WO2021241749A1 - Carbon–silicon composite - Google Patents

Carbon–silicon composite Download PDF

Info

Publication number
WO2021241749A1
WO2021241749A1 PCT/JP2021/020498 JP2021020498W WO2021241749A1 WO 2021241749 A1 WO2021241749 A1 WO 2021241749A1 JP 2021020498 W JP2021020498 W JP 2021020498W WO 2021241749 A1 WO2021241749 A1 WO 2021241749A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
silicon
less
negative electrode
carbonaceous material
Prior art date
Application number
PCT/JP2021/020498
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 藤田
鎭碩 白
祐司 伊藤
浩文 井上
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2021241749A1 publication Critical patent/WO2021241749A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a carbon-silicon composite having a columnar shape (hereinafter, also referred to as a composite), a negative electrode active material containing the carbon-silicon composite, a negative electrode mixture layer containing the negative electrode active material, and the negative electrode.
  • the present invention relates to a lithium ion secondary battery including a mixture layer.
  • negative electrode active materials that have both high capacity and high output.
  • silicon theoretical specific capacity: 4200 mAh / g
  • graphite theoretical specific capacity: 372 mAh / g
  • porous carbon is often in the form of particles.
  • the preferred particle shape has not been discussed.
  • the pore distribution since the proportion of micropores is small, it is expected that it will take a long time to impregnate the desired silicon. Since the carbon fibers in the negative electrode active materials of Patent Documents 2 and 3 do not have pores, it is expected that the durability against expansion and contraction of silicon will be inferior.
  • the problems to be solved are the saving of the silicon raw material at the time of manufacturing the carbon-silicon composite and the improvement of the cycle characteristics in the lithium ion secondary battery.
  • a carbon-silicon composite is prepared by performing CVD with a silicon-containing gas using a columnar carbonaceous material and precipitating silicon on the surface and pores of the carbonaceous material.
  • the present invention includes the following configurations [1] to [13].
  • [1] A carbon-silicon complex containing a carbonaceous material and silicon. Contains a carbon-silicon complex with a columnar shape, The average diameter is 5 ⁇ m or more and 30 ⁇ m or less. The average length is 1 ⁇ m or more and less than 50 ⁇ m.
  • the exothermic peak exists below 800 ° C.
  • the peak due to Si exists at 450 to 495 cm -1 , and the ratio of the intensity ISi of the peak due to Si to the intensity IG of the G band, ISi / IG is 0.35 or less.
  • the peak due to Si exists at 450 to 495 cm -1 , and the ratio of the intensity ISi of the peak due to Si to the intensity IG of the G band, ISi / IG is 0.35 or less.
  • the half width of the peak due to the 111 planes of Si is 3.0 deg. That's all
  • the 90% particle size DV90 in the volume-based cumulative particle size distribution is 50 ⁇ m or less.
  • the adsorption performance of the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test. Carbon-silicon complex.
  • [5] The carbon-silicon complex according to any one of [1] to [4], wherein the 10% particle size DV10 in the volume-based cumulative particle size distribution is 2.0 ⁇ m or more.
  • [6] The carbon-silicon complex according to any one of [1] to [5], which has a BET specific surface area of 50 m 2 / g or less.
  • [8] The carbon-silicon complex according to any one of [1] to [7], wherein the silicon content is 10% by mass or more and less than 70% by mass.
  • the carbonaceous material has a pore volume of 0.30 cm 3 / g or more, a ratio of the volume of micropores to the volume of all pores is 90% or more, and occupies the volume of all pores.
  • the negative electrode active material containing the carbon-silicon complex according to any one of [1] to [10].
  • a lithium ion secondary battery including the negative electrode mixture layer according to [12] The present invention also includes the following configurations [1a] to [14a].
  • [1a] A carbon-silicon complex containing carbonaceous materials and silicon, It has a columnar shape and has a columnar shape. The average diameter is 5 ⁇ m or more and 30 ⁇ m or less. The average length is 1 ⁇ m or more and less than 50 ⁇ m. In the DTA curve measured by DTA in air, the exothermic peak exists below 800 ° C.
  • [3a] The carbon-silicon complex according to the preceding item [1a] or [2a], wherein the 10% particle size (DV10) is 3.0 ⁇ m or more and the 90% particle size (DV90) is 50 ⁇ m or less in the volume-based cumulative particle size distribution.
  • [4a] The carbon-silicon complex according to any one of the above items [1a] to [3a], which has an oxygen content of 10% by mass or less.
  • [5a] The carbon-silicon complex according to any one of the above items [1a] to [4a], wherein the silicon content is 10% by mass or more and less than 70% by mass.
  • the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test.
  • the carbon-silicon composite according to any one of [5a].
  • the carbonaceous material has a pore volume of 0.30 cm 3 / g or more, an average pore diameter of 0.40 to 5.0 nm, and a ratio of micropores to all pores of 92% or more.
  • the carbon-silicon complex according to any one of the preceding items [1a] to [6a], which has a pore distribution in which the ratio of the sum of the meso pores and the macro pores is less than 8%.
  • the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test.
  • the carbonaceous material has a pore volume of 0.3 cm 3 / g or more, an average pore diameter of 0.4 to 5.0 nm, and a ratio of micropores to all pores of 92% or more.
  • the carbon-silicon complex of the present invention can produce a product in a short time, which leads to saving of a silicon source. Further, when used as a negative electrode active material of a lithium ion secondary battery, it has excellent cycle characteristics.
  • FIG. 1 is a scanning electron microscope (SEM) photograph of the carbon-silicon composite produced in Example 1.
  • Carbon-Silicon Composite The carbon-silicon composite according to the present invention is composed of a carbonaceous material and silicon deposited on its surface and in pores.
  • the complex preferably contains a complex having a columnar shape.
  • the term "cylindrical” includes the shape of a cylinder or elliptical column having a fractured surface at the bottom surface.
  • FIG. 1 shows an example of the carbon-silicon composite of the present invention having a columnar shape. Such a shape can be confirmed by SEM.
  • the average diameter of the complex is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, still more preferably 10 ⁇ m or more. This is because if the average diameter of the complex is 5 ⁇ m or more, side reactions with the electrolytic solution can be reduced.
  • the average diameter of the complex is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less. This is because if the average diameter of the complex is 30 ⁇ m or less, an electrode slurry having good coatability can be prepared.
  • the average diameter of the complex is defined as follows.
  • the particles of the complex are regarded as a broken right-sided cylinder consisting of a bottom surface and a side surface formed by a fracture surface.
  • the average diameter is measured for particles that are found to be substantially parallel to the SEM image plane in the height direction of the right cylinder.
  • two points where the straight line drawn in the direction of 90 ° with respect to the height direction of the right cylinder of the particle and the two contour lines formed by the side surfaces of the particle intersect are defined as P and Q.
  • the length of the line segment PQ is measured at 10 different points per particle, and the average value is taken as the diameter of the composite particle. This is measured for 10 particles, and the value obtained by averaging these diameters is taken as the average diameter of the complex particles.
  • the average length of the complex is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and even more preferably 5 ⁇ m or more. This is because if the average length of the complex is 1 ⁇ m or more, side reactions with the electrolytic solution can be reduced.
  • the average length of the complex is preferably less than 50 ⁇ m, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less. This is because if the average length of the complex is less than 50 ⁇ m, an electrode slurry having good coatability can be prepared, and the density of the electrodes can be easily increased.
  • the average length of the complex is defined as follows. In the image obtained by a scanning electron microscope (SEM), the average length is measured for the particles whose height direction of the right cylinder is recognized to be substantially parallel to the SEM image plane. In the SEM image, the lengths of the two contour lines formed by the side surfaces of the particles are measured, and the average value of the two lengths is taken as the length of the complex particle. This is measured for 10 particles, and the value obtained by averaging these lengths is taken as the average length of the complex particles.
  • SEM scanning electron microscope
  • the average diameter and average length of the complex can be measured by analyzing the image observed by SEM with image analysis software such as ImageJ (manufactured by the National Institutes of Health).
  • the exothermic peak appears at 800 ° C. or lower in the DTA curve measured by DTA in air. This is because when the temperature at which the exothermic peak appears is 800 ° C. or lower, the carbonaceous material has no crystal and has a surface on which silicon is easily supported. From this viewpoint, it is more preferable that the exothermic peak in the DTA measurement appears at 750 ° C. or lower, and further preferably at 700 ° C. or lower.
  • the DTA measurement can be performed by, for example, a TG-DTA device known in the art.
  • the carbon-silicon complex according to the present invention has a peak due to silicon (Si) in the Raman spectrum at 450 to 495 cm -1 .
  • the intensity of the peak appearing at 450 to 495 cm -1 due to silicon is referred to as ISi.
  • crystalline silicon when there is a peak in the 450 ⁇ 495cm -1 since the peak appears in the vicinity of 520 cm -1, the carbon - silicon complex indicates that it has an amorphous silicon.
  • expansion and contraction during charging and discharging are performed relatively isotropically, so that the cycle characteristics can be improved.
  • the carbon-silicon composite according to the present invention has a ratio ISi / IG of the intensity ISi of the peak due to the silicon and the intensity IG of the G band according to the Raman spectrum of 0.35 or less.
  • the appearance of the silicon peak in the Raman spectrum indicates that silicon is precipitated in the pores on or near the surface of the carbon-silicon complex. When this value is 0.35 or less, it indicates that the amount of silicon deposited on the surface is small and the amount of silicon in the carbon pores near the surface of the complex is small. This leads to an improvement in cycle characteristics in that the proportion of silicon that comes into direct contact with the electrolytic solution is reduced.
  • the ISi / IG is preferably 0.30 or less, more preferably 0.25 or less.
  • the intensity of the peak is the height from the baseline to the peak top.
  • the G band in the Raman spectrum is the peak appearing near 1600 cm -1 obtained when the carbonaceous material is measured, and the D band is the peak near 1350 cm -1 obtained when the carbonaceous material is also measured. That is.
  • the carbon-silicon composite according to the present invention has a half-value width of the peak on the 111th surface of Si of 3.0 deg in the XRD pattern measured by powder XRD using Cu-K ⁇ rays. That is all.
  • the half width of the peak on the 111th surface of Si is 3.0 deg.
  • the size of the crystallite becomes small, which leads to the suppression of the destruction of the silicon region due to charging / discharging.
  • the half width is 4.0 deg. The above is preferable, and 5.0 deg. The above is more preferable.
  • the carbon-silicon complex according to the present invention preferably has a BET specific surface area of 50 m 2 / g or less. This is because having such a BET specific surface area can reduce side reactions with the electrolytic solution. From this viewpoint, the BET specific surface area is more preferably 30 m 2 / g or less, and further preferably 20 m 2 / g or less.
  • the BET specific surface area is usually measured by a dedicated measuring device known in the art. Nitrogen is usually used as the adsorbed gas, but carbon dioxide, argon, or the like may also be used.
  • the carbon-silicon composite according to the present invention preferably has a 10% particle size and a DV10 of 2.0 ⁇ m or more in a volume-based cumulative particle size distribution. This is because when the DV10 is 2.0 ⁇ m or more, the side reaction with the electrolytic solution can be reduced. Further, the powder has excellent handleability, it is easy to prepare a slurry having a viscosity and a density suitable for coating, and it is easy to increase the density when it is used as an electrode. From this viewpoint, the DV10 is more preferably 3.5 ⁇ m or more, and further preferably 4.0 ⁇ m or more.
  • the carbon-silicon composite according to the present invention preferably has a 90% particle size and a DV90 of 50 ⁇ m or less in a volume-based cumulative particle size distribution.
  • the DV90 is 50 ⁇ m or less, the diffusion length of lithium in each particle is shortened, so that the rate characteristics of the lithium ion battery are excellent, and when the slurry is applied to the current collector, streaks and abnormal unevenness are obtained. Does not occur.
  • the DV90 is more preferably 40 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the silicon-carbon complex preferably has an oxygen content of 10% by mass or less.
  • the oxygen content in the complex is 10% by mass or less, the irreversible capacity of the negative electrode active material for the lithium ion secondary battery can be reduced.
  • the oxygen content is preferably 9% by mass or less, more preferably 8% by mass or less.
  • the lower limit of the oxygen content is not particularly limited, but is preferably 0% by mass, more preferably 0.5% by mass.
  • the oxygen content in the silicon-carbon complex can be measured by, for example, an oxygen-nitrogen simultaneous measuring device.
  • the carbon-silicon composite according to the present invention preferably has a silicon content of 10% by mass or more and less than 70% by mass.
  • the silicon content is 10% by mass or more, it is possible to obtain a specific volume of about 600 mAh / g or more in calculation, which greatly exceeds the theoretical specific volume of graphite. From this viewpoint, the content is more preferably 20% by mass or more, further preferably 30% by mass or more.
  • the carbonaceous composite according to the present invention has a silicon content of less than 70% by mass, the carbonaceous material as a carrier can absorb the volume change due to expansion and contraction. From this viewpoint, the content is more preferably 65% by mass or less, and further preferably 60% by mass or less.
  • the silicon content in the carbon-silicon complex can be determined by the fundamental parameter method (FP method) or the like in the fluorescent X-ray analyzer.
  • FP method fundamental parameter method
  • the carbonaceous material used as a raw material for the carbon-silicon composite according to the present invention is preferably a porous carbonaceous material.
  • the porous carbonaceous material is a carbonaceous material having a total pore volume of 0.2 cm 3 / g or a BET specific surface area of 200 m 2 / g or more per 1 g.
  • the adsorption performance is such that the toluene saturated vapor pressure at 25 ° C.
  • the equilibrium adsorption performance of weight increment per sample weight is set to 100%, it is preferable that the adsorption performance reaches 100% within an elapsed time of 200 min.
  • a porous carbonaceous material having such adsorption performance is preferable because the adsorption rate of silane is high and a large amount of silicon can be supported inside the pores, for example, in CVD using a monosilane-containing gas. From the same viewpoint, it is more preferable that the adsorption performance reaches 100% within 185 min, and it is further preferable that the adsorption performance reaches 100% within 170 min.
  • the carbonaceous material used as the raw material of the carbon-silicon composite according to the present invention preferably has a total pore volume of 0.30 cm 3 / g or more per gram.
  • the total pore volume is 0.30 cm 3 / g or more, the expansion / contraction of the entire complex due to the insertion / desorption of lithium is reduced in the material in which silicon is precipitated.
  • the total pore volume having a the carbonaceous material is more preferably 0.33 cm 3 / g or more, more preferably 0.35 cm 3 / g or more.
  • the carbonaceous material used as the raw material of the carbon-silicon composite according to the present invention preferably has a ratio of micropores in all pores of 90% or more and a total ratio of mesopores and macropores of less than 10%. With such a pore distribution, the adsorption of silicon-containing gas such as silane gas proceeds rapidly. Further, since fine silicon having better cycle characteristics is deposited, a negative electrode active material having excellent cycle characteristics can be produced. From this viewpoint, the ratio of the micropores is more preferably 93% or more, and even more preferably 94% or more. The total ratio of the meso pores and the macro pores is more preferably 8% or less, further preferably 5% or less.
  • Macropores are pores with a pore diameter of 50 nm or more and 100 nm or less.
  • Mesopores are pores with a pore diameter larger than 2 nm and smaller than 50 nm.
  • Micropores are pores having a pore diameter of 2 nm or less.
  • the micropore ratio is a value obtained by dividing the pore volume of micropores calculated by the NLDFT method by the pore volume of 0 to 100 nm or less calculated by the NLDFT method, and multiplying by 100. Indicated by the formula.
  • Micropore ratio 100 ⁇ (micropore pore volume calculated from NLDFT method) / (pore volume calculated from 0 to 100 nm or less calculated from NLDFT method)
  • the total ratio of mesopores and macropores is calculated from the NLDFT method by subtracting the value obtained by subtracting the micropore pore volume calculated from the NLDFT method from the pore volume of 0 to 100 nm or less calculated by the NLDFT method. It is a value obtained by multiplying the value divided by the pore volume from 0 to 100 nm or less by 100. That is, it is as follows.
  • Ratio of total of meso and macro holes 100 ⁇ (pore volume of 0 to 100 nm or less calculated by NLDFT method-micropore pore volume calculated by NLDFT method) / (pore volume of 0 to 100 nm or less calculated by NLDFT method)
  • the adsorption isotherm by the gas adsorption method is analyzed by a known method. Nitrogen is used as the adsorbed gas in the measurement in the present invention.
  • the carbonaceous material used as the raw material of the carbon-silicon composite according to the present invention has an R value (ID / IG) of 0.30 or more, which is the ratio of the intensity ID of the D band to the intensity IG of the G band according to the Raman spectrum. It is preferably 1.30 or less.
  • the R value is 0.30 or more, the negative electrode using this complex has a sufficiently low reaction resistance, which leads to an improvement in the rate characteristics of the battery.
  • the R value is 1.30 or less, it means that there are few defects in the carbonaceous layer.
  • the R value is 1.30 or less, side reactions are reduced and the Coulomb efficiency is improved.
  • the R value is more preferably 0.50 or more, and further preferably 0.70 or more. Further, the R value is more preferably 1.20 or less, and further preferably 1.10 or less.
  • the method for producing a carbon-silicon composite of the present invention is not particularly limited, and specifically, as described above, a fibrous porous carbonaceous material was obtained. Later, silane gas was added to the cylindrical porous carbon material in which a large number of micropores were formed from the side surface of the cylinder toward the central axis, which was obtained by crushing this fibrous porous carbon material and classifying it as necessary. A method of producing a carbon-silicon composite by precipitating silicon in the pores using the above method can be mentioned. In addition, after obtaining a fibrous porous carbonaceous material, silicon is precipitated in the pores of the porous carbonaceous material using silane gas without crushing or classification to obtain a carbon-silicon composite. Therefore, the carbon-silicon composite may be crushed and further classified according to need.
  • the complex has been described by regarding it as a cylinder.
  • the "central axis" of a cylinder is a line connecting the centers of circles between the bottom surfaces of the cylinder.
  • An example of a suitable method for producing a carbon-silicon composite according to the present invention includes the following steps (A) and (B).
  • the shape is a columnar shape having an average diameter of 5 ⁇ m or more and 30 ⁇ m or less, an average length of 1 ⁇ m or more and less than 50 ⁇ m, and an exothermic peak in DTA measurement exists at 800 ° C. or less.
  • pressure of 0.12 L / min pressure of atmospheric pressure +2.5 ( ⁇ 0.1) kpa, and weight of 1.000 g ( ⁇ 0.001 g)
  • the equilibrium adsorption performance of weight increment per sample weight is 100.
  • the percentage is not particularly limited as long as a carbonaceous material having an adsorption performance of 100% can be obtained within an elapsed time of 200 min.
  • the definitions of the average diameter and the average length are the same as the definitions in the complex described above.
  • fibrous carbon is produced by pyrolyzing an organic compound or polymer into a fibrous form, and the obtained fibrous carbon is crushed. Be done.
  • the physical characteristics of the fibrous carbon are appropriately adjusted depending on the type of the organic compound or polymer as a raw material, the conditions of thermal decomposition, and the conditions of oxidation treatment and activation treatment.
  • fibrous carbon include carbon fiber and activated carbon fiber, and activated carbon fiber is particularly preferable.
  • the fibrous porous carbonaceous material is crushed and classified as necessary to obtain carbonaceous material. It is also preferable to obtain the material.
  • the pores extend in the direction from the central axis of the cylinder to the side surface, the volume of the expanded silicon can be released. As a result, it is considered that the size of the complex does not change so much and a negative electrode active material having excellent cycle characteristics can be obtained.
  • the equipment used for crushing is not limited, but it can be performed using commercially available crushers and crushers such as jet mills, hammer mills, roller mills, pin mills, and vibration mills. Further, it is also possible to use two or more types of these crushers and crush them in two stages.
  • the carbonaceous material has the characteristics described in the above [2] carbonaceous material, that is, the adsorption performance of toluene, the pore volume, the ratio of micropores, the total ratio of mesopores and macropores, and the R value of Raman spectrum. It is preferable to have.
  • Step (B) In the step (B), for example, when a carbonaceous material is placed in a chamber of a CVD apparatus and a silicon-containing gas is allowed to act on the carbonaceous material in a heated state, silane gas enters the inside of the pores of the carbonaceous material, which further becomes.
  • a CVD step is preferred in which silicon can be deposited on the surface of the carbonaceous material or in the pores by thermal decomposition.
  • the apparatus and method shown in Patent Document 1 can be used.
  • the silicon-containing gas used examples include silane (SiH 4 ) -containing gas, disilane-containing gas, and trisilane-containing gas, and silane-containing gas is preferable.
  • the silicon-containing gas may contain other gases, and for example, a gas such as nitrogen, argon, helium, or hydrogen may be mixed as the carrier gas.
  • Various CVD conditions such as gas composition ratio, gas flow rate, temperature program, and selection of fixed bed / fluidized bed are appropriately adjusted while observing the nature of the product. If the silicon-containing gas is allowed to act on the heated carbonaceous material for too long, the silicon deposited on the surface increases and leads to deterioration of the electrode due to expansion and contraction. Therefore, the action time is 10 hours or less, and 7 hours or less. preferable.
  • the surface of the complex particles may be coated with carbon or a metal oxide.
