JP2021185316A - High-pressure vessel system and its control method - Google Patents

High-pressure vessel system and its control method Download PDF

Info

Publication number
JP2021185316A
JP2021185316A JP2020090251A JP2020090251A JP2021185316A JP 2021185316 A JP2021185316 A JP 2021185316A JP 2020090251 A JP2020090251 A JP 2020090251A JP 2020090251 A JP2020090251 A JP 2020090251A JP 2021185316 A JP2021185316 A JP 2021185316A
Authority
JP
Japan
Prior art keywords
pressure
gas
branch path
region
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020090251A
Other languages
Japanese (ja)
Inventor
暁 河瀬
Akira Kawase
和幸 門脇
Kazuyuki Kadowaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020090251A priority Critical patent/JP2021185316A/en
Publication of JP2021185316A publication Critical patent/JP2021185316A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To accurately measure the gas pressure of a low-pressure area in a high-pressure vessel by a simple structure.SOLUTION: A supply path 16 of a high-pressure vessel system 10 introduces a gas stored in a high-pressure vessel 14 to a fuel battery 12. A branch path pressure reduction valve 22 is arranged in a branch path 20 branched from a branch part 38 of the supply path 16. A first pressure sensor 24 measures the gas pressure of a first pressure region 44 which is arranged at a primary side of the branch path pressure reduction valve 22, and at the supply path 16 so that the gas pressure becomes the same as that in the high-pressure vessel 14. A second pressure sensor 26 measures the gas pressure of a second pressure region 46 of the branch path pressure reduction valve 22 at a secondary side, and has a narrower measurement range than that of the first pressure sensor 24. When the gas pressure of the first pressure region 44 is higher than a regulation value, the branch path pressure reduction valve 22 sets the gas pressure of the second pressure region 46 to the regulation value, and when the gas pressure of the first pressure region 44 is equal to or lower than the regulation value, the branch path pressure reduction valve sets the first pressure region 44 and the second pressure region 46 to the same pressure.SELECTED DRAWING: Figure 1

Description

本発明は、高圧容器に貯蔵されたガスをガス消費部に導く供給路を備える高圧容器システム及びその制御方法に関する。 The present invention relates to a high-pressure container system provided with a supply path for guiding gas stored in the high-pressure container to a gas consuming unit and a control method thereof.

例えば、特許文献1に示されるように、高圧容器に貯蔵されたガスを、燃料電池等のガス消費部に導く供給路を備える高圧容器システムが知られている。供給路は、高圧容器内と同じガス圧になる同圧領域を有する。この高圧容器システムでは、供給路の同圧領域に設けた圧力センサにより、高圧容器内のガス圧を測定している。 For example, as shown in Patent Document 1, a high-pressure container system including a supply path for guiding a gas stored in a high-pressure container to a gas consuming unit such as a fuel cell is known. The supply path has the same pressure region where the gas pressure is the same as in the high pressure container. In this high-pressure container system, the gas pressure in the high-pressure container is measured by a pressure sensor provided in the same pressure region of the supply path.

特許第5131612号公報Japanese Patent No. 5131612

高圧容器内のガス圧は、高圧容器にガスが満充填された高圧状態から、高圧容器の必要最低残圧付近となる低圧状態まで、例えば100MPa以上の広い範囲で変化する。このため、上記の高圧容器システムでは、高圧容器内のガス圧に対応する広い測定レンジの圧力センサを用いて高圧容器内(同圧領域)のガス圧を測定する必要がある。しかしながら、測定レンジが広い圧力センサは、測定誤差の範囲も大きくなることから、高圧容器内のガス圧を高精度に測定することが困難になる。 The gas pressure in the high-pressure container changes in a wide range of, for example, 100 MPa or more, from a high-pressure state in which the high-pressure container is fully filled with gas to a low-pressure state near the required minimum residual pressure of the high-pressure container. Therefore, in the above high-pressure container system, it is necessary to measure the gas pressure in the high-pressure container (same pressure region) using a pressure sensor having a wide measurement range corresponding to the gas pressure in the high-pressure container. However, a pressure sensor having a wide measurement range has a large measurement error range, which makes it difficult to measure the gas pressure in the high-pressure container with high accuracy.

この種の高圧容器システムでは、特に、必要最低残圧付近の低圧域において、高圧容器内のガス圧を高精度に測定可能であることが求められる。低圧域のガス圧を高精度に測定可能とすることで、例えば、高圧容器内のガス圧が必要最低残圧を下回らない範囲で可及的に必要最低残圧に近づくまで、高圧容器からガス消費部にガスを供給することが可能になる。すなわち、ガス圧を維持する用途で高圧容器内に残留させる無効残ガス量を必要最低限とすることができるため、高圧容器内のガスを有効に使用可能になる。 This type of high-pressure vessel system is required to be able to measure the gas pressure in the high-pressure vessel with high accuracy, especially in the low-pressure region near the required minimum residual pressure. By making it possible to measure the gas pressure in the low pressure range with high accuracy, for example, gas from the high pressure container until the gas pressure in the high pressure container approaches the required minimum residual pressure as much as possible within the range not lower than the required minimum residual pressure. It becomes possible to supply gas to the consumption part. That is, since the amount of invalid residual gas remaining in the high-pressure container can be minimized for the purpose of maintaining the gas pressure, the gas in the high-pressure container can be effectively used.

本発明は上記した問題を解決するためになされたもので、高圧容器内の低圧域のガス圧を簡単な構成で高精度に測定可能な高圧容器システム及びその制御方法を提供する。 The present invention has been made to solve the above-mentioned problems, and provides a high-pressure container system capable of measuring gas pressure in a low-pressure region in a high-pressure container with high accuracy with a simple configuration and a control method thereof.

本発明の一態様は、高圧容器に貯蔵されたガスをガス消費部に導く供給路を備える高圧容器システムであって、前記供給路の分岐部から分岐し且つ分岐路減圧弁が設けられた分岐路と、前記分岐路減圧弁の一次側及び前記供給路に、前記高圧容器内と同圧となるように設けられた第1圧力領域と、前記第1圧力領域のガス圧を測定する第1圧力センサと、前記分岐路減圧弁の二次側に設けられた第2圧力領域と、前記第2圧力領域のガス圧を測定し且つ前記第1圧力センサよりも測定レンジが狭い第2圧力センサと、を備え、前記分岐路減圧弁は、前記第1圧力領域のガス圧が調圧値より高いとき、前記第2圧力領域のガス圧を前記調圧値とし、前記第1圧力領域のガス圧が前記調圧値以下であるとき、前記第2圧力領域と前記第1圧力領域とを同圧にし、前記第2圧力センサは、前記第2圧力領域と前記第1圧力領域とが同圧になるとき、前記高圧容器内のガス圧を測定可能となる。 One aspect of the present invention is a high-pressure container system including a supply path for guiding the gas stored in the high-pressure container to the gas consuming section, which is branched from the branch section of the supply path and provided with a branch path pressure reducing valve. A first pressure region provided in the path, the primary side of the branch path pressure reducing valve, and the supply path so as to have the same pressure as the inside of the high pressure container, and a first for measuring the gas pressure in the first pressure region. A second pressure sensor that measures the gas pressure in the pressure sensor, the second pressure region provided on the secondary side of the branch path pressure reducing valve, and the second pressure region, and has a narrower measurement range than the first pressure sensor. When the gas pressure in the first pressure region is higher than the pressure regulation value, the branch path pressure reducing valve sets the gas pressure in the second pressure region as the pressure regulation value and gas in the first pressure region. When the pressure is equal to or less than the pressure adjustment value, the second pressure region and the first pressure region are made the same pressure, and in the second pressure sensor, the second pressure region and the first pressure region are the same pressure. When becomes, the gas pressure in the high pressure container can be measured.

