JP2021187726A - High-intensity independent foamed tile and method for producing the same - Google Patents
High-intensity independent foamed tile and method for producing the same Download PDFInfo
- Publication number
- JP2021187726A JP2021187726A JP2020113507A JP2020113507A JP2021187726A JP 2021187726 A JP2021187726 A JP 2021187726A JP 2020113507 A JP2020113507 A JP 2020113507A JP 2020113507 A JP2020113507 A JP 2020113507A JP 2021187726 A JP2021187726 A JP 2021187726A
- Authority
- JP
- Japan
- Prior art keywords
- independent foam
- raw material
- kneaded
- press
- tiles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Finishing Walls (AREA)
Abstract
Description
本発明は、独立発泡タイルおよびの独立発泡外装タイルの強度を高める製造方法に関する。The present invention relates to a manufacturing method for increasing the strength of an independent foam tile and an independent foam exterior tile.
発泡タイルは、断熱性及び耐久性に優れた建築材料であるとともに、軽量であることから作業性に優れ、駆体構造にかかる荷重の低減も図れるというメリットがある。その中には、表面に釉薬を施す場合と施さない場合の二つの場合があり、前者の施釉を施す場合には、見栄えを良くすることができるとともに、防汚性・耐候性・耐水性等の耐久性も向上する。Foam tiles are building materials with excellent heat insulation and durability, and because they are lightweight, they have excellent workability and have the advantages of reducing the load applied to the body structure. There are two cases, one is glaze applied to the surface and the other is not applied. When the former glaze is applied, the appearance can be improved and the antifouling property, weather resistance, water resistance, etc. Durability is also improved.
しかし、釉薬を施した発泡レンガや発泡タイル基材は連続発泡体であるために釉薬が何らかの理由で剥がれたり、ヒビが入ったりすると雨水の侵入により基材内部に吸水し、冬場の低温時に吸水した雨水が凍結すると体積膨張を起こし基材が破損することになる。そのため軽量かつ非吸水性である独立発泡の基材の開発が重要となる。However, since the glaze-coated foam brick and foam tile base material is a continuous foam, if the glaze peels off or cracks for some reason, it absorbs water inside the base material due to the intrusion of rainwater and absorbs water at low temperatures in winter. When the rainwater freezes, the volume expands and the base material is damaged. Therefore, it is important to develop an independently foamed base material that is lightweight and non-absorbent.
一方で、独立発泡化されたタイルやレンガは全域に渡って空孔が無数に存在するため通常のタイルに比較すると強度面で明らかに劣るためビルディングの外壁等に使用される大面積のレンガとして、その使用が懸念される。On the other hand, independently foamed tiles and bricks have innumerable holes over the entire area and are clearly inferior in strength to ordinary tiles, so they are used as large-area bricks for the outer walls of buildings. , Its use is a concern.
軽量レンガやタイルの製造法としては産業廃棄物である石炭灰やスラグなどが用いられる場合があるが、石炭灰の一種であるフライアッシュはムライトや石英などの結晶質鉱物とガラス質からなり結晶質材料とガラス質材料との中間的な性質を有しているためにフライアッシュ単独では炭化珪素による発泡の制御が難しいだけでなく、燃焼に用いた石炭の種類により生成する石炭灰の組成が異なることから軟化点、融点に差異を生じ、一定の品質を維持することが困難であるとされている。従って、フライアッシュは外壁用のレンガやパネルとしてではなく人口軽量骨材としての使用に殆どが限定されており、人口骨材を用いたコンクリートとして再利用されている。Industrial waste such as coal ash and slag may be used as a method for manufacturing lightweight bricks and tiles, but fly ash, which is a type of coal ash, is composed of crystalline minerals such as mulite and quartz and glassy crystals. Not only is it difficult to control foaming by silicon carbide with fly ash alone because it has intermediate properties between quality materials and vitreous materials, but also the composition of coal ash produced by the type of coal used for combustion is Since they are different, the softening point and melting point are different, and it is difficult to maintain a constant quality. Therefore, fly ash is mostly limited to use as artificial lightweight aggregate, not as bricks or panels for outer walls, and is reused as concrete using artificial aggregate.
特許文献1は、繊維集束体の内部にイソシアネート化合物に加えて、ポリオールまたはエポキシ化合物を構成成分とする樹脂が存在し、繊維集束体の表面にアクリル変性エポキシ樹脂またはビスフェノールを主成分が存在するセメント補強用繊維材料が提案されている。Patent Document 1 describes a cement in which a resin containing a polyol or an epoxy compound as a constituent component is present inside the fiber bundle, and an acrylic modified epoxy resin or bisphenol is mainly present on the surface of the fiber bundle. Reinforcing fiber materials have been proposed.
特許文献2は、下部断面が所定の厚さの繊維補強コンクリートで形成され、上部断面が高強度コンクリートで形成されて一体化された合成断面を持つプレキャスト床版部材が橋軸方向に並設された橋梁の床版であって、床版部材の上部断面において、橋軸直角方向と橋軸方向にPC鋼材が配置され、該PC鋼材を緊張定着することにより床版部材の全断面に2方向プレストレスが付与されると共に床版部材同士が圧着接合されて一体化してあり、かつ、床版全断面が無筋である橋梁のプレキャストが提案されている。In Patent Document 2, precast deck members having a composite cross section in which the lower cross section is formed of fiber-reinforced concrete having a predetermined thickness and the upper cross section is formed of high-strength concrete and integrated are juxtaposed in the direction of the bridge axis. A PC steel material is arranged in the direction perpendicular to the bridge axis and in the direction of the bridge axis in the upper cross section of the deck member, and the PC steel material is tension-fixed in two directions on the entire cross section of the deck member. It has been proposed to precast a bridge in which prestress is applied, the deck members are pressure-bonded and integrated, and the entire cross section of the deck is unreinforced.