  • a method for example, CVD with a carbonaceous gas, a method of adhering a carbon precursor such as an organic compound or a polymer compound to the surface of the composite, and then firing to form carbon, a metal oxide precursor.
  • a method of forming a metal oxide particle or a metal oxide layer on the surface of the composite particle by utilizing thermal decomposition or a sol-gel reaction after adhering the compound to the surface of the particle can be mentioned.
  • Negative electrode mixture layer contains the carbon-silicon composite described in the above [1] as a negative electrode active material.
  • the carbon-silicon complex functions as a negative electrode active material.
  • the negative electrode mixture layer of the present invention can be used as a negative electrode mixture layer for a lithium ion secondary battery.
  • the negative electrode mixture layer is generally composed of a negative electrode active material binder and a conductive auxiliary agent as an optional component.
  • a method for producing the negative electrode mixture layer for example, a known method as shown below can be used.
  • a slurry for forming a negative electrode mixture is prepared using a negative electrode active material, a binder, a conductive auxiliary agent as an optional component, and a solvent.
  • the slurry is applied to a current collector such as copper foil and dried. This is further vacuum dried and then roll pressed. The pressure during the roll press is usually 100 to 500 MPa.
  • the obtained product may be referred to as a negative electrode sheet.
  • the negative electrode sheet is obtained by pressing and consists of a negative electrode mixture layer and a current collector. Then cut or punch to the required shape and size.
  • a negative electrode sheet that has been adjusted to a size and shape to be incorporated in a lithium ion secondary battery and has a current collector tab attached to a current collector is referred to as a negative electrode in the present invention.
  • the negative electrode active material the carbon-silicon composite of the present invention may be used alone, but other negative electrode active materials may be used together. When other negative electrode active materials are used together, the complex is usually used by mixing the other negative electrode active materials.
  • examples of other negative electrode active materials include those generally used as negative electrode active materials for lithium ion secondary batteries. Examples thereof include graphite, hard carbon, lithium titanate (Li 4 Ti 5 O 12 ), alloy-based active materials such as silicon and tin, and composite materials thereof.
  • negative electrode active materials are usually in the form of particles.
  • the negative electrode active material other than the carbon-silicon composite one kind may be used or two or more kinds may be used. Among them, graphite particles and hard carbon are particularly preferably used.
  • One of the preferred embodiments of the negative electrode mixture layer of the present invention is that it contains a carbon-silicon complex and graphite particles.
  • any binder generally used in the negative electrode mixture layer of the lithium ion secondary battery can be freely selected and used.
  • PVdF polyvinylidene fluoride
  • PTFE polyvinylidene fluoride
  • polyethylene oxide polyepicrolhydrin
  • polyphospha examples thereof include zen, polyacrylonitrile, carboxymethyl cellulose (CMC) and salts thereof, polyacrylic acid, polyacrylamide and the like.
  • One kind of binder may be used, or two or more kinds of binders may be mixed and used.
  • the amount of the binder is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of
  • the conductive auxiliary agent is not particularly limited as long as it serves to impart electron conductivity and dimensional stability (buffering action against volume change due to insertion / removal of lithium) to the electrode.
  • carbon nanotubes, carbon nanofibers, vapor phase carbon fibers for example, “VGCF (registered trademark) -H” manufactured by Showa Denko Co., Ltd.
  • conductive carbon black for example, "Denka Black (registered trademark)” electrochemical Industrial Co., Ltd., "SUPER C65” Imeris Graphite & Carbon, “SUPER C45” Imeris Graphite & Carbon, Conductive Graphite (for example, "KS6L” Imeris Graphite & Carbon, “SFG6L” Imeris (Manufactured by Graphite & Carbon Co., Ltd.), etc.
  • the amount of the conductive auxiliary agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the conductive auxiliary agent preferably contains carbon nanotubes, carbon nanofibers, and vapor-phase carbon fibers, and the fiber length of these conductive auxiliary agents is preferably 1 ⁇ 2 or more of the length of Dv50 of the carbon-silicon composite. preferable. With this length, these conductive auxiliaries can be bridged between the negative electrode active materials including the carbon-silicon complex, and the cycle characteristics can be improved.
  • the single wall type and multi-wall type with a fiber diameter of 15 nm or less have the same amount of addition, and the number of bridges increases. Further, since it is more flexible, it is more preferable from the viewpoint of improving the electrode density.
  • the solvent for preparing the slurry for electrode coating is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), isopropanol, tetrahydrofuran (THF), and water.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • THF tetrahydrofuran
  • water water
  • a binder that uses water as a solvent it is also preferable to use a thickener in combination.
  • the amount of solvent can be adjusted so that the slurry has a viscosity that makes it easy to apply to the current collector.
  • the lithium ion secondary battery according to the present invention includes the negative electrode mixture layer.
  • the lithium ion secondary battery is usually composed of a negative electrode composed of the negative electrode mixture layer and a current collector, a positive electrode composed of a positive electrode mixture layer and a current collector, and a non-aqueous electrolyte solution and a non-aqueous polymer electrolyte existing between the negative electrodes. Includes at least one, as well as a separator, and a battery case for accommodating them.
  • the lithium ion secondary battery may include the negative electrode mixture layer, and other configurations including conventionally known configurations can be adopted without particular limitation.
  • the positive electrode mixture layer usually consists of a positive electrode material, a conductive auxiliary agent, and a binder.
  • a positive electrode material a positive electrode material, a conductive auxiliary agent, and a binder.
  • a general configuration in a normal lithium ion secondary battery can be used.
  • the positive electrode material is not particularly limited as long as it can reversibly insert and remove electrochemical lithium and these reactions are sufficiently higher than the standard redox potential of the negative electrode reaction.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1/3 Mn 1/3 Ni 1/3 O 2 , LiCo 0.6 Mn 0.2 Ni 0.2 O 2 , LiCo 0.8 Mn 0.1 Ni 0.1 O 2 , carbon coated LiFePO 4 , Or a mixture thereof can be preferably used.
  • the conductive auxiliary agent, the binder, and the solvent for preparing the slurry those mentioned in the section of the negative electrode are used.
  • Aluminum foil is preferably used as the current collector.
  • the non-aqueous electrolyte solution and the non-aqueous polymer electrolyte used in the lithium ion battery are not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li can be used as ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene carbonate, butylene carbonate, acetonitrile.
  • Propionitrile, dimethoxyethane, tetrahydrofuran, ⁇ -butyrolactone and other organic electrolytes gel-like polymer electrolytes containing polyethylene oxide, polyacrylic nitrile, polyfluoroviriniden, polymethylmethacrylate and the like.
  • a solid polymer electrolyte containing a polymer having an ethylene oxide bond or the like can be mentioned.
  • an additive generally used for an electrolytic solution of a lithium ion battery may be added to the non-aqueous electrolytic solution.
  • the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene salton (ES) and the like.
  • VC and FEC are preferred.
  • the amount to be added is preferably 0.01 to 20% by mass with respect to 100% by mass of the non-aqueous electrolytic solution.
  • the separator can be freely selected from those that can be used in a general lithium ion secondary battery, including the combination thereof, and examples thereof include a microporous film made of polyethylene or polypropylene. Further, such a separator mixed with particles such as SiO2 and Al2O3 as a filler, and a separator adhered to the surface can also be used.
  • the battery case is not particularly limited as long as it can accommodate the positive electrode and the negative electrode, and the separator and the electrolytic solution.
  • those standardized in the industry such as battery packs, 18650 type cylindrical cells, coin type cells, etc. that are usually on the market, those packed with aluminum packaging material, etc. can be freely designed and used. can.
  • the lithium ion secondary battery according to the present invention is a power source for electronic devices such as smartphones, tablet PCs, and mobile information terminals; a power source for electric motors such as electric tools, vacuum cleaners, electric bicycles, drones, and electric vehicles; fuel cells, and the sun. It can be used for storage of electric power obtained by optical power generation, wind power generation, and the like.
  • SEM Scanning electron microscope device: Regulus8220 (manufactured by Hitachi High-Tech Co., Ltd.) Acceleration voltage: 1 to 20 kV Observation magnification: 500 to 6,000 times (select appropriately according to the size of the particles)
  • Image recognition software ImageJ manufactured by the National Institutes of Health, USA was used to identify and measure each figure in the SEM image.
  • NLDFT method-Calculation of micropore ratio, total ratio of mesopores and macropores Macropores are pores with a pore diameter of 50 nm or more and 100 nm or less.
  • Mesopores are pores with a pore diameter larger than 2 nm and smaller than 50 nm.
  • Micropores are pores having a pore diameter of 2 nm or less.
  • the micropore ratio is a value obtained by dividing the pore volume of micropores calculated by the NLDFT method by the pore volume of 0 to 100 nm or less calculated by the NLDFT method, and multiplying by 100. Indicated by the formula.
  • Micropore ratio 100 ⁇ (micropore pore volume calculated from NLDFT method) / (pore volume calculated from 0 to 100 nm or less calculated from NLDFT method)
  • the total ratio of mesopores and macropores is calculated from the NLDFT method by subtracting the value obtained by subtracting the micropore pore volume calculated from the NLDFT method from the pore volume of 0 to 100 nm or less calculated by the NLDFT method. It is a value obtained by multiplying the value divided by the pore volume from 0 to 100 nm or less by 100. That is, it is as follows.
  • Ratio of total of meso and macro holes 100 ⁇ (pore volume of 0 to 100 nm or less calculated by NLDFT method-micropore pore volume calculated by NLDFT method) / (pore volume of 0 to 100 nm or less calculated by NLDFT method) [Fever peak]
  • -Measuring device TG-DTA2000SE (manufactured by NETZSCH Japan Co., Ltd.)
  • Measurement temperature Room temperature to 1000 ° C ⁇
  • Sample amount 9-11 mg
  • Temperature rise rate 10 ° C / min
  • Measurement atmosphere Air ⁇ Flow rate: 100 ml / min [Raman spectroscopy] Using a small spatula, place the sample on the glass preparation and spread it evenly so that the underlying glass preparation is not exposed. The range for expanding the sample is wider than the measurement range described later. This is so that only the complex particles are spread within the measurement range. This sample was measured by the following method.
  • the ratio (ISi / IG) of the intensity ISi of the peak derived from amorphous silicon appearing in 450 to 495 cm -1 and the IG was calculated.
  • sample plate window 18 ⁇ 20 mm, depth 0.2 mm The sample was filled in a glass sample plate (sample plate window 18 ⁇ 20 mm, depth 0.2 mm), and measurement was performed under the following conditions.
  • -XRD device SmartLab (registered trademark) manufactured by Rigaku Co., Ltd.
  • ⁇ X-ray type Cu-K ⁇ ray ⁇ K ⁇ ray removal method: Ni filter ⁇ X-ray output: 45kV, 200mA -Measurement range: 10.0 to 80.0 deg. -Scan speed: 10.0 deg. / Min
  • background removal and smoothing were performed using analysis software (PDXL2, manufactured by Rigaku Co., Ltd.), and then peak fitting was performed to determine the peak position and intensity.
  • the air flow rate was changed from 2L / min to 0.12L / min.
  • the sample amount was changed from 5 to 10 g in JIS to 1.000 g ( ⁇ 0.001 g).
  • the pressure was increased to atmospheric pressure +2.5 ( ⁇ 0.1) kpa. Under this condition, when the equilibrium adsorption performance of weight increment per sample weight was set to 100%, the time for the adsorption performance to reach 100% within an elapsed time of 200 min was measured.
  • the BET specific surface area of the carbon-silicon composite was calculated by the BET multipoint method from the adsorption isotherm data of three points with relative pressures of around 0.1, 0.2 and 0.3.
  • [Measurement of particle size distribution] Add 2 drops of 100-fold diluted 100-fold diluted powder to 1 cup of ultra-small spartel and 32% by mass of nonionic surfactant (SIRAYA palm fruit detergent high power) to 15 mL of water and ultrasonically disperse for 3 minutes. I let you.
  • This dispersion is put into a laser diffraction type particle size distribution measuring instrument (LMS-2000e) manufactured by Seishin Enterprise Co., Ltd., and the volume-based cumulative particle size distribution is measured, and the diameter is 10% (DV10), 50% diameter (DV50), 90% diameter. (DV90) was determined.
  • LMS-2000e laser diffraction type particle size distribution measuring instrument
  • Oxygen content measurement The measurement was performed under the following conditions. ⁇ Oxygen / nitrogen / hydrogen analyzer: EMGA-920 manufactured by HORIBA, Ltd. -Carrier gas: About 20 mg of argon powder was weighed in a nickel capsule and measured by an oxygen-nitrogen simultaneous analyzer. That is, the sample was decomposed under the atmosphere of an inert gas, and the generated gas was quantified by the infrared absorption method.
  • SBR Styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • carbon black (SUPER C 45 (registered trademark), manufactured by Imeris Graphite & Carbon Co., Ltd.) and vapor-grown carbon fiber (VGCF (registered trademark) -H, manufactured by Showa Denko KK) are 3: 2.
  • a mixture was prepared in the mass ratio of.
  • the CMC aqueous solution and the SBR solid content are 2.5 parts by mass.
  • the SBR aqueous solution was mixed, an appropriate amount of water for adjusting the viscosity was added thereto, and the mixture was kneaded using a rotation / revolution mixer (manufactured by Shinky Co., Ltd.) to obtain a slurry for forming a negative electrode mixture layer.
  • the slurry for forming the negative electrode mixture layer is uniformly coated on a copper foil having a thickness of 20 ⁇ m using a doctor blade so as to have a thickness of 150 ⁇ m, dried on a hot plate, and then vacuum dried to coat the negative electrode. I got a work sheet.
  • the dried negative electrode coated sheet was pressed with a uniaxial press at a pressure of 3 MPa to obtain a negative electrode sheet for battery evaluation.
  • the thickness of the obtained negative electrode sheet was 62 ⁇ m including the thickness of the copper foil.
  • the negative electrode sheet (current collector + negative electrode mixture layer) after pressing was punched into a circular shape having a diameter of 16 mm, and its mass and thickness were measured. From these values, the mass and thickness of the separately measured current collector (circular shape with a diameter of 16 mm) were subtracted to obtain the mass and thickness of the negative electrode mixture layer. The electrode density of the negative electrode was calculated from these values. In the case of the positive electrode, the electrode density was determined by the same method. [Preparation of lithium counter electrode cell] The negative electrode sheet was punched to 16 mm ⁇ , pressure-molded by a uniaxial press, and the density of the negative electrode mixture layer was adjusted to 1.4 g / cc to obtain a negative electrode.
  • the electrode density of the negative electrode was calculated as follows.
  • the mass and thickness of the negative electrode obtained by the above method are measured.
  • the mass and thickness of the negative electrode mixture layer were obtained by subtracting the mass and thickness of the collector foil punched to 16 mm ⁇ , which was separately measured, and the electrode density (negative electrode density) was calculated from the values.
  • a separator polypropylene microporous film impregnated with an electrolytic solution is formed by using the above-mentioned negative electrode and a 1.7 mm-thick metal lithium foil punched out to 17.5 mm ⁇ . It was sandwiched and laminated. At this time, the surface of the negative electrode mixture layer of the negative electrode was laminated so as to face the metallic lithium foil with the separator interposed therebetween. This was placed in a 2320 coin type cell and sealed with a caulking machine to obtain a test cell (lithium counter electrode cell).
  • CMC carboxymethyl cellulose
  • the slurry was coated on a copper foil having a thickness of 20 ⁇ m using a roll coater so as to have a basis weight of 6 mg / cm 2, and dried to obtain a negative electrode sheet.
  • the obtained negative electrode sheet was rolled to a density of 1.6 g / cm 3 to obtain a negative electrode sheet.
  • the thickness of the obtained negative electrode sheet was 60 to 70 um including the thickness of the copper foil.
  • the slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m using a roll coater to a thickness of 13.2 mg / cm 2 with a basis weight, and dried to obtain a positive electrode sheet.
  • the obtained positive electrode sheet was rolled to a density of 3.2 g / cm 3 to obtain a positive electrode sheet.
  • the thickness of the obtained positive electrode sheet was 60 to 70 ⁇ m including the thickness of the aluminum foil.
  • a positive electrode sheet having a constant capacity is used, and for the negative electrode sheet, a cell having a lithium counter electrode is used to measure the specific capacity of the negative electrode material in advance, and the negative electrode with respect to the capacity QC of the positive electrode sheet is used.
  • the thickness of the negative electrode coating slurry at the time of coating was finely adjusted so that the ratio of the capacity QA of the sheet was 1.2.
  • the electrolytic solution in the lithium counter electrode cell and the two-electrode cell is a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate in a volume ratio of 3: 5: 2, and vinylene carbonate (VC) is added to the solvent. It is a liquid obtained by mixing 1% by volume and 2% by volume of fluoroethylene carbonate (FEC), and further dissolving the electrolyte LiPF6 at a concentration of 1 mol / L.
  • FEC fluoroethylene carbonate
  • the test was conducted using a lithium counter electrode cell. First, discharge was performed from the rest voltage to 0.005 V in the CC (constant current: constant current) mode in which the magnitude of the current was 0.1 C.
  • 1C is the capacity of the sample electrode of this lithium counter electrode cell calculated from the theoretical specific capacity (silicon: 4200 mAh / g, graphite particles: 372 mAh / g, carbonaceous material: 0 mAh / g). It is the magnitude of a constant current that can be discharged or charged in one hour. After reaching 0.005V, the discharge was switched to the CV (constant voltage: constant voltage) mode, and the charge was performed with the cutoff current set to 0.005C. The specific volume at this time is defined as the initial insertion specific volume.
  • the specific volume at this time is defined as the initial desorption specific volume.
  • the specific capacity is a value obtained by dividing the capacity of the battery measured at the time of discharging or charging by the mass of the negative electrode material according to the present invention used in the sample electrode of the lithium counter electrode cell.
  • the test was conducted in a constant temperature bath set at 25 ° C.
  • the initial Coulomb efficiency was defined by the following equation.
  • Charging / discharging (CC-CV (1/20 cut) was repeated twice at 25 ° C. 0.2C. After that, the charging / discharging cycle characteristics were measured at 1C. 1C here is 1C. This is the magnitude of the constant current required to change the two-electrode cell from a fully charged state to a fully discharged state in one hour.
  • Charging is a CC mode and cutoff current with a current of 1C with an upper limit voltage of 4.2V.
  • the discharge was performed in the CV mode at 0.05 C.
  • the discharge was performed in the CC mode with a current of 1 C with the lower limit voltage set to 2.8 V.
  • the charge / discharge operation after aging was repeated for 100 cycles as the first cycle, and then The discharge capacity retention rate after 100 cycles defined by the equation was calculated.
  • Discharge capacity retention rate (%) after 100 cycles 100 x (discharge capacity in the 100th cycle) / (discharge capacity in the 1st cycle)
  • the following shows the preparation method, the source, and the physical property values of the carbon-silicon complex raw material (carbonaceous material, graphite particles).
  • Carbonaceous material ⁇ Carbonaceous materials 1-11, 13, 16-18> Activated carbon fibers having an average diameter of 15 ⁇ m were crushed using a jet mill or a wonder blender to obtain carbonaceous materials 1 to 11, 13, 16 to 18 having different cylindrical shapes.
  • Table 1 shows the physical characteristics of carbonaceous materials.
  • ⁇ Carbonaceous materials 12, 14, 15> Activated carbon particles having a Dv50 of 7 ⁇ m were used as carbonaceous materials 12, 14, and 15.
  • Table 1 shows the physical characteristics of carbonaceous materials.
  • Table 1 shows the physical characteristics of carbonaceous materials.
  • Table 1 shows the carbonaceous materials shown in Table 2 at a set temperature of 400 ° C., a pressure of 760 torr, and a flow rate of 100 sccm in a tube furnace having a gas flow containing 1.3% by volume of monosilane mixed with argon nitrogen gas. Time treatment was performed to precipitate silicon on the surface of the carbonaceous material and in the pores to obtain a carbon-silicon composite.
  • Table 2 shows the material property values of the obtained carbon-silicon complex. After mixing, graphite particles 1 were mixed with the carbon-silicon composite so that the silicon concentration was 5.6% by mass when the negative electrode active material was 100% by mass to obtain a negative electrode active material. The battery characteristics are shown in Table 2.
  • FIG. 1 is a scanning electron microscope (SEM) photograph of the carbon-silicon composite produced in Example 1.
  • SEM scanning electron microscope
  • Table 2 shows the carbonaceous materials shown in Table 2 at a set temperature of 400 ° C., a pressure of 760 torr, and a flow rate of 100 sccm in a tube furnace having a gas flow containing 1.3% by volume of monosilane mixed with argon nitrogen gas.
  • the carbon-silicon composite was obtained by precipitating silicon on the surface of the carbonaceous material and in the pores.
  • Table 2 shows the material property values of the obtained carbon-silicon complex.
  • a dry-blended mixed powder of nanosilicon and petroleum pitch was put into a raw material hopper of a twin-screw extruder TEM-18SS (manufactured by Toshiba Machine Co., Ltd.).
  • the kneading conditions in the twin-screw extruder were a temperature of 250 ° C., a screw rotation speed of 700 rpm, and a mixed powder charging speed of 2 kg / h.
  • the work was carried out while circulating nitrogen gas at 1.5 L / min.
