JP2021187010A - Method and apparatus for manufacturing liquid discharge head - Google Patents

Method and apparatus for manufacturing liquid discharge head Download PDF

Info

Publication number
JP2021187010A
JP2021187010A JP2020092208A JP2020092208A JP2021187010A JP 2021187010 A JP2021187010 A JP 2021187010A JP 2020092208 A JP2020092208 A JP 2020092208A JP 2020092208 A JP2020092208 A JP 2020092208A JP 2021187010 A JP2021187010 A JP 2021187010A
Authority
JP
Japan
Prior art keywords
element substrate
mounting surface
support member
thermosetting adhesive
liquid discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020092208A
Other languages
Japanese (ja)
Inventor
将志 石川
Masashi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020092208A priority Critical patent/JP2021187010A/en
Publication of JP2021187010A publication Critical patent/JP2021187010A/en
Pending legal-status Critical Current

Links

Images

Abstract

To suppress a step of mutually adjacent element substrates even when thermal deformation of a support member is large.SOLUTION: There is provided a method for manufacturing a liquid discharge head 6 in which a first element substrate 3A and a second element substrate 3B are mounted on a mounting surface 7 of a support member 1, and a discharge port formation surface 8 of the second element substrate 3B and the mounting position of the second element substrate 3B in the mounting surface 7 are separated from each other by a second distance d2 in a direction Z perpendicular to the mounting surface 7. The manufacturing method includes the steps of: heating and curing a first thermosetting adhesive 4A formed on the mounting surface 7, and joining the first element substrate 3A to the mounting surface 7 through the first thermosetting adhesive 4A; and positioning the second element substrate 3B so as to maintain the second distance d2 in a state where the support member 1 is thermally deformed by heating the first thermosetting adhesive 4A, heating and curing the second thermosetting adhesive 4B formed on the mounting surface 7, and joining the second element substrate 3B to the mounting surface 7 through the second thermosetting adhesive 4B.SELECTED DRAWING: Figure 5

Description

本発明は液体吐出ヘッドの製造方法及び製造装置に関する。 The present invention relates to a method and an apparatus for manufacturing a liquid discharge head.

インクジェット記録装置などの液体吐出装置では、インクなどの液体を吐出する吐出口を備えた素子基板を支持部材上に複数個配置した液体吐出ヘッドが用いられることがある。隣接する素子基板の繋ぎ部に段差が生じると、吐出した液滴が記録媒体上に着弾する位置がずれ、色むらやスジが生じることがある。このため、複数の素子基板を支持部材に接合する際は、吐出口形成面の高さをできるだけ揃えることが好ましい。特許文献1には、複数の素子の高さを揃えるために、基板に塗布した接合材を素子で押しつぶして、基板と複数の素子との間隔を揃える技術が開示されている。 In a liquid ejection device such as an inkjet recording apparatus, a liquid ejection head in which a plurality of element substrates provided with ejection ports for ejecting liquid such as ink are arranged on a support member may be used. If a step is formed at the connecting portion of the adjacent element substrates, the position where the ejected droplets land on the recording medium is displaced, and color unevenness or streaks may occur. Therefore, when joining a plurality of element substrates to the support member, it is preferable to make the heights of the discharge port forming surfaces as uniform as possible. Patent Document 1 discloses a technique in which a bonding material applied to a substrate is crushed by an element in order to make the heights of the plurality of elements uniform, and the distance between the substrate and the plurality of elements is made uniform.

特開2011−033763号公報Japanese Unexamined Patent Publication No. 2011-033763

液体吐出ヘッドにおいて、複数の素子基板を熱硬化性接着剤によって支持部材に接合する場合、特許文献1に開示されたような技術を用いて、互いに隣接する素子基板の段差を抑制することが可能である。近年、液体吐出ヘッドのコスト低減のために、樹脂製の支持部材が用いられることがある。樹脂の支持部材は熱線膨張係数が大きいため、熱硬化性接着剤を加熱する際に大きく熱変形する。このため、素子基板の接合時に高さを揃えても、支持部材が常温に戻り熱変形がなくなると、素子基板の高さが変わる可能性がある。 In the liquid discharge head, when a plurality of element substrates are joined to a support member with a thermosetting adhesive, it is possible to suppress a step difference between element substrates adjacent to each other by using a technique as disclosed in Patent Document 1. Is. In recent years, a resin support member may be used in order to reduce the cost of the liquid discharge head. Since the resin support member has a large coefficient of linear thermal expansion, it is significantly thermally deformed when the thermosetting adhesive is heated. Therefore, even if the heights are made uniform at the time of joining the element substrates, the height of the element substrates may change when the support member returns to room temperature and the thermal deformation disappears.

本発明は、支持部材の熱変形が大きい場合でも、互いに隣接する素子基板の段差を抑制することのできる、液体吐出ヘッドの製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a liquid discharge head, which can suppress a step difference between element substrates adjacent to each other even when the support member has a large thermal deformation.

本発明は、第1の素子基板と第2の素子基板が支持部材の搭載面に搭載され、第2の素子基板の吐出口形成面と、搭載面における第2の素子基板の搭載位置とが、搭載面と直交する方向に第2の距離離れた液体吐出ヘッドの製造方法に関する。本製造方法は、搭載面に形成された第1の熱硬化性接着剤を加熱硬化させ、第1の熱硬化性接着剤を介して、第1の素子基板を搭載面に接合することと、支持部材が第1の熱硬化性接着剤の加熱によって熱変形した状態で、第2の距離を維持するように第2の素子基板を位置決めし、搭載面に形成された第2の熱硬化性接着剤を加熱硬化させ、第2の熱硬化性接着剤を介して第2の素子基板を搭載面に接合することと、を有する。 In the present invention, the first element substrate and the second element substrate are mounted on the mounting surface of the support member, and the ejection port forming surface of the second element substrate and the mounting position of the second element substrate on the mounting surface are set. The present invention relates to a method for manufacturing a liquid discharge head separated by a second distance in a direction orthogonal to the mounting surface. In this manufacturing method, the first thermosetting adhesive formed on the mounting surface is heat-cured, and the first element substrate is bonded to the mounting surface via the first thermosetting adhesive. The second element substrate is positioned so as to maintain the second distance in a state where the support member is thermally deformed by the heating of the first thermosetting adhesive, and the second thermosetting formed on the mounting surface. It comprises heating and curing the adhesive and joining the second element substrate to the mounting surface via the second thermosetting adhesive.

本発明によれば、支持部材の熱変形が大きい場合でも、互いに隣接する素子基板の段差を抑制することのできる、液体吐出ヘッドの製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for manufacturing a liquid discharge head that can suppress a step difference between element substrates adjacent to each other even when the thermal deformation of the support member is large.