本発明の別の一態様は、高圧容器に貯蔵されたガスをガス消費部に導く供給路を備える高圧容器システムの制御方法であって、前記高圧容器システムは、前記供給路の分岐部から分岐し且つ分岐路減圧弁が設けられた分岐路と、前記分岐路減圧弁の一次側及び前記供給路に、前記高圧容器内と同圧となるように設けられた第1圧力領域と、前記第1圧力領域のガス圧を測定する第1圧力センサと、前記分岐路減圧弁の二次側に設けられた第2圧力領域と、前記第2圧力領域のガス圧を測定し且つ前記第1圧力センサよりも測定レンジが狭い第2圧力センサと、を備え、前記第1圧力領域のガス圧が調圧値より高いとき、前記分岐路減圧弁により前記第2圧力領域のガス圧を前記調圧値とし、前記第1圧力領域のガス圧が前記調圧値以下であるとき、前記分岐路減圧弁により前記第2圧力領域と前記第1圧力領域とを同圧にし、前記第2圧力センサにより前記高圧容器内のガス圧を測定可能とする。 Another aspect of the present invention is a control method of a high pressure container system including a supply path for guiding the gas stored in the high pressure container to the gas consumption section, wherein the high pressure container system branches from a branch portion of the supply path. A branch path provided with a branch path pressure reducing valve, a first pressure region provided on the primary side of the branch path pressure reducing valve and the supply path so as to have the same pressure as in the high pressure container, and the first. The first pressure sensor that measures the gas pressure in the first pressure region, the second pressure region provided on the secondary side of the branch path pressure reducing valve, and the gas pressure in the second pressure region are measured and the first pressure. A second pressure sensor having a narrower measurement range than the sensor is provided, and when the gas pressure in the first pressure region is higher than the pressure adjusting value, the gas pressure in the second pressure region is adjusted by the branch path pressure reducing valve. When the gas pressure in the first pressure region is equal to or lower than the pressure regulation value, the second pressure region and the first pressure region are made the same pressure by the branch path pressure reducing valve, and the second pressure sensor is used. The gas pressure in the high pressure container can be measured.

この高圧容器システムは、第1圧力センサにより第1圧力領域を介して高圧容器内のガス圧を測定可能である。また、高圧容器内のガス圧が調圧値以下の低圧域になると、第2圧力センサにより第2圧力領域を介しても高圧容器内のガス圧を測定可能になる。第2圧力センサは、調圧値以下の範囲のガス圧を測定可能であればよいため、第1圧力センサよりも測定レンジを狭くすることができる。このように測定レンジが狭く測定誤差の範囲が小さい第2圧力センサを用いることで、高圧容器内の低圧域のガス圧を高精度に測定可能になる。 This high pressure vessel system can measure the gas pressure in the high pressure vessel through the first pressure region by the first pressure sensor. Further, when the gas pressure in the high pressure container becomes a low pressure region equal to or lower than the pressure adjustment value, the gas pressure in the high pressure container can be measured by the second pressure sensor even through the second pressure region. Since the second pressure sensor only needs to be able to measure the gas pressure in the range of the pressure adjustment value or less, the measurement range can be narrower than that of the first pressure sensor. By using the second pressure sensor having a narrow measurement range and a small measurement error range in this way, it is possible to measure the gas pressure in the low pressure region in the high pressure container with high accuracy.

また、この高圧容器システムでは、高圧容器内のガスをガス消費部に導く供給路とは別に、供給路の分岐部から分岐する分岐路に分岐路減圧弁及び第2圧力センサが設けられる。これによって、例えば、供給路に分岐路減圧弁及び第2圧力センサを直接設ける場合に比して、高圧容器システムを簡単な構成とすることができる。 Further, in this high-pressure container system, a branch path pressure reducing valve and a second pressure sensor are provided in the branch path branching from the branch portion of the supply path, in addition to the supply path for guiding the gas in the high-pressure container to the gas consuming section. Thereby, for example, the high pressure container system can be made a simple configuration as compared with the case where the branch path pressure reducing valve and the second pressure sensor are directly provided in the supply path.

すなわち、供給路は、高圧容器からガス消費部に供給するための大流量のガスを流通させる必要がある。このような供給路に分岐路減圧弁及び第2圧力センサを設ける場合、ガス消費部へのガス供給が円滑に行われる状態を維持しつつ、第2圧力領域のガス圧を調圧値以下にするための複雑な流路特性の設計等が必要となる。一方、分岐路では、該分岐路内のガスをガス消費部に供給することを考慮する必要がない分、供給路に比して流路断面積や流通させるガス流量等が制限され難い。このような分岐路に分岐路減圧弁及び第2圧力センサを設けることで、複雑な流路特性の設計を不要として、高圧容器システムを簡単な構成とすることができる。 That is, the supply channel needs to circulate a large flow rate of gas for supplying from the high-pressure container to the gas consuming unit. When a branch path pressure reducing valve and a second pressure sensor are provided in such a supply path, the gas pressure in the second pressure region is kept below the pressure regulation value while maintaining a state in which gas is smoothly supplied to the gas consuming section. It is necessary to design complicated flow path characteristics for this purpose. On the other hand, in the branch path, since it is not necessary to consider supplying the gas in the branch path to the gas consuming section, it is difficult to limit the cross-sectional area of the flow path, the flow rate of gas to be circulated, and the like as compared with the supply path. By providing the branch path pressure reducing valve and the second pressure sensor in such a branch path, the high pressure vessel system can be simply configured without the need for designing complicated flow path characteristics.

以上から、この高圧容器システム及びその制御方法によれば、高圧容器内の低圧域のガス圧を簡単な構成で高精度に測定することが可能になる。 From the above, according to this high pressure container system and its control method, it is possible to measure the gas pressure in the low pressure region in the high pressure container with high accuracy with a simple configuration.

本発明の実施形態に係る高圧容器システムの概略構成図である。It is a schematic block diagram of the high pressure container system which concerns on embodiment of this invention. 本発明の変形例に係る高圧容器システムの概略構成図である。It is a schematic block diagram of the high pressure container system which concerns on the modification of this invention. 本発明の別の変形例に係る高圧容器システムの概略構成図である。It is a schematic block diagram of the high pressure container system which concerns on another modification of this invention. 本発明のまた別の変形例に係る高圧容器システムの概略構成図である。It is a schematic block diagram of the high pressure container system which concerns on another modification of this invention.

本発明に係る高圧容器システム及び高圧容器システムの制御方法について好適な実施形態を挙げ、添付の図面を参照しながら詳細に説明する。なお、以下の図において、同一又は同様の機能及び効果を奏する構成要素に対しては同一の参照符号を付し、繰り返しの説明を省略する場合がある。 A suitable embodiment of the high-pressure container system and the control method of the high-pressure container system according to the present invention will be given, and will be described in detail with reference to the accompanying drawings. In the following figures, components having the same or similar functions and effects may be designated by the same reference numerals, and repeated description may be omitted.

図1に示すように、本実施形態に係る高圧容器システム10は、例えば、燃料電池車両である搭載体(不図示)に搭載され、ガス消費部である燃料電池12に水素ガスを供給するものとして好適に用いることができる。すなわち、高圧容器システム10は、水素ガスを貯蔵する高圧容器14(高圧タンク)を備えるものとして好適に用いることができる。 As shown in FIG. 1, the high-pressure container system 10 according to the present embodiment is mounted on, for example, an on-board body (not shown) which is a fuel cell vehicle, and supplies hydrogen gas to the fuel cell 12 which is a gas consuming unit. Can be suitably used as. That is, the high-pressure container system 10 can be suitably used as a device including a high-pressure container 14 (high-pressure tank) for storing hydrogen gas.