  • nanosilicon-containing particles After kneading with a twin-screw extruder, it was coarsely crushed with a hammer and then finely pulverized with a jet mill STJ-200 (manufactured by Seishin Enterprise Co., Ltd.) to obtain nanosilicon-containing particles.
  • the nanosilicon content in the nanosilicon-containing particles was 36% by mass, and the 50% diameter (D50) in the volume-based cumulative distribution was 10 ⁇ m.
  • Petroleum-based coke was coarsely crushed with a hammer and crushed with a bantam mill (Made by Hosokawa Micron, mesh 1.5 mm). This was pulverized with a jet mill STJ-200 (manufactured by Seishin Enterprise Co., Ltd.) under the conditions of a pulverization pressure of 0.6 MPa and a pusher pressure of 0.7 MPa. The crushed material was heat-treated in an Achison furnace at 3000 ° C. to obtain graphite particles 2.
  • An alumina saggar (90 mm x 90 mm x 50 mm) is filled with 80 g of mixed powder, set in the center of a tube furnace (inner diameter 130 mm, room temperature 500 mm), and heated to 1050 ° C at 150 ° C / h under nitrogen flow. After holding for 1 h, the temperature was lowered to room temperature at 150 ° C./h. After recovering the heat-treated product from the alumina saggar, the heat-treated product was crushed with a bantam mill (Hosokawa Micron Co., Ltd., mesh 0.5 mm), and coarse powder was cut using a stainless steel sieve having an opening of 45 ⁇ m to obtain a carbon-silicon composite. Table 2 shows the material property values. After mixing, graphite particles 1 were mixed with the carbon-silicon composite so that the silicon concentration was 5.6% by mass when the negative electrode active material was 100% by mass to obtain a negative electrode active material. The battery characteristics are shown in Table 2.
  • the characteristics of the batteries using the complexes of Examples 1 to 11 are excellent in cycle characteristics, but the characteristics of the batteries using the complexes of Comparative Examples 1 to 9 are inferior in cycle characteristics.
  • Comparative Examples 1, 3 and 4 a particulate carbonaceous material was used as the carbonaceous material, and since the micropore ratio was low, it is considered that the adsorption performance was inferior and the cycle characteristics were inferior.
  • Comparative Example 2 since the pore volume and the micropore ratio were small, silicon was generated in the vicinity of the surface, and it is considered that the cycle characteristics were inferior due to the increase in ISi / IG.
  • Comparative Example 5 since the silicon CVD processing time was lengthened, the amount of surface-precipitated Si increased, and it is considered that the cycle characteristics were inferior.
  • Comparative Example 6 since columnar porous carbon having a long average length was used as the carbonaceous material, the average length of the complex and Dv90 were large, the electrode coatability was poor, and the expansion and contraction was large. Therefore, it is considered that the cycle characteristics were low. In Comparative Example 7, it is considered that the adsorption performance was inferior, the micropore ratio was small, and the total ratio of the mesopores and the macropores was large, so that coarse silicon was produced and the cycle characteristics were inferior. In Comparative Example 8, since CNT was used as the carbonaceous material, the average diameter was small and the pore volume was small, so that sufficient silicon could not be contained in the pores, and a large amount of silicon was deposited on the surface. It is probable that the result was inferior in characteristics. Comparative Example 9 is a complex containing graphite as a carbonaceous material, and it is considered that the cycle characteristics are inferior because the 111-plane peak half width of Si is small, that is, the crystallinity of silicon is high.

Abstract

This carbon–silicon composite includes a carbonaceous material and silicon, wherein: a carbon–silicon composite with a cylindrical shape is included; the average diameter is at least 5 μm and no greater than 30 μm; the average length is at least 1 μm and less than 50 μm; in a DTA curve produced by DTA measurement in air, an exothermic peak is present at 800°C or below; in a Raman spectrum, a peak produced by silicon is present at 450–495 cm−1; the ratio ISi/IG of the intensity ISi of the peak produced by silicon and the intensity IG of a G band is 0.35 or less; and the half-width of a peak produced by the 111 plane of silicon in an XRD pattern utilizing the Cu–Kα line is at least 3.0 degrees. This carbon–silicon composite enables manufacturing of products in a short period of time, which leads to conservation of silicon sources. Moreover, when this carbon–silicon composite is used as a negative electrode material in a lithium ion secondary battery, the battery will have excellent cycle characteristics.

Description

炭素-シリコン複合体Carbon-silicon complex
 本発明は、円柱状の形状を有する炭素-シリコン複合体(以下、複合体ともいう)、該炭素-シリコン複合体を含む負極活物質、該負極活物質を含む負極合剤層、および該負極合剤層を含むリチウムイオン二次電池に関する。 The present invention relates to a carbon-silicon composite having a columnar shape (hereinafter, also referred to as a composite), a negative electrode active material containing the carbon-silicon composite, a negative electrode mixture layer containing the negative electrode active material, and the negative electrode. The present invention relates to a lithium ion secondary battery including a mixture layer.
 スマートホンやタブレットPCなどのIT機器、掃除機、電動工具、電気自転車、ドローン、自動車に使用される二次電池には、高容量および高出力を兼ね備えた負極活物質が必要とされる。負極活物質として、現在使用されている黒鉛(理論比容量:372mAh/g)よりも高い理論比容量を有するシリコン(理論比容量:4200mAh/g)が注目されている。 Secondary batteries used in IT equipment such as smart phones and tablet PCs, vacuum cleaners, electric tools, electric bicycles, drones, and automobiles require negative electrode active materials that have both high capacity and high output. As a negative electrode active material, silicon (theoretical specific capacity: 4200 mAh / g) having a higher theoretical specific capacity than graphite (theoretical specific capacity: 372 mAh / g) currently used is attracting attention.
 しかし、シリコン(Si)は電気化学的なリチウム挿入・脱離に伴って、最大で約3~4倍まで体積が膨張・収縮する。これによりシリコン粒子が自壊したり、電極から剥離したりするため、シリコンを用いたリチウムイオン二次電池はサイクル特性が著しく低いことが知られている。このため、シリコンを単に黒鉛から置き換えて使うのではなく、負極活物質全体として膨張・収縮の程度を低減させた構造にして用いることが、現在盛んに研究されている。中でも炭素質材料との複合化が多く試みられている。 However, the volume of silicon (Si) expands and contracts up to about 3 to 4 times with the electrochemical insertion and desorption of lithium. It is known that a lithium ion secondary battery using silicon has extremely low cycle characteristics because the silicon particles self-destruct or peel off from the electrode due to this. For this reason, it is currently being actively studied to use silicon as a whole with a structure in which the degree of expansion and contraction is reduced, instead of simply replacing it with graphite. Among them, many attempts have been made to combine with carbonaceous materials.
 高容量かつ長寿命な負極活物質としては、高温でシランガスに多孔質炭素粒子を曝露することによって、多孔質炭素の細孔内にケイ素を生成させる方法(特表2018-534720;特許文献1)によって得られた、シリコン-カーボン複合材料が開示されている。 As a negative electrode active material having a high capacity and a long life, a method of producing silicon in the pores of the porous carbon by exposing the porous carbon particles to silane gas at a high temperature (Special Table 2018-534720; Patent Document 1). The silicon-carbon composite material obtained by is disclosed.
特表2018-534720号公報Special Table 2018-534720 Gazette 特許出願公開2012-119079号公報Publication of Patent Application No. 2012-11079 特許出願公表2010-525549号公報Publication of patent application 2010-525549
 特許文献1においては、多孔質炭素は多くの場合粒子状である。好ましい粒子の形状については議論されていない。また細孔分布については、マイクロ孔の割合が少ないので所望のシリコンを含浸させるのに、長時間を要することが予想される。特許文献2や3の負極活物質中の炭素繊維には細孔は存在していないため、シリコンの膨張・収縮に対する耐久性に劣ることが予想される。 In Patent Document 1, porous carbon is often in the form of particles. The preferred particle shape has not been discussed. Regarding the pore distribution, since the proportion of micropores is small, it is expected that it will take a long time to impregnate the desired silicon. Since the carbon fibers in the negative electrode active materials of Patent Documents 2 and 3 do not have pores, it is expected that the durability against expansion and contraction of silicon will be inferior.
 本発明では、炭素-シリコン複合体製造時のシリコン原料の節約と、リチウムイオン二次電池におけるサイクル特性の改善が、解決しようとする課題である。 In the present invention, the problems to be solved are the saving of the silicon raw material at the time of manufacturing the carbon-silicon composite and the improvement of the cycle characteristics in the lithium ion secondary battery.
 本発明では、円柱状の炭素質材料を用いて、シリコン含有ガスによるCVDを行い、炭素質材料の表面および細孔内にシリコンを析出させた、炭素-シリコン複合体を調製することにより、課題を解決した。 In the present invention, a carbon-silicon composite is prepared by performing CVD with a silicon-containing gas using a columnar carbonaceous material and precipitating silicon on the surface and pores of the carbonaceous material. Was solved.
 すなわち、本発明は以下の構成[1]~[13]を含む。
[1] 炭素質材料とシリコンとを含む、炭素-シリコン複合体であって、
 円柱状の形状を有する炭素-シリコン複合体を含み、
 平均直径は5μm以上、30μm以下であり、
 平均長さは1μm以上、50μm未満であり、
 空気中におけるDTA測定によるDTA曲線において、発熱ピークが800℃以下に存在し、
 ラマンスペクトルにおいて、Siによるピークが450~495cm-1に存在し、前記Siによるピークの強度ISiとGバンドの強度IGの比、ISi/IGが0.35以下であり、
 Cu-Kα線を用いたXRDパターンにおける、Siの111面によるピークの半値幅が3.0deg.以上である、
 炭素-シリコン複合体。
[2] 前記炭素質材料は、吸着性能試験において、前記炭素質材料の重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する、[1]に記載の炭素-シリコン複合体。
[3] 体積基準の累積粒度分布における90%粒子径DV90が50μm以下である、[1]または[2]に記載の炭素-シリコン複合体。
[4] 炭素質材料とシリコンを含む、炭素-シリコン複合体であって、
 ラマンスペクトルにおいて、Siによるピークが450~495cm-1に存在し、前記Siによるピークの強度ISiとGバンドの強度IGの比、ISi/IGが0.35以下であり、
 Cu-Kα線を用いたXRDパターンにおける、Siの111面によるピークの半値幅が3.0deg.以上であり、
 体積基準の累積粒度分布における90%粒子径DV90が50μm以下であり、
 前記炭素質材料は、吸着性能試験において前記炭素質材料の重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する、
 炭素-シリコン複合体。
[5] 体積基準の累積粒度分布における10%粒子径DV10が2.0μm以上である、[1]~[4]のいずれか1項に記載の炭素-シリコン複合体。
[6] BET比表面積が50m2/g以下である、[1]~[5]のいずれかに記載の炭素-シリコン複合体。
[7] 酸素含有率が10質量%以下である、[1]~[6]のいずれかに記載の炭素-シリコン複合体。
[8] シリコン含有率が10質量%以上、70質量%未満である、[1]~[7]のいずれか1項に記載の炭素-シリコン複合体。
[9] 前記炭素質材料は、細孔容積が0.30cm3/g以上であり、全細孔の容積に占めるマイクロ孔の容積の比率が90%以上であり、全細孔の容積に占めるメソ孔とマクロ孔との容積の和の比率が10%未満であるという細孔分布を有する、[1]~[8]のいずれかに記載の炭素-シリコン複合体。
[10] 前記炭素質材料は、ラマンスペクトルにおいてR値が0.30以上、1.30以下である、[1]~[9]のいずれかに記載の炭素-シリコン複合体。
[11] [1]~[10]のいずれかに記載の炭素-シリコン複合体を含む負極活物質。
[12] [11]に記載の負極活物質を含む負極合剤層。
[13] [12]に記載の負極合剤層を含む、リチウムイオン二次電池
 また、本発明は以下の構成[1a]~[14a]も含む。
[1a]
 炭素質材料とシリコンを含む、炭素-シリコン複合体であって、
 円柱状の形状を持ち、
 平均直径は5μm以上、30μm以下であり、
 平均長さは1μm以上、50μm未満であり、
 空気中におけるDTA測定によるDTA曲線において、発熱ピークが800℃以下に存在し、
 ラマンスペクトルにおいて、
 Siによるピークが450~495cm-1に存在し、
 前記Siによるピークの強度ISiとGバンドの強度IGの比ISi/IGが0.35以下であり、
 Cu-Kα線を用いたXRDパターンにおける、Siの111面によるピークの半値幅が3.0deg.以上である、
 炭素-シリコン複合体。
[2a]
 BET比表面積が50m2/g以下である、前項[1a]に記載の炭素-シリコン複合体。
[3a]
 体積基準の累積粒度分布における10%粒子径(DV10)が3.0μm以上、90%粒子径(DV90)が50μm以下である、前項[1a]または[2a]に記載の炭素-シリコン複合体。
[4a]
 酸素含有率が10質量%以下である、前項[1a]~[3a]のいずれか1項に記載の炭素-シリコン複合体。
[5a]
 シリコン含有率が10質量%以上、70質量%未満である、前項[1a]~[4a]のいずれか1項に記載の炭素-シリコン複合体。
[6a]
 前記炭素質材料は、吸着性能試験において前記炭素質材料の重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する、前項[1a]~[5a]のいずれか1項に記載の炭素-シリコン複合体。
[7a]
 前記炭素質材料は、細孔容積が0.30cm3/g以上であり、平均細孔径が0.40~5.0nmであり、全細孔に占めるマイクロ孔の比率が92%以上であり、メソ孔とマクロ孔の和の比率が8%未満であるという細孔分布を有する、前項[1a]~[6a]のいずれか1項に記載の炭素-シリコン複合体。
[8a]
 前記炭素質材料は、ラマンスペクトルにおいてR値が0.3以上、1.3以下である、前項[1a]~[7a]のいずれか1項に記載の炭素-シリコン複合体。
[9a]
 以下の工程(A)および(B)を含む炭素-シリコン複合体の製造方法。
工程(A):平均直径が5μm以上、30μm以下であり、平均長さが1μm以上、50μm未満である円柱状の形状であり、空気中におけるDTA測定によるDTA曲線において発熱ピークが800℃以下に存在する炭素質材料を準備する工程
工程(B):加熱した前記炭素質材料にシリコン含有ガスを作用させて、炭素質材料の細孔内および表面にシリコンを析出させる工程
[10a]
 前記炭素質材料は、吸着性能試験において前記炭素質材料の重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する、前項[9a]に記載の炭素-シリコン複合体の製造方法。
[11a]
 前記炭素質材料は、細孔容積が0.3cm3/g以上であり、平均細孔径が0.4~5.0nmであり、全細孔に占めるマイクロ孔の比率が92%以上であり、メソ孔とマクロ孔の和の比率が8%未満であるという細孔分布を有する、前項[9a]または[10a]に記載の炭素-シリコン複合体の製造方法。
[12a]
 前記炭素質材料は、ラマンスペクトルにおいてR値が0.3以上、1.3以下である、請求項[9a]~[11a]のいずれか1項に記載の炭素-シリコン複合体の製造方法。
[13a]
 前項[1a]~[8a]のいずれか1項に記載の炭素-シリコン複合体および黒鉛粒子を含む、電極合剤層。
[14a]
 前項[13a]に記載の電極合剤層を含む、リチウムイオン二次電池。
That is, the present invention includes the following configurations [1] to [13].
[1] A carbon-silicon complex containing a carbonaceous material and silicon.
Contains a carbon-silicon complex with a columnar shape,
The average diameter is 5 μm or more and 30 μm or less.
The average length is 1 μm or more and less than 50 μm.
In the DTA curve measured by DTA in air, the exothermic peak exists below 800 ° C.
In the Raman spectrum, the peak due to Si exists at 450 to 495 cm -1 , and the ratio of the intensity ISi of the peak due to Si to the intensity IG of the G band, ISi / IG is 0.35 or less.
In the XRD pattern using Cu-Kα rays, the half width of the peak due to the 111 planes of Si is 3.0 deg. That's it,
Carbon-silicon complex.
[2] The adsorption performance of the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test. 1] The carbon-silicon composite.
[3] The carbon-silicon complex according to [1] or [2], wherein the 90% particle size DV90 in the volume-based cumulative particle size distribution is 50 μm or less.
[4] A carbon-silicon complex containing a carbonaceous material and silicon.
In the Raman spectrum, the peak due to Si exists at 450 to 495 cm -1 , and the ratio of the intensity ISi of the peak due to Si to the intensity IG of the G band, ISi / IG is 0.35 or less.
In the XRD pattern using Cu-Kα rays, the half width of the peak due to the 111 planes of Si is 3.0 deg. That's all
The 90% particle size DV90 in the volume-based cumulative particle size distribution is 50 μm or less.
The adsorption performance of the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test.
Carbon-silicon complex.
[5] The carbon-silicon complex according to any one of [1] to [4], wherein the 10% particle size DV10 in the volume-based cumulative particle size distribution is 2.0 μm or more.
[6] The carbon-silicon complex according to any one of [1] to [5], which has a BET specific surface area of 50 m 2 / g or less.
[7] The carbon-silicon complex according to any one of [1] to [6], which has an oxygen content of 10% by mass or less.
[8] The carbon-silicon complex according to any one of [1] to [7], wherein the silicon content is 10% by mass or more and less than 70% by mass.
[9] The carbonaceous material has a pore volume of 0.30 cm 3 / g or more, a ratio of the volume of micropores to the volume of all pores is 90% or more, and occupies the volume of all pores. The carbon-silicon composite according to any one of [1] to [8], which has a pore distribution in which the ratio of the sum of the volumes of the meso pores and the macro pores is less than 10%.
[10] The carbonaceous composite according to any one of [1] to [9], wherein the carbonaceous material has an R value of 0.30 or more and 1.30 or less in the Raman spectrum.
[11] The negative electrode active material containing the carbon-silicon complex according to any one of [1] to [10].
[12] A negative electrode mixture layer containing the negative electrode active material according to [11].
[13] A lithium ion secondary battery including the negative electrode mixture layer according to [12] The present invention also includes the following configurations [1a] to [14a].
[1a]
A carbon-silicon complex containing carbonaceous materials and silicon,
It has a columnar shape and has a columnar shape.
The average diameter is 5 μm or more and 30 μm or less.
The average length is 1 μm or more and less than 50 μm.
In the DTA curve measured by DTA in air, the exothermic peak exists below 800 ° C.
In the Raman spectrum
The peak due to Si exists at 450 to 495 cm-1,
The ratio ISi / IG of the intensity ISi of the peak due to Si and the intensity IG of the G band is 0.35 or less.
In the XRD pattern using Cu-Kα rays, the half width of the peak due to the 111 planes of Si is 3.0 deg. That's it,
Carbon-silicon complex.
[2a]
The carbon-silicon complex according to the preceding item [1a], which has a BET specific surface area of 50 m 2 / g or less.
[3a]
The carbon-silicon complex according to the preceding item [1a] or [2a], wherein the 10% particle size (DV10) is 3.0 μm or more and the 90% particle size (DV90) is 50 μm or less in the volume-based cumulative particle size distribution.
[4a]
The carbon-silicon complex according to any one of the above items [1a] to [3a], which has an oxygen content of 10% by mass or less.
[5a]
The carbon-silicon complex according to any one of the above items [1a] to [4a], wherein the silicon content is 10% by mass or more and less than 70% by mass.
[6a]
The carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test. The carbon-silicon composite according to any one of [5a].
[7a]
The carbonaceous material has a pore volume of 0.30 cm 3 / g or more, an average pore diameter of 0.40 to 5.0 nm, and a ratio of micropores to all pores of 92% or more. The carbon-silicon complex according to any one of the preceding items [1a] to [6a], which has a pore distribution in which the ratio of the sum of the meso pores and the macro pores is less than 8%.
[8a]
The carbonaceous material according to any one of the above items [1a] to [7a], wherein the carbonaceous material has an R value of 0.3 or more and 1.3 or less in the Raman spectrum.
[9a]
A method for producing a carbon-silicon complex, which comprises the following steps (A) and (B).
Step (A): A columnar shape having an average diameter of 5 μm or more and 30 μm or less, an average length of 1 μm or more and less than 50 μm, and an exothermic peak of 800 ° C. or less in the DTA curve measured by DTA in air. Step of preparing the existing carbonaceous material Step (B): A step of allowing a silicon-containing gas to act on the heated carbonaceous material to precipitate silicon in the pores and on the surface of the carbonaceous material [10a].
According to the above item [9a], the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test. The method for producing a carbon-silicon composite according to the above.
[11a]
The carbonaceous material has a pore volume of 0.3 cm 3 / g or more, an average pore diameter of 0.4 to 5.0 nm, and a ratio of micropores to all pores of 92% or more. The method for producing a carbon-silicon composite according to the above item [9a] or [10a], which has a pore distribution in which the ratio of the sum of the mesopores and the macropores is less than 8%.
[12a]
The method for producing a carbon-silicon composite according to any one of claims [9a] to [11a], wherein the carbonaceous material has an R value of 0.3 or more and 1.3 or less in the Raman spectrum.
[13a]
An electrode mixture layer containing the carbon-silicon complex and graphite particles according to any one of the above items [1a] to [8a].
[14a]
A lithium ion secondary battery including the electrode mixture layer according to the preceding item [13a].