第1の実施形態で得られる液体吐出ヘッドの外形図である。It is an outline drawing of the liquid discharge head obtained in 1st Embodiment. 第1の実施形態における素子基板の支持部材への接合工程を示すフロー図である。It is a flow diagram which shows the joining process to the support member of the element substrate in 1st Embodiment. 初期状態における支持部材の上面図と側面図である。It is a top view and a side view of a support member in an initial state. 接合装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the joining device. 第1〜第3の素子基板の支持部材への接合方法を示すステップ図である。It is a step diagram which shows the method of joining the 1st to 3rd element substrates to a support member. 第2の実施形態で得られる液体吐出ヘッドの外形図である。It is an outline drawing of the liquid discharge head obtained in 2nd Embodiment. 第3の実施形態における素子基板の支持部材への接合工程を示すフロー図である。It is a flow diagram which shows the joining process to the support member of the element substrate in 3rd Embodiment.

以下、図面を参照して本発明のいくつかの実施形態について説明する。本実施形態の液体吐出ヘッドはプリンタに搭載されるインクジェットヘッドである。吐出される液体はインクであるが、本発明は液体を吐出する液体吐出ヘッドに広く適用することができる。以下の説明及び図面において、X方向は液体吐出ヘッドないし支持基板の長軸方向と平行な方向、Y方向は吐出口形成面と平行で且つX方向と直交する方向、Z方向は吐出口形成面と直交する方向である、Z方向はX方向及びY方向と直交している。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. The liquid ejection head of this embodiment is an inkjet head mounted on a printer. Although the liquid to be ejected is ink, the present invention can be widely applied to a liquid ejection head that ejects a liquid. In the following description and drawings, the X direction is the direction parallel to the major axis direction of the liquid discharge head or the support substrate, the Y direction is the direction parallel to the discharge port forming surface and orthogonal to the X direction, and the Z direction is the discharge port forming surface. The Z direction, which is a direction orthogonal to the X direction, is orthogonal to the X direction and the Y direction.

(第1の実施形態)
図1は本実施形態の製造方法で製造された液体吐出ヘッド6を示す概略図である。図1(a)は液体吐出ヘッド6の要部斜視図、図1(b)は図1(a)のA方向からみた上面図、図1(c)は図1(a)のB方向からみた側面図を示している。液体吐出ヘッド6は、支持部材1と、支持部材1に搭載された第1〜第3の素子基板3A〜3Cと、を有している。支持部材1は板状の樹脂成形部材であり、例えば、複数の単純な形状のプレ−トをX方向に貼り合わせることによって作製することができる。
(First Embodiment)
FIG. 1 is a schematic view showing a liquid discharge head 6 manufactured by the manufacturing method of the present embodiment. 1 (a) is a perspective view of a main part of the liquid discharge head 6, FIG. 1 (b) is a top view of FIG. 1 (a) as seen from the A direction, and FIG. 1 (c) is from the B direction of FIG. 1 (a). The side view seen is shown. The liquid discharge head 6 has a support member 1 and first to third element substrates 3A to 3C mounted on the support member 1. The support member 1 is a plate-shaped resin molded member, and can be manufactured, for example, by laminating a plurality of plates having a simple shape in the X direction.

第1〜第3の素子基板3A〜3Cは、長辺と短辺が90度以外の角度をなす平行四辺形の形状を有し、短辺同士が隣接している。第1〜第3の素子基板3A〜3Cは支持部材1の長軸AXに沿ってX方向に配置されている。支持部材1の第1〜第3の素子基板3A〜3Cが搭載される面を搭載面7という。第1〜第3の素子基板3A〜3Cの搭載面7と対向する面の反対面は、インクが吐出する複数の吐出口が形成された吐出口形成面8となっている。支持部材1の第1〜第3の素子基板3A〜3Cと対向する位置に、第1〜第3の供給路5A〜5Cが形成されている。第1〜第3の供給路5A〜5Cは、支持部材1を貫通し第1〜第3の素子基板3A〜3Cにインクを供給する貫通孔である。図1(c)は常温状態(例えば、プリンタが一般的に使用される環境温度である10〜30℃程度)の液体吐出ヘッド6を示している。支持部材1は樹脂製であるため、反りが生じやすく、ここでは搭載面7側に凹む形状で反っている。一例では、反りの大きさはZ方向に最大約0.1mm程度である。第1〜第3の素子基板3A〜3Cの吐出口形成面8と、搭載面7における第1〜第3の素子基板3A〜3Cの搭載位置とは、搭載面7と直交する方向(Z方向)にそれぞれ第1〜第3の距離d1〜d3離れている。第1〜第3の距離d1〜d3は支持部材1の反りを相殺するように設定される。このため、支持部材1は反っているが、第1〜第3の素子基板3A〜3Cの吐出口形成面8は同一の水平面上にあり、記録品質の向上が可能である。 The first to third element substrates 3A to 3C have a parallelogram shape in which the long side and the short side form an angle other than 90 degrees, and the short sides are adjacent to each other. The first to third element substrates 3A to 3C are arranged in the X direction along the long axis AX of the support member 1. The surface on which the first to third element substrates 3A to 3C of the support member 1 are mounted is referred to as a mounting surface 7. The opposite surface of the first to third element substrates 3A to 3C facing the mounting surface 7 is an ejection port forming surface 8 on which a plurality of ejection ports for ejecting ink are formed. The first to third supply paths 5A to 5C are formed at positions of the support member 1 facing the first to third element substrates 3A to 3C. The first to third supply paths 5A to 5C are through holes that penetrate the support member 1 and supply ink to the first to third element substrates 3A to 3C. FIG. 1 (c) shows a liquid discharge head 6 in a normal temperature state (for example, about 10 to 30 ° C., which is an environmental temperature generally used by a printer). Since the support member 1 is made of resin, warpage is likely to occur, and here, the support member 1 is warped in a shape recessed toward the mounting surface 7. In one example, the maximum amount of warpage is about 0.1 mm in the Z direction. The discharge port forming surface 8 of the first to third element substrates 3A to 3C and the mounting position of the first to third element substrates 3A to 3C on the mounting surface 7 are in a direction orthogonal to the mounting surface 7 (Z direction). ) Are separated by the first to third distances d1 to d3, respectively. The first to third distances d1 to d3 are set so as to cancel the warp of the support member 1. Therefore, although the support member 1 is warped, the discharge port forming surfaces 8 of the first to third element substrates 3A to 3C are on the same horizontal plane, and the recording quality can be improved.