特許文献3は、セメントを100質量部に対して、BET比表面積が3〜25m2/gの微粉末を5〜50質量部、ブレーン比表面積3500〜10000cm2/gの無機粉末を10〜50質量部、細骨材を50〜250質量部、繊維、水を12〜30質量部、及び減水剤を固形分換算で0.1〜2.0質量部、収縮低減剤を0.1〜5質量部含む配合物の硬化体からなるU字型埋設型枠と、普通コンクリート、を一体化してなる複合はり部材であって、前記U字型埋設型枠の底面部に鉄筋が配置されている複合はり部材が提案されており、前記繊維は直径0.01〜1.0mm、長さ2〜30mmであり、前記繊維の配合量は金属繊維の場合には配合物の体積の0.1〜4.0%、炭素繊維の場合には配合物の体積の0.1〜10%とされている。Patent Document 3 describes that 100 parts by mass of cement, 5 to 50 parts by mass of fine powder having a BET specific surface area of 3 to 25 m2 / g, and 10 to 50 parts by mass of inorganic powder having a brain specific surface area of 3500 to 10000 cm2 / g. , 50 to 250 parts by mass of fine aggregate, 12 to 30 parts by mass of fiber and water, 0.1 to 2.0 parts by mass of water reducing agent in terms of solid content, 0.1 to 5 parts by mass of shrinkage reducing agent It is a composite beam member that integrates a U-shaped buried mold made of a hardened material containing the compound and ordinary concrete, and a composite beam in which reinforcing bars are arranged on the bottom surface of the U-shaped buried mold. Members have been proposed, the fibers having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm, and the blending amount of the fibers is 0.1 to 4 of the volume of the blend in the case of metal fibers. It is 0%, and in the case of carbon fiber, it is 0.1 to 10% of the volume of the compound.
しかし、いずれの特許文献もセメントやコンクリートに繊維を湿式混練したものであり、湿式混練したものを熱処理して完成させるタイルではないために樹脂も補強材料として使用が可能となる。However, all of the patent documents are made by wet-kneading fibers into cement or concrete, and since the tiles are not completed by heat-treating the wet-kneaded fibers, resin can also be used as a reinforcing material.
特許文献4ではタイル原料に亜鉛粉末を混入させ熱処理を施し独立発泡タイルを製造させることを発明者は提案している。この亜鉛粉末の混入により熱処理後でもタイル形状を維持することを見出しているが独立発泡タイル内部に無数の空洞が存在しているために外装用タイルとして使用する場合に於いて強度面で不安が残る。In Patent Document 4, the inventor proposes that zinc powder is mixed with a tile raw material and heat-treated to produce an independent foam tile. It has been found that the tile shape can be maintained even after heat treatment by mixing this zinc powder, but there are innumerable cavities inside the independent foam tile, so there is concern about the strength when using it as an exterior tile. Remain.
本発明の第一の実施形態から第三の実施形態は、特許文献4による独立発泡タイルの製造方法にて強度面を改善するための製造方法を提案している。The first to third embodiments of the present invention propose a manufacturing method for improving the strength of the independent foam tile manufacturing method according to Patent Document 4.
本発明の第一の実施形態は、二酸化ケイ素含有量が45%以上であり、45μmふるい残分が70%以下、比表面積が1500cm2/g以上、強熱減量5%以下からなるJIS規格のフライアッシュと発泡剤と亜鉛粉末から成る独立発泡タイル用原料と、前記独立発泡タイル用原料と補強材とを乾式混錬した後に湿式混練し、前記湿式混練したものをプレス形成させた後に、前記発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。The first embodiment of the present invention is a JIS standard fly having a silicon dioxide content of 45% or more, a 45 μm sieve residue of 70% or less, a specific surface area of 1500 cm 2 / g or more, and a ignition loss of 5% or less. The raw material for independent foam tiles composed of ash, a foaming agent and zinc powder, and the raw material for independent foam tiles and the reinforcing material are dry-kneaded and then wet-kneaded, and the wet-kneaded material is press-formed and then foamed. It is a method for producing an independent foam tile, which comprises heat-treating the press-formed material at a temperature higher than the foaming temperature of the agent.
本発明の第二の実施形態は、500μm目開きの篩にて通過した二酸化ケイ素含有量が45%以上である粉末岩石、土壌および石炭灰とする原料の少なくとも一方の材料と発泡剤と亜鉛粉末から成る独立発泡タイル用原料と、前記独立発泡タイル用原料と補強材とを乾式混錬した後に湿式混練し、前記湿式混練したものをプレス形成させた後に、前記発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。In the second embodiment of the present invention, at least one of the raw materials for powdered rock, soil and coal ash having a silicon dioxide content of 45% or more, a foaming agent and a zinc powder passed through a sieve having a 500 μm opening. The raw material for independent foam tiles made of, and the raw material for independent foam tiles and the reinforcing material are dry-kneaded and then wet-kneaded, and the wet-kneaded material is press-formed and then at a temperature higher than the temperature at which the foaming agent foams. It is a method for producing an independent foam tile, which comprises heat-treating the press-formed material.
本発明の第三の実施形態は、第一の実施形態の独立発泡タイル用原料と第二の実施形態の独立発泡タイル用原料を混合した独立発泡タイル用混合原料と、前記独立発泡タイル用混合原料と補強材とを乾式混錬した後に湿式混練し、前記湿式混練したものをプレス形成させた後に、前記発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。A third embodiment of the present invention comprises a mixed raw material for independent foam tiles, which is a mixture of a raw material for independent foam tiles according to the first embodiment and a raw material for independent foam tiles according to a second embodiment, and a mixture for the independent foam tiles. The raw material and the reinforcing material are dry-kneaded and then wet-kneaded, the wet-kneaded material is press-formed, and then the press-formed material is heat-treated at a temperature at which the foaming agent foams or higher. This is a method for manufacturing independent foam tiles.
特許文献4には亜鉛粉末なしでは熱処理後に初期のタイル形状を維持できず饅頭のような形状となるために後工程である成形時での歩留ロスが多く量産には不向きであることが記載されているが、補強材を混入させることにより熱処理後でも初期のタイル形状を維持することを見出し、本発明に至った。Patent Document 4 describes that without zinc powder, the initial tile shape cannot be maintained after heat treatment and the shape becomes like a bun, so that there is a large yield loss during molding, which is a post-process, and it is not suitable for mass production. However, they have found that the initial tile shape can be maintained even after heat treatment by mixing a reinforcing material, and have reached the present invention.