 本発明の炭素-シリコン複合体は、製品を短時間で製造できるため、シリコン源の節約につながる。また、リチウムイオン二次電池の負極活物質として用いた際、サイクル特性に優れる。 The carbon-silicon complex of the present invention can produce a product in a short time, which leads to saving of a silicon source. Further, when used as a negative electrode active material of a lithium ion secondary battery, it has excellent cycle characteristics.
図1は、実施例1で製造された炭素-シリコン複合体の走査型電子顕微鏡(SEM)写真である。FIG. 1 is a scanning electron microscope (SEM) photograph of the carbon-silicon composite produced in Example 1.
 以下、本発明の実施形態について説明する。
 [1]炭素-シリコン複合体
 本発明に係る炭素-シリコン複合体は、炭素質材料と、その表面および細孔内に析出したシリコンとからなる。
Hereinafter, embodiments of the present invention will be described.
[1] Carbon-Silicon Composite The carbon-silicon composite according to the present invention is composed of a carbonaceous material and silicon deposited on its surface and in pores.
 前記複合体は円柱状の形状を有する複合体を含むことが好ましい。本明細書における『円柱状』は、底面が破断面になっている円柱または楕円柱の形状を含む。図1に、円柱状の形状を有する本発明の炭素-シリコン複合体の一例を示す。このような形状は、SEMによって確認することができる。複合体の平均直径は5μm以上が好ましく、7μm以上がより好ましく、10μm以上がさらに好ましい。複合体の平均直径が5μm以上であれば、電解液との副反応を低減できるからである。 The complex preferably contains a complex having a columnar shape. As used herein, the term "cylindrical" includes the shape of a cylinder or elliptical column having a fractured surface at the bottom surface. FIG. 1 shows an example of the carbon-silicon composite of the present invention having a columnar shape. Such a shape can be confirmed by SEM. The average diameter of the complex is preferably 5 μm or more, more preferably 7 μm or more, still more preferably 10 μm or more. This is because if the average diameter of the complex is 5 μm or more, side reactions with the electrolytic solution can be reduced.
 複合体の平均直径は30μm以下が好ましく、25μm以下がより好ましく、20μm以下がさらに好ましい。複合体の平均直径が30μm以下であれば、塗工性のよい電極スラリーを調製できるためである。 The average diameter of the complex is preferably 30 μm or less, more preferably 25 μm or less, and even more preferably 20 μm or less. This is because if the average diameter of the complex is 30 μm or less, an electrode slurry having good coatability can be prepared.
 本明細書において前記複合体の平均直径は、次のように定義する。走査型電子顕微鏡(SEM)による像において、前記複合体の粒子を、破断面による底面と側面とからなる、破断された直円柱形とみなす。直円柱の高さ方向がSEM像面に略平行すると認められる粒子について平均直径を測定する。SEM像において、その粒子の直円柱の高さ方向に対して90°の方向に引いた直線と、その粒子の側面によって形成される2本の輪郭線とが交わる2点をPおよびQとした際の、線分PQの長さを、1粒子につき異なる10か所で測定し、その平均値をその複合体粒子の直径とする。これを10個の粒子について測定し、これらの直径を平均した値を、複合体粒子の平均直径とする。 In the present specification, the average diameter of the complex is defined as follows. In the image taken by a scanning electron microscope (SEM), the particles of the complex are regarded as a broken right-sided cylinder consisting of a bottom surface and a side surface formed by a fracture surface. The average diameter is measured for particles that are found to be substantially parallel to the SEM image plane in the height direction of the right cylinder. In the SEM image, two points where the straight line drawn in the direction of 90 ° with respect to the height direction of the right cylinder of the particle and the two contour lines formed by the side surfaces of the particle intersect are defined as P and Q. The length of the line segment PQ is measured at 10 different points per particle, and the average value is taken as the diameter of the composite particle. This is measured for 10 particles, and the value obtained by averaging these diameters is taken as the average diameter of the complex particles.
 前記複合体の平均長さは1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。複合体の平均長さが1μm以上であれば、電解液との副反応を低減できるからである。 The average length of the complex is preferably 1 μm or more, more preferably 3 μm or more, and even more preferably 5 μm or more. This is because if the average length of the complex is 1 μm or more, side reactions with the electrolytic solution can be reduced.
 前記複合体の平均長さは50μm未満が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。複合体の平均長さが50μm未満であれば、塗工性のよい電極スラリーを調製できるため、また、電極の密度を上げやすいからである。 The average length of the complex is preferably less than 50 μm, more preferably 40 μm or less, still more preferably 30 μm or less. This is because if the average length of the complex is less than 50 μm, an electrode slurry having good coatability can be prepared, and the density of the electrodes can be easily increased.
 本明細書において複合体の平均長さは、次のように定義する。走査型電子顕微鏡(SEM)による像において、直円柱の高さ方向がSEM像面に略平行すると認められる粒子について平均長さを測定する。SEM像において、その粒子の側面によって形成される2本の輪郭線の長さを測定し、その2つ長さの平均値を、その複合体粒子の長さとする。これを10粒子について測定し、これらの長さを平均した値を複合体粒子の平均長さとする。 In the present specification, the average length of the complex is defined as follows. In the image obtained by a scanning electron microscope (SEM), the average length is measured for the particles whose height direction of the right cylinder is recognized to be substantially parallel to the SEM image plane. In the SEM image, the lengths of the two contour lines formed by the side surfaces of the particles are measured, and the average value of the two lengths is taken as the length of the complex particle. This is measured for 10 particles, and the value obtained by averaging these lengths is taken as the average length of the complex particles.
 上記複合体の平均直径および平均長さは、SEMによって観察された画像を、例えばImage J(アメリカ国立衛生研究所製)などの画像解析ソフトで解析することによって測定可能である。 The average diameter and average length of the complex can be measured by analyzing the image observed by SEM with image analysis software such as ImageJ (manufactured by the National Institutes of Health).
 本発明に係る炭素-シリコン複合体は、空気中におけるDTA測定によるDTA曲線において、発熱ピークが800℃以下に現れることが好ましい。発熱ピークが現れる温度が800℃以下であれば、炭素質材料は結晶が発達しておらず、シリコンが担持されやすい表面を有しているからである。この観点から、DTA測定における発熱ピークは750℃以下に現れることがより好ましく、700℃以下に現れることがさらに好ましい。 In the carbon-silicon composite according to the present invention, it is preferable that the exothermic peak appears at 800 ° C. or lower in the DTA curve measured by DTA in air. This is because when the temperature at which the exothermic peak appears is 800 ° C. or lower, the carbonaceous material has no crystal and has a surface on which silicon is easily supported. From this viewpoint, it is more preferable that the exothermic peak in the DTA measurement appears at 750 ° C. or lower, and further preferably at 700 ° C. or lower.
 DTA測定は、例えば当該技術分野で知られているTG-DTA装置によって行うことができる。
 本発明に係る炭素-シリコン複合体は、ラマンスペクトルにおいてシリコン(Si)に起因するピークが450~495cm-1に存在する。なお、シリコンに起因する450~495cm-1に現れるピークの強度を、ISiと記す。通常、結晶性のシリコンは520cm-1付近にピークが現れることから450~495cm-1にピークが存在する場合、前記炭素-シリコン複合体はアモルファス状のシリコンを有することを示す。シリコンがアモルファスであると、充放電時の膨張・収縮が比較的等方的に行われるので、サイクル特性を高くすることができる。
The DTA measurement can be performed by, for example, a TG-DTA device known in the art.
The carbon-silicon complex according to the present invention has a peak due to silicon (Si) in the Raman spectrum at 450 to 495 cm -1 . The intensity of the peak appearing at 450 to 495 cm -1 due to silicon is referred to as ISi. Normally, crystalline silicon when there is a peak in the 450 ~ 495cm -1 since the peak appears in the vicinity of 520 cm -1, the carbon - silicon complex indicates that it has an amorphous silicon. When silicon is amorphous, expansion and contraction during charging and discharging are performed relatively isotropically, so that the cycle characteristics can be improved.
 本発明に係る炭素-シリコン複合体は、ラマンスペクトルによる前記シリコンに起因するピークの強度ISiとGバンドの強度IGの比ISi/IGが0.35以下である。ラマンスペクトルにおいてシリコンのピークが現れていることは、炭素-シリコン複合体の表面あるいは表面近傍の細孔にシリコンが析出していることを示している。この値が0.35以下であれば、表面に析出しているシリコンが少ないことや、複合体表面近くの炭素細孔内シリコン量が少ないことを示す。このことは、電解液と直接接触するシリコンの割合が少なくなる点で、サイクル特性の向上につながる。ISi/IGは0.30以下であることが好ましく、0.25以下であることがより好ましい。 The carbon-silicon composite according to the present invention has a ratio ISi / IG of the intensity ISi of the peak due to the silicon and the intensity IG of the G band according to the Raman spectrum of 0.35 or less. The appearance of the silicon peak in the Raman spectrum indicates that silicon is precipitated in the pores on or near the surface of the carbon-silicon complex. When this value is 0.35 or less, it indicates that the amount of silicon deposited on the surface is small and the amount of silicon in the carbon pores near the surface of the complex is small. This leads to an improvement in cycle characteristics in that the proportion of silicon that comes into direct contact with the electrolytic solution is reduced. The ISi / IG is preferably 0.30 or less, more preferably 0.25 or less.
 ピークの強度とは、ベースラインからピークトップまでの高さのことである。
 ラマンスペクトルにおけるGバンドは、炭素質材料を測定したときに得られる1600cm-1付近に現れるピークのことであり、Dバンドは同じく炭素質材料を測定したときに得られる1350cm-1付近のピークのことである。
The intensity of the peak is the height from the baseline to the peak top.
The G band in the Raman spectrum is the peak appearing near 1600 cm -1 obtained when the carbonaceous material is measured, and the D band is the peak near 1350 cm -1 obtained when the carbonaceous material is also measured. That is.
 本発明に係る炭素-シリコン複合体は、Cu-Kα線を用いた粉末XRD測定によるXRDパターンにおいて、Siの111面のピークの半値幅が3.0deg.以上である。Siの111面のピークの半値幅が3.0deg.以上であることにより、結晶子の大きさが小さいことになり、充放電に伴うシリコン領域の破壊の抑制につながる。同様の観点から、前記半値幅は4.0deg.以上であることが好ましく、5.0deg.以上であることがより好ましい。 The carbon-silicon composite according to the present invention has a half-value width of the peak on the 111th surface of Si of 3.0 deg in the XRD pattern measured by powder XRD using Cu-Kα rays. That is all. The half width of the peak on the 111th surface of Si is 3.0 deg. As a result, the size of the crystallite becomes small, which leads to the suppression of the destruction of the silicon region due to charging / discharging. From the same viewpoint, the half width is 4.0 deg. The above is preferable, and 5.0 deg. The above is more preferable.
 本発明に係る炭素-シリコン複合体は、BET比表面積が50m2/g以下であることが好ましい。このようなBET比表面積を持つことで、電解液との副反応を低減できるからである。この観点から、前記BET比表面積は30m2/g以下であることがより好ましく、20m2/g以下であることがさらに好ましい。 The carbon-silicon complex according to the present invention preferably has a BET specific surface area of 50 m 2 / g or less. This is because having such a BET specific surface area can reduce side reactions with the electrolytic solution. From this viewpoint, the BET specific surface area is more preferably 30 m 2 / g or less, and further preferably 20 m 2 / g or less.
 BET比表面積は通常当該技術分野で知られる専用の測定装置によって測定される。吸着ガスとして通常は窒素が用いられるが、他にも二酸化炭素、アルゴン等が用いられることもある。 The BET specific surface area is usually measured by a dedicated measuring device known in the art. Nitrogen is usually used as the adsorbed gas, but carbon dioxide, argon, or the like may also be used.
 本発明に係る炭素-シリコン複合体は、体積基準の累積粒度分布における10%粒子径、DV10が2.0μm以上であることが好ましい。DV10が2.0μm以上であることにより、電解液との副反応を低減できるからである。さらに粉体がハンドリング性に優れ、塗工に適した粘度や密度のスラリーを調製しやすく、また電極とした際の密度が上げやすい。この観点から、DV10は3.5μm以上がより好ましく、4.0μm以上であることがさらに好ましい。 The carbon-silicon composite according to the present invention preferably has a 10% particle size and a DV10 of 2.0 μm or more in a volume-based cumulative particle size distribution. This is because when the DV10 is 2.0 μm or more, the side reaction with the electrolytic solution can be reduced. Further, the powder has excellent handleability, it is easy to prepare a slurry having a viscosity and a density suitable for coating, and it is easy to increase the density when it is used as an electrode. From this viewpoint, the DV10 is more preferably 3.5 μm or more, and further preferably 4.0 μm or more.
 本発明に係る炭素-シリコン複合体は、体積基準の累積粒度分布における90%粒子径、DV90が50μm以下であることが好ましい。DV90が50μm以下であることにより、1つ1つの粒子におけるリチウムの拡散長が短くなるためリチウムイオン電池のレート特性が優れるほか、スラリーとして集電体に塗工する際に筋引きや異常な凹凸を発生しない。この観点から、DV90は40μm以下がより好ましく、30μm以下出ることがさらに好ましい。これらの体積基準の累積粒度分布は、例えばレーザー回折式粒度分布計によって測定される。 The carbon-silicon composite according to the present invention preferably has a 90% particle size and a DV90 of 50 μm or less in a volume-based cumulative particle size distribution. When the DV90 is 50 μm or less, the diffusion length of lithium in each particle is shortened, so that the rate characteristics of the lithium ion battery are excellent, and when the slurry is applied to the current collector, streaks and abnormal unevenness are obtained. Does not occur. From this point of view, the DV90 is more preferably 40 μm or less, and further preferably 30 μm or less. These volume-based cumulative particle size distributions are measured, for example, by a laser diffraction type particle size distribution meter.
 前記シリコン-炭素複合体は、酸素含有率が10質量%以下であることが好ましい。前記複合体中の酸素含有率が10質量%以下であれば、リチウムイオン二次電池用の負極活物質の不可逆容量を減らすことができる。酸素含有率は、同様の観点から、9質量%以下であることが好ましく、8質量%以下であることがより好ましい。酸素含有量の下限としては、特に制限はないが、好ましくは0質量%、より好ましくは0.5質量%である。 The silicon-carbon complex preferably has an oxygen content of 10% by mass or less. When the oxygen content in the complex is 10% by mass or less, the irreversible capacity of the negative electrode active material for the lithium ion secondary battery can be reduced. From the same viewpoint, the oxygen content is preferably 9% by mass or less, more preferably 8% by mass or less. The lower limit of the oxygen content is not particularly limited, but is preferably 0% by mass, more preferably 0.5% by mass.
 前記シリコン-炭素複合体中の酸素含有率は、例えば酸素窒素同時測定装置によって測定することができる。
 本発明に係る炭素-シリコン複合体は、シリコンの含有率が10質量%以上、70質量%未満であることが好ましい。シリコンの含有率が10質量%以上であることにより、計算上は600mAh/g程度以上の、黒鉛の理論比容量を大きく超える比容量を得ることができる。この観点から、前記含有率は20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。
The oxygen content in the silicon-carbon complex can be measured by, for example, an oxygen-nitrogen simultaneous measuring device.
The carbon-silicon composite according to the present invention preferably has a silicon content of 10% by mass or more and less than 70% by mass. When the silicon content is 10% by mass or more, it is possible to obtain a specific volume of about 600 mAh / g or more in calculation, which greatly exceeds the theoretical specific volume of graphite. From this viewpoint, the content is more preferably 20% by mass or more, further preferably 30% by mass or more.
 本発明に係る炭素-シリコン複合体は、前記シリコンの含有率が70質量%未満であることにより、担体となっている炭素質材料によってその膨張・収縮による体積変化を吸収させることができる。この観点から、前記含有率は65質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。 Since the carbonaceous composite according to the present invention has a silicon content of less than 70% by mass, the carbonaceous material as a carrier can absorb the volume change due to expansion and contraction. From this viewpoint, the content is more preferably 65% by mass or less, and further preferably 60% by mass or less.
 前記炭素-シリコン複合体におけるシリコンの含有率は、前記複合体を蛍光X線分析装置におけるファンダメンタル・パラメータ法(FP法)等によって求めることができる。
 [2]炭素質材料
 本発明に係る炭素-シリコン複合体の原料となる炭素質材料は、多孔質炭素質材料であることが好ましい。多孔質炭素質材料とは、1g当たりの全細孔容積が0.2cm3/g、またはBET比表面積が200m2/g以上の炭素質材料のことである。そしてその吸着性能は、25℃のトルエン飽和蒸気圧を流量0.12L/minで圧力を大気圧+2.5(±0.1)kpa、重量1.000g(±0.001g)の条件において、試料重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達することが好ましい。このような吸着性能を持つ多孔質炭素質材料は、シランの吸着速度が速いため、例えばモノシラン含有ガスを用いたCVDにおいて、細孔内部に多くのシリコンを担持することができるため好ましい。同様の観点から185min以内に吸着性能が100%に達することがより好ましく、170min以内に吸着性能が100%に達することがさらに好ましい。
The silicon content in the carbon-silicon complex can be determined by the fundamental parameter method (FP method) or the like in the fluorescent X-ray analyzer.
[2] Carbonaceous Material The carbonaceous material used as a raw material for the carbon-silicon composite according to the present invention is preferably a porous carbonaceous material. The porous carbonaceous material is a carbonaceous material having a total pore volume of 0.2 cm 3 / g or a BET specific surface area of 200 m 2 / g or more per 1 g. The adsorption performance is such that the toluene saturated vapor pressure at 25 ° C. is at a flow rate of 0.12 L / min, the pressure is atmospheric pressure +2.5 (± 0.1) kpa, and the weight is 1.000 g (± 0.001 g). When the equilibrium adsorption performance of weight increment per sample weight is set to 100%, it is preferable that the adsorption performance reaches 100% within an elapsed time of 200 min. A porous carbonaceous material having such adsorption performance is preferable because the adsorption rate of silane is high and a large amount of silicon can be supported inside the pores, for example, in CVD using a monosilane-containing gas. From the same viewpoint, it is more preferable that the adsorption performance reaches 100% within 185 min, and it is further preferable that the adsorption performance reaches 100% within 170 min.
 本発明に係る炭素-シリコン複合体の原料となる炭素質材料は、1g当たりの全細孔容積が0.30cm3/g以上であることが好ましい。全細孔容積が0.30cm3/g以上であることにより、その内部にシリコンが析出した材料は、リチウム挿入・脱離に伴う複合体全体の膨張・収縮が低減される。この観点から、前記炭素質材料の有する全細孔容積は0.33cm3/g以上がより好ましく、0.35cm3/g以上がさらに好ましい。 The carbonaceous material used as the raw material of the carbon-silicon composite according to the present invention preferably has a total pore volume of 0.30 cm 3 / g or more per gram. When the total pore volume is 0.30 cm 3 / g or more, the expansion / contraction of the entire complex due to the insertion / desorption of lithium is reduced in the material in which silicon is precipitated. From this point of view, the total pore volume having a the carbonaceous material is more preferably 0.33 cm 3 / g or more, more preferably 0.35 cm 3 / g or more.
 本発明に係る炭素-シリコン複合体の原料となる炭素質材料は全細孔に占めるマイクロ孔の比率が90%以上、メソ孔およびマクロ孔の合計の比率が10%未満であることが好ましい。このような細孔分布であることにより、シランガスなどのシリコン含有ガスの吸着が迅速に進む。また、サイクル特性がより優れている、微細なシリコンが析出するので、サイクル特性に優れる負極活物質を作ることができる。この観点から、前記マイクロ孔の比率は93%以上がより好ましく、94%以上がさらにより好ましい。メソ孔およびマクロ孔の合計の比率は8%以下がより好ましく、5%以下がさらに好ましい。 The carbonaceous material used as the raw material of the carbon-silicon composite according to the present invention preferably has a ratio of micropores in all pores of 90% or more and a total ratio of mesopores and macropores of less than 10%. With such a pore distribution, the adsorption of silicon-containing gas such as silane gas proceeds rapidly. Further, since fine silicon having better cycle characteristics is deposited, a negative electrode active material having excellent cycle characteristics can be produced. From this viewpoint, the ratio of the micropores is more preferably 93% or more, and even more preferably 94% or more. The total ratio of the meso pores and the macro pores is more preferably 8% or less, further preferably 5% or less.
 マクロ孔とは、50nm以上100nm以下の細孔径を持つ細孔のことである。メソ孔とは、2nmより大きく50nmより小さい細孔径を持つ細孔のことである。マイクロ孔とは、2nm以下の細孔径を持つ細孔のことである。また、マイクロ孔の比率とはNLDFT法から算出されるマイクロ孔の細孔容積を、NLDFT法から算出される0~100nm以下の細孔容積で割った値に100をかけた値であり、次式で示される。 Macropores are pores with a pore diameter of 50 nm or more and 100 nm or less. Mesopores are pores with a pore diameter larger than 2 nm and smaller than 50 nm. Micropores are pores having a pore diameter of 2 nm or less. The micropore ratio is a value obtained by dividing the pore volume of micropores calculated by the NLDFT method by the pore volume of 0 to 100 nm or less calculated by the NLDFT method, and multiplying by 100. Indicated by the formula.