次に、図2〜図5を参照して、第1〜第3の素子基板3A〜3Cの支持部材1への接合方法について説明する。図2は、第1〜第3の素子基板3A〜3Cの支持部材1への接合方法を示すフロー図である。図3(a)、3(b)は、初期状態の支持部材1の上面図と側面図である。初期状態とは、第1〜第3の素子基板3A〜3Cが接合される前の、常温状態(すなわち、熱変形のない状態)を意味する。図4は接合装置40の概要図である。図5は、第1〜第3の素子基板3A〜3Cの支持部材1への接合方法を示すステップ図である。 Next, a method of joining the first to third element substrates 3A to 3C to the support member 1 will be described with reference to FIGS. 2 to 5. FIG. 2 is a flow chart showing a method of joining the first to third element substrates 3A to 3C to the support member 1. 3 (a) and 3 (b) are a top view and a side view of the support member 1 in the initial state. The initial state means a normal temperature state (that is, a state without thermal deformation) before the first to third element substrates 3A to 3C are joined. FIG. 4 is a schematic view of the joining device 40. FIG. 5 is a step diagram showing a method of joining the first to third element substrates 3A to 3C to the support member 1.

まず支持部材1を接合装置40に固定する(ステップS1)。支持部材1を置台20に載せ、位置決めピン22とクランプ23でX方向及びY方向に固定する。支持部材1の位置はカメラ30と画像処理装置31を用いて認識することができる。支持部材1の搭載面7の第1〜第3の供給路5A〜5Cの周囲にそれぞれ、第1〜第3の熱硬化性接着剤4A〜4Cが形成されている。第1〜第3の熱硬化性接着剤4A〜4Cは、この時点では液体の状態である。 First, the support member 1 is fixed to the joining device 40 (step S1). The support member 1 is placed on the pedestal 20 and fixed in the X direction and the Y direction by the positioning pin 22 and the clamp 23. The position of the support member 1 can be recognized by using the camera 30 and the image processing device 31. The first to third thermosetting adhesives 4A to 4C are formed around the first to third supply paths 5A to 5C of the mounting surface 7 of the support member 1, respectively. The first to third thermosetting adhesives 4A to 4C are in a liquid state at this point.

次に、初期状態での、支持部材1の搭載面7の反りを測定する(ステップS2)。支持部材1の搭載面7の第1〜第3の素子基板3A〜3Cの近傍には、第1〜第3の基準部2A〜2Cが設けられている。第1〜第3の素子基板3A〜3Cの搭載位置のZ方向位置は、第1〜第3の基準部2A〜2CのZ方向位置によって近似することができる。第1〜第3の基準部2A〜2Cの位置は特に限定されないが、第1〜第3の素子基板3A〜3CのX方向中央部の付近に設定することが好ましい。第1〜第3の基準部2A〜2Cは、後述するカメラ47によって視覚的に認識可能なパタ−ンである。支持部材1は搭載面7側に凹む形状で反っているため、第2の基準部2Bは第1及び第3の基準部2A,2CよりZ方向下方にある。第1〜第3の基準部2A〜2CのZ方向位置は、ステ−ジ21を駆動して接触式の変位センサ32を第1〜第3の基準部2A〜2Cに当接させることによって測定する。第1〜第3の基準部2A〜2Cは、基準面Sに対し、Z方向に初期値h1〜h3だけ離れた位置にある。接触式の変位センサの代わりにレーザー変位計や画像処理を用いて測定を行ってもよい。 Next, the warp of the mounting surface 7 of the support member 1 in the initial state is measured (step S2). The first to third reference portions 2A to 2C are provided in the vicinity of the first to third element substrates 3A to 3C on the mounting surface 7 of the support member 1. The Z-direction positions of the mounting positions of the first to third element substrates 3A to 3C can be approximated by the Z-direction positions of the first to third reference portions 2A to 2C. The positions of the first to third reference portions 2A to 2C are not particularly limited, but it is preferable to set them in the vicinity of the central portion in the X direction of the first to third element substrates 3A to 3C. The first to third reference units 2A to 2C are patterns that can be visually recognized by the camera 47 described later. Since the support member 1 is curved in a shape recessed toward the mounting surface 7, the second reference portion 2B is below the first and third reference portions 2A and 2C in the Z direction. The Z-direction positions of the first to third reference portions 2A to 2C are measured by driving the stage 21 to bring the contact-type displacement sensor 32 into contact with the first to third reference portions 2A to 2C. do. The first to third reference portions 2A to 2C are located at positions separated from the reference plane S by the initial values h1 to h3 in the Z direction. The measurement may be performed using a laser displacement meter or image processing instead of the contact type displacement sensor.

次に、図5(a)に示すように、搭載面7に形成された第1の熱硬化性接着剤4Aを加熱硬化させ、第1の素子基板3Aを第1の熱硬化性接着剤4Aを介して、支持部材1に接合する(ステップS3)。接合装置40は、第1の素子基板3Aを把持し支持部材1に接合するための加熱フィンガ41を有している。加熱フィンガ41はX方向に移動するXステ−ジ42と、Y方向に移動するYステ−ジ43と、Z軸周りに回転するθzステ−ジ44と、に支持されている。これらのステ−ジ42〜44は独立して作動し、加熱フィンガ41と加熱フィンガ41に把持された第1の素子基板3Aとを、XY平面の任意の位置に高精度に位置させる。接合装置40は、第1の素子基板3Aを撮影するカメラ47と画像処理装置48を備えており、これらによって第1の素子基板3Aの位置を確認することができる。加熱フィンガ41は搭載面7と垂直な方向に移動可能なZステ−ジ45によって、任意のZ方向高さで高精度に停止することができる。このように、第1の素子基板3Aは、Zステ−ジ45が搭載面7と垂直な方向に移動することで位置決めされる。 Next, as shown in FIG. 5A, the first thermosetting adhesive 4A formed on the mounting surface 7 is heat-cured, and the first element substrate 3A is subjected to the first thermosetting adhesive 4A. It is joined to the support member 1 via the (step S3). The joining device 40 has a heating finger 41 for gripping the first element substrate 3A and joining to the support member 1. The heating finger 41 is supported by an X stage 42 that moves in the X direction, a Y stage 43 that moves in the Y direction, and a θz stage 44 that rotates around the Z axis. These stages 42 to 44 operate independently and position the heating finger 41 and the first element substrate 3A gripped by the heating finger 41 at an arbitrary position on the XY plane with high accuracy. The joining device 40 includes a camera 47 for photographing the first element substrate 3A and an image processing device 48, whereby the position of the first element substrate 3A can be confirmed. The heating finger 41 can be stopped with high accuracy at an arbitrary height in the Z direction by the Z stage 45 that can move in the direction perpendicular to the mounting surface 7. In this way, the first element substrate 3A is positioned by moving the Z stage 45 in the direction perpendicular to the mounting surface 7.