本発明の第四の実施形態は、二酸化ケイ素含有量が45%以上であり、45μmふるい残分が70%以下、比表面積が1500cm2/g以上、強熱減量5%以下からなるJIS規格のフライアッシュと発泡剤から成る独立発泡タイル用原料と補強材とを乾式混錬した後に湿式混練し、前記湿式混練したものをプレス形成させた後に、前記発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。A fourth embodiment of the present invention is a JIS standard fly having a silicon dioxide content of 45% or more, a 45 μm sieve residue of 70% or less, a specific surface area of 1500 cm 2 / g or more, and an ignition loss of 5% or less. A raw material for independent foam tiles composed of ash and a foaming agent and a reinforcing material are dry-kneaded and then wet-kneaded, and the wet-kneaded material is press-formed and then press-formed at a temperature equal to or higher than the foaming agent. It is a method for manufacturing an independent foam tile, which is characterized by heat-treating the tile.
本発明の第五の実施形態は、500μm目開きの篩にて通過した二酸化ケイ素含有量が45%以上である粉末岩石、土壌および石炭灰とする原料の少なくとも一方の材料と発泡剤から成る独立発泡タイル用原料と補強材とを乾式混錬した後に湿式混練し、前記湿式混練したものをプレス形成させた後に、前記発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。A fifth embodiment of the present invention comprises at least one material and a foaming agent as raw materials such as powdered rock, soil and coal ash having a silicon dioxide content of 45% or more passed through a sieve having a 500 μm opening. The raw material for foam tiles and the reinforcing material are dry-kneaded and then wet-kneaded, the wet-kneaded material is press-formed, and then the press-formed material is heat-treated at a temperature at which the foaming agent foams or higher. It is a method for manufacturing an independent foam tile, which is a feature.
本発明の第六の実施形態は、第四の実施形態である独立発泡タイル用原料と第五の実施形態である独立発泡タイル用原料を混合した独立発泡タイル用混合原料と補強材とを乾式混錬した後に湿式混練し、前記湿式混練したものをプレス形成させた後に、前記発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。In the sixth embodiment of the present invention, the mixed raw material for independent foam tile and the reinforcing material, which are a mixture of the raw material for independent foam tile according to the fourth embodiment and the raw material for independent foam tile according to the fifth embodiment, are dry-typed. A method for producing an independent foam tile, which comprises kneading and then wet kneading, press-forming the wet-kneaded product, and then heat-treating the press-formed product at a temperature at which the foaming agent foams or higher. be.
独立発泡タイル用原料又は独立発泡タイル用混合原料と補強材とを乾式混錬した後に湿式混練することにより表面には補強材の一部が露出するが、この状態で熱処理を施すと補強材が露出した領域および近傍ではタイルの膨張が抑制され表面段差が顕在化すること及び熱処理後のタイルの膨張率が抑制されることも見出した。A part of the reinforcing material is exposed on the surface by dry kneading the raw material for independent foam tiles or the mixed raw material for independent foam tiles and the reinforcing material and then wet kneading. It was also found that the expansion of the tile is suppressed in the exposed region and its vicinity, the surface step becomes apparent, and the expansion rate of the tile after the heat treatment is suppressed.
本発明の第七の実施形態は、第一の実施形態から第六の実施形態の独立発泡タイル用原料又は独立発泡タイル用混合原料のいずれかと補強材を乾式混錬した後に湿式混練したものの上に、第一の実施形態から第六の実施形態の独立発泡タイル用原料又は独立発泡タイル用混合原料のいずれかを乾式混錬した後に湿式混練したものを積層し、前記積層したものをプレス形成させた後に、混入させた発泡剤が発泡する温度以上で前記プレス形成されたものを熱処理することを特徴とする独立発泡タイルの製造方法である。A seventh embodiment of the present invention is obtained by dry-kneading a reinforcing material with either a raw material for independent foam tiles or a mixed raw material for independent foam tiles according to the first to sixth embodiments and then wet-kneading the reinforcing material. In addition, either the raw material for independent foam tiles or the mixed raw material for independent foam tiles of the first to sixth embodiments is dry-kneaded and then wet-kneaded, and the laminated product is press-formed. This is a method for producing an independent foam tile, which comprises heat-treating the press-formed tile at a temperature at which the mixed foaming agent foams or higher.
本発明の第七の実施形態の独立発泡タイル用原料又は独立発泡タイル用混合原料と補強材を乾式混錬した後に湿式混練した下層用原料の厚み対して、前記独立発泡タイル用原料又は独立発泡タイル用混合原料を乾式混錬した後に湿式混練した上層用原料の厚みは3%以上10%以下とする。下層用原料の表面に露出する補強材は少なくとも3%の上層用原料を積層することで表面に露出している補強材を見えなくすることが可能であり、補強効果の低下を抑制するために10%以下とする。The thickness of the raw material for independent foam tiles or the mixed raw material for independent foam tiles and the reinforcing material of the seventh embodiment of the present invention is dry-kneaded and then wet-kneaded with respect to the thickness of the raw material for independent foam tiles or the independent foam. The thickness of the upper layer raw material obtained by wet kneading after dry kneading the tile mixed raw material shall be 3% or more and 10% or less. As for the reinforcing material exposed on the surface of the lower layer raw material, it is possible to make the reinforcing material exposed on the surface invisible by laminating at least 3% of the upper layer raw material, and in order to suppress the deterioration of the reinforcing effect. It shall be 10% or less.
発泡剤については特許文献4に準じた炭化ケイ素であり当該重量%は0.25%以上10%以下とし、熱処理温度は1210℃以上1300℃以下としている。尚、炭化ケイ素でない発泡剤を使用する場合には該発泡剤の昇華する温度以上とすればよい。The foaming agent is silicon carbide according to Patent Document 4, and the weight% thereof is 0.25% or more and 10% or less, and the heat treatment temperature is 1210 ° C. or more and 1300 ° C. or less. When a foaming agent other than silicon carbide is used, the temperature may be higher than the sublimation temperature of the foaming agent.