 マイクロ孔比率=
      100×(NLDFT法から算出されるマイクロ孔細孔容積)/(NLDFT法から算出される0~100nm以下まで細孔容積)
 メソ孔およびマクロ孔の合計の比率とはNLDFT法から算出される0~100nm以下の細孔容積から、NLDFT法から算出されるマイクロ孔細孔容積で引いた値を、NLDFT法から算出される0~100nm以下までの細孔容積で割った値に対して100をかけた値である。つまり次式の通りである。
Micropore ratio =
100 × (micropore pore volume calculated from NLDFT method) / (pore volume calculated from 0 to 100 nm or less calculated from NLDFT method)
The total ratio of mesopores and macropores is calculated from the NLDFT method by subtracting the value obtained by subtracting the micropore pore volume calculated from the NLDFT method from the pore volume of 0 to 100 nm or less calculated by the NLDFT method. It is a value obtained by multiplying the value divided by the pore volume from 0 to 100 nm or less by 100. That is, it is as follows.
 メソ孔およびマクロ孔の合計の比率=
 100×(NLDFT法から算出される0~100nm以下の細孔容積-NLDFT法から算出されるマイクロ孔細孔容積)/(NLDFT法から算出される0~100nm以下の細孔容積)
 前記炭素質材料の細孔分布を調べるには、例えばガス吸着法による吸脱着等温線を公知の方法で解析する。測定における吸着ガスは、本発明では窒素を用いる。
Ratio of total of meso and macro holes =
100 × (pore volume of 0 to 100 nm or less calculated by NLDFT method-micropore pore volume calculated by NLDFT method) / (pore volume of 0 to 100 nm or less calculated by NLDFT method)
To investigate the pore distribution of the carbonaceous material, for example, the adsorption isotherm by the gas adsorption method is analyzed by a known method. Nitrogen is used as the adsorbed gas in the measurement in the present invention.
 本発明に係る炭素-シリコン複合体の原料となる炭素質材料は、ラマンスペクトルによるDバンドの強度IDとGバンドの強度IGの比であるR値(ID/IG)が、0.30以上、1.30以下であることが好ましい。R値が0.30以上であると、この複合体を用いた負極は反応抵抗が十分に低いので、電池のレート特性の向上につながる。一方、R値が1.30以下であることは、炭素質層に欠陥が少ないことを意味する。R値が1.30以下であることにより、副反応が低減されるためクーロン効率が向上する。同様の観点からR値は、0.50以上であることがより好ましく、0.70以上であることがさらに好ましい。また、R値は、1.20以下であることがより好ましく、1.10以下であることがさらに好ましい。 The carbonaceous material used as the raw material of the carbon-silicon composite according to the present invention has an R value (ID / IG) of 0.30 or more, which is the ratio of the intensity ID of the D band to the intensity IG of the G band according to the Raman spectrum. It is preferably 1.30 or less. When the R value is 0.30 or more, the negative electrode using this complex has a sufficiently low reaction resistance, which leads to an improvement in the rate characteristics of the battery. On the other hand, when the R value is 1.30 or less, it means that there are few defects in the carbonaceous layer. When the R value is 1.30 or less, side reactions are reduced and the Coulomb efficiency is improved. From the same viewpoint, the R value is more preferably 0.50 or more, and further preferably 0.70 or more. Further, the R value is more preferably 1.20 or less, and further preferably 1.10 or less.
 炭素-シリコン複合体を得た後であっても、適切な条件を選定することにより、シリコンを溶出させ、担体である炭素質材料には何の影響も残さないことができる。これにより、炭素-シリコン複合体の状態からでも、原料である炭素質材料の物性値を調べることができる。例えば、上記トルエンの吸着性能、細孔分布、そしてラマンスペクトルにおけるR値を調べることができる。 Even after obtaining the carbon-silicon composite, by selecting appropriate conditions, silicon can be eluted and no effect can be left on the carbonaceous material as the carrier. This makes it possible to investigate the physical characteristics of the carbonaceous material as a raw material even from the state of the carbon-silicon complex. For example, the adsorption performance of toluene, the pore distribution, and the R value in the Raman spectrum can be investigated.
 [3]炭素-シリコン複合体の製造方法
 本発明の炭素-シリコン複合体の製造方法には特に制限はなく、具体的には、前述のように、繊維状の多孔質炭素質材料を得た後、この繊維状の多孔質炭素質材料を粉砕し必要によって分級することによって得られた、円柱の側面から中心軸に向かってマイクロ孔が多数形成された円柱体多孔質炭素質材料に、シランガスを用いてその細孔内にシリコンを析出させることにより炭素-シリコン複合体を製造する方法が挙げられる。その他、繊維状の多孔質炭素質材料を得た後、粉砕や分級を経ないで、シランガスを用いて多孔質炭素質材料の細孔内にシリコンを析出させて炭素-シリコン複合体を得てから、その炭素-シリコン複合体を粉砕さらに必要によって分級する方法であってもかまわない。
[3] Method for Producing Carbon-Silicon Composite The method for producing a carbon-silicon composite of the present invention is not particularly limited, and specifically, as described above, a fibrous porous carbonaceous material was obtained. Later, silane gas was added to the cylindrical porous carbon material in which a large number of micropores were formed from the side surface of the cylinder toward the central axis, which was obtained by crushing this fibrous porous carbon material and classifying it as necessary. A method of producing a carbon-silicon composite by precipitating silicon in the pores using the above method can be mentioned. In addition, after obtaining a fibrous porous carbonaceous material, silicon is precipitated in the pores of the porous carbonaceous material using silane gas without crushing or classification to obtain a carbon-silicon composite. Therefore, the carbon-silicon composite may be crushed and further classified according to need.
 ここで、前記複合体を円柱体とみなして説明した。また円柱の『中心軸』とは、円柱の底面同士の円の中心を結んだ線のことである。
 本発明に係る炭素-シリコン複合体の好適な製造方法の一例は、下記工程(A)および(B)を含む。
Here, the complex has been described by regarding it as a cylinder. The "central axis" of a cylinder is a line connecting the centers of circles between the bottom surfaces of the cylinder.
An example of a suitable method for producing a carbon-silicon composite according to the present invention includes the following steps (A) and (B).
 工程(A):平均直径が5μm以上、30μm以下、平均長さが1μm以上50μm未満である円柱状の形状であり、空気中でのDTA測定によるDTA曲線における発熱ピークが800℃以下に存在する炭素質材料を得る工程。 Step (A): A columnar shape having an average diameter of 5 μm or more and 30 μm or less and an average length of 1 μm or more and less than 50 μm, and an exothermic peak in the DTA curve measured by DTA in air exists at 800 ° C. or less. The process of obtaining a carbonaceous material.
 工程(B):加熱した炭素質材料にシリコン含有ガスを作用させて、炭素質材料の表面および細孔内にシリコンを析出させる工程。
 (工程(A))
 工程(A)については、平均直径が5μm以上、30μm以下、平均長さが1μm以上、50μm未満の円柱状の形状であり、DTA測定における発熱ピークが800℃以下に存在25℃のトルエン飽和蒸気圧を流量0.12L/minで圧力を大気圧+2.5(±0.1)kpa、重量1.000g(±0.001g)の条件において、試料重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する炭素質材料が得られれば特に限定されない。ここで、平均直径と平均長さの定義は、前述した複合体における定義と同様である。このような炭素質材料の製造方法として、例えば、有機化合物やポリマーを繊維状に成形した後に熱分解を行うことで繊維状炭素を製造し、得られた繊維状炭素を解砕することが挙げられる。繊維状炭素の物性値は、原料である有機化合物やポリマーの種類、熱分解の条件、酸化処理や賦活処理条件によって適宜調整される。繊維状炭素の例として、炭素繊維や活性炭繊維が挙げられ、中でも活性炭繊維が好ましい。
Step (B): A step of allowing a silicon-containing gas to act on a heated carbonaceous material to deposit silicon on the surface and pores of the carbonaceous material.
(Step (A))
In the step (A), the shape is a columnar shape having an average diameter of 5 μm or more and 30 μm or less, an average length of 1 μm or more and less than 50 μm, and an exothermic peak in DTA measurement exists at 800 ° C. or less. Under the conditions of pressure of 0.12 L / min, pressure of atmospheric pressure +2.5 (± 0.1) kpa, and weight of 1.000 g (± 0.001 g), the equilibrium adsorption performance of weight increment per sample weight is 100. The percentage is not particularly limited as long as a carbonaceous material having an adsorption performance of 100% can be obtained within an elapsed time of 200 min. Here, the definitions of the average diameter and the average length are the same as the definitions in the complex described above. As a method for producing such a carbonaceous material, for example, fibrous carbon is produced by pyrolyzing an organic compound or polymer into a fibrous form, and the obtained fibrous carbon is crushed. Be done. The physical characteristics of the fibrous carbon are appropriately adjusted depending on the type of the organic compound or polymer as a raw material, the conditions of thermal decomposition, and the conditions of oxidation treatment and activation treatment. Examples of fibrous carbon include carbon fiber and activated carbon fiber, and activated carbon fiber is particularly preferable.
 また、繊維状の炭素を賦活処理することによって、細孔を有する繊維状の多孔質炭素質材料を得た後、この繊維状の多孔質炭素質材料を粉砕し必要によって分級することによって炭素質材料を得ることも好ましい。このような方法で製造すると、円柱の側面から中心軸に向かってマイクロ孔が多数形成された円柱体多孔質炭素質材料を得ることができる。このような炭素質材料を用いると、細孔内に析出したシリコンがリチウム挿入・脱離に伴い、膨張・収縮した際に、円柱の高さ方向の膨張・収縮については、活性炭繊維の骨格による応力で抑制される。また、円柱の中心軸から側面の方向は、細孔が伸びているので、膨張したシリコンの体積を逃がすことができる。結果として、複合体の寸法はあまり変化せず、サイクル特性に優れた負極活物質を得ることができると考えられる。 Further, after activating the fibrous carbon to obtain a fibrous porous carbonaceous material having pores, the fibrous porous carbonaceous material is crushed and classified as necessary to obtain carbonaceous material. It is also preferable to obtain the material. When manufactured by such a method, it is possible to obtain a cylindrical porous carbonaceous material in which a large number of micropores are formed from the side surface of the cylinder toward the central axis. When such a carbonaceous material is used, when the silicon deposited in the pores expands and contracts due to the insertion and desorption of lithium, the expansion and contraction in the height direction of the cylinder depends on the skeleton of the activated carbon fiber. It is suppressed by stress. Further, since the pores extend in the direction from the central axis of the cylinder to the side surface, the volume of the expanded silicon can be released. As a result, it is considered that the size of the complex does not change so much and a negative electrode active material having excellent cycle characteristics can be obtained.
 解砕に用いる器具は限定されないが、ジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等市販の解砕機、粉砕機を用いて行うことができる。また、これらの粉砕機を2種類以上使用し、2段階で粉砕することもできる。 The equipment used for crushing is not limited, but it can be performed using commercially available crushers and crushers such as jet mills, hammer mills, roller mills, pin mills, and vibration mills. Further, it is also possible to use two or more types of these crushers and crush them in two stages.
 炭素質材料は前記[2]炭素質材料に記した特徴、すなわちトルエンの吸着性能、細孔容積、マイクロ孔の比率、メソ孔およびマクロ孔の合計の比率、ラマンスペクトルのR値、を持っていることが好ましい。 The carbonaceous material has the characteristics described in the above [2] carbonaceous material, that is, the adsorption performance of toluene, the pore volume, the ratio of micropores, the total ratio of mesopores and macropores, and the R value of Raman spectrum. It is preferable to have.
 (工程(B))
 工程(B)では、例えば炭素質材料をCVD装置のチャンバー内に置き、加熱した状態で炭素質材料にシリコン含有ガスを作用させると、炭素質材料の細孔の内部にシランガスが入り込み、さらにこれが熱分解することにより、炭素質材料の表面や細孔内にシリコンを析出させることができるCVD工程が好ましい。このための方法として、例えば特許文献1に示された装置や方法を用いることができる。
(Step (B))
In the step (B), for example, when a carbonaceous material is placed in a chamber of a CVD apparatus and a silicon-containing gas is allowed to act on the carbonaceous material in a heated state, silane gas enters the inside of the pores of the carbonaceous material, which further becomes. A CVD step is preferred in which silicon can be deposited on the surface of the carbonaceous material or in the pores by thermal decomposition. As a method for this, for example, the apparatus and method shown in Patent Document 1 can be used.
 用いられるシリコン含有ガスとしては、シラン(SiH4)含有ガス、ジシラン含有ガス、トリシラン含有ガス等が挙げられ、シラン含有ガスが好ましい。また、シリコン含有ガスにはその他のガスが含まれていてもよく、例えばキャリアガスとして、窒素、アルゴン、ヘリウム、水素といったガスを混合してもよい。ガス組成比、ガス流量、温度プログラム、固定床/流動床の選定といったCVDの諸条件については、生成物の性情を見ながら、適宜調整される。加熱した前記炭素質材料にシリコン含有ガスを作用させる時間が長すぎると、表面に析出するシリコンが増え膨張収縮による電極の劣化につながることから、作用時間は10時間以下であり、7時間以下が好ましい。 Examples of the silicon-containing gas used include silane (SiH 4 ) -containing gas, disilane-containing gas, and trisilane-containing gas, and silane-containing gas is preferable. Further, the silicon-containing gas may contain other gases, and for example, a gas such as nitrogen, argon, helium, or hydrogen may be mixed as the carrier gas. Various CVD conditions such as gas composition ratio, gas flow rate, temperature program, and selection of fixed bed / fluidized bed are appropriately adjusted while observing the nature of the product. If the silicon-containing gas is allowed to act on the heated carbonaceous material for too long, the silicon deposited on the surface increases and leads to deterioration of the electrode due to expansion and contraction. Therefore, the action time is 10 hours or less, and 7 hours or less. preferable.
 本発明に係る炭素-シリコン複合体に対し、複合体粒子表面を炭素や金属酸化物でコーティングしてもよい。このような方法として、例えば炭素質ガスによるCVDや、有機化合物や高分子化合物などの炭素前駆体を前記複合体の表面に付着させたのちの焼成により炭素を形成する方法、金属酸化物前駆体を前記粒子表面に付着させたのちに熱分解やゾル-ゲル反応を利用して、複合体粒子表面に金属酸化物粒子や金属酸化物層を形成する方法が挙げられる。 For the carbon-silicon complex according to the present invention, the surface of the complex particles may be coated with carbon or a metal oxide. As such a method, for example, CVD with a carbonaceous gas, a method of adhering a carbon precursor such as an organic compound or a polymer compound to the surface of the composite, and then firing to form carbon, a metal oxide precursor. A method of forming a metal oxide particle or a metal oxide layer on the surface of the composite particle by utilizing thermal decomposition or a sol-gel reaction after adhering the compound to the surface of the particle can be mentioned.
 [4]負極合剤層
 本発明に係る負極合剤層は、前記[1]で述べた炭素-シリコン複合体を負極活物質として含む。
[4] Negative electrode mixture layer The negative electrode mixture layer according to the present invention contains the carbon-silicon composite described in the above [1] as a negative electrode active material.
 負極合剤層において、前記炭素-シリコン複合体は、負極活物質として機能する。本発明の負極合剤層は、リチウムイオン二次電池用の負極合剤層として用いることができる。負極合剤層は一般に、負極活物質バインダー、任意成分としての導電助剤とからなる。 In the negative electrode mixture layer, the carbon-silicon complex functions as a negative electrode active material. The negative electrode mixture layer of the present invention can be used as a negative electrode mixture layer for a lithium ion secondary battery. The negative electrode mixture layer is generally composed of a negative electrode active material binder and a conductive auxiliary agent as an optional component.
 負極合剤層の製造方法は例えば以下に示すような公知の方法を用いることができる。負極活物質、バインダー、任意成分としての導電助剤および、溶媒を用い、負極合剤形成用のスラリーを調製する。スラリーを銅箔などの集電体に塗工し、乾燥させる。これをさらに真空乾燥させたのち、ロールプレスする。ロールプレスの際の圧力は通常は100~500MPaである。得られたものを負極シートと呼ぶことがある。負極シートは、プレスにより得られ、負極合剤層と集電体からなる。その後必要な形状および大きさに裁断し、あるいは打ち抜く。 As a method for producing the negative electrode mixture layer, for example, a known method as shown below can be used. A slurry for forming a negative electrode mixture is prepared using a negative electrode active material, a binder, a conductive auxiliary agent as an optional component, and a solvent. The slurry is applied to a current collector such as copper foil and dried. This is further vacuum dried and then roll pressed. The pressure during the roll press is usually 100 to 500 MPa. The obtained product may be referred to as a negative electrode sheet. The negative electrode sheet is obtained by pressing and consists of a negative electrode mixture layer and a current collector. Then cut or punch to the required shape and size.
 リチウムイオン二次電池に組み入れる大きさや形状に整えられ、さらに必要に応じて、集電体に集電タブを取り付けた状態の負極シートを、本発明では負極と呼ぶ。
 負極活物質として、本発明の炭素-シリコン複合体を単独で使用しても構わないが、他の負極活物質を一緒に用いてもよい。他の負極活物質を一緒に用いる場合には、通常は前記複合体と、他の負極活物質を混合して用いる。他の負極活物質としては、リチウムイオン二次電池の負極活物質として一般的に用いられるものが挙げられる。例えば黒鉛、ハードカーボン、チタン酸リチウム(Li4Ti512)や、シリコン、スズなどの合金系活物質およびその複合材料等が挙げられる。これらの負極活物質は通常粒子状のものが用いられる。炭素-シリコン複合体以外の負極活物質としては、一種を用いても、二種以上を用いてもよい。その中でも特に黒鉛粒子やハードカーボンが好ましく用いられる。本発明の負極合剤層は、炭素-シリコン複合体および黒鉛粒子を含む態様が、好適態様の一つである。
In the present invention, a negative electrode sheet that has been adjusted to a size and shape to be incorporated in a lithium ion secondary battery and has a current collector tab attached to a current collector is referred to as a negative electrode in the present invention.
As the negative electrode active material, the carbon-silicon composite of the present invention may be used alone, but other negative electrode active materials may be used together. When other negative electrode active materials are used together, the complex is usually used by mixing the other negative electrode active materials. Examples of other negative electrode active materials include those generally used as negative electrode active materials for lithium ion secondary batteries. Examples thereof include graphite, hard carbon, lithium titanate (Li 4 Ti 5 O 12 ), alloy-based active materials such as silicon and tin, and composite materials thereof. These negative electrode active materials are usually in the form of particles. As the negative electrode active material other than the carbon-silicon composite, one kind may be used or two or more kinds may be used. Among them, graphite particles and hard carbon are particularly preferably used. One of the preferred embodiments of the negative electrode mixture layer of the present invention is that it contains a carbon-silicon complex and graphite particles.
 バインダーとしては、リチウムイオン二次電池の負極合剤層において一般的に用いられるバインダーであれば自由に選択して用いることができる。例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム(SBR)、ブチルゴム、アクリルゴム、ポリフッ化ビニリデン(PVdF)、ポリ四フッ化エチレン(PTFE)、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、カルボキシメチルセルロース(CMC)およびその塩、ポリアクリル酸、ポリアクリルアミドなどが挙げられる。バインダーは一種を用いても、二種以上を混合して用いてもよい。バインダーの量は、負極活物質100質量部に対して、好ましくは0.5~30質量部である。 As the binder, any binder generally used in the negative electrode mixture layer of the lithium ion secondary battery can be freely selected and used. For example, polyethylene, polypropylene, ethylene propylene tarpolymer, butadiene rubber, styrene butadiene rubber (SBR), butyl rubber, acrylic rubber, polyvinylidene fluoride (PVdF), polyvinylidene fluoride (PTFE), polyethylene oxide, polyepicrolhydrin, polyphospha. Examples thereof include zen, polyacrylonitrile, carboxymethyl cellulose (CMC) and salts thereof, polyacrylic acid, polyacrylamide and the like. One kind of binder may be used, or two or more kinds of binders may be mixed and used. The amount of the binder is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 導電助剤は、電極に対し電子伝導性や寸法安定性(リチウムの挿入・脱離に伴う体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に限定されない。例えば、カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維(例えば、「VGCF(登録商標)-H」昭和電工株式会社製)、導電性カーボンブラック(例えば、「デンカブラック(登録商標)」電気化学工業株式会社製、「SUPER C65」イメリス・グラファイト&カーボン社製、「SUPER C45」イメリス・グラファイト&カーボン社製、導電性黒鉛(例えば、「KS6L」イメリス・グラファイト&カーボン社製、「SFG6L」イメリス・グラファイト&カーボン社製)などが挙げられる。導電助剤の量は、負極活物質100質量部に対して、好ましくは1~30質量部である。 The conductive auxiliary agent is not particularly limited as long as it serves to impart electron conductivity and dimensional stability (buffering action against volume change due to insertion / removal of lithium) to the electrode. For example, carbon nanotubes, carbon nanofibers, vapor phase carbon fibers (for example, "VGCF (registered trademark) -H" manufactured by Showa Denko Co., Ltd.), conductive carbon black (for example, "Denka Black (registered trademark)" electrochemical Industrial Co., Ltd., "SUPER C65" Imeris Graphite & Carbon, "SUPER C45" Imeris Graphite & Carbon, Conductive Graphite (for example, "KS6L" Imeris Graphite & Carbon, "SFG6L" Imeris (Manufactured by Graphite & Carbon Co., Ltd.), etc. The amount of the conductive auxiliary agent is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 導電助剤は、カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維を含むことが好ましく、これら導電助剤の繊維長は炭素-シリコン複合体のDv50の1/2の長さ以上であることが好ましい。この長さであると炭素-シリコン複合体を含む負極活物質間にこれらの導電助剤が橋掛けし、サイクル特性を向上することができる。繊維径が15nm以下のシングルウォールタイプやマルチウォールタイプの方が同量の添加量で、より橋掛けの数が増える。また、より柔軟であるので電極密度を向上する観点からもより好ましい。 The conductive auxiliary agent preferably contains carbon nanotubes, carbon nanofibers, and vapor-phase carbon fibers, and the fiber length of these conductive auxiliary agents is preferably ½ or more of the length of Dv50 of the carbon-silicon composite. preferable. With this length, these conductive auxiliaries can be bridged between the negative electrode active materials including the carbon-silicon complex, and the cycle characteristics can be improved. The single wall type and multi-wall type with a fiber diameter of 15 nm or less have the same amount of addition, and the number of bridges increases. Further, since it is more flexible, it is more preferable from the viewpoint of improving the electrode density.