加熱フィンガ41にはヒ−タ46が内蔵されている。第1の素子基板3Aを把持した加熱フィンガ41は第1の熱硬化性接着剤4Aに押し付けられ、第1の熱硬化性接着剤4Aは第1の素子基板3Aを介して加熱される。この結果、支持部材1は加熱フィンガ41によって加熱される。第1の熱硬化性接着剤4Aは加熱フィンガ41からの加熱によって、熱硬化する。第1の熱硬化性接着剤4Aは第1の素子基板3Aに押し付けられて変形する。第1の熱硬化性接着剤4Aが加熱硬化することで、第1の素子基板3Aは、支持部材1との間に第1の熱硬化性接着剤4Aを間に挟んで、支持部材1に接合される。すなわち、第1の素子基板3Aは支持部材1から離れた位置で、フローティングした状態で支持部材1に接合される。一例では、加熱フィンガ41の温度は100℃、第1の素子基板3Aの接合時間は10秒である。第1の素子基板3Aを支持部材1に接合するための条件は、第1の熱硬化性接着剤4Aの硬化温度や厚さによって異なるため、加熱フィンガ41の温度や第1の素子基板3Aの接合時間は適宜設定することが好ましい。第1の素子基板3Aを接着する時点では支持部材1は熱変形を生じていないので、後述するステップS4を予め実行する必要はなく、後述するステップS5において実施するように第1の素子基板3Aの接合位置を調整する必要もない。第1の素子基板3Aが所望のZ方向位置で接合されるように、加熱フィンガ41のZステ−ジ45をポイントP1で停止させて、第1の素子基板3Aを支持部材1に接合する。 A heater 46 is built in the heating finger 41. The heating finger 41 gripping the first element substrate 3A is pressed against the first thermosetting adhesive 4A, and the first thermosetting adhesive 4A is heated via the first element substrate 3A. As a result, the support member 1 is heated by the heating finger 41. The first thermosetting adhesive 4A is thermoset by heating from the heated finger 41. The first thermosetting adhesive 4A is pressed against the first element substrate 3A and deformed. When the first thermosetting adhesive 4A is heat-cured, the first element substrate 3A sandwiches the first thermosetting adhesive 4A between the support member 1 and the support member 1. Be joined. That is, the first element substrate 3A is joined to the support member 1 in a floating state at a position away from the support member 1. In one example, the temperature of the heating finger 41 is 100 ° C., and the bonding time of the first element substrate 3A is 10 seconds. Since the conditions for joining the first element substrate 3A to the support member 1 differ depending on the curing temperature and thickness of the first thermosetting adhesive 4A, the temperature of the heating finger 41 and the temperature of the first element substrate 3A It is preferable to set the joining time as appropriate. Since the support member 1 has not undergone thermal deformation at the time of adhering the first element substrate 3A, it is not necessary to execute step S4 described later in advance, and the first element substrate 3A is performed as in step S5 described later. There is no need to adjust the joint position of. The Z stage 45 of the heating finger 41 is stopped at the point P1 so that the first element substrate 3A is bonded at a desired Z direction position, and the first element substrate 3A is bonded to the support member 1.

ステップS3の終了後、図5(b)に示すように、変位センサ32を用いて、第2の基準部2BのZ方向位置の変化量を測定する(ステップS4)。本ステップは、第2の素子基板3Bを支持部材1に接合する直前のタイミングで行うことが好ましい。加熱フィンガ41と変位センサ32は同軸上に配置されているため、ステ−ジ21を駆動させることなくステップS3とステップS4を行うことができる。支持部材1は加熱による熱変形で、上側に凸となる形状で変形している。すなわち、第2の基準部2B(支持部材1の搭載面7における第2の素子基板3Bの搭載位置)のZ方向位置は、第1の素子基板3Aが搭載面7に接合された後に(第1の素子基板3Aが搭載面7に接合される前後で)、初期位置からZ方向上方に変位している。本ステップで測定した基準面SからのZ方向距離H2の、ステップS2で測定した初期値h2からの変化を求めることによって、第2の基準部2BのZ方向位置の変化量Δh2=h2−H2(所定の変化量)が測定される。 After the end of step S3, as shown in FIG. 5B, the displacement sensor 32 is used to measure the amount of change in the Z-direction position of the second reference portion 2B (step S4). This step is preferably performed at the timing immediately before joining the second element substrate 3B to the support member 1. Since the heating finger 41 and the displacement sensor 32 are arranged coaxially, steps S3 and S4 can be performed without driving the stage 21. The support member 1 is deformed in a shape that is convex upward due to thermal deformation due to heating. That is, the Z-direction position of the second reference portion 2B (the mounting position of the second element substrate 3B on the mounting surface 7 of the support member 1) is set after the first element substrate 3A is joined to the mounting surface 7 (the first). (Before and after joining the element substrate 3A of 1 to the mounting surface 7), the element substrate 3A is displaced upward in the Z direction from the initial position. By obtaining the change from the initial value h2 measured in step S2 of the Z-direction distance H2 from the reference plane S measured in this step, the amount of change Δh2 = h2-H2 in the Z-direction position of the second reference portion 2B. (Predetermined amount of change) is measured.

次に、図5(c)に示すように、搭載面7に形成された第2の熱硬化性接着剤4Bを加熱硬化させ、第2の素子基板3Bを第2の熱硬化性接着剤4Bを介して、支持部材1に接合する(ステップS5)。支持部材1は第1の熱硬化性接着剤4Aの加熱によって熱変形している。Zステ−ジ45は、第1の素子基板3Aを接合した際のポイントP1を支持部材1の熱変形量Δh2で補正したポイントP2(=P1−Δh2)で停止する。従って、第2の素子基板3Bが支持部材1に接合される際、第2の素子基板3Bの吐出口形成面8は、支持部材1の熱変形がないときの位置からZ方向上方にΔh2だけ変位した位置にある。すなわち、第2の素子基板3Bは支持部材1に接合される際、第2の距離d2を維持するように位置決めされる。 Next, as shown in FIG. 5C, the second thermosetting adhesive 4B formed on the mounting surface 7 is heat-cured, and the second element substrate 3B is the second thermosetting adhesive 4B. It is joined to the support member 1 via the (step S5). The support member 1 is thermally deformed by heating the first thermosetting adhesive 4A. The Z stage 45 stops at the point P2 (= P1-Δh2) in which the point P1 when the first element substrate 3A is joined is corrected by the thermal deformation amount Δh2 of the support member 1. Therefore, when the second element substrate 3B is joined to the support member 1, the discharge port forming surface 8 of the second element substrate 3B is only Δh2 upward in the Z direction from the position when the support member 1 is not thermally deformed. It is in a displaced position. That is, when the second element substrate 3B is joined to the support member 1, the second element substrate 3B is positioned so as to maintain the second distance d2.