補強材については、独立発泡タイルの熱処理温度よりも高い融点であり、且つ独立発泡タイルを高強度化させることが必須であるため使用する材料としては、一例を挙げると、金属ではステンレスや鉄、無機材料ではアルミナやガラス、炭素材料ではグラファイト、炭素繊維強化プラスティックおよび炭素複合材料などが該当する。また、使用する補強材は繊維だけでなく、ロッドや網目構造となっているものでもよい。As for the reinforcing material, the melting point is higher than the heat treatment temperature of the independent foam tile, and it is essential to increase the strength of the independent foam tile. Alumina and glass are applicable as inorganic materials, and graphite, carbon fiber reinforced plastic and carbon composite materials are applicable as carbon materials. Further, the reinforcing material used may be not only a fiber but also a rod or a mesh structure.
補強材として繊維を使用する場合には、独立発泡タイル用原料又は独立発泡タイル用混合原料を混練する際に繊維同士が絡みつき毛玉のようになることを抑制するために繊維の長さは、最小3mmとしプレス形成した独立発泡タイルの厚みの3倍を最大とし、直径は0.007mmから5.0mmの範囲とする。When fibers are used as a reinforcing material, the length of the fibers is set in order to prevent the fibers from becoming entangled with each other and forming pills when kneading the raw materials for independent foam tiles or the mixed raw materials for independent foam tiles. The minimum is 3 mm, the maximum is 3 times the thickness of the press-formed independent foam tile, and the diameter is in the range of 0.007 mm to 5.0 mm.
補強材は独立発泡タイル原料又は独立発泡タイル用混合原料内に分散され熱処理後にタイルに固着されることで強度を高めるが、気泡部においては十分な補強効果を示さない。本発明の独立発泡タイルの製造に於いては直径0.3mmから1mmサイズの高密度の気泡が形成されるために繊維の長さは前記気泡1mmが3個連結した場合を補うために3mm以上とした。The reinforcing material is dispersed in the independent foam tile raw material or the mixed raw material for the independent foam tile and is fixed to the tile after the heat treatment to increase the strength, but does not show a sufficient reinforcing effect in the bubble portion. In the production of the independent foam tile of the present invention, since high-density bubbles having a diameter of 0.3 mm to 1 mm are formed, the length of the fiber is 3 mm or more to compensate for the case where three bubbles of 1 mm are connected. And said.
補強材の配合割合は、プレス形成後の独立発泡タイル体積に対して0.1%から20%の範囲とする。熱処理後の独立発泡タイルの強度向上のためには少なくとも0.1%以上必要であり、軽量性を損なわせないために20%以下とする。The blending ratio of the reinforcing material is in the range of 0.1% to 20% with respect to the volume of the independent foam tile after press formation. At least 0.1% or more is required to improve the strength of the independent foam tile after heat treatment, and 20% or less so as not to impair the lightness.
本発明によれば人工軽量骨材としての再利用が主であった火力発電所から排出される石炭灰(フライアッシュ、ボトムアッシュ)、二酸化ケイ素含有量が45%以上である粉末岩石および土壌(細砂、シルト若しくは粘土等)に対して500μm目開きの篩を通過した材料にて付加価値の高い独立発泡タイルを製造でき、併せて補強材を添加しているために課題であった強度も高めることが可能となる。According to the present invention, coal ash (fly ash, bottom ash) discharged from a thermal power plant, which is mainly reused as an artificial lightweight aggregate, powdered rock and clay having a silicon dioxide content of 45% or more ( High-value-added independent foam tiles can be manufactured from materials that have passed through a sieve with a 500 μm opening against fine sand, silt, clay, etc., and the strength that was a problem because of the addition of reinforcing material is also an issue. It will be possible to increase.
以下、本発明に係る実施の形態を説明する。Hereinafter, embodiments according to the present invention will be described.
使用する原料については、松浦発電所から入手したコンクリート用フライアッシュII種を用いた。外部分析の結果から、二酸化ケイ素率含有量が62.3%、湿分が0.1%、強熱残量が2.2%、密度が2.27g/cm2および粉末度(45μm篩残分)が2%であった。また、同所から排出された石炭灰を200μm目開きの篩にて通過した石炭灰と500μm目開きの篩にて通過した石炭灰を使用した。一方、土壌に関しては長崎市琴海地域で採取した真砂土、ゴビ砂漠から採取した砂、および温岩を粉砕して得られた蛇紋岩粉末を500μm目開きの篩にて通過した材料をそれぞれ使用した。前記土壌の二酸化ケイ素率含有量を分析した結果、真砂土に関しては46%、他は60%以上であることを確認した。As the raw material used, fly ash II for concrete obtained from Matsuura Power Station was used. From the results of external analysis, the silicon dioxide content was 62.3%, the moisture content was 0.1%, the remaining amount of intense heat was 2.2%, the density was 2.27 g / cm2, and the powderiness (45 μm sieve residue). ) Was 2%. In addition, coal ash discharged from the same place through a sieve with a 200 μm opening and coal ash passed through a sieve with a 500 μm opening were used. On the other hand, as for the soil, decomposed granite soil collected in the Kotomi area of Nagasaki City, sand collected from the Gobi Desert, and serpentinite powder obtained by crushing warm rock were passed through a sieve with a 500 μm opening. .. As a result of analyzing the silicon dioxide content of the soil, it was confirmed that the decomposed granite soil was 46% and the others were 60% or more.
亜鉛粉末は、ハクスイテック株式会社のF末(金属亜鉛分が94%以上、粒径3〜5μm)を使用した。As the zinc powder, HakusuiTech Co., Ltd.'s F powder (metal zinc content of 94% or more, particle size of 3 to 5 μm) was used.