 電極塗工用のスラリーを調製する際の溶媒としては、特に制限はなく、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、イソプロパノール、テトラヒドロフラン(THF)、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することも好ましい。溶媒の量はスラリーが集電体に塗工しやすい粘度となるように調整することができる。 The solvent for preparing the slurry for electrode coating is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), isopropanol, tetrahydrofuran (THF), and water. In the case of a binder that uses water as a solvent, it is also preferable to use a thickener in combination. The amount of solvent can be adjusted so that the slurry has a viscosity that makes it easy to apply to the current collector.
 [5]リチウムイオン二次電池
 本発明に係るリチウムイオン二次電池は、前記負極合剤層を含む。前記リチウムイオン二次電池は、通常は前記負極合剤層および集電体からなる負極と、正極合剤層および集電体からなる正極、その間に存在する非水系電解液および非水系ポリマー電解質の少なくとも一方、並びにセパレータ、そしてこれらを収容する電池ケースを含む。前記リチウムイオン二次電池は、前記負極合剤層を含んでいればよく、それ以外の構成としては、従来公知の構成を含め、特に制限なく採用することができる。
[5] Lithium Ion Secondary Battery The lithium ion secondary battery according to the present invention includes the negative electrode mixture layer. The lithium ion secondary battery is usually composed of a negative electrode composed of the negative electrode mixture layer and a current collector, a positive electrode composed of a positive electrode mixture layer and a current collector, and a non-aqueous electrolyte solution and a non-aqueous polymer electrolyte existing between the negative electrodes. Includes at least one, as well as a separator, and a battery case for accommodating them. The lithium ion secondary battery may include the negative electrode mixture layer, and other configurations including conventionally known configurations can be adopted without particular limitation.
 正極合剤層は通常、正極材、導電助剤、バインダーからなる。前記リチウムイオン二次電池における正極は、通常のリチウムイオン二次電池における一般的な構成を用いることができる。 The positive electrode mixture layer usually consists of a positive electrode material, a conductive auxiliary agent, and a binder. As the positive electrode in the lithium ion secondary battery, a general configuration in a normal lithium ion secondary battery can be used.
 正極材としては、電気化学的なリチウム挿入・脱離が可逆的に行えて、これらの反応が負極反応の標準酸化還元電位よりも十分に高い材料であれば特に制限されない。例えばLiCoO2、LiNiO2、LiMn24、LiCo1/3Mn1/3Ni1/32、LiCo0.6Mn0.2Ni0.22、LiCo0.8Mn0.1Ni0.12、炭素被覆されたLiFePO4、またはこれらの混合物を好適に用いることができる。 The positive electrode material is not particularly limited as long as it can reversibly insert and remove electrochemical lithium and these reactions are sufficiently higher than the standard redox potential of the negative electrode reaction. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1/3 Mn 1/3 Ni 1/3 O 2 , LiCo 0.6 Mn 0.2 Ni 0.2 O 2 , LiCo 0.8 Mn 0.1 Ni 0.1 O 2 , carbon coated LiFePO 4 , Or a mixture thereof can be preferably used.
 導電助剤、バインダー、スラリー調製用の溶媒としては、負極の項で挙げたものを用いられる。集電体としては、アルミニウム箔が好適に用いられる。
 リチウムイオン電池に用いられる非水系電解液および非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピオニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液;ポリエチレンオキサイド、ポリアクリルニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー電解質;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
As the conductive auxiliary agent, the binder, and the solvent for preparing the slurry, those mentioned in the section of the negative electrode are used. Aluminum foil is preferably used as the current collector.
The non-aqueous electrolyte solution and the non-aqueous polymer electrolyte used in the lithium ion battery are not particularly limited. For example, lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li can be used as ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene carbonate, butylene carbonate, acetonitrile. , Propionitrile, dimethoxyethane, tetrahydrofuran, γ-butyrolactone and other organic electrolytes; gel-like polymer electrolytes containing polyethylene oxide, polyacrylic nitrile, polyfluoroviriniden, polymethylmethacrylate and the like. A solid polymer electrolyte containing a polymer having an ethylene oxide bond or the like can be mentioned.
 また、前記非水系電解液には、リチウムイオン電池の電解液に一般的に用いられる添加剤を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンサルトン(ES)などが挙げられる。好ましくはVC及びFECが挙げられる。添加量としては、前記非水電解液100質量%に対して、0.01~20質量%が好ましい。 Further, a small amount of an additive generally used for an electrolytic solution of a lithium ion battery may be added to the non-aqueous electrolytic solution. Examples of the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene salton (ES) and the like. VC and FEC are preferred. The amount to be added is preferably 0.01 to 20% by mass with respect to 100% by mass of the non-aqueous electrolytic solution.
 セパレータとしては、一般的なリチウムイオン二次電池において用いることのできる物から、その組み合わせも含めて自由に選択することができ、ポリエチレンあるいはポリプロピレン製の微多孔フィルム等が挙げられる。またこのようなセパレータに、SiO2やAl2O3などの粒子をフィラーとして混ぜたもの、表面に付着させたセパレータも用いることができる。 The separator can be freely selected from those that can be used in a general lithium ion secondary battery, including the combination thereof, and examples thereof include a microporous film made of polyethylene or polypropylene. Further, such a separator mixed with particles such as SiO2 and Al2O3 as a filler, and a separator adhered to the surface can also be used.
 電池ケースとしては、正極および負極、そしてセパレータおよび電解液を収容できるものであれば、特に制限されない。通常市販されている電池パックや18650型の円筒型セル、コイン型セル等、業界において規格化されているもののほか、アルミ包材でパックされた形態のもの等、自由に設計して用いることができる。 The battery case is not particularly limited as long as it can accommodate the positive electrode and the negative electrode, and the separator and the electrolytic solution. In addition to those standardized in the industry such as battery packs, 18650 type cylindrical cells, coin type cells, etc. that are usually on the market, those packed with aluminum packaging material, etc. can be freely designed and used. can.
 各電極は積層したうえでパックして用いることができる。また、単セルを直列につなぎ、バッテリーやモジュールとして用いることができる。
 本発明に係るリチウムイオン二次電池は、スマートホン、タブレットPC、携帯情報端末などの電子機器の電源;電動工具、掃除機、電動自転車、ドローン、電気自動車などの電動機の電源;燃料電池、太陽光発電、風力発電などによって得られる電力の貯蔵などに用いることができる。
Each electrode can be stacked and then packed for use. In addition, single cells can be connected in series and used as a battery or module.
The lithium ion secondary battery according to the present invention is a power source for electronic devices such as smartphones, tablet PCs, and mobile information terminals; a power source for electric motors such as electric tools, vacuum cleaners, electric bicycles, drones, and electric vehicles; fuel cells, and the sun. It can be used for storage of electric power obtained by optical power generation, wind power generation, and the like.
 以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。物性値の測定および電池評価は下記のように行った。
[SEM観察]
 以下の条件でSEM観察を行った。
(方法)
 サンプルをカーボンテープ上に担持し、粒子の観察の場合はそのまま観察を実施した。
SEM:走査型電子顕微鏡装置:Regulus8220(株式会社日立ハイテク製)
加速電圧:1~20kV
観察倍率:500~6,000倍(粒子の大きさに合わせて適宜選択)
 本発明に係る炭素-シリコン複合体の平均直径および平均長さの定義および測定方法は、前記の通りである。SEM像における各図形の特定や計測には、画像認識ソフトImage J(アメリカ国立衛生研究所製)を用いた。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The physical characteristics were measured and the battery was evaluated as follows.
[SEM observation]
SEM observation was performed under the following conditions.
(Method)
The sample was supported on a carbon tape, and in the case of observing the particles, the observation was carried out as it was.
SEM: Scanning electron microscope device: Regulus8220 (manufactured by Hitachi High-Tech Co., Ltd.)
Acceleration voltage: 1 to 20 kV
Observation magnification: 500 to 6,000 times (select appropriately according to the size of the particles)
The definition and measurement method of the average diameter and the average length of the carbon-silicon composite according to the present invention are as described above. Image recognition software ImageJ (manufactured by the National Institutes of Health, USA) was used to identify and measure each figure in the SEM image.
 [全細孔容積測定] [細孔分布測定]
以下の条件で細孔分布測定を行った。
・高精度ガス吸着量測定装置:マイクロトラック・ベル株式会社BELSORP MAX II
吸着ガス:窒素
前処理;真空下、300℃、5時間
測定相対圧(P/P0)下限:10-8オーダー
測定相対圧(P/P0)上限:0.990以上
は相対圧P/P0が最大値のときの細孔容積を全細孔容積(P0は飽和蒸気圧)とした。
解析:NLDFT法
・マイクロ孔比率、メソ孔およびマクロ孔の合計の比率の算出
 マクロ孔とは、50nm以上100nm以下の細孔径を持つ細孔のことである。メソ孔とは、2nmより大きく50nmより小さい細孔径を持つ細孔のことである。マイクロ孔とは、2nm以下の細孔径を持つ細孔のことである。また、マイクロ孔の比率とはNLDFT法から算出されるマイクロ孔の細孔容積を、NLDFT法から算出される0~100nm以下の細孔容積で割った値に100をかけた値であり、次式で示される。
[Measurement of total pore volume] [Measurement of pore distribution]
The pore distribution was measured under the following conditions.
・ High-precision gas adsorption amount measuring device: Microtrac Bell Co., Ltd. BELSORP MAX II
Adsorbed gas: Nitrogen pretreatment; Under vacuum, measured at 300 ° C for 5 hours Relative pressure (P / P0) Lower limit: 10 -8 Order measurement Relative pressure (P / P0) Upper limit: 0.990 or more is relative pressure P / P 0 The pore volume at the maximum value was defined as the total pore volume (P 0 is the saturated vapor pressure).
Analysis: NLDFT method-Calculation of micropore ratio, total ratio of mesopores and macropores Macropores are pores with a pore diameter of 50 nm or more and 100 nm or less. Mesopores are pores with a pore diameter larger than 2 nm and smaller than 50 nm. Micropores are pores having a pore diameter of 2 nm or less. The micropore ratio is a value obtained by dividing the pore volume of micropores calculated by the NLDFT method by the pore volume of 0 to 100 nm or less calculated by the NLDFT method, and multiplying by 100. Indicated by the formula.
 マイクロ孔比率=
      100×(NLDFT法から算出されるマイクロ孔細孔容積)/(NLDFT法から算出される0~100nm以下まで細孔容積)
 メソ孔およびマクロ孔の合計の比率とはNLDFT法から算出される0~100nm以下の細孔容積から、NLDFT法から算出されるマイクロ孔細孔容積で引いた値を、NLDFT法から算出される0~100nm以下までの細孔容積で割った値に対して100をかけた値である。つまり次式の通りである。
Micropore ratio =
100 × (micropore pore volume calculated from NLDFT method) / (pore volume calculated from 0 to 100 nm or less calculated from NLDFT method)
The total ratio of mesopores and macropores is calculated from the NLDFT method by subtracting the value obtained by subtracting the micropore pore volume calculated from the NLDFT method from the pore volume of 0 to 100 nm or less calculated by the NLDFT method. It is a value obtained by multiplying the value divided by the pore volume from 0 to 100 nm or less by 100. That is, it is as follows.
 メソ孔およびマクロ孔の合計の比率=
 100×(NLDFT法から算出される0~100nm以下の細孔容積-NLDFT法から算出されるマイクロ孔細孔容積)/(NLDFT法から算出される0~100nm以下の細孔容積)
  [発熱ピーク]
・測定装置:TG-DTA2000SE(NETZSCH Japan株式会社製)
・測定温度:室温~1000℃
・試料量 :9~11mg
・昇温速度:10℃/min
・測定雰囲気:Air
・流量 :100ml/min
 [ラマン分光測定]
 サンプルを、小型スパチュラをもちいて、ガラスプレパラート上に乗せ、下地のガラスプレパラートが露出しない様に均一に広げる。サンプルを広げる範囲は後述する測定範囲より広くする。これは、測定範囲内には複合体粒子のみが敷き詰められている様にするためである。このサンプルを以下の方法で測定を行った。
Ratio of total of meso and macro holes =
100 × (pore volume of 0 to 100 nm or less calculated by NLDFT method-micropore pore volume calculated by NLDFT method) / (pore volume of 0 to 100 nm or less calculated by NLDFT method)
[Fever peak]
-Measuring device: TG-DTA2000SE (manufactured by NETZSCH Japan Co., Ltd.)
・ Measurement temperature: Room temperature to 1000 ° C
・ Sample amount: 9-11 mg
・ Temperature rise rate: 10 ° C / min
・ Measurement atmosphere: Air
・ Flow rate: 100 ml / min
[Raman spectroscopy]
Using a small spatula, place the sample on the glass preparation and spread it evenly so that the underlying glass preparation is not exposed. The range for expanding the sample is wider than the measurement range described later. This is so that only the complex particles are spread within the measurement range. This sample was measured by the following method.
 ・顕微ラマン分光測定装置:株式会社堀場製 LabRAM HR Evolution
 ・励起波長:532nm
 ・露光時間:10秒
 ・積算回数:2回
 ・回折格子:300本/mm(600nm)
 ・測定範囲:縦60μm×横60μm
 ・ポイント数:縦送り12μm、横送り15μmで30ポイント評価
 ベースラインからピークトップの高さを強度とした。測定されたスペクトルから1350cm-1付近のピークの強度ID(非晶質成分由来)と1600cm-1付近のピークの強度IG(黒鉛成分由来)の比(ID/IG)を算出した。この比(ID/IG)を2箇所において測定し、その平均値をR値(ID/IG)として、炭素質層の炭素の質の評価の指標とした。
・ Microscopic Raman spectroscopic measuring device: LabRAM HR Evolution manufactured by HORIBA, Ltd.
-Excitation wavelength: 532 nm
・ Exposure time: 10 seconds ・ Number of integrations: 2 times ・ Diffraction grating: 300 lines / mm (600 nm)
-Measurement range: length 60 μm x width 60 μm
-Number of points: 30 points evaluation with vertical feed of 12 μm and horizontal feed of 15 μm The height from the baseline to the peak top was taken as the intensity. It was calculated measured peak intensity ID of around 1350 cm -1 from the spectral ratio of the intensity IG of a peak in the vicinity of (amorphous component derived) and 1600 cm -1 (derived from graphite component) (ID / IG). This ratio (ID / IG) was measured at two points, and the average value was used as the R value (ID / IG) as an index for evaluating the carbon quality of the carbonaceous layer.
 また、450~495cm-1に現れるアモルファスシリコン由来のピークの強度ISiと前記IGの比(ISi/IG)を算出した。この比(ISi/IG)を2箇所において測定し、その平均値をISi/IGとしてこれを炭素質材料表面へのシリコンの析出の程度の指標とした。 In addition, the ratio (ISi / IG) of the intensity ISi of the peak derived from amorphous silicon appearing in 450 to 495 cm -1 and the IG was calculated. The ratio of (ISi / IG) measured at two points, and this the average value as I Si / I G and the degree of indication of deposition of silicon into the carbonaceous material surface.
 [XRD測定]
 サンプルをガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下のような条件で測定を行った。
[XRD measurement]
The sample was filled in a glass sample plate (sample plate window 18 × 20 mm, depth 0.2 mm), and measurement was performed under the following conditions.
 ・XRD装置:株式会社リガク製 SmartLab(登録商標)
 ・X線種:Cu-Kα線
 ・Kβ線除去方法:Niフィルター
 ・X線出力:45kV、200mA
 ・測定範囲:10.0~80.0deg.
 ・スキャンスピード:10.0deg./min
 得られたXRDパターンに対し、解析ソフト(PDXL2、株式会社リガク製)を用い、バックグラウンド除去、スムージングを行った後に、ピークフィットを行い、ピーク位置と強度を求めた。
-XRD device: SmartLab (registered trademark) manufactured by Rigaku Co., Ltd.
・ X-ray type: Cu-Kα ray ・ Kβ ray removal method: Ni filter ・ X-ray output: 45kV, 200mA
-Measurement range: 10.0 to 80.0 deg.
-Scan speed: 10.0 deg. / Min
For the obtained XRD pattern, background removal and smoothing were performed using analysis software (PDXL2, manufactured by Rigaku Co., Ltd.), and then peak fitting was performed to determine the peak position and intensity.
 [吸着性能測定]
 JIS K1474 : 2014 7.1.3のうち希釈率1/nのnは任意で通常10を用いるが、n=1の25℃のトルエン飽和蒸気圧で行った。通気流量はJISでは2L/minのところを0.12L/minに変更した。試料量は、JISでは5~10gであるところを、1.000g(±0.001g)に変更した。また圧力を大気圧+2.5(±0.1)kpaで行った。この条件において、試料重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する時間を測定した。
[Measurement of adsorption performance]
JIS K1474: Of 2014 7.13, n with a dilution ratio of 1 / n is optionally 10 and usually 10 is used, but it was carried out at a toluene saturated vapor pressure of 25 ° C. with n = 1. In JIS, the air flow rate was changed from 2L / min to 0.12L / min. The sample amount was changed from 5 to 10 g in JIS to 1.000 g (± 0.001 g). The pressure was increased to atmospheric pressure +2.5 (± 0.1) kpa. Under this condition, when the equilibrium adsorption performance of weight increment per sample weight was set to 100%, the time for the adsorption performance to reach 100% within an elapsed time of 200 min was measured.
 [BET比表面積測定]
 (方法)
 サンプルセル(9mm×135mm)にサンプルの合計表面積が2~60m2となるようにサンプルを入れ、300℃、真空条件下で1時間乾燥後、サンプル重量を測定し、以下の方法で測定を行った。
・装置:カンタクローム・インスツルメンツ(Quantachrome)社製NOVA4200e
・測定ガス:窒素
・測定範囲の相対圧の設定値:0.005~0.995
(計算方法)
 (BET比表面積の算出方法)
 多孔質炭素質材料のBET比表面積は、相対圧0.005近傍から0.08未満の吸着等温線データーからBET多点法にて算出した。
[BET specific surface area measurement]
(Method)
Place the sample in a sample cell (9 mm x 135 mm) so that the total surface area of the sample is 2 to 60 m 2 , dry it at 300 ° C. for 1 hour under vacuum conditions, measure the sample weight, and measure by the following method. rice field.
-Device: NOVA4200e manufactured by Quantachrome.
・ Measurement gas: Nitrogen ・ Relative pressure setting value in the measurement range: 0.005 to 0.995
(Method of calculation)
(Calculation method of BET specific surface area)
The BET specific surface area of the porous carbonaceous material was calculated by the BET multipoint method from the adsorption isotherm data with a relative pressure of around 0.005 to less than 0.08.
 炭素-シリコン複合体のBET比表面積は相対圧0.1近傍、0.2近傍と0.3近傍の3点の吸着等温線データーからBET多点法にて算出した。
 [粒度分布測定]
 粉体を極小型スパーテル1杯分および非イオン性界面活性剤(SIRAYA ヤシの実洗剤ハイパワー)32質量%の原液を100倍希釈した液2滴を水15mLに添加し、3分間超音波分散させた。この分散液をセイシン企業社製レーザー回折式粒度分布測定器(LMS-2000e)に投入し、体積基準累積粒度分布を測定し、10%径(DV10)、50%径(DV50)、90%径(DV90)を決定した。
The BET specific surface area of the carbon-silicon composite was calculated by the BET multipoint method from the adsorption isotherm data of three points with relative pressures of around 0.1, 0.2 and 0.3.
[Measurement of particle size distribution]
Add 2 drops of 100-fold diluted 100-fold diluted powder to 1 cup of ultra-small spartel and 32% by mass of nonionic surfactant (SIRAYA palm fruit detergent high power) to 15 mL of water and ultrasonically disperse for 3 minutes. I let you. This dispersion is put into a laser diffraction type particle size distribution measuring instrument (LMS-2000e) manufactured by Seishin Enterprise Co., Ltd., and the volume-based cumulative particle size distribution is measured, and the diameter is 10% (DV10), 50% diameter (DV50), 90% diameter. (DV90) was determined.