ステップS5の終了後、図5(d)に示すように、変位センサ32を用いて、第3の基準部2CのZ方向位置の変化量を測定する(ステップS6)。本ステップは、第3の素子基板3Cを接合する直前のタイミングで行うことが好ましい。支持部材1は加熱による熱変形で、上側に凸となるように変形している。すなわち、第3の基準部2C(支持部材1の搭載面7における第3の素子基板3Cの搭載位置)のZ方向位置は、第2の素子基板3Bが搭載面7に接合された後に、初期位置からZ方向上方に変位している。本ステップで測定した基準面SからのZ方向距離H3の、ステップS2で測定した初期値h3からの変化を求めることによって、第3の基準部2CのZ方向位置の変化量Δh3=h3−H3(所定の変化量)が測定される。 After the end of step S5, as shown in FIG. 5D, the displacement sensor 32 is used to measure the amount of change in the Z-direction position of the third reference unit 2C (step S6). This step is preferably performed at the timing immediately before joining the third element substrate 3C. The support member 1 is deformed so as to be convex upward due to thermal deformation due to heating. That is, the Z-direction position of the third reference portion 2C (the mounting position of the third element substrate 3C on the mounting surface 7 of the support member 1) is initially set after the second element substrate 3B is joined to the mounting surface 7. It is displaced upward in the Z direction from the position. By obtaining the change from the initial value h3 measured in step S2 of the Z-direction distance H3 from the reference plane S measured in this step, the amount of change Δh3 = h3-H3 in the Z-direction position of the third reference unit 2C. (Predetermined amount of change) is measured.

次に、図5(e)に示すように、搭載面7に形成された第3の熱硬化性接着剤4Cを加熱硬化させ、第3の素子基板3Cを第3の熱硬化性接着剤4Cを介して、支持部材1に接合する(ステップS7)。支持部材1は第1の熱硬化性接着剤4Aの加熱によって熱変形している。Zステ−ジ45は、第1の素子基板3Aを接合した際のポイントP1を支持部材1の熱変形量Δh3で補正したポイントP3(=P1−Δh3)で停止する。第3の素子基板3Cが支持部材1に接合される際、第3の素子基板3Cの吐出口形成面8は、支持部材1の熱変形がないときの位置からZ方向上方にΔh3だけ変位した位置にある。すなわち、第3の素子基板3Cは支持部材1に接合される際、第3の距離d3を維持するように位置決めされる。その後、支持部材1を冷却する。図5(f)に示すように、第1〜第3の素子基板3A〜3Cの吐出口形成面8は、同一の水平面上に配置される。 Next, as shown in FIG. 5 (e), the third thermosetting adhesive 4C formed on the mounting surface 7 is heat-cured, and the third element substrate 3C is replaced with the third thermosetting adhesive 4C. It is joined to the support member 1 via the (step S7). The support member 1 is thermally deformed by heating the first thermosetting adhesive 4A. The Z stage 45 stops at the point P3 (= P1-Δh3) in which the point P1 when the first element substrate 3A is joined is corrected by the thermal deformation amount Δh3 of the support member 1. When the third element substrate 3C is joined to the support member 1, the discharge port forming surface 8 of the third element substrate 3C is displaced upward by Δh3 in the Z direction from the position when the support member 1 is not thermally deformed. In position. That is, when the third element substrate 3C is joined to the support member 1, it is positioned so as to maintain the third distance d3. After that, the support member 1 is cooled. As shown in FIG. 5 (f), the discharge port forming surfaces 8 of the first to third element substrates 3A to 3C are arranged on the same horizontal plane.

本実施形態の効果について説明する。隣接する素子基板同士のZ方向位置が互いにずれることで段差が生じると、吐出した液滴が記録媒体上に着弾する位置がずれて、色むらやスジを引き起こすことがある。特に、樹脂の支持部材1は熱線膨張係数が大きいため、加熱フィンガ41で素子基板を配列する過程で大きな熱変形を生じる。隣接する素子基板の高さを揃えて接合しても、支持部材1の熱変形がなくなると素子基板の高さが変わり、隣接する素子基板の繋ぎ部に段差が生じる。また、支持部材1毎に内部応力が異なるため、熱変形には個体差がある。そのため、支持部材1の変形量を予め想定して、素子基板を接合する高さを補正しても、上述の課題に十分に対処することができない。本実施形態では支持部材1毎に熱変形を測定し、その結果に応じて素子基板を接合する高さを制御する。特に、素子基板を接合する直前のタイミングで支持部材1の熱変形を測定するため、冷却されたときの素子基板の高さ方向のずれを抑制することができる。複数の素子基板を支持部材1に記録媒体の幅以上の長さにわたって配置したページワイドタイプの液体吐出ヘッドでは、多くの素子基板を直列に配列するため、支持部材1が長くなり熱変形も大きくなる。本実施形態はページワイドタイプの液体吐出ヘッドで特に好適に適用することができる。 The effect of this embodiment will be described. If a step is generated due to the Z-direction positions of adjacent element substrates being displaced from each other, the position at which the ejected droplets land on the recording medium may be displaced, causing color unevenness or streaks. In particular, since the resin support member 1 has a large coefficient of linear thermal expansion, large thermal deformation occurs in the process of arranging the element substrates by the heating finger 41. Even if the heights of the adjacent element boards are aligned and joined, the height of the element boards changes when the thermal deformation of the support member 1 disappears, and a step is generated at the connecting portion of the adjacent element boards. Further, since the internal stress is different for each support member 1, there are individual differences in thermal deformation. Therefore, even if the height at which the element substrates are joined is corrected by assuming the amount of deformation of the support member 1 in advance, the above-mentioned problems cannot be sufficiently dealt with. In the present embodiment, the thermal deformation is measured for each support member 1, and the height at which the element substrates are joined is controlled according to the result. In particular, since the thermal deformation of the support member 1 is measured at the timing immediately before joining the element substrates, it is possible to suppress the deviation of the element substrate in the height direction when it is cooled. In the page-wide type liquid discharge head in which a plurality of element substrates are arranged on the support member 1 over a length equal to or longer than the width of the recording medium, since many element substrates are arranged in series, the support member 1 becomes long and the thermal deformation is large. Become. This embodiment can be particularly preferably applied to a page-wide type liquid discharge head.