そこで、本実施形態では、搭載体を燃料電池車両とし、ガス消費部を燃料電池12とし、高圧容器14が水素ガスを貯蔵する例について説明するが、特にこれに限定されるものではない。高圧容器システム10は、燃料電池車両以外の搭載体に搭載され、燃料電池12以外のガス消費部に対して、水素ガス以外のガスを供給してもよい。すなわち、高圧容器14は水素ガス以外のガスを貯蔵するものであってもよい。 Therefore, in the present embodiment, an example in which the mounted body is a fuel cell vehicle, the gas consuming unit is a fuel cell 12, and the high-pressure container 14 stores hydrogen gas will be described, but the present invention is not particularly limited thereto. The high-pressure container system 10 may be mounted on a mounting body other than the fuel cell vehicle, and may supply a gas other than hydrogen gas to a gas consuming unit other than the fuel cell 12. That is, the high-pressure container 14 may store a gas other than hydrogen gas.

高圧容器システム10は、1個の高圧容器14と、供給路16と、制御部18と、分岐路20と、分岐路減圧弁22と、第1圧力センサ24と、第2圧力センサ26とを備える。なお、高圧容器システム10は、複数個の高圧容器14を備えてもよく、この場合、複数個の高圧容器14の容量は互いに同じであってもよいし、異なっていてもよい。 The high-pressure container system 10 includes one high-pressure container 14, a supply path 16, a control unit 18, a branch path 20, a branch path pressure reducing valve 22, a first pressure sensor 24, and a second pressure sensor 26. Be prepared. The high-pressure container system 10 may include a plurality of high-pressure containers 14, and in this case, the capacities of the plurality of high-pressure containers 14 may be the same or different from each other.

高圧容器14には、不図示の充填路を介して水素ガスを充填可能である。また、高圧容器14に貯蔵された水素ガスは供給路16を介して燃料電池12に供給可能である。高圧容器システム10の制御は、不図示のCPUやメモリ等を備えたコンピュータとして構成される制御部18によって行われる。 The high-pressure container 14 can be filled with hydrogen gas via a filling path (not shown). Further, the hydrogen gas stored in the high-pressure container 14 can be supplied to the fuel cell 12 via the supply path 16. The high-pressure container system 10 is controlled by a control unit 18 configured as a computer equipped with a CPU, a memory, or the like (not shown).

高圧容器14は、内部に水素ガスを貯蔵可能な中空体からなる樹脂製のライナ28と、ライナ28の外面を覆う繊維強化樹脂製の補強層30とを有する。つまり、高圧容器14内のガス圧とは、ライナ28の内部に収容された水素ガスの圧力を示す。 The high-pressure container 14 has a resin liner 28 made of a hollow body capable of storing hydrogen gas inside, and a fiber reinforced resin reinforcing layer 30 covering the outer surface of the liner 28. That is, the gas pressure in the high-pressure container 14 indicates the pressure of the hydrogen gas contained in the liner 28.

また、高圧容器14には、ライナ28の内部と外部とを連通させる開口に口金32が設けられている。口金32には、バルブアッセンブリ34が固定される。このバルブアッセンブリ34を介して高圧容器14に対する水素ガスの流入及び高圧容器14からの水素ガスの放出が制御される。なお、図1〜図4では、説明の便宜上、高圧容器14の内部にバルブアッセンブリ34を図示している。 Further, the high-pressure container 14 is provided with a base 32 at an opening that communicates the inside and the outside of the liner 28. A valve assembly 34 is fixed to the base 32. The inflow of hydrogen gas into the high-pressure container 14 and the release of hydrogen gas from the high-pressure container 14 are controlled through the valve assembly 34. In FIGS. 1 to 4, the valve assembly 34 is shown inside the high-pressure container 14 for convenience of explanation.

バルブアッセンブリ34には、供給路16の上流側の一部と、供給路16を開閉する主止弁36とが設けられている。主止弁36を開状態とすることで、高圧容器14から燃料電池12側に向かって水素ガスを放出可能となる。主止弁36を閉状態とすることで、高圧容器14からの水素ガスの放出が停止される。 The valve assembly 34 is provided with a part of the upstream side of the supply path 16 and a main check valve 36 for opening and closing the supply path 16. By opening the main check valve 36, hydrogen gas can be discharged from the high pressure container 14 toward the fuel cell 12 side. By closing the main check valve 36, the discharge of hydrogen gas from the high-pressure container 14 is stopped.

供給路16は、高圧容器14の内部と燃料電池12とを連通可能に設けられている。また、供給路16の主止弁36よりも下流側には、第1圧力センサ24と、分岐部38と、供給路減圧弁40と、インジェクタ42とが設けられている。供給路16の分岐部38からは、分岐路20が分岐している。例えば、分岐路20を形成する配管の径を、供給路16を形成する配管の径よりも小さくすること等によって、分岐路20の全体又は少なくとも一部の流路断面積は、供給路16の流路断面積よりも小さくなっている。 The supply path 16 is provided so that the inside of the high-pressure container 14 and the fuel cell 12 can communicate with each other. Further, a first pressure sensor 24, a branch portion 38, a supply path pressure reducing valve 40, and an injector 42 are provided on the downstream side of the main stop valve 36 of the supply path 16. The branch path 20 branches from the branch portion 38 of the supply path 16. For example, by making the diameter of the pipe forming the branch path 20 smaller than the diameter of the pipe forming the supply path 16, the cross-sectional area of the entire or at least a part of the branch path 20 is the supply path 16. It is smaller than the cross-sectional area of the flow path.

分岐路20には、分岐路減圧弁22が設けられている。分岐路20の分岐路減圧弁22の一次側(分岐部38側)及び供給路16の供給路減圧弁40の一次側(高圧容器14側)のそれぞれは、高圧容器14内と同圧の第1圧力領域44となる。なお、同圧は、互いの圧力が同じであることの他に、互いの圧力が対応していること、換言すると、一方の圧力から他方の圧力を求められる状態にあることを含んでもよい。分岐路20の分岐路減圧弁22の二次側(分岐部38と反対側)は、後述するように分岐路減圧弁22により調圧値以下のガス圧に維持される第2圧力領域46となる。 The branch path 20 is provided with a branch path pressure reducing valve 22. Each of the primary side (branch portion 38 side) of the branch path pressure reducing valve 22 of the branch path 20 and the primary side (high pressure container 14 side) of the supply path pressure reducing valve 40 of the supply path 16 has the same pressure as that in the high pressure container 14. It becomes 1 pressure region 44. In addition to the fact that the pressures of each other are the same, the same pressure may include that the pressures of each other correspond to each other, in other words, that the pressure of one is obtained from the pressure of the other. The secondary side (opposite side to the branch portion 38) of the branch path pressure reducing valve 22 of the branch path 20 has a second pressure region 46 maintained at a gas pressure equal to or lower than the pressure regulation value by the branch path pressure reducing valve 22 as described later. Become.