実施例1は、前記フライアッシュII種80gに対して炭化ケイ素0.75%、粘結剤としてCMC濃度0.5%水溶液を10%、及び亜鉛粉末として添加なし、0.5%添加、1.0%添加および10%添加したものに補強材として長さ1cm、直径0.007mmのアルミナ繊維を約10万本(体積当たり0.1%)入れ、乾式混練後スプレーにより前記CMC水溶液を散布しながら混練した後に、50mm角の金型にて120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製した。金型からサンプルを取り出し1日放置した後に各サンプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。亜鉛添加なしの生成物をサンプル0、亜鉛0.5%添加した生成物をサンプル1、亜鉛5.0%添加した生成物をサンプル2、亜鉛10%添加した生成物をサンプル3とした。In Example 1, 0.75% silicon carbide, 10% CMC concentration 0.5% aqueous solution as a binder, and no addition as zinc powder, 0.5% addition to 80 g of the fly ash type II, 1 Approximately 100,000 (0.1% per volume) alumina fibers with a length of 1 cm and a diameter of 0.007 mm were added to the 0% and 10% additions as a reinforcing material, and the CMC aqueous solution was sprayed by spraying after dry kneading. After kneading while kneading, a pressure press of 120 kg weight / cm2 was performed with a 50 mm square mold to prepare a sample having a thickness of 26 mm. After taking out the samples from the mold and leaving them for 1 day, each sample is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. The product without zinc addition was designated as sample 0, the product with 0.5% zinc added as sample 1, the product with 5.0% zinc added as sample 2, and the product with 10% zinc added as sample 3.
実施例2は、市販されているJIS規格のフライアッシュIV種80gを用いて炭化ケイ素0.5%、粘結剤としてCMC濃度0.5%水溶液を10%、及び亜鉛末1.0%添加したものに補強材として長さ3cm、直径0.007mmの炭素繊維を約5万本(体積当たり0.16%)入れ、乾式混練後スプレーによりCMC水溶液を散布しながら混練した後に、50mm角の金型にて120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製し当該金型から取り出し1日放置した。金型からサンプルを取り出し1日放置した後に各サンプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。得られた生成物をサンプル4とした。In Example 2, 80 g of commercially available JIS standard fly ash type IV was used, and 0.5% of silicon carbide, 10% of an aqueous solution having a CMC concentration of 0.5% as a binder, and 1.0% of zinc powder were added. Approximately 50,000 carbon fibers (0.16% per volume) with a length of 3 cm and a diameter of 0.007 mm were added as a reinforcing material, and after kneading by dry kneading, the CMC aqueous solution was sprayed and kneaded, and then 50 mm square. A pressure press of 120 kg weight / cm2 was performed in a die to prepare a sample having a thickness of 26 mm, which was taken out from the die and left to stand for 1 day. After taking out the samples from the mold and leaving them for 1 day, each sample is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. The obtained product was used as sample 4.
実施例3は、松浦発電所から入手した石炭灰に対して、200μm目開きの篩にて通過した粒径サイズ200μm以下の原料と、500μm目開きの篩にて通過した粒径サイズ500μm以下の原料を準備し、前記各原料80gに対して、それぞれ炭化ケイ素1%、及び亜鉛粉末濃度0.5%添加したものに長さ1cm、直径0.007mmのアルミナ繊維を約10万本(体積当たり0.1%)入れ、スプレーにより粘結剤として濃度0.5%水溶液のCMCを10%、を散布しながら混練した後に、50mm角の金型にて120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製し、1日放置した。金型からサンプルを取り出し1日放置した後に各サンプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。粒径サイズ200μm以下の原料にて得られた生成物をサンプル5とし、粒径サイズ500μm以下の原料にて得られた生成物をサンプル6とした。In Example 3, for coal ash obtained from Matsuura Power Station, a raw material having a particle size of 200 μm or less passed through a sieve having a 200 μm opening and a particle size size of 500 μm or less passed through a sieve having a 500 μm opening. Approximately 100,000 alumina fibers with a length of 1 cm and a diameter of 0.007 mm were added to 80 g of each of the raw materials to which 1% silicon carbide and 0.5% zinc powder were added (per volume). 0.1%) is added, and after kneading while spraying 10% of CMC in a 0.5% concentration aqueous solution as a binder by spraying, a pressure press of 120 kg weight / cm2 is performed with a 50 mm square mold. A 26 mm thick sample was prepared and left to stand for one day. After taking out the samples from the mold and leaving them for 1 day, each sample is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. The product obtained from a raw material having a particle size of 200 μm or less was used as sample 5, and the product obtained from a raw material having a particle size of 500 μm or less was used as sample 6.
実施例4は、温岩粉末、長崎市琴海で採取した真砂土及びゴビ砂漠の砂を500μm目開きの篩にて通過した粒径サイズ500μm以下の原料を準備し、前記各原料80gに対して、それぞれ炭化ケイ素0.75%、粘結剤としてCMC濃度0.5%の水溶液を10%、及び亜鉛粉末5%添加したものに補強材として長さ2cm、直径0.5mmのアルミナ繊維を約5千本(体積当たり13%)入れ、スプレーにより前記CMC水溶液を散布しながら混練した後に、50mm角の金型にて120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製した。金型からサンプルを取り出し1日放置した後に各サンプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。温石粉末から得られた生成物をサンプル7、長崎市琴海で採取した真砂土から得られた生成物をサンプル8、ゴビ砂漠の砂から得られた生成物をサンプル9とした。In Example 4, a raw material having a particle size of 500 μm or less, which was obtained by passing warm rock powder, true sand soil collected in Kotomi, Nagasaki City, and sand from the Gobi Desert through a sieve with a 500 μm opening, was prepared, and for each 80 g of the raw material. Alumina fiber having a length of 2 cm and a diameter of 0.5 mm is added as a reinforcing material to an aqueous solution containing 0.75% silicon carbide, a CMC concentration of 0.5% as a binder, and 5% zinc powder, respectively. After adding 5,000 pieces (13% per volume) and kneading while spraying the CMC aqueous solution by spraying, a pressure press of 120 kg weight / cm2 was performed with a 50 mm square mold to prepare a sample having a thickness of 26 mm. After taking out the samples from the mold and leaving them for 1 day, each sample is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. The product obtained from warm stone powder was used as sample 7, the product obtained from decomposed granite soil collected in Kinkai, Nagasaki City was used as sample 8, and the product obtained from sand in the Gobi desert was used as sample 9.