(第2の実施形態)
本実施形態では、第1〜第3の素子基板3A〜3Cが搭載面7に接合され、支持部材1が冷却した後において、第2の素子基板3Bの吐出口形成面8のZ方向位置が、第1及び第3の素子基板3Cの吐出口形成面8のZ方向位置と異なっている。すなわち、図6に示すように、第1〜第3の素子基板3A〜3Cは搭載面7に沿った曲面C上に位置している。それ以外の点については第1の実施形態と同様である。第1の実施形態のように、全ての素子基板の吐出口形成面8を同じ高さに揃える場合、互いに隣接する素子基板間で熱硬化性接着剤の潰し量が異なる。例えば、第1の実施形態の場合、第1及び第3の素子基板3A,3Cで熱硬化性接着剤4A,4Cの潰し量が大きく、第2の素子基板3Bで熱硬化性接着剤4Bの潰し量が小さくなる。潰し量の大きい素子基板では、熱硬化性接着剤が供給路に侵入する可能性が高くなる。本実施形態では、供給路5A〜5Cに侵入する熱硬化性接着剤の量が許容できる範囲で、第1及び第3の素子基板3Cを第1の実施形態よりもZ方向上方の位置で支持部材1に接合する。多数の素子基板が支持部材1に接合される場合、隣接する素子基板の繋ぎ部の一部にだけ大きな段差を生じることを防ぐために、複数の素子基板のZ方向高さを段階的に変化させ、段差量を平均化することが好ましい。
(Second embodiment)
In the present embodiment, after the first to third element substrates 3A to 3C are joined to the mounting surface 7 and the support member 1 is cooled, the position of the discharge port forming surface 8 of the second element substrate 3B in the Z direction is set. , The position of the discharge port forming surface 8 of the first and third element substrates 3C in the Z direction is different. That is, as shown in FIG. 6, the first to third element substrates 3A to 3C are located on the curved surface C along the mounting surface 7. Other than that, it is the same as that of the first embodiment. When the discharge port forming surfaces 8 of all the element substrates are aligned at the same height as in the first embodiment, the amount of crushing of the thermosetting adhesive differs between the element substrates adjacent to each other. For example, in the case of the first embodiment, the amount of crushing of the thermosetting adhesives 4A and 4C is large in the first and third element substrates 3A and 3C, and the thermosetting adhesive 4B is used in the second element substrate 3B. The amount of crushing becomes smaller. In a device substrate with a large amount of crushing, there is a high possibility that the thermosetting adhesive will invade the supply path. In the present embodiment, the first and third element substrates 3C are supported at positions above the Z direction from the first embodiment within an allowable range of the amount of the thermosetting adhesive penetrating the supply paths 5A to 5C. Join to member 1. When a large number of element boards are joined to the support member 1, the heights of the plurality of element boards in the Z direction are changed stepwise in order to prevent a large step from being generated only in a part of the connecting portion of the adjacent element boards. , It is preferable to average the amount of steps.

(第3の実施形態)
図7は第3の実施形態における素子基板の支持部材への接合工程を示すフロー図である。本実施形態では、第2の熱硬化性接着剤4Bを加熱硬化させている間に、第2の距離d2を維持するように第2の素子基板3Bの位置を修正する。それ以外の点については第1の実施形態と同様である。ステップS1〜ステップS4は第1の実施形態と同様に行う。ステップS5において、第2の素子基板3Bの支持部材1への接合を開始する。ステップS6において、第2の素子基板3Bの支持部材1への接合中に、第2の基準部2BのZ方向位置H2を測定する。ステップS7では、測定した第2の基準部2BのZ方向位置H2の変化量に応じて加熱フィンガ41のZステ−ジ45の停止ポイントを制御する。一例では、第2の素子基板3Bを支持部材1に接合中に、1秒間隔で第2の基準部2BのZ方向位置H2を測定し、Z方向位置H2が接合開始時の初期値から0.005mm以上変化したときに、Zステ−ジ45の停止ポイントを0.005mm駆動する。第3の素子基板3Cの接合についても同様に実施する。まず、第3の基準部2CのZ方向位置の変化量を測定する(ステップS8)。次に、第3の素子基板3Cの支持部材1への接合を開始する(ステップS9)。ステップS10において、第3の素子基板3Cの支持部材1への接合中に、第3の基準部2CのZ方向位置H3を測定する。ステップS11では、測定した第3の基準部2CのZ方向位置H3の変化量に応じて加熱フィンガ41のZステ−ジ45の停止ポイントを制御する。本実施形態は、接合中にも支持部材1の熱変形の進行に応じて素子基板の位置を制御するため、支持部材1の熱変形が大きい液体吐出ヘッド6の製造方法に好適に適用することができる。
(Third embodiment)
FIG. 7 is a flow chart showing a step of joining the element substrate to the support member in the third embodiment. In the present embodiment, the position of the second element substrate 3B is modified so as to maintain the second distance d2 while the second thermosetting adhesive 4B is heat-cured. Other than that, it is the same as that of the first embodiment. Steps S1 to S4 are performed in the same manner as in the first embodiment. In step S5, joining of the second element substrate 3B to the support member 1 is started. In step S6, the Z-direction position H2 of the second reference portion 2B is measured during the joining of the second element substrate 3B to the support member 1. In step S7, the stop point of the Z stage 45 of the heating finger 41 is controlled according to the amount of change in the Z direction position H2 of the second reference portion 2B measured. In one example, while the second element substrate 3B is joined to the support member 1, the Z-direction position H2 of the second reference portion 2B is measured at 1-second intervals, and the Z-direction position H2 is 0 from the initial value at the start of joining. When the change is .005 mm or more, the stop point of the Z stage 45 is driven by 0.005 mm. The same applies to the joining of the third element substrate 3C. First, the amount of change in the Z-direction position of the third reference unit 2C is measured (step S8). Next, joining of the third element substrate 3C to the support member 1 is started (step S9). In step S10, the Z-direction position H3 of the third reference portion 2C is measured during the joining of the third element substrate 3C to the support member 1. In step S11, the stop point of the Z stage 45 of the heating finger 41 is controlled according to the amount of change in the Z direction position H3 of the third reference unit 2C measured. Since this embodiment controls the position of the element substrate according to the progress of thermal deformation of the support member 1 even during joining, it is suitably applied to a method for manufacturing a liquid discharge head 6 in which the thermal deformation of the support member 1 is large. Can be done.