 [酸素含有率測定]
 以下の条件で測定を行った。
 ・酸素/窒素/水素分析装置:株式会社堀場製 EMGA-920
 ・キャリアガス:アルゴン
粉体約20mgをニッケルカプセルに秤量し、酸素窒素同時分析装置により測定した。すなわち試料を不活性ガス雰囲気下で分解し、発生するガスを赤外線吸収法によって定量した。
[Oxygen content measurement]
The measurement was performed under the following conditions.
・ Oxygen / nitrogen / hydrogen analyzer: EMGA-920 manufactured by HORIBA, Ltd.
-Carrier gas: About 20 mg of argon powder was weighed in a nickel capsule and measured by an oxygen-nitrogen simultaneous analyzer. That is, the sample was decomposed under the atmosphere of an inert gas, and the generated gas was quantified by the infrared absorption method.
 [シリコン含有率測定]
(方法)
 サンプルカップにサンプルを充填し、以下の方法で測定を行い、ファンダメンタル・パラメータ法(FP 法)を用いてSi濃度(Si元素の含有率)を質量%にて算出した。
・蛍光X線装置:Rigaku製 NEX CG
・管電圧:50kV
・管電流:1.00mA
・サンプルカップ:Φ32 12mL CH1530
・サンプル重量:2~4g
・サンプル高さ:5~18mm
 尚FP法は装置付属の解析ソフトにて実施した。
[Measurement of silicon content]
(Method)
The sample was filled in a sample cup, the measurement was carried out by the following method, and the Si concentration (Si element content) was calculated by mass% using the fundamental parameter method (FP method).
・ Fluorescent X-ray device: NEX CG manufactured by Rigaku
・ Tube voltage: 50kV
・ Tube current: 1.00mA
・ Sample cup: Φ32 12mL CH1530
・ Sample weight: 2-4g
・ Sample height: 5-18 mm
The FP method was carried out using the analysis software attached to the device.
 [コインハーフセル用負極シートの作製]
 バインダーとしてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)を用いた。具体的には、固形分比40%のSBRを分散した水溶液、及び固形分CMC粉末を溶解した水溶液を得た。
[Manufacturing of negative electrode sheet for coin half cell]
Styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as binders. Specifically, an aqueous solution in which SBR having a solid content ratio of 40% was dispersed and an aqueous solution in which solid content CMC powder was dissolved were obtained.
 混合導電助剤として、カーボンブラック(SUPER C 45(登録商標)、イメリス・グラファイト&カーボン社製)および気相成長炭素繊維(VGCF(登録商標)-H、昭和電工株式会社製)を3:2の質量比で混合したものを調製した。 As a mixed conductive auxiliary agent, carbon black (SUPER C 45 (registered trademark), manufactured by Imeris Graphite & Carbon Co., Ltd.) and vapor-grown carbon fiber (VGCF (registered trademark) -H, manufactured by Showa Denko KK) are 3: 2. A mixture was prepared in the mass ratio of.
 後述の実施例および比較例で製造した負極活物質90質量部、混合導電助剤5質量部、CMC固形分2.5質量部となるようにCMC水溶液、SBR固形分2.5質量部となるようにSBR水溶液を混合し、これに粘度調整のための水を適量加え、自転・公転ミキサー(シンキー社製)を用いて混練し、負極合剤層形成用スラリーを得た。 90 parts by mass of the negative electrode active material, 5 parts by mass of the mixed conductive auxiliary agent, and 2.5 parts by mass of the CMC solid content produced in Examples and Comparative Examples described later, so that the CMC aqueous solution and the SBR solid content are 2.5 parts by mass. As described above, the SBR aqueous solution was mixed, an appropriate amount of water for adjusting the viscosity was added thereto, and the mixture was kneaded using a rotation / revolution mixer (manufactured by Shinky Co., Ltd.) to obtain a slurry for forming a negative electrode mixture layer.
 前記負極合剤層形成用スラリーを、厚さが20μmの銅箔上にドクターブレードを用いて、厚さが150μmとなるよう均一に塗工し、ホットプレートで乾燥後、真空乾燥させて負極塗工シートを得た。乾燥した負極塗工シートは3MPaの圧力で一軸プレス機によりプレスして電池評価用の負極シートを得た。得られた負極シートの厚みは、銅箔の厚さを含めて62μmであった。 The slurry for forming the negative electrode mixture layer is uniformly coated on a copper foil having a thickness of 20 μm using a doctor blade so as to have a thickness of 150 μm, dried on a hot plate, and then vacuum dried to coat the negative electrode. I got a work sheet. The dried negative electrode coated sheet was pressed with a uniaxial press at a pressure of 3 MPa to obtain a negative electrode sheet for battery evaluation. The thickness of the obtained negative electrode sheet was 62 μm including the thickness of the copper foil.
 [電極密度の測定]
 プレス後の負極シート(集電体+負極合剤層)を直径16mmの円形状に打ち抜き、その質量と厚さを測定した。これらの値から、別途測定しておいた集電体(直径16mmの円形状)の質量と厚さを差し引いて負極合剤層の質量と厚さを求めた。これらの値から負極の電極密度を計算した。正極の場合も同じ方法で電極密度を求めた。
[リチウム対極セルの作製]
 負極シートから16mmφに打ち抜き、一軸プレス機により加圧成形し、負極合材層密度を1.4g/ccとなるように調整して負極を得た。
[Measurement of electrode density]
The negative electrode sheet (current collector + negative electrode mixture layer) after pressing was punched into a circular shape having a diameter of 16 mm, and its mass and thickness were measured. From these values, the mass and thickness of the separately measured current collector (circular shape with a diameter of 16 mm) were subtracted to obtain the mass and thickness of the negative electrode mixture layer. The electrode density of the negative electrode was calculated from these values. In the case of the positive electrode, the electrode density was determined by the same method.
[Preparation of lithium counter electrode cell]
The negative electrode sheet was punched to 16 mmφ, pressure-molded by a uniaxial press, and the density of the negative electrode mixture layer was adjusted to 1.4 g / cc to obtain a negative electrode.
 負極の電極密度(負極密度)は以下の様に計算した。前述の方法で得られた負極の質量と厚みを測定する。そこから別途測定しておいた16mmφに打ち抜いた集電体箔の質量と厚みを差し引いて負極合材層の質量と厚みを求め、その値から電極密度(負極密度)を計算した。 The electrode density of the negative electrode (negative electrode density) was calculated as follows. The mass and thickness of the negative electrode obtained by the above method are measured. The mass and thickness of the negative electrode mixture layer were obtained by subtracting the mass and thickness of the collector foil punched to 16 mmφ, which was separately measured, and the electrode density (negative electrode density) was calculated from the values.
 ポリプロピレン製の絶縁ガスケット(内径約18mm)内において、前述した負極と17.5mmφに打ち抜いた1.7mm厚みの金属リチウム箔とで、電解液を含侵させたセパレーター(ポリプロピレン製マイクロポーラスフィルム)を挟み込んで積層した。この際には負極の負極合材層の面はセパレーターを挟んで金属リチウム箔と対向するように積層した。これを2320コイン型セルに設置し、カシメ機で封止して試験用セル(リチウム対極セル)とした。 In a polypropylene insulating gasket (inner diameter of about 18 mm), a separator (polypropylene microporous film) impregnated with an electrolytic solution is formed by using the above-mentioned negative electrode and a 1.7 mm-thick metal lithium foil punched out to 17.5 mmφ. It was sandwiched and laminated. At this time, the surface of the negative electrode mixture layer of the negative electrode was laminated so as to face the metallic lithium foil with the separator interposed therebetween. This was placed in a 2320 coin type cell and sealed with a caulking machine to obtain a test cell (lithium counter electrode cell).
 [ラミネートセル用負極シートの作製]
 バインダーとしてダイセル化学製#1380のカルボキシメチルセルロース(CMC)水溶液を用いた。
[Manufacturing of negative electrode sheet for laminated cell]
A # 1380 carboxymethyl cellulose (CMC) aqueous solution manufactured by Daicel Chemical Co., Ltd. was used as a binder.
 混合導電助剤として、カーボンブラック(SUPER C 45(登録商標)、イメリス・グラファイト&カーボン社製)およびカーボンナノチューブ(Cnano社)および気相成長炭素繊維(VGCF(登録商標)-H、昭和電工株式会社製)を1.2:0.4:0.4の質量比で混合したものを調製した。 As mixed conductive auxiliary agents, carbon black (SUPER C 45 (registered trademark), Imeris Graphite & Carbon) and carbon nanotubes (Cnano) and vapor-grown carbon fiber (VGCF (registered trademark) -H, Showa Denko Co., Ltd. A mixture of (manufactured by the company) with a mass ratio of 1.2: 0.4: 0.4 was prepared.
 後述の実施例および比較例で製造した負極材90質量部、混合導電助剤2質量部、CMC固形分8質量部となるように混合し、これに粘度調整のための水を適量加え、自転・公転ミキサー(シンキー社製)を用いて混練し、負極合剤層形成用スラリーを得た。 90 parts by mass of the negative electrode material, 2 parts by mass of the mixed conductive auxiliary agent, and 8 parts by mass of the CMC solid content manufactured in Examples and Comparative Examples described later are mixed, and an appropriate amount of water for adjusting the viscosity is added thereto to rotate. -Kneading was performed using a revolution mixer (manufactured by Shinky Co., Ltd.) to obtain a slurry for forming a negative electrode mixture layer.
 前記スラリーを、厚さ20μmの銅箔上にロールコーターを用いて目付が6mg/cm2になるように塗工し、これ乾燥させて負極用シートを得た。得られた負極用シートはロールプレスにより密度を1.6g/cm3とし、負極シートを得た。得られた負極シートの厚みは、銅箔の厚みを含め、60~70umであった。 The slurry was coated on a copper foil having a thickness of 20 μm using a roll coater so as to have a basis weight of 6 mg / cm 2, and dried to obtain a negative electrode sheet. The obtained negative electrode sheet was rolled to a density of 1.6 g / cm 3 to obtain a negative electrode sheet. The thickness of the obtained negative electrode sheet was 60 to 70 um including the thickness of the copper foil.
 [正極シートの作製] 
 NiMnCo622を95gと、導電助剤としてカーボンブラック(SUPER C 65(登録商標)、イメリス・グラファイト&カーボン社製)を0.72g、CNTが1.68g、VGCF 0.60gおよび結着剤としてポリフッ化ビニリデン(PVdF)を2g秤量し、N-メチル-2-ピロリドン(NMP)を適宜加えながら攪拌・混合し、正極塗工用のスラリーを得た。
[Preparation of positive electrode sheet]
95 g of NiMnCo622, 0.72 g of carbon black (SUPER C 65 (registered trademark), manufactured by Imeris Graphite & Carbon) as a conductive auxiliary agent, 1.68 g of CNT, 0.60 g of VGCF and polyvinylidene fluoride as a binder. 2 g of vinylidene (PVdF) was weighed and stirred and mixed while appropriately adding N-methyl-2-pyrrolidone (NMP) to obtain a slurry for positive electrode coating.
 前記スラリーを、厚さ20μmのアルミニウム箔上にロールコーターを用いて目付13.2mg/cm2狙いの厚みで塗工し、これ乾燥させて正極用シートを得た。得られた正極用シートはロールプレスにより密度を3.2g/cm3とし、正極シートを得た。得られた正極シートの厚みは、アルミニウム箔の厚みを含め、60~70μmであった。 The slurry was applied onto an aluminum foil having a thickness of 20 μm using a roll coater to a thickness of 13.2 mg / cm 2 with a basis weight, and dried to obtain a positive electrode sheet. The obtained positive electrode sheet was rolled to a density of 3.2 g / cm 3 to obtain a positive electrode sheet. The thickness of the obtained positive electrode sheet was 60 to 70 μm including the thickness of the aluminum foil.
 [正負極容量比の微調整] 
 正極と負極を対向させてリチウムイオン二次電池を作製する際、両者の容量のバランスを考慮する必要がある。すなわち、負極の容量が小さすぎれば、電池充電時にリチウムが限界まで挿入しきった後には、金属のリチウムが負極上に析出してサイクル特性劣化の原因となる。逆に、負極の容量が大きすぎると、サイクル特性は向上するものの、その電池は負荷の小さい状態で充放電することになるので、エネルギー密度が低いものとなってしまう。
[Fine adjustment of positive / negative electrode capacity ratio]
When manufacturing a lithium-ion secondary battery with the positive and negative electrodes facing each other, it is necessary to consider the balance between the capacities of both. That is, if the capacity of the negative electrode is too small, metallic lithium precipitates on the negative electrode after lithium has been inserted to the limit during battery charging, which causes deterioration of cycle characteristics. On the contrary, if the capacity of the negative electrode is too large, the cycle characteristics are improved, but the battery is charged and discharged with a small load, so that the energy density is low.
 これを防ぐため、正極シートには容量が一定のものを用い、負極シートについては、対極がリチウムのセルを用いて、あらかじめ負極材の比容量を測定しておき、正極シートの容量QCに対する負極シートの容量QAの比が1.2となるように、負極塗工用スラリーの塗工時の厚みを微調整した。 In order to prevent this, a positive electrode sheet having a constant capacity is used, and for the negative electrode sheet, a cell having a lithium counter electrode is used to measure the specific capacity of the negative electrode material in advance, and the negative electrode with respect to the capacity QC of the positive electrode sheet is used. The thickness of the negative electrode coating slurry at the time of coating was finely adjusted so that the ratio of the capacity QA of the sheet was 1.2.
 [二電極式セルの作製]
 上記負極シートおよび正極シートを打ち抜いて、面積21.84cm2の負極片および正極片20cm2を得た。正極片のアルミニウム箔にアルミニウム製のタブを、負極片の銅箔にニッケル製のタブをそれぞれ取り付けた。ポリプロピレン製マイクロポーラスフィルムを負極片と正極片の間に挟み入れ、これを袋状のアルミラミネート包材(SPALF)の中に入れ、これに電解液を注入した。その後、開口部を熱融着によって封止して、評価用の二電極式セルとした。
[Manufacturing of two-electrode cell]
It punched the negative electrode sheet and positive electrode sheet, to obtain a negative electrode strip and the positive electrode piece 20 cm 2 area 21.84cm 2. An aluminum tab was attached to the aluminum foil of the positive electrode piece, and a nickel tab was attached to the copper foil of the negative electrode piece. A polypropylene microporous film was sandwiched between the negative electrode pieces and the positive electrode pieces, which was placed in a bag-shaped aluminum laminated packaging material (SPALF), and an electrolytic solution was injected into the bag-shaped aluminum laminated packaging material (SPALF). Then, the opening was sealed by heat fusion to obtain a two-electrode cell for evaluation.
 なお、リチウム対極セルおよび二電極式セルにおける電解液は、エチレンカーボネート、エチルメチルカーボネート、およびジエチルカーボネートを3:5:2の体積比で混合して得られた溶媒に、ビニレンカーボネート(VC)を1質量%、またフルオロエチレンカーボネート(FEC)を2質量%混合し、さらにこれに電解質LiPF6を1mol/Lの濃度になるように溶解させた液である。
[初回クーロン効率の測定]
 リチウム対極セルを用いて試験を行った。まずレスト電圧から0.005Vまで、電流の大きさを0.1CとしたCC(コンスタントカレント:定電流)モードでの放電を行った。ここでの1Cとは、理論比容量(シリコン:4200mAh/g、黒鉛粒子:372mAh/g、炭素質材料:0mAh/gとした)から計算される、本リチウム対極セルの試料極の容量を、1時間で放電あるいは充電できる定電流の大きさである。0.005Vに到達後は、CV(コンスタントボルテージ:定電圧)モードでの放電に切り替え、カットオフ電流の大きさを0.005Cとして充電を行った。このときの比容量を初回挿入比容量とする。
The electrolytic solution in the lithium counter electrode cell and the two-electrode cell is a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate in a volume ratio of 3: 5: 2, and vinylene carbonate (VC) is added to the solvent. It is a liquid obtained by mixing 1% by volume and 2% by volume of fluoroethylene carbonate (FEC), and further dissolving the electrolyte LiPF6 at a concentration of 1 mol / L.
[Measurement of initial Coulomb efficiency]
The test was conducted using a lithium counter electrode cell. First, discharge was performed from the rest voltage to 0.005 V in the CC (constant current: constant current) mode in which the magnitude of the current was 0.1 C. Here, 1C is the capacity of the sample electrode of this lithium counter electrode cell calculated from the theoretical specific capacity (silicon: 4200 mAh / g, graphite particles: 372 mAh / g, carbonaceous material: 0 mAh / g). It is the magnitude of a constant current that can be discharged or charged in one hour. After reaching 0.005V, the discharge was switched to the CV (constant voltage: constant voltage) mode, and the charge was performed with the cutoff current set to 0.005C. The specific volume at this time is defined as the initial insertion specific volume.
 次に、上限電圧を1.5Vとして、電流の大きさを0.1CとしたCCモードでの充電を行った。このときの比容量を初回脱離比容量とする。
 ここで、比容量とは、上記放電あるいは充電時に測定された電池の容量を、本リチウム対極セルの試料極中に用いられている本発明に係る負極材の質量で除した値である。試験は25℃に設定した恒温槽内で行った。また初回クーロン効率を次式によって定義した。
Next, charging was performed in the CC mode with the upper limit voltage set to 1.5 V and the magnitude of the current set to 0.1 C. The specific volume at this time is defined as the initial desorption specific volume.
Here, the specific capacity is a value obtained by dividing the capacity of the battery measured at the time of discharging or charging by the mass of the negative electrode material according to the present invention used in the sample electrode of the lithium counter electrode cell. The test was conducted in a constant temperature bath set at 25 ° C. The initial Coulomb efficiency was defined by the following equation.
 初回クーロン効率(%)=100×(初回脱離比容量)/(初回挿入比容量)
[充放電サイクル特性の測定]
 二電極式セルを用いて測定を行った。エージング条件は4サイクル充放電を繰り返すことを条件とした。1サイクル:45℃0.03Cで3.4Vまで充電し1度ガス抜きを行い、その後0.1Cで充電(CCモード)を再開し、4.25Vまで上げ、その後CVモード(0.01C CV-cut)で充電を行った。その後0.1Cで2.8Vまで放電を行った。2サイクル:0.2Cで充放電(CC-CV(1/20cut)/CC)を行い、その後ガス抜きを行った。3・4サイクル:25℃0.2Cで2回充放電(CC-CV(1/20cut)を繰り返した。その後、1Cでの充放電サイクル特性の測定を行った。ここでの1Cとは、本二電極式セルを1時間で満充電状態から満放電状態にするのに必要な定電流の大きさである。充電は、上限電圧を4.2Vとして1Cの電流でCCモードおよびカットオフ電流を0.05CとしたCVモードで行った。放電は、下限電圧を2.8Vとして1Cの電流でのCCモードで行った。このエージング後の充放電操作を1サイクル目として100サイクル繰り返し、次式で定義される100サイクル後の放電容量維持率を計算した。
Initial Coulomb efficiency (%) = 100 x (Initial desorption specific volume) / (Initial insertion ratio capacity)
[Measurement of charge / discharge cycle characteristics]
The measurement was performed using a two-electrode cell. The aging condition was that four cycles of charging and discharging were repeated. 1 cycle: Charge to 3.4V at 45 ° C. 0.03C, degas once, then restart charging (CC mode) at 0.1C, raise to 4.25V, and then CV mode (0.01C CV). -Cut) was used for charging. After that, the battery was discharged to 2.8 V at 0.1 C. 2 cycles: Charging / discharging (CC-CV (1/20 cut) / CC) was performed at 0.2 C, and then degassing was performed. 3.4 cycle: Charging / discharging (CC-CV (1/20 cut) was repeated twice at 25 ° C. 0.2C. After that, the charging / discharging cycle characteristics were measured at 1C. 1C here is 1C. This is the magnitude of the constant current required to change the two-electrode cell from a fully charged state to a fully discharged state in one hour. Charging is a CC mode and cutoff current with a current of 1C with an upper limit voltage of 4.2V. The discharge was performed in the CV mode at 0.05 C. The discharge was performed in the CC mode with a current of 1 C with the lower limit voltage set to 2.8 V. The charge / discharge operation after aging was repeated for 100 cycles as the first cycle, and then The discharge capacity retention rate after 100 cycles defined by the equation was calculated.
   100サイクル後放電容量維持率(%)=
      100×(100サイクル目の放電容量)/(1サイクル目の放電容量)
 以下に、炭素-シリコン複合体原料(炭素質材料、黒鉛粒子)について、調製方法および入手先、物性値を示す。
[炭素質材料]
<炭素質材料1~11、13、16~18>
 平均直径が15μmの活性炭繊維をジェットミル又はワンダーブレンダーを用いて解砕し、それぞれ異なる円柱形状の炭素質材料1~11、13、16~18を得た。炭素質材料の物性を表1に示す。
<炭素質材料12、14、15>
 Dv50が7μmである活性炭粒子を炭素質材料12、14、15として用いた。炭素質材料の物性を表1に示す。
<炭素質材料19>
 平均直径が0.02μm、平均長さが3μmであるカーボンナノチューブ(CNT)を炭素質材料19として用いた。炭素質材料の物性を表1に示す。
[黒鉛粒子1]
 BET2.7m2/g、DV107μm、DV50 14μm、DV90 27μm、初回挿入比容量360mAh/g、初回クーロン効率92%の人造黒鉛を黒鉛粒子1として使用した。
Discharge capacity retention rate (%) after 100 cycles =
100 x (discharge capacity in the 100th cycle) / (discharge capacity in the 1st cycle)
The following shows the preparation method, the source, and the physical property values of the carbon-silicon complex raw material (carbonaceous material, graphite particles).