第1圧力センサ24は、第1圧力領域44のガス圧を測定する。つまり、第1圧力センサ24は、第1圧力領域44を介して高圧容器14内のガス圧を測定可能である。なお、第1圧力センサ24は、供給路16に代えて、分岐路20の分岐路減圧弁22の一次側に設けられてもよい。第1圧力センサ24は、例えば、燃料電池車両の乗員等に対して、高圧容器14内の水素ガスの残量を表示する用途に使用することができる。 The first pressure sensor 24 measures the gas pressure in the first pressure region 44. That is, the first pressure sensor 24 can measure the gas pressure in the high pressure container 14 via the first pressure region 44. The first pressure sensor 24 may be provided on the primary side of the branch path pressure reducing valve 22 of the branch path 20 instead of the supply path 16. The first pressure sensor 24 can be used, for example, for displaying the remaining amount of hydrogen gas in the high-pressure container 14 to the occupants of the fuel cell vehicle and the like.

満充填時の高圧容器14内のガス圧は、例えば、70MPaG〜105MPaGの高圧域まで昇圧する。このため、第1圧力センサ24は、例えば0MPaG付近から105MPaG付近までの範囲のガス圧を測定可能となるように、105MPa以上の測定レンジを有することが好ましい。 The gas pressure in the high-pressure container 14 at the time of full filling is increased to, for example, a high pressure range of 70 MPaG to 105 MPaG. Therefore, it is preferable that the first pressure sensor 24 has a measurement range of 105 MPa or more so that the gas pressure in the range of, for example, from around 0 MPaG to around 105 MPaG can be measured.

第2圧力センサ26は、第2圧力領域46のガス圧を測定する。第2圧力センサ26の測定レンジは、第1圧力センサ24より狭い。また、第2圧力センサ26の測定レンジは、第2圧力センサ26の測定誤差の範囲を小さくする観点から数MPa(例えば1.0MPa〜3.0MPa)であることが好ましい。このような測定レンジとすることで、第2圧力センサ26の測定誤差を例えば0.1MPa〜0.2MPaの範囲まで低減させることが可能になる。 The second pressure sensor 26 measures the gas pressure in the second pressure region 46. The measurement range of the second pressure sensor 26 is narrower than that of the first pressure sensor 24. The measurement range of the second pressure sensor 26 is preferably several MPa (for example, 1.0 MPa to 3.0 MPa) from the viewpoint of reducing the range of measurement error of the second pressure sensor 26. With such a measurement range, the measurement error of the second pressure sensor 26 can be reduced to, for example, in the range of 0.1 MPa to 0.2 MPa.

分岐路減圧弁22は、第1圧力領域44のガス圧が調圧値より高いとき、第2圧力領域46のガス圧を調圧値に維持する。なお、分岐路減圧弁22は、機械式、電動式、電磁式の何れから構成されてもよいが、消費電力を低減可能とする観点から、機械式であることが好ましい。 The branch path pressure reducing valve 22 maintains the gas pressure in the second pressure region 46 at the pressure regulation value when the gas pressure in the first pressure region 44 is higher than the pressure regulation value. The branch path pressure reducing valve 22 may be composed of any of a mechanical type, an electric type, and an electromagnetic type, but is preferably a mechanical type from the viewpoint of reducing power consumption.

つまり、第2圧力センサ26は、第1圧力領域44のガス圧が調圧値より高い場合には、分岐路減圧弁22により調圧値に維持された水素ガスの圧力を測定することになる。このため、第2圧力センサ26の測定レンジは、分岐路減圧弁22によって設定される調圧値以下のガス圧を測定可能に設定されればよい。調圧値の好適な例としては、2MPaGとすることが挙げられるが、特にこれに限定されるものではない。調圧値を小さくすることで、第2圧力センサ26の測定レンジを小さくすることができる。 That is, when the gas pressure in the first pressure region 44 is higher than the pressure regulation value, the second pressure sensor 26 measures the pressure of the hydrogen gas maintained at the pressure regulation value by the branch path pressure reducing valve 22. .. Therefore, the measurement range of the second pressure sensor 26 may be set so that the gas pressure equal to or lower than the pressure adjustment value set by the branch path pressure reducing valve 22 can be measured. A preferable example of the pressure adjustment value is 2 MPaG, but the pressure adjustment value is not particularly limited to this. By reducing the pressure adjustment value, the measurement range of the second pressure sensor 26 can be reduced.

また、分岐路減圧弁22は、第1圧力領域44のガス圧が調圧値以下であるときは、第2圧力領域46と第1圧力領域44とを同圧にする。このため、第1圧力領域44(高圧容器14内)が調圧値以下の低圧域のガス圧となったとき、第2圧力センサ26は、第2圧力領域46を介して高圧容器14内のガス圧を測定することが可能になる。 Further, when the gas pressure in the first pressure region 44 is equal to or lower than the pressure regulation value, the branch path pressure reducing valve 22 makes the second pressure region 46 and the first pressure region 44 the same pressure. Therefore, when the first pressure region 44 (inside the high pressure container 14) becomes the gas pressure in the low pressure region equal to or lower than the pressure adjustment value, the second pressure sensor 26 enters the high pressure container 14 via the second pressure region 46. It becomes possible to measure the gas pressure.

この第2圧力センサ26の測定値は、例えば、制御部18により高圧容器14内のガス圧が下限設定値を下回らないことを監視する用途に使用することができる。下限設定値は、高圧容器14の必要最低残圧であり、高圧容器14内のガス圧が下限設定値を下回らないように管理することで、高圧容器14の信頼性を維持することができる。 The measured value of the second pressure sensor 26 can be used, for example, for the purpose of monitoring by the control unit 18 that the gas pressure in the high pressure container 14 does not fall below the lower limit set value. The lower limit set value is the required minimum residual pressure of the high pressure container 14, and the reliability of the high pressure container 14 can be maintained by controlling the gas pressure in the high pressure container 14 so as not to fall below the lower limit set value.

上記の通り、高圧容器14が樹脂製のライナ28と補強層30とを有する場合、ライナ28内に収容された水素ガスが、ライナ28を透過して、該ライナ28の外面と補強層30との間等(以下、被覆部ともいう)に進入することがある。 As described above, when the high-pressure container 14 has the liner 28 made of resin and the reinforcing layer 30, the hydrogen gas contained in the liner 28 permeates the liner 28 to the outer surface of the liner 28 and the reinforcing layer 30. It may enter the space (hereinafter, also referred to as the covering part).

被覆部に流体が滞留した状態で、高圧容器14(ライナ28)内のガス圧が低減し、被覆部のガス圧よりも低くなると、ライナ28と補強層30との剥離や、ライナ28がその内部に向かって突出するバックリング等が生じ易くなる懸念がある。そこで、例えば、上記の剥離やバックリング等を抑制可能な状態で維持できる高圧容器14内のガス圧の最小値を下限設定値として設定することが好ましい。なお、下限設定値は、高圧容器14の構成等に応じて設定可能であり、特に限定されるものではないが、例えば1MPaG以下とすることが挙げられる。 When the gas pressure in the high-pressure container 14 (liner 28) decreases and becomes lower than the gas pressure in the coating portion while the fluid stays in the covering portion, the liner 28 and the reinforcing layer 30 are separated from each other, and the liner 28 becomes the liner 28. There is a concern that buckling or the like that protrudes toward the inside is likely to occur. Therefore, for example, it is preferable to set the minimum value of the gas pressure in the high-pressure container 14 that can maintain the above-mentioned peeling and buckling in a suppressable state as the lower limit setting value. The lower limit setting value can be set according to the configuration of the high-pressure container 14, and is not particularly limited, but may be, for example, 1 MPaG or less.

制御部18では、高圧容器14内のガス圧を監視する際、第2圧力センサ26の測定誤差の範囲に応じた大きさ分、下限設定値よりも高く設定された判定閾値と、第2圧力センサ26の測定値とを比較する。そして、第2圧力センサ26の測定値が、判定閾値以下となった場合に、例えば、主止弁36を閉状態とすることで、高圧容器14と燃料電池12との間の水素ガスの流通を遮断する。これによって、高圧容器14内のガス圧がそれ以上低下することを回避する。 When monitoring the gas pressure in the high pressure container 14, the control unit 18 has a determination threshold value set higher than the lower limit set value by a size corresponding to the measurement error range of the second pressure sensor 26, and a second pressure. Compare with the measured value of the sensor 26. Then, when the measured value of the second pressure sensor 26 is equal to or less than the determination threshold value, for example, by closing the main stop valve 36, hydrogen gas flows between the high pressure container 14 and the fuel cell 12. To shut off. This prevents the gas pressure in the high pressure container 14 from further decreasing.

なお、高圧容器システム10は、例えば、供給路16のインジェクタ42よりも下流側に不図示の遮断弁を備えてもよい。この場合、第2圧力センサ26の測定値が、判定閾値以下となった場合に、遮断弁を閉状態とすることで、高圧容器14と燃料電池12との間の水素ガスの流通を遮断してもよい。 The high-pressure container system 10 may be provided with a shutoff valve (not shown) on the downstream side of the injector 42 of the supply path 16, for example. In this case, when the measured value of the second pressure sensor 26 is equal to or less than the determination threshold value, the shutoff valve is closed to shut off the flow of hydrogen gas between the high pressure container 14 and the fuel cell 12. You may.

供給路減圧弁40は、供給路16の供給路減圧弁40よりも上流のガス圧が、燃料電池12への供給に適した値よりも大きいとき、水素ガスの圧力を減圧して、燃料電池12への供給に適した大きさにする。なお、供給路減圧弁40は、機械式、電動式、電磁式の何れから構成されてもよい。また、高圧容器システム10は、供給路16における燃料電池12の前段において、水素ガスの圧力を特に調整する必要がない場合には、供給路減圧弁40を備えていなくてもよい。インジェクタ42は、例えば、電磁弁又は電動弁からなり、制御部18の制御に基づいて燃料電池12への水素ガスの供給圧力や供給流量等を調整する。 The supply passage pressure reducing valve 40 reduces the pressure of hydrogen gas to a fuel cell when the gas pressure upstream of the supply passage pressure reducing valve 40 of the supply passage 16 is larger than a value suitable for supply to the fuel cell 12. Make the size suitable for supply to 12. The supply path pressure reducing valve 40 may be composed of any of a mechanical type, an electric type, and an electromagnetic type. Further, the high pressure container system 10 may not be provided with the supply path pressure reducing valve 40 in the front stage of the fuel cell 12 in the supply path 16 when it is not necessary to particularly adjust the pressure of the hydrogen gas. The injector 42 is composed of, for example, a solenoid valve or an electric valve, and adjusts the supply pressure, supply flow rate, and the like of hydrogen gas to the fuel cell 12 based on the control of the control unit 18.

以下、本実施形態に係る高圧容器システム10の制御方法について説明する。高圧容器システム10では、高圧容器14に貯蔵された水素ガスを燃料電池12に供給する場合、制御部18によって、供給路16の主止弁36を開状態とする。これによって、主止弁36を通過して高圧容器14から放出された供給路16内の水素ガスは、その一部が分岐部38で分岐路20に流入する。また、分岐路20に流入しない水素ガスは、供給路減圧弁40で所定の圧力まで減圧された後、インジェクタ42により調整された圧力や流量で燃料電池12に供給される。 Hereinafter, the control method of the high-pressure container system 10 according to the present embodiment will be described. In the high-pressure container system 10, when the hydrogen gas stored in the high-pressure container 14 is supplied to the fuel cell 12, the control unit 18 opens the main stop valve 36 of the supply path 16. As a result, a part of the hydrogen gas in the supply path 16 that has passed through the main check valve 36 and is discharged from the high-pressure container 14 flows into the branch path 20 at the branch portion 38. Further, the hydrogen gas that does not flow into the branch passage 20 is depressurized to a predetermined pressure by the supply passage pressure reducing valve 40, and then supplied to the fuel cell 12 at the pressure and flow rate adjusted by the injector 42.

燃料電池12に供給された水素ガスは、該燃料電池12での電気化学反応(発電反応)に消費される。この電気化学反応によって得られる電力を利用して、燃料電池車両を走行させること等が可能となっている。 The hydrogen gas supplied to the fuel cell 12 is consumed in the electrochemical reaction (power generation reaction) in the fuel cell 12. It is possible to drive a fuel cell vehicle by using the electric power obtained by this electrochemical reaction.

上記の通り、分岐路20の分岐路減圧弁22の一次側(分岐部38側)と、供給路16の供給路減圧弁40の一次側(高圧容器14側)とは、高圧容器14と同圧の第1圧力領域44となる。このため、第1圧力領域44のガス圧を測定する第1圧力センサ24によって、高圧容器14内のガス圧を測定することができる。この第1圧力センサ24の測定値が調圧値よりも高いとき、換言すると、第1圧力領域44のガス圧が調圧値よりも高いとき、分岐路減圧弁22は、第2圧力領域46のガス圧を調圧値に維持する。このため、第2圧力センサ26の測定値は調圧値で一定となる。 As described above, the primary side (branch portion 38 side) of the branch path pressure reducing valve 22 of the branch path 20 and the primary side (high pressure container 14 side) of the supply path pressure reducing valve 40 of the supply path 16 are the same as those of the high pressure container 14. It becomes the first pressure region 44 of the pressure. Therefore, the gas pressure in the high pressure container 14 can be measured by the first pressure sensor 24 that measures the gas pressure in the first pressure region 44. When the measured value of the first pressure sensor 24 is higher than the pressure regulation value, in other words, when the gas pressure in the first pressure region 44 is higher than the pressure regulation value, the branch path pressure reducing valve 22 is in the second pressure region 46. Maintain the gas pressure at the pressure regulation value. Therefore, the measured value of the second pressure sensor 26 is constant at the pressure adjustment value.

制御部18は、第1圧力センサ24の測定値が調圧値よりも高いときは、第2圧力センサ26の測定値を用いることなく、第1圧力センサ24の測定値を用いて高圧容器14内のガス量を求める。 When the measured value of the first pressure sensor 24 is higher than the pressure adjusting value, the control unit 18 does not use the measured value of the second pressure sensor 26, but uses the measured value of the first pressure sensor 24 to use the high pressure container 14. Find the amount of gas inside.

燃料電池12で水素ガスが消費されること等により、高圧容器14内のガス量が減少すると、第1圧力領域44のガス圧が低下する。これにより、第1圧力領域44のガス圧が調圧値に達するまで低下すると、分岐路減圧弁22を介して第1圧力領域44と第2圧力領域46とが同圧となる。このため、第2圧力センサ26によって、高圧容器14内の調圧値以下の低圧域のガス圧を測定することが可能になる。 When the amount of gas in the high-pressure container 14 decreases due to the consumption of hydrogen gas in the fuel cell 12, the gas pressure in the first pressure region 44 decreases. As a result, when the gas pressure in the first pressure region 44 drops until it reaches the pressure regulation value, the pressure in the first pressure region 44 and the second pressure region 46 becomes the same via the branch path pressure reducing valve 22. Therefore, the second pressure sensor 26 makes it possible to measure the gas pressure in the low pressure region in the high pressure container 14 which is equal to or lower than the pressure adjustment value.

制御部18は、第1圧力センサ24の測定値が調圧値以下であるときは、第1圧力センサ24の測定値を用いて高圧容器14内のガス量を求めるとともに、第2圧力センサ26の測定値を用いて高圧容器14内のガス圧が下限設定値を下回らないことを監視する。具体的には、第2圧力センサ26の測定値と判定閾値とを比較する。そして、第2圧力センサ26の測定値が判定閾値以下となった場合に、主止弁36(又は、上記の遮断弁)を閉状態として、高圧容器14と燃料電池12との間のガスの流通を遮断する。これによって、高圧容器14内のガス圧がそれ以上低下することを回避する。 When the measured value of the first pressure sensor 24 is equal to or less than the pressure adjusting value, the control unit 18 obtains the amount of gas in the high pressure container 14 using the measured value of the first pressure sensor 24 and the second pressure sensor 26. It is monitored that the gas pressure in the high pressure vessel 14 does not fall below the lower limit set value by using the measured value of. Specifically, the measured value of the second pressure sensor 26 and the determination threshold value are compared. Then, when the measured value of the second pressure sensor 26 becomes equal to or less than the determination threshold value, the main stop valve 36 (or the above-mentioned shutoff valve) is closed and the gas between the high pressure container 14 and the fuel cell 12 is charged. Block distribution. This prevents the gas pressure in the high pressure container 14 from further decreasing.

なお、制御部18は、第1圧力センサ24の測定値が調圧値以下であるときは、第1圧力センサ24の測定値に代えて、又は第1圧力センサ24の測定値とともに、第2圧力センサ26の測定値を用いて高圧容器14内のガス量を求めてもよい。 When the measured value of the first pressure sensor 24 is equal to or less than the pressure adjusting value, the control unit 18 replaces the measured value of the first pressure sensor 24 or together with the measured value of the first pressure sensor 24 in the second. The amount of gas in the high-pressure container 14 may be determined using the measured value of the pressure sensor 26.

以上から、この高圧容器システム10では、第2圧力センサ26は、調圧値以下の範囲のガス圧を測定可能であればよいため、第1圧力センサ24よりも測定レンジを狭くすることができる。このように測定レンジが狭く測定誤差の範囲が小さい第2圧力センサ26を用いることで、高圧容器14内の低圧域のガス圧を高精度に測定することが可能になる。 From the above, in this high pressure container system 10, since the second pressure sensor 26 only needs to be able to measure the gas pressure in the range of the pressure adjustment value or less, the measurement range can be narrower than that of the first pressure sensor 24. .. By using the second pressure sensor 26 having a narrow measurement range and a small measurement error range as described above, it is possible to measure the gas pressure in the low pressure region in the high pressure container 14 with high accuracy.

また、この高圧容器システム10では、高圧容器14内のガスを燃料電池12に導く供給路16とは別に、供給路16の分岐部38から分岐する分岐路20に分岐路減圧弁22及び第2圧力センサ26が設けられる。これによって、例えば、供給路16に分岐路減圧弁22及び第2圧力センサ26を直接設ける場合に比して、高圧容器システム10を簡単な構成とすることができる。 Further, in the high pressure container system 10, the branch path pressure reducing valve 22 and the second branch path pressure reducing valve 22 and the second branch path 20 are branched from the branch portion 38 of the supply path 16 separately from the supply path 16 that guides the gas in the high pressure container 14 to the fuel cell 12. A pressure sensor 26 is provided. Thereby, for example, the high pressure container system 10 can have a simple configuration as compared with the case where the branch path pressure reducing valve 22 and the second pressure sensor 26 are directly provided in the supply path 16.

すなわち、供給路16は、高圧容器14から燃料電池12に供給するための大流量のガスを流通させる必要がある。このような供給路16に分岐路減圧弁22及び第2圧力センサ26を設ける場合、燃料電池12へのガス供給が円滑に行われる状態を維持しつつ、第2圧力領域46のガス圧を調圧値以下にするための複雑な流路特性の設計等が必要となる。一方、分岐路20では、該分岐路20内のガスを燃料電池12に供給することを考慮する必要がない分、供給路16に比して流路断面積や流通させるガス流量等が制限され難い。このような分岐路20に分岐路減圧弁22及び第2圧力センサ26を設けることで、複雑な流路特性の設計を不要として、高圧容器システム10を簡単な構成とすることができる。 That is, the supply path 16 needs to circulate a large flow rate of gas for supplying the fuel cell 12 from the high pressure container 14. When the branch path pressure reducing valve 22 and the second pressure sensor 26 are provided in such a supply path 16, the gas pressure in the second pressure region 46 is adjusted while maintaining a state in which the gas supply to the fuel cell 12 is smoothly performed. It is necessary to design complicated flow path characteristics to keep the pressure below the pressure value. On the other hand, in the branch path 20, since it is not necessary to consider supplying the gas in the branch path 20 to the fuel cell 12, the cross-sectional area of the flow path, the flow rate of gas to be circulated, and the like are limited as compared with the supply path 16. hard. By providing the branch path pressure reducing valve 22 and the second pressure sensor 26 in such a branch path 20, the high pressure container system 10 can be simply configured without the need for designing complicated flow path characteristics.

従って、この高圧容器システム10及びその制御方法によれば、高圧容器14内の低圧域のガス圧を簡単な構成で高精度に測定することが可能になる。 Therefore, according to the high pressure container system 10 and its control method, it is possible to measure the gas pressure in the low pressure region in the high pressure container 14 with high accuracy with a simple configuration.

上記の実施形態に係る高圧容器システム10では、分岐路20の流路断面積は、供給路16の流路断面積よりも小さいこととした。上記の通り、分岐路20では、該分岐路20内の水素ガスを燃料電池12に供給することを考慮する必要がなく、供給路16のような大流量のガスを流通させる必要もないため、流路断面積を小さくすることができる。このように分岐路20の流路断面積を小さくすることで、分岐路20を形成する配管や、分岐路減圧弁22等を小型化することが可能になる。 In the high-pressure container system 10 according to the above embodiment, the channel cross-sectional area of the branch path 20 is smaller than the channel cross-sectional area of the supply path 16. As described above, in the branch path 20, it is not necessary to consider supplying the hydrogen gas in the branch path 20 to the fuel cell 12, and it is not necessary to circulate a large flow rate gas as in the supply path 16. The cross-sectional area of the flow path can be reduced. By reducing the cross-sectional area of the flow path of the branch path 20 in this way, it becomes possible to reduce the size of the piping forming the branch path 20, the branch path pressure reducing valve 22 and the like.

また、分岐路20の流路断面積を小さくすることで、少ないガス量の変化に応じて分岐路20内のガス圧を速やかに変化させることが可能になるため、第2圧力センサ26によるガス圧の測定精度を高めることができる。その結果、高圧容器システム10が大型化することを抑制しつつ、高圧容器14内の低圧域のガス圧を一層高精度に測定することが可能になる。 Further, by reducing the cross-sectional area of the flow path of the branch path 20, the gas pressure in the branch path 20 can be quickly changed in response to a change in a small amount of gas, so that the gas by the second pressure sensor 26 can be changed. The accuracy of pressure measurement can be improved. As a result, it becomes possible to measure the gas pressure in the low pressure region in the high pressure container 14 with higher accuracy while suppressing the increase in size of the high pressure container system 10.

上記の実施形態に係る高圧容器システム10の制御方法では、高圧容器システム10の制御部18は、第1圧力センサ24の測定値が調圧値より高いとき、第1圧力センサ24の測定値を用いて高圧容器14内のガス量を求め、第1圧力センサ24の測定値が調圧値以下であるとき、第1圧力センサ24の測定値を用いて高圧容器14内のガス量を求めるとともに、第2圧力センサ26の測定値を用いて高圧容器14内のガス圧が下限設定値を下回らないことを監視することとした。 In the control method of the high pressure container system 10 according to the above embodiment, when the measured value of the first pressure sensor 24 is higher than the pressure adjusting value, the control unit 18 of the high pressure container system 10 determines the measured value of the first pressure sensor 24. The amount of gas in the high pressure container 14 is obtained by using, and when the measured value of the first pressure sensor 24 is equal to or less than the pressure adjustment value, the amount of gas in the high pressure container 14 is obtained by using the measured value of the first pressure sensor 24. It was decided to monitor that the gas pressure in the high pressure container 14 does not fall below the lower limit set value by using the measured value of the second pressure sensor 26.

上記の通り、測定レンジの小さい第2圧力センサ26では、測定誤差の範囲を小さくすることができるため、高圧容器14内の低圧域のガス圧を高精度に測定できる。このような第2圧力センサ26の測定値を用いて高圧容器14内のガス圧を監視することで、該高圧容器14内のガス圧が必要最低残圧を下回ることを高い信頼性のもとで回避できる。その結果、例えば、ライナ28と補強層30との剥離や、ライナ28がその内部に向かって突出するバックリング等を効果的に抑制して、高圧容器14の耐久性を高めること等が可能になる。 As described above, in the second pressure sensor 26 having a small measurement range, the range of measurement error can be reduced, so that the gas pressure in the low pressure region in the high pressure container 14 can be measured with high accuracy. By monitoring the gas pressure in the high pressure container 14 using the measured value of the second pressure sensor 26, it is highly reliable that the gas pressure in the high pressure container 14 is lower than the required minimum residual pressure. Can be avoided with. As a result, for example, it is possible to effectively suppress the peeling of the liner 28 and the reinforcing layer 30, the buckling in which the liner 28 protrudes toward the inside, and the like, thereby increasing the durability of the high-pressure container 14. Become.

上記の実施形態に係る高圧容器システム10の制御方法では、制御部18は、第2圧力センサ26の測定誤差の範囲分、下限設定値よりも高く設定された判定閾値と、第2圧力センサ26の測定値とを比較し、第2圧力センサ26の測定値が判定閾値以下となった場合に、高圧容器14と燃料電池12(ガス消費部)との間の水素ガスの流通を遮断することとした。 In the control method of the high pressure container system 10 according to the above embodiment, the control unit 18 has a determination threshold value set higher than the lower limit set value by the range of the measurement error of the second pressure sensor 26, and the second pressure sensor 26. When the measured value of the second pressure sensor 26 is equal to or less than the determination threshold value, the flow of hydrogen gas between the high pressure container 14 and the fuel cell 12 (gas consuming unit) is cut off. And said.

上記の通り、第2圧力センサ26では、測定誤差の範囲が小さい分、判定閾値を必要最低残圧に近づけて設定することができる。これによって、高圧容器14内のガス圧が必要最低残圧を下回らない範囲で可及的に必要最低残圧に近づくように、高圧容器14から燃料電池12に水素ガスを供給することができる。すなわち、ガス圧を維持する用途で高圧容器14内に残留させる無効残水素ガス量を必要最低限とすることができる。換言すると、高圧容器14に貯蔵された水素ガスのうち、燃料電池12において燃料として使用することが可能な有効水素ガス量の割合を増やすことができる。 As described above, in the second pressure sensor 26, the determination threshold value can be set closer to the required minimum residual pressure because the measurement error range is small. Thereby, hydrogen gas can be supplied from the high pressure container 14 to the fuel cell 12 so that the gas pressure in the high pressure container 14 approaches the required minimum residual pressure as much as possible within a range not lower than the required minimum residual pressure. That is, the amount of ineffective residual hydrogen gas remaining in the high-pressure container 14 can be minimized for the purpose of maintaining the gas pressure. In other words, the proportion of the amount of effective hydrogen gas that can be used as fuel in the fuel cell 12 can be increased from the hydrogen gas stored in the high-pressure container 14.

ひいては、高圧容器14の大きさ(容量)を維持しつつ、有効水素ガス量を増やすこと、又は、高圧容器14の有効水素ガス量を維持しつつ、高圧容器14を小型化することが可能になる。有効水素ガス量が増えれば、燃料電池車両の航続距離を増やすことができる。また、高圧容器14の小型化が図られれば、高圧容器14のコスト削減や軽量化等を図ることが可能になる。 As a result, it is possible to increase the amount of effective hydrogen gas while maintaining the size (capacity) of the high-pressure container 14, or to reduce the size of the high-pressure container 14 while maintaining the amount of effective hydrogen gas in the high-pressure container 14. Become. If the amount of effective hydrogen gas increases, the cruising range of the fuel cell vehicle can be increased. Further, if the high-pressure container 14 is made smaller, it becomes possible to reduce the cost and weight of the high-pressure container 14.

本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能である。 The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

例えば、図2に示す変形例に係る高圧容器システム10のように、分岐路減圧弁22の二次側(分岐部38と反対側)において、分岐路20は、分岐路規制弁48を介して供給路16の接続部50に接続されていてもよい。この場合、分岐路20の分岐路規制弁48よりも接続部50側は、第1圧力領域44となる。また、分岐路20の分岐路規制弁48よりも分岐路減圧弁22の二次側は、第2圧力領域46となる。供給路減圧弁40は、供給路16の接続部50よりも下流側に設けられる。 For example, as in the high-pressure container system 10 according to the modification shown in FIG. 2, on the secondary side (opposite side to the branch portion 38) of the branch path pressure reducing valve 22, the branch path 20 is passed through the branch path control valve 48. It may be connected to the connection portion 50 of the supply path 16. In this case, the connection portion 50 side of the branch path regulation valve 48 of the branch path 20 is the first pressure region 44. Further, the secondary side of the branch path pressure reducing valve 22 is the second pressure region 46 with respect to the branch path regulation valve 48 of the branch path 20. The supply passage pressure reducing valve 40 is provided on the downstream side of the connection portion 50 of the supply passage 16.

分岐路規制弁48は、供給路16から接続部50を介して分岐路20に向かう水素ガスの流通を規制する。また、分岐路規制弁48は、第1圧力領域44のガス圧が第2圧力領域46のガス圧より低いときに、分岐路20から接続部50を介して供給路16に向かう水素ガスの流通を許容する。 The branch path control valve 48 regulates the flow of hydrogen gas from the supply path 16 to the branch path 20 via the connection portion 50. Further, the branch path control valve 48 distributes hydrogen gas from the branch path 20 to the supply path 16 via the connection portion 50 when the gas pressure in the first pressure region 44 is lower than the gas pressure in the second pressure region 46. Tolerate.

本実施形態では、分岐路規制弁48は、分岐路20における水素ガスの流通を上記のように制御する逆止弁であることとする。しかしながら、特にこれに限定されるものではなく、分岐路規制弁48は、例えば、第1圧力領域44のガス圧が第2圧力領域46のガス圧より低いときのみ開状態となる開閉弁であってもよい。なお、分岐路規制弁48は、機械式、電動式、電磁式の何れから構成されてもよい。 In the present embodiment, the branch path control valve 48 is a check valve that controls the flow of hydrogen gas in the branch path 20 as described above. However, the branch path control valve 48 is not particularly limited to this, and is, for example, an on-off valve that is opened only when the gas pressure in the first pressure region 44 is lower than the gas pressure in the second pressure region 46. You may. The branch path regulation valve 48 may be composed of any of a mechanical type, an electric type, and an electromagnetic type.