以上、本発明を実施形態によって説明したが、本発明はこれらの実施形態に限定されない。例えば、素子基板は、インク吐出デバイスとフレキシブル配線基板とをプレ−トに接着し、電気接続および電気接続部を絶縁材料で封止したユニットであってもよい。ユニット形態はこれに限定されるものではなく、任意の形態でよい。また本実施形態では、素子基板はインライン(直線状)で配列しているが、千鳥状に配列することもできる。本実施形態では、支持部材1は上側に反るように変形しているが、変形のパターンはこれに限定されず、下側に反るパターン、波状に変形するパターンであってもよい。 Although the present invention has been described above by embodiment, the present invention is not limited to these embodiments. For example, the element substrate may be a unit in which an ink ejection device and a flexible wiring board are bonded to a plate, and electrical connections and electrical connection portions are sealed with an insulating material. The unit form is not limited to this, and may be any form. Further, in the present embodiment, the element substrates are arranged in-line (straight line), but they can also be arranged in a staggered manner. In the present embodiment, the support member 1 is deformed so as to warp upward, but the deformation pattern is not limited to this, and may be a pattern warping downward or a pattern deforming in a wavy shape.

1 支持部材
3A〜3C 第1〜第3の素子基板
4A〜4C 第1〜第3の熱硬化性接着剤
7 搭載面
8 吐出口形成面
1 Support member 3A to 3C 1st to 3rd element substrates 4A to 4C 1st to 3rd thermosetting adhesive 7 Mounting surface 8 Discharge port forming surface

Claims (11)

第1の素子基板と第2の素子基板が支持部材の搭載面に搭載され、前記第2の素子基板の吐出口形成面と、前記搭載面における前記第2の素子基板の搭載位置とが、前記搭載面と直交する方向に第2の距離離れた液体吐出ヘッドの製造方法であって、
前記搭載面に形成された第1の熱硬化性接着剤を加熱硬化させ、前記第1の熱硬化性接着剤を介して、前記第1の素子基板を前記搭載面に接合することと、
前記支持部材が前記第1の熱硬化性接着剤の加熱によって熱変形した状態で、前記第2の距離を維持するように前記第2の素子基板を位置決めし、前記搭載面に形成された第2の熱硬化性接着剤を加熱硬化させ、前記第2の熱硬化性接着剤を介して前記第2の素子基板を前記搭載面に接合することと、を有する液体吐出ヘッドの製造方法。
The first element substrate and the second element substrate are mounted on the mounting surface of the support member, and the discharge port forming surface of the second element substrate and the mounting position of the second element substrate on the mounting surface are set. A method for manufacturing a liquid discharge head separated by a second distance in a direction orthogonal to the mounting surface.
The first thermosetting adhesive formed on the mounting surface is heat-cured, and the first element substrate is bonded to the mounting surface via the first thermosetting adhesive.
In a state where the support member is thermally deformed by heating of the first thermosetting adhesive, the second element substrate is positioned so as to maintain the second distance, and the second element substrate is formed on the mounting surface. 2. A method for manufacturing a liquid discharge head, comprising: heat-curing the thermosetting adhesive of 2 and joining the second element substrate to the mounting surface via the second thermosetting adhesive.
前記第2の素子基板の前記搭載面における搭載位置は、前記第1の素子基板が前記搭載面に接合された後に、前記支持部材の熱変形がないときの位置から第1の方向に所定の変化量だけ変化しており、前記第2の素子基板が前記支持部材に接合される際、前記第2の素子基板の吐出口形成面は、前記支持部材の熱変形がないときの位置から前記第1の方向に前記所定の変化量だけ変位した位置にある、請求項1に記載の液体吐出ヘッドの製造方法。 The mounting position of the second element substrate on the mounting surface is predetermined in the first direction from the position when the support member is not thermally deformed after the first element substrate is joined to the mounting surface. When the second element substrate is joined to the support member, the discharge port forming surface of the second element substrate changes from the position when there is no thermal deformation of the support member. The method for manufacturing a liquid discharge head according to claim 1, wherein the liquid discharge head is located at a position displaced by the predetermined amount of change in the first direction. 前記支持部材は前記搭載面が曲面となるように反っており、前記第2の素子基板の前記吐出口形成面の前記熱変形がないときの位置を求めるために、前記搭載面の反りが予め測定される、請求項2に記載の液体吐出ヘッドの製造方法。 The support member is warped so that the mounting surface is curved, and the mounting surface is preliminarily warped in order to determine the position of the discharge port forming surface of the second element substrate when there is no thermal deformation. The method for manufacturing a liquid discharge head according to claim 2, wherein the liquid discharge head is measured. 前記支持部材の前記第2の素子基板の搭載位置の近傍に第2の基準部が設けられ、前記第1の素子基板が前記搭載面に接合される前後の前記第2の基準部の位置の変化を測定することによって前記所定の変化量が測定される、請求項2または3に記載の液体吐出ヘッドの製造方法。 A second reference portion is provided in the vicinity of the mounting position of the second element substrate of the support member, and the position of the second reference portion before and after the first element substrate is joined to the mounting surface. The method for manufacturing a liquid discharge head according to claim 2 or 3, wherein the predetermined amount of change is measured by measuring the change. 前記第2の熱硬化性接着剤を加熱硬化させている間に、前記第2の距離を維持するように前記第2の素子基板の位置が修正される、請求項1から4のいずれか1項に記載の液体吐出ヘッドの製造方法。 Any one of claims 1 to 4, wherein the position of the second element substrate is modified so as to maintain the second distance while the second thermosetting adhesive is heat-cured. The method for manufacturing a liquid discharge head according to the section. 第3の素子基板が前記支持部材の搭載面に搭載され、前記第3の素子基板の吐出口形成面と、前記搭載面における前記第3の素子基板の搭載位置とが、前記直交する方向に第3の距離離れた液体吐出ヘッドの製造方法であって、
前記支持部材が前記第2の熱硬化性接着剤の加熱によって熱変形した状態で、前記第3の距離を維持するように前記第3の素子基板を位置決めし、前記搭載面に形成された第3の熱硬化性接着剤を加熱硬化させ、前記第3の熱硬化性接着剤を介して前記第3の素子基板を前記搭載面に接合することを有する、請求項1から5のいずれか1項に記載の液体吐出ヘッドの製造方法。
The third element substrate is mounted on the mounting surface of the support member, and the discharge port forming surface of the third element substrate and the mounting position of the third element substrate on the mounting surface are orthogonal to each other. A method for manufacturing a liquid discharge head at a distance of a third distance.
In a state where the support member is thermally deformed by heating of the second thermosetting adhesive, the third element substrate is positioned so as to maintain the third distance, and the third element substrate is formed on the mounting surface. Any one of claims 1 to 5, wherein the thermosetting adhesive of 3 is heat-cured and the third element substrate is bonded to the mounting surface via the third thermosetting adhesive. The method for manufacturing a liquid discharge head according to the section.
前記第1〜第3の素子基板の前記吐出口形成面は、前記第3の素子基板が前記搭載面に接合され、前記支持部材の熱変形がなくなった後、同一の水平面上に位置する、請求項6に記載の液体吐出ヘッドの製造方法。 The discharge port forming surface of the first to third element substrates is located on the same horizontal plane after the third element substrate is joined to the mounting surface and the thermal deformation of the support member is eliminated. The method for manufacturing a liquid discharge head according to claim 6. 前記第1〜第3の素子基板の前記吐出口形成面は、前記第3の素子基板が前記搭載面に接合され、前記支持部材の熱変形がなくなった後、前記搭載面に沿った曲面上に位置する、請求項6に記載の液体吐出ヘッドの製造方法。 The discharge port forming surface of the first to third element substrates is formed on a curved surface along the mounting surface after the third element substrate is joined to the mounting surface and the support member is not thermally deformed. The method for manufacturing a liquid discharge head according to claim 6, which is located in the above. 各素子基板はヒ−タを内蔵した加熱フィンガによって把持され、前記支持部材は前記加熱フィンガによって加熱される、請求項1から8のいずれか1項に記載の液体吐出ヘッドの製造方法。 The method for manufacturing a liquid discharge head according to any one of claims 1 to 8, wherein each element substrate is gripped by a heating finger having a built-in heater, and the support member is heated by the heating finger. 前記加熱フィンガは前記搭載面と垂直な方向に移動可能なステ−ジに搭載され、各素子基板は前記ステ−ジが前記垂直な方向に移動することで位置決めされる、請求項9に記載の液体吐出ヘッドの製造方法。 The ninth aspect of the present invention, wherein the heating finger is mounted on a stage that can move in a direction perpendicular to the mounting surface, and each element substrate is positioned by moving the stage in the direction perpendicular to the mounting surface. A method for manufacturing a liquid discharge head. 第1の素子基板と第2の素子基板が支持部材の搭載面に搭載され、前記第2の素子基板の吐出口形成面と、前記搭載面における前記第2の素子基板の搭載位置とが、前記搭載面と直交する方向に第2の距離離れた液体吐出ヘッドの製造装置であって、
前記第1及び第2の素子基板を把持し前記搭載面に接合するとともに、ヒ−タを内蔵した加熱フィンガと、
前記加熱フィンガを前記搭載面と垂直な方向に移動させるステ−ジと、を有し、
前記加熱フィンガは、前記搭載面に形成された第1の熱硬化性接着剤を加熱硬化させ、前記第1の熱硬化性接着剤を介して、前記第1の素子基板を前記搭載面に接合し、前記搭載面に形成された第2の熱硬化性接着剤を加熱硬化させ、前記第2の熱硬化性接着剤を介して前記第2の素子基板を前記搭載面に接合し、
前記ステ−ジは、前記支持部材が前記第1の熱硬化性接着剤の加熱によって熱変形した状態で、前記第2の距離を維持するように前記第2の素子基板を位置決めする、液体吐出ヘッドの製造装置。
The first element substrate and the second element substrate are mounted on the mounting surface of the support member, and the discharge port forming surface of the second element substrate and the mounting position of the second element substrate on the mounting surface are set. A device for manufacturing a liquid discharge head separated by a second distance in a direction orthogonal to the mounting surface.
A heating finger with a built-in heater while grasping the first and second element substrates and joining them to the mounting surface.
It has a stage that moves the heated finger in a direction perpendicular to the mounting surface.
The heated finger heat-cures a first thermosetting adhesive formed on the mounting surface, and the first element substrate is bonded to the mounting surface via the first thermosetting adhesive. Then, the second thermosetting adhesive formed on the mounting surface is heat-cured, and the second element substrate is bonded to the mounting surface via the second thermosetting adhesive.
The stage is a liquid discharge that positions the second element substrate so as to maintain the second distance in a state where the support member is thermally deformed by heating of the first thermosetting adhesive. Head manufacturing equipment.
JP2020092208A 2020-05-27 2020-05-27 Method and apparatus for manufacturing liquid discharge head Pending JP2021187010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092208A JP2021187010A (en) 2020-05-27 2020-05-27 Method and apparatus for manufacturing liquid discharge head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092208A JP2021187010A (en) 2020-05-27 2020-05-27 Method and apparatus for manufacturing liquid discharge head

Publications (1)

Publication Number Publication Date
JP2021187010A true JP2021187010A (en) 2021-12-13

Family

ID=78850639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092208A Pending JP2021187010A (en) 2020-05-27 2020-05-27 Method and apparatus for manufacturing liquid discharge head

Country Status (1)

Country Link
JP (1) JP2021187010A (en)

Similar Documents

Publication Publication Date Title
US9802410B2 (en) Ink jet print head
US7695114B2 (en) Inkjet head and method of producing the same
US7455394B2 (en) Inkjet head
JP5233937B2 (en) Method for manufacturing liquid discharge head and liquid discharge head
JP6162489B2 (en) Liquid ejecting head, liquid ejecting head manufacturing method, and liquid ejecting apparatus
JP2021187010A (en) Method and apparatus for manufacturing liquid discharge head
JP2008162110A (en) Inkjet head, manufacturing method for inkjet head and wiring substrate for mounting head chip
US5888333A (en) Ink jet head production method, ink jet head, and ink jet recording apparatus
JP2004025584A (en) Ink jet head and method for producing the same
JP2014094469A (en) Method of manufacturing liquid ejection head and liquid ejection head
JP6494322B2 (en) Liquid discharge head and manufacturing method thereof
JP5979844B2 (en) Inkjet recording head manufacturing method and inkjet recording head
JP5533621B2 (en) Inkjet head unit
JP2020097159A (en) Liquid discharge head and manufacturing method of the same
JP6033104B2 (en) Method for manufacturing liquid discharge head
JP6523067B2 (en) Liquid jet head and liquid jet apparatus
CN110475671B (en) Method for manufacturing ink jet head
JP2019209685A (en) Manufacturing method of liquid discharge head
JP2021142728A (en) Liquid discharge head and manufacturing method thereof
JP6338452B2 (en) Method for manufacturing liquid discharge head
JPH07241994A (en) Recording head, manufacture thereof, and recording apparatus
US9085142B2 (en) Method of manufacturing liquid ejection head, and liquid ejection head
JPH09239994A (en) Bonding of nozzle plate
JP2006212913A (en) Manufacturing apparatus and manufacturing method for inkjet recording head
JP2010147141A (en) Electronic component and ink jet recording head