[Carbonaceous material]
<Carbonaceous materials 1-11, 13, 16-18>
Activated carbon fibers having an average diameter of 15 μm were crushed using a jet mill or a wonder blender to obtain carbonaceous materials 1 to 11, 13, 16 to 18 having different cylindrical shapes. Table 1 shows the physical characteristics of carbonaceous materials.
<Carbonaceous materials 12, 14, 15>
Activated carbon particles having a Dv50 of 7 μm were used as carbonaceous materials 12, 14, and 15. Table 1 shows the physical characteristics of carbonaceous materials.
<Carbonaceous material 19>
Carbon nanotubes (CNTs) having an average diameter of 0.02 μm and an average length of 3 μm were used as the carbonaceous material 19. Table 1 shows the physical characteristics of carbonaceous materials.
[Graphite particles 1]
Artificial graphite with BET 2.7 m 2 / g, DV 107 μm, DV 50 14 μm, DV 90 27 μm, initial insertion specific volume 360 mAh / g, and initial Coulomb efficiency 92% was used as graphite particles 1.
Figure JPOXMLDOC01-appb-T000001
[実施例1~11、比較例1、3~7]
 表2に示した炭素質材料に対して、アルゴン窒素ガスと混合された1.3体積%のモノシラン含有ガス流を有する管炉で設定温度400℃、圧力760torr、流量100sccmで表1に記載の時間処理して、炭素質材料の表面および細孔内にシリコンを析出させることで炭素-シリコン複合体を得た。得られた炭素-シリコン複合体の材料物性値を表2に示す。これに混合後負極活物質を100質量%とした時にシリコン濃度が5.6質量%となるように炭素-シリコン複合体に対して黒鉛粒子1を混合して負極活物質を得た。その電池特性を表2に示す。図1は、実施例1で製造された炭素-シリコン複合体の走査型電子顕微鏡(SEM)写真である。
[比較例2、8]
 表2に示した炭素質材料に対して、アルゴン窒素ガスと混合された1.3体積%のモノシラン含有ガス流を有する管炉で設定温度400℃、圧力760torr、流量100sccmで、表2に記載の時間処理して、炭素質材料の表面および細孔内にシリコンを析出させることで炭素-シリコン複合体を得た。得られた炭素-シリコン複合体の材料物性値を表2に示す。シリコン含有量が著しく少なく実施例1~11、比較例1、3、4、6、7と同様の基準で混合することができなかったため炭素シリコン複合体20質量%に対して黒鉛粒子1 80質量%を混合して負極活物質を得た。その電池特性を表2に示す。
[比較例9]
 ナノシリコン(数基準累積分布における50%径:90nm、数基準累積分布における90%径:150nm)36質量部と、石油ピッチ(軟化点:214℃、炭素化率:72.35質量%、QI含量:0.12質量%、TI含量:47.75質量%)64質量部を10Lポリ容器に入れ、ドライブレンドを行った。ドライブレンドを行ったナノシリコンと石油ピッチの混合粉を二軸押出機TEM-18SS(東芝機械社製)の原料ホッパーに投入した。二軸押出機での混練条件は、温度250℃、スクリュー回転数700rpm、混合粉投入速度2kg/hで行った。混練の際、窒素ガスを1.5L/min流通しながら作業を実施した。
Figure JPOXMLDOC01-appb-T000001
[Examples 1 to 11, Comparative Examples 1, 3 to 7]
Table 1 shows the carbonaceous materials shown in Table 2 at a set temperature of 400 ° C., a pressure of 760 torr, and a flow rate of 100 sccm in a tube furnace having a gas flow containing 1.3% by volume of monosilane mixed with argon nitrogen gas. Time treatment was performed to precipitate silicon on the surface of the carbonaceous material and in the pores to obtain a carbon-silicon composite. Table 2 shows the material property values of the obtained carbon-silicon complex. After mixing, graphite particles 1 were mixed with the carbon-silicon composite so that the silicon concentration was 5.6% by mass when the negative electrode active material was 100% by mass to obtain a negative electrode active material. The battery characteristics are shown in Table 2. FIG. 1 is a scanning electron microscope (SEM) photograph of the carbon-silicon composite produced in Example 1.
[Comparative Examples 2 and 8]
Table 2 shows the carbonaceous materials shown in Table 2 at a set temperature of 400 ° C., a pressure of 760 torr, and a flow rate of 100 sccm in a tube furnace having a gas flow containing 1.3% by volume of monosilane mixed with argon nitrogen gas. The carbon-silicon composite was obtained by precipitating silicon on the surface of the carbonaceous material and in the pores. Table 2 shows the material property values of the obtained carbon-silicon complex. Since the silicon content was extremely low and could not be mixed according to the same criteria as in Examples 1 to 11 and Comparative Examples 1, 3, 4, 6 and 7, the graphite particles were 180% by mass with respect to 20% by mass of the carbon silicon composite. % Was mixed to obtain a negative electrode active material. The battery characteristics are shown in Table 2.
[Comparative Example 9]
36 parts by mass of nanosilicon (50% diameter in number-based cumulative distribution: 90 nm, 90% diameter in number-based cumulative distribution: 150 nm) and petroleum pitch (softening point: 214 ° C., carbonization rate: 72.35% by mass, QI Content: 0.12% by mass, TI content: 47.75% by mass) 64 parts by mass was placed in a 10 L plastic container and dry blended. A dry-blended mixed powder of nanosilicon and petroleum pitch was put into a raw material hopper of a twin-screw extruder TEM-18SS (manufactured by Toshiba Machine Co., Ltd.). The kneading conditions in the twin-screw extruder were a temperature of 250 ° C., a screw rotation speed of 700 rpm, and a mixed powder charging speed of 2 kg / h. At the time of kneading, the work was carried out while circulating nitrogen gas at 1.5 L / min.
 二軸押出機で混練したものをハンマーで粗砕した後、ジェットミルSTJ-200(セイシン企業社製)で微粉砕してナノシリコン含有粒子を得た。ナノシリコン含有粒子中のナノシリコン含有率は36質量%、体積基準累積分布における50%径(D50)10μmであった。 After kneading with a twin-screw extruder, it was coarsely crushed with a hammer and then finely pulverized with a jet mill STJ-200 (manufactured by Seishin Enterprise Co., Ltd.) to obtain nanosilicon-containing particles. The nanosilicon content in the nanosilicon-containing particles was 36% by mass, and the 50% diameter (D50) in the volume-based cumulative distribution was 10 μm.
 石油系コークスをハンマーで粗砕し、バンタムミル(ホソカワミクロン社製、メッシュ1.5mm)で粉砕を行った。これをジェットミルSTJ-200(セイシン企業社製)で粉砕圧0.6MPa、プッシャー圧0.7MPaの条件で粉砕した。粉砕したものをアチソン炉にて3000℃で熱処理して黒鉛粒子2を得た。 Petroleum-based coke was coarsely crushed with a hammer and crushed with a bantam mill (Made by Hosokawa Micron, mesh 1.5 mm). This was pulverized with a jet mill STJ-200 (manufactured by Seishin Enterprise Co., Ltd.) under the conditions of a pulverization pressure of 0.6 MPa and a pusher pressure of 0.7 MPa. The crushed material was heat-treated in an Achison furnace at 3000 ° C. to obtain graphite particles 2.
 ナノシリコン含有粒子を4.8kg、黒鉛粒子2を5.2kg秤量し、サイクロミックスCLX-50(ホソカワミクロン社製)に投入し、周速24m/secで10min混合した。 4.8 kg of nanosilicon-containing particles and 5.2 kg of graphite particles 2 were weighed, charged into Cyclomix CLX-50 (manufactured by Hosokawa Micron), and mixed for 10 min at a peripheral speed of 24 m / sec.
 アルミナ製匣鉢(90mm×90mm×50mm)に混合粉末を80g充填し、管状炉(内径130mm、均熱帯500mm)の中央にセットし、窒素流通下で150℃/hで1050℃まで昇温し、1h保持を行った後、150℃/hで室温まで降温した。アルミナ製匣鉢から熱処理物を回収後、バンタムミル(ホソカワミクロン社製、メッシュ0.5mm)で粉砕し、目開き45μmのステンレス篩を用いて、粗粉をカットし炭素-シリコン複合体を得た。材料物性値を表2に示す。これに混合後負極活物質を100質量%とした時にシリコン濃度が5.6質量%となるように炭素-シリコン複合体に対して黒鉛粒子1を混合して負極活物質を得た。その電池特性を表2に示す。 An alumina saggar (90 mm x 90 mm x 50 mm) is filled with 80 g of mixed powder, set in the center of a tube furnace (inner diameter 130 mm, room temperature 500 mm), and heated to 1050 ° C at 150 ° C / h under nitrogen flow. After holding for 1 h, the temperature was lowered to room temperature at 150 ° C./h. After recovering the heat-treated product from the alumina saggar, the heat-treated product was crushed with a bantam mill (Hosokawa Micron Co., Ltd., mesh 0.5 mm), and coarse powder was cut using a stainless steel sieve having an opening of 45 μm to obtain a carbon-silicon composite. Table 2 shows the material property values. After mixing, graphite particles 1 were mixed with the carbon-silicon composite so that the silicon concentration was 5.6% by mass when the negative electrode active material was 100% by mass to obtain a negative electrode active material. The battery characteristics are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 実施例1~11の複合体を用いた電池の特性はサイクル特性が優れているが、比較例1~9の複合体を用いた電池の特性はサイクル特性が劣っている。比較例1、3、4は、炭素質材料として粒子状の炭素質材料を用い、マイクロ孔比率が低いことから吸着性能が劣り、サイクル特性が劣る結果になったと考えられる。比較例2は、細孔容積、マイクロ孔比率が少ないことから表面近傍にシリコンが生成され、ISi/IGが大きくなったことでサイクル特性が劣る結果になったと考えられる。比較例5は、シリコンCVD処理時間を長くしたため表面析出Siが多くなり、サイクル特性が劣る結果になったと考えられる。比較例6は、平均長さの長い円柱状多孔質炭素を炭素質材料として用いたため、複合体の平均長さやDv90が大きくなり、電極の塗工性が劣ったことや、膨張収縮が大きいことからサイクル特性が低い結果になったと考えられる。比較例7は、吸着性能が劣り、マイクロ孔比率が少なく、メソ孔およびマクロ孔の合計の比率が多いことから粗大なシリコンが生成され、サイクル特性が劣る結果になったと考えられる。比較例8は、炭素質材料としてCNTを用いたことから平均直径が小さくかつ細孔容積が小さいため、細孔内に十分なシリコンを含むことができず、表面に多くのシリコンが析出したためサイクル特性が劣る結果になったと考えられる。比較例9は、炭素質材料として黒鉛を含む複合体であり、Siの111面ピーク半値幅が小さい、すなわちシリコンの結晶性が高いためサイクル特性が劣る結果になったと考えられる。
Figure JPOXMLDOC01-appb-T000002
The characteristics of the batteries using the complexes of Examples 1 to 11 are excellent in cycle characteristics, but the characteristics of the batteries using the complexes of Comparative Examples 1 to 9 are inferior in cycle characteristics. In Comparative Examples 1, 3 and 4, a particulate carbonaceous material was used as the carbonaceous material, and since the micropore ratio was low, it is considered that the adsorption performance was inferior and the cycle characteristics were inferior. In Comparative Example 2, since the pore volume and the micropore ratio were small, silicon was generated in the vicinity of the surface, and it is considered that the cycle characteristics were inferior due to the increase in ISi / IG. In Comparative Example 5, since the silicon CVD processing time was lengthened, the amount of surface-precipitated Si increased, and it is considered that the cycle characteristics were inferior. In Comparative Example 6, since columnar porous carbon having a long average length was used as the carbonaceous material, the average length of the complex and Dv90 were large, the electrode coatability was poor, and the expansion and contraction was large. Therefore, it is considered that the cycle characteristics were low. In Comparative Example 7, it is considered that the adsorption performance was inferior, the micropore ratio was small, and the total ratio of the mesopores and the macropores was large, so that coarse silicon was produced and the cycle characteristics were inferior. In Comparative Example 8, since CNT was used as the carbonaceous material, the average diameter was small and the pore volume was small, so that sufficient silicon could not be contained in the pores, and a large amount of silicon was deposited on the surface. It is probable that the result was inferior in characteristics. Comparative Example 9 is a complex containing graphite as a carbonaceous material, and it is considered that the cycle characteristics are inferior because the 111-plane peak half width of Si is small, that is, the crystallinity of silicon is high.

Claims (13)

  1.  炭素質材料とシリコンとを含む、炭素-シリコン複合体であって、
     円柱状の形状を有する炭素-シリコン複合体を含み、
     平均直径は5μm以上、30μm以下であり、
     平均長さは1μm以上、50μm未満であり、
     空気中におけるDTA測定によるDTA曲線において、発熱ピークが800℃以下に存在し、
     ラマンスペクトルにおいて、Siによるピークが450~495cm-1に存在し、前記Siによるピークの強度ISiとGバンドの強度IGの比、ISi/IGが0.35以下であり、
     Cu-Kα線を用いたXRDパターンにおける、Siの111面によるピークの半値幅が3.0deg.以上である、
     炭素-シリコン複合体。
    A carbon-silicon complex containing carbonaceous materials and silicon.
    Contains a carbon-silicon complex with a columnar shape,
    The average diameter is 5 μm or more and 30 μm or less.
    The average length is 1 μm or more and less than 50 μm.
    In the DTA curve measured by DTA in air, the exothermic peak exists below 800 ° C.
    In the Raman spectrum, the peak due to Si exists at 450 to 495 cm -1 , and the ratio of the intensity ISi of the peak due to Si to the intensity IG of the G band, ISi / IG is 0.35 or less.
    In the XRD pattern using Cu-Kα rays, the half width of the peak due to the 111 planes of Si is 3.0 deg. That's it,
    Carbon-silicon complex.
  2.  前記炭素質材料は、吸着性能試験において、前記炭素質材料の重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する、請求項1に記載の炭素-シリコン複合体。 According to claim 1, the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test. The carbon-silicon composite described.
  3.  体積基準の累積粒度分布における90%粒子径DV90が50μm以下である、請求項1または2に記載の炭素-シリコン複合体。 The carbon-silicon complex according to claim 1 or 2, wherein the 90% particle size DV90 in the volume-based cumulative particle size distribution is 50 μm or less.
  4.  炭素質材料とシリコンを含む、炭素-シリコン複合体であって、
     ラマンスペクトルにおいて、Siによるピークが450~495cm-1に存在し、前記Siによるピークの強度ISiとGバンドの強度IGの比、ISi/IGが0.35以下であり、
     Cu-Kα線を用いたXRDパターンにおける、Siの111面によるピークの半値幅が3.0deg.以上であり、
     体積基準の累積粒度分布における90%粒子径DV90が50μm以下であり、
     前記炭素質材料は、吸着性能試験において前記炭素質材料の重量あたりの重量増分の平衡吸着性能を100%とした際に、経過時間200min以内に吸着性能が100%に達する、
     炭素-シリコン複合体。
    A carbon-silicon complex containing carbonaceous materials and silicon,
    In the Raman spectrum, the peak due to Si exists at 450 to 495 cm -1 , and the ratio of the intensity ISi of the peak due to Si to the intensity IG of the G band, ISi / IG is 0.35 or less.
    In the XRD pattern using Cu-Kα rays, the half width of the peak due to the 111 planes of Si is 3.0 deg. That's all
    The 90% particle size DV90 in the volume-based cumulative particle size distribution is 50 μm or less.
    The adsorption performance of the carbonaceous material reaches 100% within an elapsed time of 200 min when the equilibrium adsorption performance of the weight increment per weight of the carbonaceous material is set to 100% in the adsorption performance test.
    Carbon-silicon complex.
  5.  体積基準の累積粒度分布における10%粒子径DV10が2.0μm以上である、請求項1~4のいずれか1項に記載の炭素-シリコン複合体。 The carbon-silicon complex according to any one of claims 1 to 4, wherein the 10% particle size DV10 in the volume-based cumulative particle size distribution is 2.0 μm or more.
  6.  BET比表面積が50m2/g以下である、請求項1~5のいずれか1項に記載の炭素-シリコン複合体。 The carbon-silicon complex according to any one of claims 1 to 5, wherein the BET specific surface area is 50 m 2 / g or less.
  7.  酸素含有率が10質量%以下である、請求項1~6のいずれか1項に記載の炭素-シリコン複合体。 The carbon-silicon complex according to any one of claims 1 to 6, wherein the oxygen content is 10% by mass or less.
  8.  シリコン含有率が10質量%以上、70質量%未満である、請求項1~7のいずれか1項に記載の炭素-シリコン複合体。 The carbon-silicon composite according to any one of claims 1 to 7, wherein the silicon content is 10% by mass or more and less than 70% by mass.
  9.  前記炭素質材料は、細孔容積が0.30cm3/g以上であり、全細孔の容積に占めるマイクロ孔の容積の比率が90%以上であり、全細孔の容積に占めるメソ孔とマクロ孔との容積の和の比率が10%未満であるという細孔分布を有する、請求項1~8のいずれか1項に記載の炭素-シリコン複合体。 The carbonaceous material has a pore volume of 0.30 cm 3 / g or more, a ratio of the volume of micropores to the volume of all pores is 90% or more, and a mesopores to the volume of all pores. The carbon-silicon composite according to any one of claims 1 to 8, which has a pore distribution in which the ratio of the sum of the volumes to the macropores is less than 10%.
  10.  前記炭素質材料は、ラマンスペクトルにおいてR値が0.30以上、1.30以下である、請求項1~9のいずれか1項に記載の炭素-シリコン複合体。 The carbonaceous material according to any one of claims 1 to 9, wherein the carbonaceous material has an R value of 0.30 or more and 1.30 or less in the Raman spectrum.
  11.  請求項1~10のいずれか1項に記載の炭素-シリコン複合体を含む負極活物質。 Negative electrode active material containing the carbon-silicon complex according to any one of claims 1 to 10.
  12.  請求項11に記載の負極活物質を含む負極合剤層。 Negative electrode mixture layer containing the negative electrode active material according to claim 11.
  13.  請求項12に記載の負極合剤層を含む、リチウムイオン二次電池。 A lithium ion secondary battery including the negative electrode mixture layer according to claim 12.
PCT/JP2021/020498 2020-05-28 2021-05-28 Carbon–silicon composite WO2021241749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020093159 2020-05-28
JP2020-093159 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241749A1 true WO2021241749A1 (en) 2021-12-02

Family

ID=78744668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020498 WO2021241749A1 (en) 2020-05-28 2021-05-28 Carbon–silicon composite

Country Status (2)

Country Link
JP (1) JP2021187733A (en)
WO (1) WO2021241749A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293740A1 (en) * 2022-06-16 2023-12-20 SK On Co., Ltd. Anode active material for lithium secondary battery, method of preparing the same and lithium secondary battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473098B1 (en) * 2022-09-01 2024-04-23 Dic株式会社 Anode active material precursor, anode active material, secondary battery, and method for producing anode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same
JP2010095390A (en) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology Mesoporous carbon composite material and secondary battery using the same
JP2018534720A (en) * 2015-08-28 2018-11-22 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel material with very durable insertion of lithium and method for its production
WO2019031597A1 (en) * 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same
JP2010095390A (en) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology Mesoporous carbon composite material and secondary battery using the same
JP2018534720A (en) * 2015-08-28 2018-11-22 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel material with very durable insertion of lithium and method for its production
WO2019031597A1 (en) * 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293740A1 (en) * 2022-06-16 2023-12-20 SK On Co., Ltd. Anode active material for lithium secondary battery, method of preparing the same and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP2021187733A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP5270050B1 (en) Composite graphite particles and uses thereof
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
EP4160727A1 (en) Composite carbon particles and use thereof
JP6456474B2 (en) Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
WO2021241749A1 (en) Carbon–silicon composite
JP7456291B2 (en) Carbon-coated composite materials and their applications
RU2656241C1 (en) Silicon material and negative electrode of secondary battery
JP7236613B1 (en) Composite particles, method for producing the same, and use thereof
US20230223537A1 (en) Composite particles, negative electrode active material, and lithium-ion secondary battery
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
US20230234852A1 (en) Composite particles, method for producing the same, and uses thereof
JP2023059283A (en) Composite particles, manufacturing method thereof, and use thereof
US20230216025A1 (en) Composite particles, negative electrode material, and lithium-ion secondary battery
WO2021241753A1 (en) Composite and use therefor
JPWO2019159367A1 (en) Carbonaceous particles, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
WO2022270539A1 (en) Composite carbon particles and use thereof
CN117321797A (en) Composite particle, negative electrode mixture layer, and lithium ion secondary battery
WO2022249476A1 (en) Composite particle, negative electrode active material, and lithium-ion secondary battery
WO2023053548A1 (en) Composite particle, production method therefor, and use thereof
TW202244001A (en) Porous silicon structure, porous siliconcarbon composite and negative electrode active material comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP