAFMでも計測することができる。また後述する被覆複合粒子(C)のラマンスペクトルをすることにより、ポリアニリンとフィチン酸が結合してできた構造の存在を確認することができる。 In the organic compound layer (B), it is preferable that the phosphoric acid group-containing compound and polyaniline are ionically bonded. By ionic bonding, polyaniline can form a cross-linked structure with phosphate groups and form a network. With this crosslinked structure, the conductivity can be improved and the electric resistance at the pressure density (0.8 g / cm 3) can be lowered. The degree of consolidation is a 0.8 g / cm 3 is that the density when the apparent density of the coated complex particles (C) was compressed so that 0.8 g / cm 3 (of compaction). In this crosslinked structure, for example, when aniline is polymerized in the presence of phytic acid having a phosphoric acid group, a gel-like substance is formed, and the coated composite particles (C) coated with the organic compound layer (B) are scanned. When observed with an electron microscope (SEM), the presence of the coated composite particles (C) can be confirmed by the uneven shape of the surface. This unevenness can also be measured by AFM, which will be described later. Further, by performing a Raman spectrum of the coated composite particle (C) described later, the existence of a structure formed by binding polyaniline and phytic acid can be confirmed.

被覆複合粒子(C)表面の凹凸は、後述する原子間力顕微鏡(AFM)によって表面粗さ(Sq:二乗平均高さ)を測定することができる。この二乗平均高さは、高さ分布の標準偏差である。この表面粗さ(Sq:二乗平均高さ)は、10nm以上が好ましい。10nm以上あれば、ポリアニリンとフィチン酸がネットワークを形成し良好な導電性を発現することができるとともに、炭素材料およびシリコンを含む複合材料(A)を被覆することができると考えられる。
一実施形態の被覆複合粒子(C)は、ラマン分光分析法によるラマンスペクトルでは、1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1の波数範囲のいずれにもピークを有していると、より好適に圧密度(0.8g/cm3)における電気抵抗を低くすることが出来る。
ポリアニリンは、酸化、還元、プロトン化、脱プロトン化の4つの構造をとることが知られており、その中のプロトン化されたエメラルジン構造のみ導電性を示す。有機化合物層(B)のポリアニリンにエメラルジン構造が形成されていることは、ラマン分光分析により測定したラマンスペクトルで、キノイド環伸縮振動を示す1592±5cm−1(C=C)及び1494±5cm−1(C=N)、キノイド環面内変角振動1165±5cm−1(C−H)、ベンゼン環面外変角振動806±5cm−1等の波数範囲にピークを有することで確認することができる。被覆複合粒子(C)をラマン分光分析法にてラマンスペクトルを測定した結果、上記のポリアニリンのエメラルジン構造に由来するピークが観測されれば、被覆複合粒子(C)表面に有機化合物層(B)が形成されていると考えることができる。
The surface roughness (Sq: root mean square height) of the surface of the coated composite particle (C) can be measured by an atomic force microscope (AFM) described later. This root mean square is the standard deviation of the height distribution. The surface roughness (Sq: root mean square height) is preferably 10 nm or more. If it is 10 nm or more, it is considered that polyaniline and phytic acid can form a network and exhibit good conductivity, and can coat the composite material (A) containing a carbon material and silicon.
Coated complex particles of an embodiment (C) is a Raman spectrum by Raman spectroscopy, 1475~1525cm -1, 1140~1190cm -1, it has a peak in any of the wavenumber range of 785~835Cm -1 If so, the electric resistance at the pressure density (0.8 g / cm3) can be more preferably lowered.
Polyaniline is known to have four structures: oxidation, reduction, protonation, and deprotonation, and only the protonated emeraldine structure in it exhibits conductivity. The formation of the emeraldine structure in the polyaniline of the organic compound layer (B) is 1592 ± 5 cm -1 (C = C) and 1494 ± 5 cm − showing quinoid ring expansion and contraction vibration in the Raman spectrum measured by Raman spectroscopy. 1 (C = N), Quinoid ring surface in-plane variable angle vibration 1165 ± 5 cm -1 (CH), benzene ring surface out-of-angle variable angle vibration 806 ± 5 cm -1, etc. Confirm by having a peak in the wavenumber range. Can be done. As a result of measuring the Raman spectrum of the coated composite particles (C) by Raman spectroscopy, if a peak derived from the emeraldine structure of the above polyaniline is observed, the organic compound layer (B) is observed on the surface of the coated composite particles (C). Can be considered to be formed.

前記有機化合物層(B)の厚さは0.1nm以上であることが好ましい。さらに一定以上の導電性、化学的安定性、機械的強度を備える観点から有機化合物層(B)の厚さは1nm以上であることが好ましく、2nm以上がさらに好ましい。有機化合物層(B)の厚さは50nm以下が好ましい。有機化合物層(B)の厚さが50nm以下であると、過剰な有機化合物層(B)の形成が抑制され初回クーロン効率や放電容量維持率を良好にすることができる。同様の観点から30nm以下がより好ましい。 The thickness of the organic compound layer (B) is preferably 0.1 nm or more. Further, from the viewpoint of having a certain level of conductivity, chemical stability, and mechanical strength, the thickness of the organic compound layer (B) is preferably 1 nm or more, more preferably 2 nm or more. The thickness of the organic compound layer (B) is preferably 50 nm or less. When the thickness of the organic compound layer (B) is 50 nm or less, the formation of the excessive organic compound layer (B) is suppressed, and the initial coulomb efficiency and the discharge capacity retention rate can be improved. From the same viewpoint, 30 nm or less is more preferable.

有機化合物層(B)の厚さは、透過型電子顕微鏡(TEM)観察など公知の方法により被覆複合粒子(C)の断面観察をすることによって測定することができる。有機化合物層(B)の厚さは平均値を指し、例えば代表的な部分のTEM観察像から平均厚さを算出し、10か所同様に厚さの平均値を求め、得られた10点の平均厚さからさらに平均値を算出して求めることができる。 The thickness of the organic compound layer (B) can be measured by observing the cross section of the coated composite particle (C) by a known method such as observation with a transmission electron microscope (TEM). The thickness of the organic compound layer (B) refers to an average value. For example, the average thickness is calculated from the TEM observation image of a typical portion, and the average value of the thickness is obtained in the same manner as in 10 places, and the obtained 10 points are obtained. The average value can be further calculated from the average thickness of.

[4]被覆複合粒子(C)の製造方法
本発明の一実施態様における被覆複合粒子(C)は、複合材料(A)の表面に、フィチン酸の存在下でポリアニリンを形成することにより得ることができる。一例を以下に記す。
[4] Method for Producing Coated Composite Particles (C) The coated composite particles (C) in one embodiment of the present invention can be obtained by forming polyaniline on the surface of the composite material (A) in the presence of phytic acid. Can be done. An example is given below.

[被覆複合粒子の作製]
複合材料(A)の入った容器にアニリンモノマーとリン酸基を有する化合物を加えて攪拌する。さらに水を加えて水溶液とすると、攪拌が容易になり好ましい。このとき5℃以下に冷やしておくことが好ましい。その後攪拌しながら過硫酸アンモニウム(APS)を少しずつ添加する。添加し終わったら数時間から10時間程度攪拌を継続して反応させることが好ましい。その後メンブレンフィルターを用いて、この溶液(未反応物をふくむ水溶液)を濾過し、残渣を回収する。この残渣は純水で洗浄後、真空乾燥する。乾燥後得られた生成物が被覆複合粒子(C)である。このときアニリンモノマーが重合してポリアニリンとなっており、またこのポリアニリンにリン酸基がイオン結合したネットワーク構造が形成されている。
[Preparation of coated composite particles]
Aniline monomer and a compound having a phosphoric acid group are added to a container containing the composite material (A), and the mixture is stirred. Further, it is preferable to add water to make an aqueous solution because stirring becomes easy. At this time, it is preferable to cool the temperature to 5 ° C. or lower. Then, ammonium persulfate (APS) is added little by little with stirring. After the addition is completed, it is preferable to continue stirring for several hours to 10 hours for the reaction. Then, using a membrane filter, this solution (an aqueous solution containing an unreacted substance) is filtered, and the residue is recovered. This residue is washed with pure water and then vacuum dried. The product obtained after drying is the coated composite particle (C). At this time, the aniline monomer is polymerized to form polyaniline, and a network structure in which a phosphoric acid group is ionically bonded to this polyaniline is formed.

以下、本発明の実施例を具体的に説明する。なお、これらは説明のための単なる例示であって、本発明を限定するものではない。
実施例及び比較例の複合炭素材料の評価方法及び各例で用いた原料は以下の通りである。
Hereinafter, embodiments of the present invention will be specifically described. It should be noted that these are merely examples for explanation and do not limit the present invention.
The evaluation methods of the composite carbon materials of Examples and Comparative Examples and the raw materials used in each example are as follows.

[1]被覆複合粒子の評価
[50%粒子径(DV50)及び10%粒子径(DV10)の測定]
被覆複合粒子(C)の粉体を極小型スパーテル1杯分、及び非イオン性界面活性剤(SIRAYA ヤシの実洗剤ハイパワー)原液32%100倍希釈液2滴を水15mLに添加し、3分間超音波分散させた。この分散液をセイシン企業社製レーザー回折式粒度分布測定器(LMS−2000e)に投入し、体積基準累積粒度分布を測定し、50%粒子径(DV50) 、10%粒子径(DV10)を決定した。
[1] Evaluation of coated composite particles [Measurement of 50% particle size (D V50 ) and 10% particle size (D V10 )]
Add 1 cup of powder of coated composite particles (C) and 2 drops of nonionic surfactant (SIRAYA palm fruit detergent high power) stock solution 32% 100 times diluted solution to 15 mL of water 3 Ultrasonic dispersion was performed for a minute. The dispersion Seishin Enterprise Co., Ltd. laser diffraction particle size distribution measuring apparatus was placed in (LMS-2000e), measuring the volume-reduced cumulative particle size distribution, the 50% particle size (D V50), 10% particle size (D V10) It was determined.

[窒素含有量測定]
1.被覆複合粒子(C)中の含量
実施例、比較例で得られた被覆複合粒子(C)について、以下の条件で窒素原子含有量を測定した。
被覆複合粒子約10mgをニッケルカプセルに入れて秤量し、酸素窒素同時分析装置(不活性ガス融解−熱伝導度法)により測定した。
酸素/窒素/水素分析装置(酸素窒素同時分析装置):TC−600(LECO社製)
キャリアガス:アルゴン
出力:5000W
黒鉛るつぼ:高温タイプ
2.有機化合物層(B)中の含量
実施例、比較例で得られた被覆複合粒子(C)を、上述した1の方法で測定する。また複合材料(A)についても1と同様の方法で測定し、被覆複合粒子(C)の結果から複合材料(A)の結果を引いた値を有機化合物層(B)の値とした。
[Nitrogen content measurement]
1. 1. Content in Coated Composite Particles (C) The nitrogen atom content of the coated composite particles (C) obtained in Examples and Comparative Examples was measured under the following conditions.
About 10 mg of the coated composite particles were placed in a nickel capsule and weighed, and measured by an oxygen-nitrogen simultaneous analyzer (inert gas melting-heat conductivity method).
Oxygen / nitrogen / hydrogen analyzer (oxygen / nitrogen simultaneous analyzer): TC-600 (manufactured by LECO)
Carrier gas: Argon Output: 5000W
Graphite crucible: High temperature type 2. Content in the organic compound layer (B) The coated composite particles (C) obtained in Examples and Comparative Examples are measured by the method 1 described above. The composite material (A) was also measured by the same method as in 1, and the value obtained by subtracting the result of the composite material (A) from the result of the coated composite particle (C) was taken as the value of the organic compound layer (B).

[リン含有量測定]
1.被覆複合粒子(C)中の含量
実施例、比較例で得られた被覆複合粒子について、以下の条件でリン原子含有量の測定を行った。
被覆複合粒子約0.03gをPTFE製ビーカーに量りとり、硫硝酸とフッ酸を混合した溶液によって完全に分解した。放冷後50mlに定容し、高周波誘導結合プラズマ発光分光分析法(ICP-AES法)によってリンの定量を行い、試料濃度に換算した。なお、分析はn=2で行い平均値を用いた。
装置:Agilent 5110(Agilent technology)
2.有機化合物層(B)中の含量
実施例、比較例で得られた被覆複合粒子(C)を、上述した1の方法で測定する。また複合材料(A)についても1と同様の方法で測定し、被覆複合粒子(C)の結果から複合材料(A)の結果を引いた値を有機化合物層(B)の値とした。
[Phosphorus content measurement]
1. 1. Content in Coated Composite Particles (C) The phosphorus atom content of the coated composite particles obtained in Examples and Comparative Examples was measured under the following conditions.
Approximately 0.03 g of the coated composite particles were weighed in a PTFE beaker and completely decomposed with a mixed solution of nitric acid sulfate and hydrofluoric acid. After allowing to cool, the volume was set to 50 ml, phosphorus was quantified by inductively coupled plasma emission spectroscopy (ICP-AES method), and converted to a sample concentration. The analysis was performed with n = 2 and the average value was used.
Device: Agilent 5110 (Agilent technology)
2. 2. Content in the organic compound layer (B) The coated composite particles (C) obtained in Examples and Comparative Examples are measured by the method 1 described above. The composite material (A) was also measured by the same method as in 1, and the value obtained by subtracting the result of the composite material (A) from the result of the coated composite particle (C) was taken as the value of the organic compound layer (B).

[シリコン含有率測定]
以下の条件で測定を行った。
蛍光X線装置 :Rigaku製 NEX CG
管電圧 :50kV
管電流 :1.00mA
サンプルカップ :Φ32 12mL CH1530
サンプル重量 :3g
サンプル高さ : 11mm
サンプルカップに被覆複合粒子(C)の粉体を導入し、FP法にてシリコン含有量を測定した。
シリコン含有率を100倍したものをSi濃度(質量%)とした。
[Measurement of silicon content]
The measurement was performed under the following conditions.
X-ray fluorescence device: NEX CG manufactured by Rigaku
Tube voltage: 50 kV
Tube current: 1.00mA
Sample cup: Φ32 12mL CH1530
Sample weight: 3g
Sample height: 11 mm
The powder of the coated composite particle (C) was introduced into the sample cup, and the silicon content was measured by the FP method.
The Si concentration (mass%) was obtained by multiplying the silicon content by 100.

[表面SEM観察]
以下の条件で、実施例、比較例で得た被覆複合粒子の表面をSEMで観察した。
走査型電子顕微鏡 : 株式会社日立ハイテクノロジーズ SU8220
加速電圧 : 1kV
倍率 : 10万倍
[Surface SEM observation]
Under the following conditions, the surfaces of the coated composite particles obtained in Examples and Comparative Examples were observed by SEM.
Scanning electron microscope: Hitachi High-Technologies Corporation SU8222
Acceleration voltage: 1kV
Magnification: 100,000 times

[ラマン分光法測定]
以下の条件で実施例、比較例で得た被覆複合粒子(C)のラマン分光法測定を行った。
顕微ラマン分光測定装置:株式会社堀場製 LabRAM HR Evolution
励起波長:532nm
露光時間:5秒
積算回数:2回
回折格子:300本/mm(600nm)
測定範囲:縦80μm×横100μm
ポイント数:縦送り17.8μm、横送り22.2μmで100ポイント評価して、被覆複合粒子(C)の顕微ラマンスペクトルを測定した。この結果は、被覆複合粒子(C)の表面に存在する有機化合物層(B)を測定したことと同じである。
1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1のいずれにもピークを有することを有機化合物層(B)において、ポリアニリンとリン酸基を有する化合物がイオン結合をしていることの指標とした。さらに、1592±5cm−1、1494±5cm−1、1165±5cm−1、806±5cm−1の各範囲にピークを有することが確認できれば、導電性を示すポリアニリンのエメラルジン構造の存在を確認することができる。実施例4、比較例1、比較例5〜7のラマンスペクトルを其々図1、図2、図7に示す。
[Raman spectroscopy measurement]
Raman spectroscopy measurement of the coated composite particles (C) obtained in Examples and Comparative Examples was performed under the following conditions.
Microscopic Raman spectroscopic measuring device: HORIBA, Ltd. LabRAM HR Evolution
Excitation wavelength: 532 nm
Exposure time: 5 seconds Total number of times: 2 Diffraction gratings: 300 lines / mm (600 nm)
Measurement range: length 80 μm x width 100 μm
Number of points: 100 points were evaluated with a vertical feed of 17.8 μm and a horizontal feed of 22.2 μm, and the micro Raman spectrum of the coated composite particle (C) was measured. This result is the same as measuring the organic compound layer (B) present on the surface of the coated composite particle (C).
1475~1525cm -1, 1140~1190cm -1, organic compound layer that has a peak in any of 785~835Cm -1 (B), the the compound having the polyaniline and phosphate groups are the ionic bond It was used as an index. Furthermore, 1592 ± 5cm -1, 1494 ± 5cm -1, 1165 ± 5cm -1, if confirmed to have a peak in the range of 806 ± 5 cm -1, to confirm the presence of emeraldine structure of polyaniline exhibits conductivity be able to. The Raman spectra of Example 4, Comparative Example 1, and Comparative Examples 5 to 7 are shown in FIGS. 1, 2, and 7, respectively.

[粗さ(Sq)測定]
サンプルセッティング
Si基板に、得られた被覆複合粒子を分散させた水分散液(約5mg/mL)を滴下し、その後真空乾燥(常温)して、被覆複合粒子を固定化させ、サンプル基板を作製した。このサンプル基板を原子間力顕微鏡(AFM)の試料ディスク上でカーボンテープにより接着させて観察を行った。
AFM観察
装置:Dimension XR Nanomechanics/Bruker社製
使用プローブ:PPP−NCHR/NanoWorld社製
探針曲率半径:7mm/ばね定数:42N/m
測定条件:タッピングモード
スキャン範囲:2×2μm(データ密度:512×512)
スキャン速度:1.0Hz
測定周波数:300kHz付近
Amplitude Setpoint:25nm程度
表面粗さ(Sq:二乗平均高さ)測定
データ補正(Plane fit)した形状像から、大きめの凸箇所(表面の微粉)を含まない視野(面積:1.00μm2)を選択し、表面粗さを計測した。
データ補正(Plane fit)の詳細:解析ソフトにて、自動でPlane fitをかけてフィッティングを行った(モード:XYで傾き補正を行う、Order:1st、Z軸オフセットとイメージの傾きを取り除く)。n=10で行い、平均値を算出した。
[Roughness (Sq) measurement]
Sample setting A water dispersion (about 5 mg / mL) in which the obtained coated composite particles are dispersed is dropped onto the Si substrate, and then vacuum dried (normal temperature) to immobilize the coated composite particles to prepare a sample substrate. did. This sample substrate was adhered with carbon tape on a sample disk of an atomic force microscope (AFM) and observed.
AFM observation device: Dimension XR Nanomechanics / Bruker probe: PPP-NCHR / NanoWorld probe radius of curvature: 7 mm / spring constant: 42 N / m
Measurement conditions: Tapping mode Scan range: 2 x 2 μm (data density: 512 x 512)
Scan speed: 1.0Hz
Measurement frequency: Around 300 kHz Amplitude Setpoint: Approximately 25 nm Surface roughness (Sq: root mean square height) Measurement Data-corrected (Plane fit) shape image, field view (area: 1) that does not include large convex parts (surface fine powder) .00 μm 2) was selected and the surface roughness was measured.
Details of data correction (Plane fit): The analysis software automatically applied the Plane fit for fitting (mode: tilt correction in XY, Order: 1st, Z-axis offset and image tilt are removed). It was performed with n = 10, and the average value was calculated.

[圧密比抵抗(低粉体密度)の測定]
以下の条件で測定を行った。
1.圧縮面5mm × 10mmの粉体抵抗セルに、実施例、比較例で得た被覆複合粒子を所定重量加える。
2.圧縮装置と電気抵抗測定装置を組み合わせた装置で圧縮しながら抵抗を測定する
圧縮装置 : エー・アンド・ディー製テンシロン万能材料試験機RTG−1310
電流発生装置 : ADCMT製DC Voltage Current Source 6146
電圧計 : ADCMT製Digital Multimeter 7532E
圧縮条件 : 5mm/min
0.5秒ごとに応力と圧縮装置の移動距離(圧縮高さ)を計測する。
停止条件 : 1.25kN
電気測定条件 : 定電流(1mA)をかけ、電圧(xV)を測定する。
0.5秒ごとに電圧を計測する。
電流印加電極間距離 : 10mm
電圧測定電極間距離 : 6.5mm
解析方法は以下の通りである。
1.圧力(N/m) : 測定時(0.5秒)毎の圧力を応力と圧縮面積から算出
2.密度(g/cm) : サンプル量、測定時毎の圧縮高さと圧縮面積から体積を計算し算出する。
3.体積抵抗率(Ω・cm) : 測定時毎の抵抗(xV/mA)、圧縮高さと圧縮面積から体積を計算し、単位体積当たりの抵抗率を算出する。
一実施形態では、上記により密度に対する体積抵抗率をプロットし、密度0.8g/cmにおける体積抵抗率(Ω・cm)を圧密比抵抗として算出した。
[Measurement of consolidation resistivity (low powder density)]
The measurement was performed under the following conditions.
1. 1. A predetermined weight of the coated composite particles obtained in Examples and Comparative Examples is added to a powder resistance cell having a compression surface of 5 mm × 10 mm.
2. 2. A compression device that measures resistance while compressing with a device that combines a compression device and an electrical resistance measuring device: Tencilon universal material tester RTG-1310 manufactured by A & D.
Current generator: DC Voltage Current Source 6146 made by ADCMT
Voltmeter: ADCMT Digital Multimeter 7532E
Compression condition: 5 mm / min
The stress and the moving distance (compression height) of the compression device are measured every 0.5 seconds.
Stop condition: 1.25kN
Electrical measurement conditions: Apply a constant current (1 mA) and measure the voltage (xV).
Measure the voltage every 0.5 seconds.
Distance between current application electrodes: 10 mm
Distance between voltage measurement electrodes: 6.5 mm
The analysis method is as follows.
1. 1. Pressure (N / m 2 ): Calculate the pressure at each measurement (0.5 seconds) from the stress and compression area. Density (g / cm 3 ): Calculate the volume from the sample amount, compression height and compression area at each measurement.
3. 3. Volume resistivity (Ω · cm): The volume is calculated from the resistance (xV / mA) at each measurement, the compression height and the compression area, and the resistivity per unit volume is calculated.
In one embodiment, the volume resistivity with respect to the density was plotted according to the above, and the volume resistivity (Ω · cm) at a density of 0.8 g / cm 3 was calculated as the consolidation ratio resistance.

[2]原料
以下に、被覆複合粒子(C)及びその原料(複合材料(A)、有機化合物層(B))について、調製方法および入手先、物性値を示す。
[2] Raw Materials The following shows the preparation methods, sources, and physical property values of the coated composite particles (C) and its raw materials (composite material (A), organic compound layer (B)).

[複合材料(A)]
BET比表面積が1700m/g、粒度DV50が9.2μmの市販活性炭に対して、窒素ガスと混合された1.3体積%のシランガス流を有する管炉で設定温度450℃、圧力760torr、流量100sccm、8時間処理して、多孔質炭素の表面及び内部にシリコンを析出させ、複合材料(A)を得た。この複合材料(A)は、DV50が9.2μm、BET比表面積が3.2m/g、シリコン含有量は48質量%であった。
[Composite material (A)]
BET specific surface area of 1700 m 2 / g, a particle size D V50 is against commercial activated carbon 9.2 .mu.m, set temperature 450 ° C. in a tube furnace having a silane gas flow of 1.3 vol% mixed with nitrogen gas, pressure 760 torr, The treatment was carried out at a flow rate of 100 sccm for 8 hours to precipitate silicon on the surface and inside of the porous carbon to obtain a composite material (A). The composite material (A) is, D V50 is 9.2 .mu.m, BET specific surface area of 3.2 m 2 / g, a silicon content of 48 mass%.

[有機化合物層(B)]
アニリン:東京化成工業株式会社、CasNo.62−53−3、成分>98.0%、SG1.02
フィチン酸:東京化成工業株式会社、CasNo.83−86−3、ca.50% in water ca.1.1M
APS(過硫酸アンモニウム):東京化成工業株式会社、CasNo.7727−54−0、成分>99.0%
塩酸:富士フイルム和光純薬株式会社、CasNo.7647−01−0、特級
[Organic compound layer (B)]
Aniline: Tokyo Chemical Industry Co., Ltd., CasNo. 62-53-3, component> 98.0%, SG1.02
Phytic acid: Tokyo Chemical Industry Co., Ltd., CasNo. 83-86-3, ca. 50% in water ca.1.1M
APS (Ammonium Persulfate): Tokyo Chemical Industry Co., Ltd., CasNo. 7727-54-0, component> 99.0%
Hydrochloric acid: Fujifilm Wako Pure Chemical Industries, Ltd., CasNo. 7647-01-0, special grade

[被覆複合粒子(C)]
秤量された複合材料(A)を86質量部になるよう20ccのガラス製容器に投入する。ガラス製容器を、恒温5度以下のアイスバス中に置く。表1に記載の質量部のアニリンおよびフィチン酸をガラス製容器に投入し、60rpmに設定されたスターラーで攪拌を開始する。5分後、表1に記載の質量部のAPSを3ml/minでガラス製容器に投入し、80rpmに設定されたスターラーで攪拌する。5時間経過後、攪拌を停止しガラス製容器をアイスバスから取り出す。最大孔径0.1μmのPTFEメンブレンフィルターを用いてガラス製容器内の溶液をろ過する。ろ過後、約500mlの純水でメンブレンフィルター上の回収物を洗浄する。洗浄後に回収された残渣は、−760mmHgに減圧された60℃の真空オーブン内で、8時間静置し、乾燥する。
所定時間が経過し、回収されたものが被覆複合粒子(C)であり、これを用いて上述した評価を実施した。
[Coated composite particles (C)]
The weighed composite material (A) is charged into a 20 cc glass container so as to have 86 parts by mass. Place the glass container in an ice bath with a constant temperature of 5 degrees or less. The mass parts of aniline and phytic acid shown in Table 1 are put into a glass container, and stirring is started with a stirrer set at 60 rpm. After 5 minutes, the mass parts of APS shown in Table 1 are charged into a glass container at 3 ml / min and stirred with a stirrer set at 80 rpm. After 5 hours, stop stirring and remove the glass container from the ice bath. The solution in the glass container is filtered using a PTFE membrane filter having a maximum pore size of 0.1 μm. After filtration, wash the recovered material on the membrane filter with about 500 ml of pure water. The residue recovered after washing is allowed to stand for 8 hours in a vacuum oven at 60 ° C. reduced to −760 mmHg, and dried.
The coated composite particles (C) were recovered after a lapse of a predetermined time, and the above-mentioned evaluation was carried out using the coated composite particles (C).

[実施例1]
複合材料(A)86質量部、アニリン4質量部、フィチン酸6質量部およびAPS3質量部となるように所定量を用意し、前記記載の方法で被覆複合粒子(C)を作製した。前記記載の評価の項目および方法において被覆複合粒子(C)の物性値を取得した結果を表1に示す。
実施例1は数10〜数100nmの凹凸の形状を有する有機化合物層(B)が形成されていることを表面SEM像(図3)及びラマン分光法、AFMにて確認した。
[Example 1]
A predetermined amount was prepared so as to be 86 parts by mass of the composite material (A), 4 parts by mass of aniline, 6 parts by mass of phytic acid and 3 parts by mass of APS, and the coated composite particles (C) were prepared by the above-mentioned method. Table 1 shows the results of acquiring the physical property values of the coated composite particles (C) in the evaluation items and methods described above.
In Example 1, it was confirmed by a surface SEM image (FIG. 3), Raman spectroscopy, and AFM that the organic compound layer (B) having an uneven shape of several tens to several hundreds of nm was formed.

得られた被覆複合粒子(C)は、複合材料(A)の表面全体の半分程度に有機化合物層(B)が形成されており、有機化合物層(B)の表面はほぼ全域が凹凸形状をなしていた。またラマンスペクトルで1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1のいずれにもピークを有することが確認された。また1592±5cm−1、1494±5cm−1、1165±5cm−1及び806±5cm−1のいずれの範囲にもピークが観測され、ポリアニリンの形成と酸によるエメラルジン構造の形成が確認できた。エメラルジン構造は、ポリアニリンと酸(フィチン酸)がイオン結合してネットワーク構造を形成していると考えられる。圧密比抵抗も後述する比較例1〜7と比較すると、低密度領域での抵抗が低く優位な結果であることが確認された(表1)。 In the obtained coated composite particles (C), the organic compound layer (B) is formed on about half of the entire surface of the composite material (A), and the surface of the organic compound layer (B) has an uneven shape almost entirely. I was doing it. The 1475~1525Cm -1 in the Raman spectrum, 1140~1190cm -1, has a peak in any of 785~835Cm -1 was confirmed. In addition, peaks were observed in the ranges of 1592 ± 5 cm -1 , 1494 ± 5 cm -1 , 1165 ± 5 cm -1 and 806 ± 5 cm -1 , confirming the formation of polyaniline and the formation of emeraldine structure by acid. The emeraldine structure is considered to be a network structure in which polyaniline and an acid (phytic acid) are ionic bonded. When the consolidation specific resistance was also compared with Comparative Examples 1 to 7 described later, it was confirmed that the resistance in the low density region was low and the result was superior (Table 1).

[実施例2〜5]
各材料の種類と添加量を表1に記載の内容とする以外は、実施例1と同様に被覆複合粒子(C)を作製し、実施例1と同様に被覆複合粒子(C)の物性値を取得した。結果を表1に示す。実施例4の表面SEM像を図4に示す。実施例2〜4についていずれも数10〜数100nmの凹凸の形状を有する有機化合物層(B)が形成されていることを確認した。実施例4のラマンスペクトルを図1に示す。ラマンスペクトルは1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1のいずれにもピークを有することが確認された。また具体的には、1591cm−1、1498cm−1、1166cm−1及び809cm−1にピークが観測され(図1)、ポリアニリンの形成と酸によるエメラルジン構造の形成が確認できた。エメラルジン構造は、ポリアニリンと酸(フィチン酸)がイオン結合してネットワーク構造を形成していると考えられる。圧密比抵抗も実施例1と同様に、低密度領域での抵抗が低い結果が確認された。
なお、実施例3のDV50は9.4μm、DV10は5.7μmとなることを確認した。一方、国際公開第2014/026112号では直径が60nm、100nmという例示があり、また別の形態では平均直径が500〜1000nmといったナノオーダーのシリコン粒子がポリアニリンとフィチン酸のネットワークで取り囲まれている。一実施形態の被覆複合粒子とは大きさが異なることがわかる。
[Examples 2 to 5]
The coated composite particles (C) were produced in the same manner as in Example 1 except that the types and addition amounts of each material were as shown in Table 1, and the physical property values of the coated composite particles (C) were as in Example 1. Was obtained. The results are shown in Table 1. The surface SEM image of Example 4 is shown in FIG. It was confirmed that the organic compound layer (B) having an uneven shape of several tens to several hundreds of nm was formed in each of Examples 2 to 4. The Raman spectrum of Example 4 is shown in FIG. Raman spectra 1475~1525cm -1, 1140~1190cm -1, it was confirmed that a peak in any 785~835cm -1. In addition Specifically, 1591cm -1, 1498cm -1, a peak was observed at 1166cm -1 and 809cm -1 (Fig. 1), the formation of the emeraldine structure by forming an acid polyaniline was confirmed. The emeraldine structure is considered to be a network structure in which polyaniline and an acid (phytic acid) are ionic bonded. As for the consolidation specific resistance, as in Example 1, it was confirmed that the resistance in the low density region was low.
Note that the D V50 of Example 3 9.4 .mu.m, D V10 was confirmed to be a 5.7 .mu.m. On the other hand, International Publication No. 2014/026112 exemplifies that the diameters are 60 nm and 100 nm, and in another form, nano-order silicon particles having an average diameter of 500 to 1000 nm are surrounded by a network of polyaniline and phytic acid. It can be seen that the size is different from that of the coated composite particles of one embodiment.

[比較例1]
ポリアニリンもフィチン酸も添加せず、有機化合物層(B)が被覆されていない例として、複合材料(A)について、実施例1と同様に物性値を取得した結果を表1に示す。有機化合物層(B)が形成されていないことを表面SEM像で確認した。またラマンスペクトルを図2に示す。ラマンスペクトルは1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1のいずれにもピークが見られなかった。低密度領域での圧密比抵抗は実施例1〜5と異なり高抵抗のため測定不能であった。実施例1〜5は、有機化合物層(B)の形成により比較例1に対して低密度領域での圧密比抵抗が低減されることが確認された。
[Comparative Example 1]
As an example in which neither polyaniline nor phytic acid is added and the organic compound layer (B) is not coated, Table 1 shows the results of obtaining the physical property values of the composite material (A) in the same manner as in Example 1. It was confirmed by the surface SEM image that the organic compound layer (B) was not formed. The Raman spectrum is shown in FIG. Raman spectra 1475~1525cm -1, 1140~1190cm -1, peak to any 785~835Cm -1 was observed. The consolidation specific resistance in the low density region was unmeasurable due to the high resistivity unlike Examples 1 to 5. In Examples 1 to 5, it was confirmed that the consolidation specific resistance in the low density region was reduced as compared with Comparative Example 1 by the formation of the organic compound layer (B).

[比較例2、比較例3]
各材料の種類と添加量を表1に記載の内容とする以外は、実施例1と同様に被覆複合粒子(C)を作製し、実施例1と同様に被覆複合粒子(C)の物性値を取得した結果を表1に示す。被覆複合材料(C)の表面の凹凸の形状やラマンスペクトルから有機化合物層(B)の存在は確認されたが、圧密比抵抗を実施例1〜5と比較すると、低密度領域での圧密比抵抗は高抵抗となり測定不能であった。この結果から、複合材料(A)を被覆する有機化合物層(B)が形成されてはいたが、十分な圧密比抵抗の低減効果が得られないことが確認された。有機化合物層(B)が薄い、また被覆率(=被覆複合粒子(C)全表面積に占める有機化合物層(B)の形成領域)が低いためと考えられる。
[Comparative Example 2, Comparative Example 3]
The coated composite particles (C) were produced in the same manner as in Example 1 except that the types and addition amounts of each material were as shown in Table 1, and the physical property values of the coated composite particles (C) were as in Example 1. The results of obtaining the above are shown in Table 1. The presence of the organic compound layer (B) was confirmed from the shape of the unevenness on the surface of the coated composite material (C) and the Raman spectrum, but when the consolidation resistivity was compared with Examples 1 to 5, the consolidation ratio in the low density region was confirmed. The resistivity became high and could not be measured. From this result, it was confirmed that the organic compound layer (B) covering the composite material (A) was formed, but a sufficient effect of reducing the consolidation specific resistance could not be obtained. It is considered that the organic compound layer (B) is thin and the coverage (= the region where the organic compound layer (B) is formed in the total surface area of the coated composite particles (C)) is low.

[比較例4]
各材料の種類と添加量を表1に記載の内容とする以外は、実施例1と同様に被覆複合粒子(C)を作製し、実施例1と同様に被覆複合粒子(C)の物性値を取得した結果を表1に示す。
実施例5と同様に、被覆複合材料(C)の表面の凹凸の形状やラマンスペクトルから有機化合物層(B)の存在は確認されたが、圧密比抵抗は実施例1〜5と比較すると高抵抗となり測定不能であった。複合材料(A)を被覆する有機化合物層(B)が厚くなりすぎたため圧密比抵抗の低減効果が得られなかったと考えられる。
[Comparative Example 4]
The coated composite particles (C) were produced in the same manner as in Example 1 except that the types and addition amounts of each material were as shown in Table 1, and the physical property values of the coated composite particles (C) were as in Example 1. The results of obtaining the above are shown in Table 1.
Similar to Example 5, the presence of the organic compound layer (B) was confirmed from the shape of the unevenness on the surface of the coated composite material (C) and the Raman spectrum, but the consolidation resistivity was higher than that of Examples 1 to 5. It became resistance and could not be measured. It is considered that the effect of reducing the consolidation specific resistance could not be obtained because the organic compound layer (B) covering the composite material (A) became too thick.

[比較例5]
各材料の種類と添加量を表1に記載の内容とする以外は、実施例1と同様に被覆複合粒子(C)を作製し、実施例1と同様に被覆複合粒子(C)の物性値を取得した結果を表1に示す。SEM像からは有機化合物層(B)は確認されたが実施例1〜5と比較して形状が異なる(凹凸形状がほとんどない)ことが確認された(図5)。ポリアニリンは形成されていると考えられるが、ラマンスペクトルからも一実施形態の有機化合物層(B)に特徴的なピーク(1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1)の存在が確認されなかった(図7)。
圧密比抵抗も実施例1〜5と比較すると、比較例1と同様に低密度領域での圧密比抵抗は高抵抗となり測定不能であった。
有機化合物層(B)が複合材料(A)上に形成されていても、酸が存在しないためポリアニリンは導電性を示すエメラルジン構造ではないと考えられ、低密度領域での圧密比抵抗が高い結果となったと考えられる。
[Comparative Example 5]
The coated composite particles (C) were produced in the same manner as in Example 1 except that the types and addition amounts of each material were as shown in Table 1, and the physical property values of the coated composite particles (C) were as in Example 1. The results of obtaining the above are shown in Table 1. From the SEM image, the organic compound layer (B) was confirmed, but it was confirmed that the shape was different (there was almost no uneven shape) as compared with Examples 1 to 5 (FIG. 5). Although polyaniline is considered to be formed, the peaks (1475-1525 cm -1 , 1140 to 1190 cm -1 , 785 to 835 cm -1 ) characteristic of the organic compound layer (B) of one embodiment are also observed from the Raman spectrum. The existence was not confirmed (Fig. 7).
When the consolidation specific resistance was also compared with Examples 1 to 5, the consolidation specific resistance in the low density region became high resistance and could not be measured as in Comparative Example 1.
Even if the organic compound layer (B) is formed on the composite material (A), it is considered that polyaniline does not have an emeraldine structure exhibiting conductivity because of the absence of acid, resulting in high consolidation resistivity in the low density region. It is thought that it became.

[比較例6]
各材料の種類と添加量を表1に記載の内容とする以外は、実施例1と同様に被覆複合粒子(C)を作製し、実施例1と同様に被覆複合粒子(C)の物性値を取得した結果を表1に示す。SEM像からは有機化合物層(B)は確認されたが比較例5と類似な形状であり、実施例1〜5とは有機化合物層(B)の表面形状が異なることが確認された。ラマンスペクトルからも有機化合物層(B)に特徴的なピーク(1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1)の存在が確認されなかった(図7)。
圧密比抵抗も実施例1〜5と比較すると、比較例5と同様に低密度領域での圧密比抵抗は高抵抗となり測定不能であった。
比較例6は酸として塩酸を用いたが、1官能基のため、ポリアニリンと3次元の網目構造を形成することができなかったと考えられる。また酸の量も少なかったため、ポリアニリンは導電性を示すエメラルジン構造ではないと考えられる。以上より、1分子中に複数の酸官能基を有するフィチン酸が酸として用いられないと、有機化合物層(B)が複合材料(A)を被覆していても、低密度領域での圧密比抵抗が実施例1〜5と比べて高い結果となることが確認された。
[Comparative Example 6]
The coated composite particles (C) were produced in the same manner as in Example 1 except that the types and addition amounts of each material were as shown in Table 1, and the physical property values of the coated composite particles (C) were as in Example 1. The results of obtaining the above are shown in Table 1. Although the organic compound layer (B) was confirmed from the SEM image, it was confirmed that the shape was similar to that of Comparative Example 5, and that the surface shape of the organic compound layer (B) was different from that of Examples 1 to 5. The presence of peaks (1475-1525 cm -1 , 1140 to 1190 cm -1 , 785 to 835 cm -1 ) characteristic of the organic compound layer (B) was not confirmed from the Raman spectrum (FIG. 7).
When the consolidation specific resistance was also compared with Examples 1 to 5, the consolidation specific resistance in the low density region became high resistance and could not be measured as in Comparative Example 5.
Hydrochloric acid was used as the acid in Comparative Example 6, but it is considered that it was not possible to form a three-dimensional network structure with polyaniline because of the monofunctional group. In addition, since the amount of acid was small, it is considered that polyaniline does not have an emeraldine structure showing conductivity. From the above, when phytic acid having a plurality of acid functional groups in one molecule is not used as an acid, even if the organic compound layer (B) covers the composite material (A), the compaction ratio in the low density region It was confirmed that the resistance was higher than that of Examples 1 to 5.

[比較例7]
各材料の種類と添加量を表1に記載の内容とする以外は、実施例1と同様に被覆複合粒子(C)を作製し、実施例1と同様に被覆複合粒子(C)の物性値を取得した結果を表1に示す。SEM像(図6)から、被覆複合材料(C)の表面に凹凸の形状を有する有機化合物層(B)が形成されている部分と、比較例5、6と同様に凹凸形状がほとんどない有機化合物層(B)が形成されている部分が混在していることが確認され、実施例1〜5とは異なった被覆状態であった。すなわち実施例1〜5は、複合材料(A)表面に形成された有機化合物層(B)は、ほぼすべての領域が凹凸形状だったのに対し、比較例7は有機化合物層(B)の凡そ50%のみが凹凸形状であった。またラマンスペクトルでも、実施例1〜5や比較例2〜4とは異なり、有機化合物層(B)に特徴的なピークのうち1494±5cm−1に明確なピークが観測されなかった(図7)。比較例7の塩酸とポリアニリンで形成された構造は、実施例1〜5や比較例2〜4のようにリン酸基含有化合物であるフィチン酸と結合したポリアニリンの構造とは異なることが考えられる。
圧密比抵抗は実施例1〜5と比較すると、比較例5と同様に低密度領域での圧密比抵抗は高抵抗となり測定不能であった。
実施例1〜5と比べて、複数の酸官能基を有するフィチン酸が酸として用いられないと、有機化合物層(B)が複合材料(A)を被覆していても、低密度領域での圧密比抵抗が実施例1〜5と比べて高い結果となることが確認された。
[Comparative Example 7]
The coated composite particles (C) were produced in the same manner as in Example 1 except that the types and addition amounts of each material were as shown in Table 1, and the physical property values of the coated composite particles (C) were as in Example 1. The results of obtaining the above are shown in Table 1. From the SEM image (FIG. 6), the portion where the organic compound layer (B) having an uneven shape is formed on the surface of the coating composite material (C) and the organic having almost no uneven shape as in Comparative Examples 5 and 6. It was confirmed that the portion where the compound layer (B) was formed was mixed, and the coating state was different from that of Examples 1 to 5. That is, in Examples 1 to 5, the organic compound layer (B) formed on the surface of the composite material (A) had an uneven shape in almost all regions, whereas in Comparative Example 7, the organic compound layer (B) was formed. Only about 50% had an uneven shape. Also, in the Raman spectrum, unlike Examples 1 to 5 and Comparative Examples 2 to 4, no clear peak was observed at 1494 ± 5 cm -1 among the peaks characteristic of the organic compound layer (B) (FIG. 7). ). It is considered that the structure formed of hydrochloric acid and polyaniline in Comparative Example 7 is different from the structure of polyaniline bonded to phytic acid, which is a phosphoric acid group-containing compound, as in Examples 1 to 5 and Comparative Examples 2 to 4. ..
When the consolidation specific resistance was compared with Examples 1 to 5, the consolidation specific resistance in the low density region was high and could not be measured as in Comparative Example 5.
Compared to Examples 1 to 5, when phytic acid having a plurality of acid functional groups is not used as an acid, even if the organic compound layer (B) covers the composite material (A), it is in a low density region. It was confirmed that the consolidation ratio resistance was higher than that of Examples 1 to 5.

以上の結果から、酸の種類とその添加量の範囲が適切に選定されないと、有機化合物層(B)が導電性を示さず、また有機化合物層(B)が複合材料(A)を良好に被覆することができず、得られた被覆複合粒子(C)の低密度領域での圧密比抵抗が高くなり、抵抗の低減効果が得られないことが確認された。 From the above results, if the type of acid and the range of its addition amount are not properly selected, the organic compound layer (B) does not show conductivity, and the organic compound layer (B) makes the composite material (A) good. It was confirmed that the coating could not be performed, the compaction specific resistance of the obtained coated composite particles (C) in the low density region became high, and the effect of reducing the resistance could not be obtained.

得られた被覆複合粒子に対し、各種物性を測定した。結果を表に示す。


Figure 2021187733
Various physical properties were measured for the obtained coated composite particles. The results are shown in the table.


Figure 2021187733

表から実施例1〜5の被覆複合粒子(C)は、炭素材料およびシリコンを含む複合材料(A)の表面が、有機化合物層(B)によって被覆された被覆複合粒子(C)であって、被覆複合粒子(C)の表面粗さSqが12〜23nmの凹凸があり、且つ低密度(0.8g/cm以下)における電気抵抗を低くすることが確認された。

From the table, the coated composite particles (C) of Examples 1 to 5 are coated composite particles (C) in which the surface of the composite material (A) containing a carbon material and silicon is coated with an organic compound layer (B). It was confirmed that the surface roughness Sq of the coated composite particle (C) had irregularities of 12 to 23 nm, and the electric resistance at a low density (0.8 g / cm 3 or less) was lowered.

Claims (9)

炭素材料およびシリコンを含む複合材料(A)の表面が、ポリアニリンを含む有機化合物層(B)によって被覆された被覆複合粒子(C)であって、
前記被覆複合粒子(C)に対する前記有機化合物層(B)中の窒素原子含有量が0.2〜0.7質量%、リン原子含有量が0.08〜0.6質量%である被覆複合粒子。
The surface of the composite material (A) containing the carbon material and silicon is the coated composite particles (C) coated with the organic compound layer (B) containing polyaniline.
The coated composite having a nitrogen atom content of 0.2 to 0.7% by mass and a phosphorus atom content of 0.08 to 0.6% by mass in the organic compound layer (B) with respect to the coated composite particles (C). particle.
前記被覆複合粒子(C)中の窒素原子含有量が0.4〜3.6質量%、リン原子含有量が0.08〜9.6質量%である請求項1に記載の被覆複合粒子。 The coated composite particle according to claim 1, wherein the coated composite particle (C) has a nitrogen atom content of 0.4 to 3.6% by mass and a phosphorus atom content of 0.08 to 9.6% by mass. 前記被覆複合粒子(C)中の窒素原子含有量が0.5〜1.2質量%、リン原子含有量が0.08〜0.6質量%である請求項2に記載の被覆複合粒子。 The coated composite particle according to claim 2, wherein the coated composite particle (C) has a nitrogen atom content of 0.5 to 1.2% by mass and a phosphorus atom content of 0.08 to 0.6% by mass. 前記被覆複合粒子(C)のリン原子が、複数のリン酸基を有する化合物由来である請求項1〜3のいずれか1項に記載の被覆複合粒子。 The coated composite particle according to any one of claims 1 to 3, wherein the phosphorus atom of the coated composite particle (C) is derived from a compound having a plurality of phosphoric acid groups. 前記有機化合物層(B)のリン原子が、フィチン酸由来である請求項1〜4のいずれか1項に記載の被覆複合粒子。 The coated composite particle according to any one of claims 1 to 4, wherein the phosphorus atom of the organic compound layer (B) is derived from phytic acid. 前記有機化合物層(B)の窒素原子が、ポリアニリン由来である請求項1〜5のいずれか1項に記載の被覆複合粒子。 The coated composite particle according to any one of claims 1 to 5, wherein the nitrogen atom of the organic compound layer (B) is derived from polyaniline. 前記有機化合物層(B)において、ポリアニリンとフィチン酸が結合している請求項6に記載の被覆複合粒子。 The coated composite particle according to claim 6, wherein in the organic compound layer (B), polyaniline and phytic acid are bonded. 前記有機化合物層(B)は、ラマン分光分析法において、1475〜1525cm−1、1140〜1190cm−1、785〜835cm−1の波数範囲のいずれにもピークを有する、請求項1〜7のいずれか1項に記載の被覆複合粒子。 The organic compound layer (B), in the Raman spectroscopy, 1475~1525cm -1, 1140~1190cm -1, has a peak in any of the wavenumber range 785~835Cm -1, more of claims 1 to 7 The coated composite particle according to item 1. 前記有機化合物層(B)は、ラマン分光分析法において、1592±5cm−1、1494±5cm−1、1165±5cm−1及び806±5cm−1の各波数範囲にそれぞれピークを有する、請求項1〜7のいずれか1項に記載の被覆複合粒子。 The organic compound layer (B), in the Raman spectroscopy, 1592 ± 5cm -1, 1494 ± 5cm -1, a peak to each wave number range of 1165 ± 5 cm -1 and 806 ± 5 cm -1, claim The coated composite particle according to any one of 1 to 7.
JP2021066056A 2020-05-28 2021-04-08 Coated composite particle Pending JP2021187733A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020093159 2020-05-28
JP2020093159 2020-05-28

Publications (1)

Publication Number Publication Date
JP2021187733A true JP2021187733A (en) 2021-12-13

Family

ID=78744668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021066056A Pending JP2021187733A (en) 2020-05-28 2021-04-08 Coated composite particle

Country Status (2)

Country Link
JP (1) JP2021187733A (en)
WO (1) WO2021241749A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230172978A (en) * 2022-06-16 2023-12-26 에스케이온 주식회사 Anode active material for lithium secondary battery, method of manufacturing the same and lithium secondary battery including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968425B2 (en) * 2005-08-04 2012-07-04 戸田工業株式会社 Spherical porous carbon particle powder and method for producing the same
JP2010095390A (en) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology Mesoporous carbon composite material and secondary battery using the same
US10147950B2 (en) * 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
EP3667782A1 (en) * 2017-08-10 2020-06-17 Showa Denko K.K. Lithium ion secondary battery negative electrode material and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Also Published As

Publication number Publication date
WO2021241749A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
KR102395001B1 (en) Manufacturing method of anode for lithium battery
KR101933098B1 (en) Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
US9340894B2 (en) Anode battery materials and methods of making the same
US9196905B2 (en) Diamond film coated electrode for battery
CN111433943A (en) Composite comprising silicon carbide and carbon particles
Li et al. A Dendrite‐Free Lithium‐Metal Anode Enabled by Designed Ultrathin MgF2 Nanosheets Encapsulated Inside Nitrogen‐Doped Graphene‐Like Hollow Nanospheres
JP2013506264A (en) Electrode, lithium ion battery and method for making and using the same
US11548991B2 (en) Modified silicon particles for silicon-carbon composite electrodes
KR20150141961A (en) Silicon particles for battery electrodes
JP7228141B2 (en) Nanostructured material and method of making same
JP2021187733A (en) Coated composite particle
KR101929413B1 (en) Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
Yue et al. Facile preparation of Mn 3 O 4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries
JP7456291B2 (en) Carbon-coated composite materials and their applications
KR101616083B1 (en) Manufacturing method of secondary batteries using Si-CNFs based on Co-Cu catalysts
KR101773129B1 (en) Manufacturing method of Mesoporous Silica carbon Nanofiber composite and Manufacturing method of Lithium Secondary battery using it
KR20180108330A (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
WO2021241751A1 (en) Composite particles, method for producing same and use of same
JP7420241B2 (en) Composite particles, negative electrode materials and lithium ion secondary batteries
CN117501476A (en) Composite particles, negative electrode active material, and lithium ion secondary battery
KR101660159B1 (en) Anode material for lithium secondary battery and manufacturing method thereof
KR102105651B1 (en) Negative electrode material for secondary battery, secondary battery electrode comprising the same and preparation method thereof
CN115315831A (en) Negative active material, method of preparing the same, and lithium secondary battery comprising the same
KR20190038519A (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
Pan et al. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240328