熱処理前の加圧プレスを行った試料の外観検査の結果から、全てのサンプルに於いて補強材が少なからず表面に露出していることを確認できた。繊維長の観点から、実施例1のサンプル(繊維長さ1cm、直径0.01mm)と実施例2のサンプル(繊維長3cm、直径0.01mm)では繊維の長さの増加に伴い繊維同士の絡み数が多くなる傾向が分かった。繊維の直径の観点から、実施例3(繊維長さ1cm、直径0.5mm)と実施例4(繊維長さ2cm、直径0.5mm)では繊維の絡み付きが殆どないことを確認した。From the results of the visual inspection of the samples subjected to the pressure press before the heat treatment, it was confirmed that the reinforcing material was not a little exposed on the surface in all the samples. From the viewpoint of fiber length, in the sample of Example 1 (fiber length 1 cm, diameter 0.01 mm) and the sample of Example 2 (fiber length 3 cm, diameter 0.01 mm), the fibers are increased as the fiber length increases. It was found that the number of entanglements tended to increase. From the viewpoint of the diameter of the fiber, it was confirmed that there was almost no entanglement of the fiber in Example 3 (fiber length 1 cm, diameter 0.5 mm) and Example 4 (fiber length 2 cm, diameter 0.5 mm).
実施例1から実施例4で得られた熱処理後のサンプルについて生成物サイズの結果を表1に示す。いずれのサンプルも略均一に膨張しており、実施例1の結果から亜鉛粉末の有無および濃度差に変化がないことを確認した。特許文献4では亜鉛粉末を混入しないと熱処理後には初期のタイル形状が大きく崩れる(中央の厚みが端部の厚みに対して約18から25%ほど膨れる)はずであるが補強材を混入させることで形状維持効果(中央の厚みが端部の厚みに対して約5から7%ほどであり、特許文献4での亜鉛粉末単独混入より膨張率を抑制)があることを見出した。また、補強材の濃度が高くなると膨張率が低下するだけでなく、全てのサンプルに於いて補強材が露出している表面近傍には数mm程度の窪みが生じており補強材の割合の増加により当該表面段差が顕在化していくことも分かった。Table 1 shows the product size results for the heat-treated samples obtained in Examples 1 to 4. All the samples expanded substantially uniformly, and it was confirmed from the results of Example 1 that there was no change in the presence or absence of zinc powder and the difference in concentration. According to Patent Document 4, if zinc powder is not mixed, the initial tile shape should be greatly deformed after heat treatment (the thickness of the center swells by about 18 to 25% with respect to the thickness of the edge), but the reinforcing material should be mixed. It was found that there is a shape-maintaining effect (the thickness of the center is about 5 to 7% with respect to the thickness of the end, and the expansion rate is suppressed as compared with the zinc powder alone mixed in Patent Document 4). In addition, when the concentration of the reinforcing material increases, not only the expansion rate decreases, but also in all the samples, a dent of about several mm is generated near the surface where the reinforcing material is exposed, and the ratio of the reinforcing material increases. It was also found that the surface step became apparent.
実施例5は、前記フライアッシュII種80gに対して炭化ケイ素0.75%、粘結剤としてCMC濃度0.5%水溶液を10%、及び補強材として長さ1cm、直径0.007mmのアルミナ繊維を約10万本(体積当たり約0.1%)、長さ3cm、直径0.007mmの炭素繊維を約3.2万本(体積当たり約0.1%)、長さ2cm、直径0.5mmのアルミナ繊維を約5千本(体積当たり13%)入れ、スプレーにより前記CMC水溶液を散布しながら混練した後に、50mm角の金型にて120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製した。金型からサンプルを取り出し1日放置した後に各サンプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。直径0.007mmのアルミナ繊維を約10万本の生成物をサンプル10、長さ3cm、直径0.007mmの炭素繊維を約3.2万本の生成物をサンプル11、長さ2cm、直径0.5mmのアルミナ繊維を約5千本の生成物をサンプルとした。In Example 5, 0.75% of silicon carbide, 10% of an aqueous solution having a CMC concentration of 0.5% as a binder, and alumina having a length of 1 cm and a diameter of 0.007 mm as a reinforcing material with respect to 80 g of Fly Ash II. Approximately 100,000 fibers (approximately 0.1% per volume), 3 cm in length, approximately 32,000 carbon fibers with a diameter of 0.007 mm (approximately 0.1% per volume), 2 cm in length, 0 in diameter Approximately 5,000 (13% per volume) of 5.5 mm alumina fibers are added, and after kneading while spraying the CMC aqueous solution by spraying, a pressure press of 120 kg weight / cm2 is performed with a 50 mm square mold to obtain a thickness of 26 mm. A sample was prepared. After taking out the samples from the mold and leaving them for 1 day, each sample is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. Sample 10 of about 100,000 alumina fibers with a diameter of 0.007 mm, sample 11 with a length of 3 cm, and about 32,000 products of carbon fibers with a diameter of 0.007 mm, sample 11, 2 cm in length, 0 in diameter. Approximately 5,000 products of 5.5 mm alumina fibers were sampled.
実施例5で得られた熱処理後のサンプルについて生成物サイズの結果を表2に示す。亜鉛粉末を混入しなくとも補強材を混入させることで全てのサンプルで略均一に膨張することを確認し、補強材の種類による膨張率の変化も観察されなかった。また、表1に示したように補強材の濃度が高くなると膨張率が低下することを確認できた。また、補強材が露出している表面近傍には数mm程度の窪みが生じており補強材濃度の増加により表面段差が顕在化していくことも分かった。Table 2 shows the product size results for the heat-treated samples obtained in Example 5. It was confirmed that the expansion was substantially uniform in all the samples by mixing the reinforcing material without mixing the zinc powder, and no change in the expansion rate was observed depending on the type of the reinforcing material. Further, as shown in Table 1, it was confirmed that the expansion coefficient decreased as the concentration of the reinforcing material increased. It was also found that a dent of about several mm was formed in the vicinity of the surface where the reinforcing material was exposed, and the surface step became apparent as the concentration of the reinforcing material increased.
実施例6は、実施例1から実施例5で得られた全てのサンプルに対して、切断機にてサンプルを分割させ断面観察を行った。断面観察の結果から、全てのサンプルに於いて補強材が断面上に分散されているがサンプル4に於いては補強材が偏在していることも確認した。また、前記断面部の触手検査の結果から、炭素繊維の直径が0.007mmでは違和感なく撫でることが可能であったが、実施例3で使用したSUS316製繊維の直径が0.5mmでは僅かに引っ掛かりが感じられた。このことは繊維の直径が大きくなるほど独立発泡タイルを外壁として使用する場合に居住者等に対して怪我の誘発や衣類等を傷つける可能性があることが分かった。In Example 6, all the samples obtained in Examples 1 to 5 were divided by a cutting machine and cross-sectional observation was performed. From the results of the cross-sectional observation, it was also confirmed that the reinforcing material was dispersed on the cross section in all the samples, but the reinforcing material was unevenly distributed in the sample 4. Further, from the result of the tentacle inspection of the cross section, it was possible to stroke without discomfort when the diameter of the carbon fiber was 0.007 mm, but when the diameter of the SUS316 fiber used in Example 3 was 0.5 mm, it was slightly. I felt stuck. It was found that the larger the diameter of the fiber, the more likely it is that when the independent foam tile is used as the outer wall, it may cause injuries to residents and damage clothing.
実施例1から実施例6までの結果から、独立発泡タイルの補強材による強化向上ついて実用化に向けて二つの大きな課題があることが判明した。一つ目の課題は、補強材として細長い繊維を使用すると独立発泡タイルの原料を混練する際に繊維同士が絡み付き毛玉のようになりタイル全体に分散できないこと。二つ目の課題は表面に露出した補強材により熱処理後に表面段差の発生である。これにより成形工程にて歩留を大幅に低下させる。From the results of Examples 1 to 6, it was found that there are two major problems for practical use of the reinforcement improvement by the reinforcing material of the independent foam tile. The first problem is that if elongated fibers are used as a reinforcing material, the fibers become entangled with each other and become pills when kneading the raw materials of the independent foam tile, and cannot be dispersed throughout the tile. The second problem is the generation of surface steps after heat treatment due to the reinforcing material exposed on the surface. As a result, the yield is significantly reduced in the molding process.
一つ目の課題の対策として、繊維の絡み付き抑制のために独立発泡タイルの原料を混練する際に補強材を数回に分けて分割投入することで解決する。As a countermeasure for the first problem, it is solved by dividing the reinforcing material into several times when kneading the raw materials of the independent foam tiles in order to suppress the entanglement of the fibers.
実施例7は、実施例2の独立発泡タイルの原料を混練する際に混練初期から炭素繊維全数を投入せずに5回に分けて分割投入した後に50mm角の金型にて120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製した。金型からサンプルを取り出し1日放置した後に各サプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。得られた生成物をサンプル13とした。In Example 7, when the raw materials of the independent foam tiles of Example 2 were kneaded, the total number of carbon fibers was not added from the initial stage of kneading, but the carbon fibers were divided and added in 5 batches, and then 120 kg weight / cm2 was used in a 50 mm square mold. A sample having a thickness of 26 mm was prepared by performing a pressure press on the above. After taking out the sample from the mold and leaving it for 1 day, each supplement is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. The obtained product was used as sample 13.
外観検査の結果から、炭素繊維の絡みを抑制できていることを確認した。また、当該サンプルを切断機にてサンプルを分割させ断面観察を行ったが断面上には略均一に分散されていることを確認した。From the results of the visual inspection, it was confirmed that the entanglement of carbon fibers could be suppressed. In addition, the sample was divided by a cutting machine and the cross section was observed, and it was confirmed that the sample was dispersed substantially uniformly on the cross section.
二つ目の課題である表面に露出した繊維による表面段差の抑制については、補強材の表面露出が熱処理にて膨張率を抑制することで表面段差が顕在化するために少なくとも外装面側には補強材なしの独立発泡タイル用の原料を積層することで表面段差を抑制できる。Regarding the second issue, the suppression of surface steps due to the fibers exposed on the surface, the surface steps of the reinforcing material are suppressed by heat treatment, so that the surface steps become apparent, so at least on the exterior surface side. Surface steps can be suppressed by laminating raw materials for independent foam tiles without reinforcing materials.
実施例8は、フライアッシュII種80gに対して炭化ケイ素0.75%、粘結剤としてCMC濃度0.5%水溶液を10%、及び亜鉛粉末として0.5%添加した独立発泡タイル用の原料に補強材として長さ1.0cm、直径0.5mmのSUS316製繊維を約1千本(体積当たり2.6%)入れ、乾式混練後スプレーにより前記CMC水溶液を散布しながら混練した独立発泡タイル原料を独立発泡タイル下地原料とし、一方でフライアッシュII種80gに対して炭化ケイ素0.75%、粘結剤としてCMC濃度0.5%水溶液を10%、及び亜鉛粉末として0.5%添加した独立発泡タイル用の原料を乾式混練後スプレーにより前記CMC水溶液を散布しながら混練した独立発泡タイル原料を独立発泡タイル外装原料とした。50mm角の金型に独立発泡タイル下地原料を97%(厚みとして25.2mm)流し込み、前記独立発泡タイル下地原料の上に前記独立発泡タイル外装原料3%(厚みとして0.8mm)を入れ、120kg重/cm2の加圧プレスを行い26mm厚みの試料を作製した。金型からサンプルを取り出し1日放置した後に各サンプルを小型電気炉内に設置し、室温から1000℃までを12時間にて昇温し、約10時間掛けて1230℃まで昇温させ15分保持した後にファンとヒーターを使い12時間かけて冷却を行った。得られた生成物をサンプル14とした。Example 8 is for an independent foam tile in which 0.75% of silicon carbide, 10% of an aqueous solution having a CMC concentration of 0.5% as a binder, and 0.5% of zinc powder are added to 80 g of fly ash II. Approximately 1,000 SUS316 fibers (2.6% per volume) with a length of 1.0 cm and a diameter of 0.5 mm were added to the raw material as a reinforcing material, and after dry kneading, the CMC aqueous solution was sprayed and kneaded. The raw material is an independent foam tile base material, while 0.75% silicon carbide is added to 80 g of fly ash II, 10% CMC concentration 0.5% aqueous solution is added as a binder, and 0.5% is added as zinc powder. The independent foam tile raw material obtained by kneading the raw material for the independent foam tile while spraying the CMC aqueous solution by spraying after dry kneading was used as the independent foam tile exterior raw material. 97% (thickness: 25.2 mm) of the independent foam tile base material is poured into a 50 mm square mold, and 3% (thickness: 0.8 mm) of the independent foam tile exterior material is placed on the independent foam tile base material. A pressure press of 120 kg weight / cm2 was performed to prepare a sample having a thickness of 26 mm. After taking out the samples from the mold and leaving them for 1 day, each sample is placed in a small electric furnace, the temperature is raised from room temperature to 1000 ° C in 12 hours, the temperature is raised to 1230 ° C over about 10 hours, and the temperature is maintained for 15 minutes. After that, cooling was performed for 12 hours using a fan and a heater. The obtained product was used as sample 14.
実施例8の熱処理前のサンプル14に対して独立発泡タイル外装原料の表面には補強材の露出は観察されておらず、熱処理を施しても表面段差は観察されないことを確認した。It was confirmed that no exposure of the reinforcing material was observed on the surface of the independent foam tile exterior raw material with respect to the sample 14 before the heat treatment in Example 8, and no surface step was observed even after the heat treatment.
実施例9は、実施例1から実施例8で得られた全てサンプルに対して水に対する浮沈実験を行った。前記サンプルに対して切断機を用いて縦方向に2等分に分割した後に水洗いを行い1時間乾燥させた。前記全てのサンプルの重量を測定し、注水させた水槽内に入れ24時間放置した後にサンプルを回収し表面の水を拭き取り、30分間乾燥させた後に再び重量測定を行った。また、前記注水させた水槽内に前記サンプルを入れ、重しを載せ1週間浸水させた後にサンプルを回収し表面の水を拭き取り、30分間乾燥させた後に再び重量測定を行った。In Example 9, all the samples obtained in Examples 1 to 8 were subjected to a floating and sinking experiment with water. The sample was divided into two equal parts in the vertical direction using a cutting machine, washed with water, and dried for 1 hour. All the samples were weighed, placed in a water tank infused with water and left for 24 hours, then the samples were collected, the surface water was wiped off, dried for 30 minutes, and then weighed again. In addition, the sample was placed in the water-injected water tank, a weight was placed on the sample, and the sample was soaked in water for 1 week.
全てのサンプルにて水槽内に浮いていることを確認し、24時間放置前後での重量変化はなきことを確認した。また、1週間水没させたサンプルも重量変化がないことを確認できた。このことから発泡が観察された全てのサンプルに対して生成物内部の気泡が連続して形成されているのではなく単独として発泡化していると結論できる。It was confirmed that all the samples were floating in the water tank, and it was confirmed that there was no change in weight before and after leaving for 24 hours. In addition, it was confirmed that there was no change in weight of the sample submerged for one week. From this, it can be concluded that the bubbles inside the product are not continuously formed but foamed as a single substance for all the samples in which foaming was observed.
独立発泡タイルは軽量であるため作業性の向上や住宅等の壁材に使用すると耐震効果も改善する。また、補強材を添加しているために強度面での課題も解決する。Since the independent foam tile is lightweight, it improves workability and improves the seismic effect when used for wall materials such as houses. In addition, since the reinforcing material is added, the problem in terms of strength is solved.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020113507A JP2021187726A (en) | 2020-06-03 | 2020-06-03 | High-intensity independent foamed tile and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020113507A JP2021187726A (en) | 2020-06-03 | 2020-06-03 | High-intensity independent foamed tile and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021187726A true JP2021187726A (en) | 2021-12-13 |
Family
ID=78848113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020113507A Pending JP2021187726A (en) | 2020-06-03 | 2020-06-03 | High-intensity independent foamed tile and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021187726A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591099A (en) * | 2022-03-23 | 2022-06-07 | 中国地质大学(北京) | Porous material based on blast furnace ash as foaming agent and preparation method thereof |
-
2020
- 2020-06-03 JP JP2020113507A patent/JP2021187726A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591099A (en) * | 2022-03-23 | 2022-06-07 | 中国地质大学(北京) | Porous material based on blast furnace ash as foaming agent and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2885831C (en) | Composite insulated plywood, insulated plywood concrete form and method of curing concrete using same | |
CN118003432A (en) | Method for preparing landscaping product | |
EP3442928B1 (en) | Aerated concrete moulded body comprising an overlayer and/or underlayer | |
US20120110945A1 (en) | Composites and Methods of Formation Thereof | |
CN108751911A (en) | A kind of manufacturing method non-burning brick using industrial slag | |
KR101646155B1 (en) | Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby | |
CN100535351C (en) | Ball-silicon composite building thermal insulation material and manufacturing method therefor | |
ES2880392T3 (en) | Process for the manufacture of a molded part from a dry mixture with graphite particles and the molded part thus manufactured | |
JP2021187726A (en) | High-intensity independent foamed tile and method for producing the same | |
Al-Khazraji et al. | Utilization of Limestone to Effect on Physical-Mechanical Properties of Fired Clay Brick | |
CN104493955A (en) | Method for molding self-heat-preservation shale brick | |
CN103992084A (en) | High-toughness aerated brick and making method thereof | |
CN106116422A (en) | A kind of light hollow warming plate and preparation method thereof | |
CN106220112A (en) | A kind of bamboo fibre Dinas brickes | |
Rafi et al. | Analytical study on special concretes with M20 & M25 grades for construction | |
CN109437755A (en) | Prefabricated board and its preparation method and application | |
JP6614537B2 (en) | Method for manufacturing closed foam tile and closed foam tile | |
WO2019203762A2 (en) | Low density precast mortar with industrial waste additive | |
CN109467372B (en) | Sulphoaluminate cement foaming insulation board and preparation method thereof, and assembled integrated insulation wall and preparation method thereof | |
CN109653387B (en) | Desulfurized ash based geopolymer insulation board and preparation method thereof, and assembled integrated insulation wall and preparation method thereof | |
CN109384426A (en) | A kind of porcelain granule building material and manufacturing method | |
CN109650772B (en) | Silicon-manganese slag cotton plate and preparation method thereof, and assembled integrated heat-insulating wall and preparation method thereof | |
EP4071125A1 (en) | Composition of heat-insulating lightweight composite material | |
CN103073247B (en) | Modified glass fiber light building block | |
CN113121167A (en) | Ceramsite concrete and external wall panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200905 |