図2の高圧容器システム10の制御方法は、基本的には、図1の高圧容器システム10の制御方法と同様に実施することができる。つまり、図2の実施形態に係る高圧容器システム10及びその制御方法においても、図1の実施形態に係る高圧容器システム10及びその制御方法と同様に、高圧容器14内の低圧域のガス圧を簡単な構成で高精度に測定することが可能になる。 The control method of the high-pressure container system 10 of FIG. 2 can be basically carried out in the same manner as the control method of the high-pressure container system 10 of FIG. That is, also in the high-pressure container system 10 and its control method according to the embodiment of FIG. 2, the gas pressure in the low-pressure region in the high-pressure container 14 is applied as in the high-pressure container system 10 and its control method according to the embodiment of FIG. It is possible to measure with high accuracy with a simple configuration.

上記の通り、燃料電池12での水素ガスの消費等により、第1圧力領域44のガス圧(高圧容器14内のガス圧)が低下して調圧値に達すると、分岐路減圧弁22は、第1圧力領域44と第2圧力領域46とを同圧にする。つまり、水素ガスは、分岐路減圧弁22を通過して、第1圧力領域44と第2圧力領域46との間で移動可能となる。この際、例えば、第1圧力領域44のガス圧が低下する速度が、分岐路減圧弁22を通過して第2圧力領域46から第1圧力領域44に向かう水素ガスの速度よりも速いと、第2圧力領域46のガス圧よりも、第1圧力領域44のガス圧の方が低くなる場合がある。 As described above, when the gas pressure in the first pressure region 44 (the gas pressure in the high pressure container 14) decreases due to the consumption of hydrogen gas in the fuel cell 12 and reaches the pressure regulation value, the branch path pressure reducing valve 22 is set. , The first pressure region 44 and the second pressure region 46 are made equal in pressure. That is, the hydrogen gas passes through the branch path pressure reducing valve 22 and can move between the first pressure region 44 and the second pressure region 46. At this time, for example, if the speed at which the gas pressure in the first pressure region 44 decreases is faster than the speed of the hydrogen gas passing through the branch path pressure reducing valve 22 and going from the second pressure region 46 to the first pressure region 44. The gas pressure in the first pressure region 44 may be lower than the gas pressure in the second pressure region 46.

図2の高圧容器システム10の制御方法では、第1圧力領域44のガス圧が第2圧力領域46のガス圧よりも低くなったときに、分岐路20から接続部50を介して供給路16に向かう水素ガスの流通を分岐路規制弁48により許容する。すなわち、分岐路減圧弁22を通過することに加え、分岐路規制弁48を介しても第2圧力領域46から第1圧力領域44に向かって水素ガスを流通させることが可能になる。これによって、速やかに第1圧力領域44と第2圧力領域46とを同圧にすることができる。ひいては、第2圧力センサ26による高圧容器14内の低圧域のガス圧測定を一層高精度に行うことが可能になる。 In the control method of the high pressure container system 10 of FIG. 2, when the gas pressure in the first pressure region 44 becomes lower than the gas pressure in the second pressure region 46, the branch path 20 is passed through the connection portion 50 to the supply path 16. The flow of hydrogen gas toward is permitted by the branch road regulation valve 48. That is, in addition to passing through the branch path pressure reducing valve 22, hydrogen gas can be circulated from the second pressure region 46 to the first pressure region 44 also through the branch path regulation valve 48. As a result, the first pressure region 44 and the second pressure region 46 can be quickly made to have the same pressure. As a result, it becomes possible to measure the gas pressure in the low pressure region in the high pressure container 14 by the second pressure sensor 26 with higher accuracy.

また、分岐路規制弁48は、接続部50を介して供給路16から分岐路20に向かう水素ガスの流通を規制する。このため、分岐路減圧弁22の二次側で分岐路20を供給路16の接続部50に接続しても、供給路16から接続部50を介して分岐路20に水素ガスが流入することを回避できる。これによって、第2圧力領域46を調圧値以下に良好に維持することができる。 Further, the branch path regulation valve 48 regulates the flow of hydrogen gas from the supply path 16 to the branch path 20 via the connection portion 50. Therefore, even if the branch path 20 is connected to the connection portion 50 of the supply path 16 on the secondary side of the branch path pressure reducing valve 22, hydrogen gas flows from the supply path 16 to the branch path 20 via the connection portion 50. Can be avoided. As a result, the second pressure region 46 can be well maintained below the pressure regulation value.

図3の変形例に係る高圧容器システム10のように、供給路16を形成する配管は、分岐部38を形成する一次側接続口52と、接続部50を形成する二次側接続口54とが設けられた多岐管56を有していてもよい。多岐管56は、少なくとも分岐路減圧弁22及び第2圧力センサ26と一体化されてアッセンブリ58を形成する。図3の実施形態では、分岐路20と、分岐路減圧弁22と、第2圧力センサ26と、分岐路規制弁48とが一体化されてアッセンブリ58を形成している。アッセンブリ58は、供給路16の第1圧力センサ24よりも下流側に設けられている。なお、多岐管56は、アッセンブリ58を形成することなく、高圧容器システム10に備えられていてもよい。 Like the high-pressure container system 10 according to the modification of FIG. 3, the pipes forming the supply path 16 include the primary side connection port 52 forming the branch portion 38 and the secondary side connection port 54 forming the connection portion 50. May have a multi-purpose pipe 56 provided with. The multi-purpose pipe 56 is integrated with at least the branch path pressure reducing valve 22 and the second pressure sensor 26 to form the assembly 58. In the embodiment of FIG. 3, the branch path 20, the branch path pressure reducing valve 22, the second pressure sensor 26, and the branch path regulating valve 48 are integrated to form the assembly 58. The assembly 58 is provided on the downstream side of the first pressure sensor 24 of the supply path 16. The multi-purpose pipe 56 may be provided in the high-pressure container system 10 without forming the assembly 58.

図3の高圧容器システム10の制御方法は、基本的には、図2の高圧容器システム10の制御方法と同様に実施することができる。つまり、図3の実施形態に係る高圧容器システム10及びその制御方法においても、図1及び図2の実施形態に係る高圧容器システム10及びその制御方法と同様に、高圧容器14内の低圧域のガス圧を簡単な構成で高精度に測定することが可能になる。 The control method of the high-pressure container system 10 of FIG. 3 can be basically carried out in the same manner as the control method of the high-pressure container system 10 of FIG. That is, also in the high-pressure container system 10 and the control method thereof according to the embodiment of FIG. 3, the low-pressure region in the high-pressure container 14 is similar to the high-pressure container system 10 and the control method thereof according to the embodiments of FIGS. 1 and 2. It is possible to measure the gas pressure with high accuracy with a simple configuration.

また、図3の高圧容器システム10では、上記のアッセンブリ58を備えることで、高圧容器システム10を製造する際に、多岐管56と、分岐路20と、分岐路減圧弁22と、第2圧力センサ26と、分岐路規制弁48とを別々に組付ける作業を不要にすることができる。これによって、高圧容器システム10の製造工程を簡略化すること等が可能になる。 Further, in the high pressure container system 10 of FIG. 3, by providing the above assembly 58, when the high pressure container system 10 is manufactured, the various pipes 56, the branch path 20, the branch path pressure reducing valve 22, and the second pressure are provided. It is possible to eliminate the work of separately assembling the sensor 26 and the branch path control valve 48. This makes it possible to simplify the manufacturing process of the high-pressure container system 10.

図3の高圧容器システム10では、アッセンブリ58が、供給路16の第1圧力センサ24よりも下流側に設けられることとした。この場合、例えば、既存の高圧容器システム10に対してアッセンブリ58を組付けることが可能になり、図3の高圧容器システム10の製造工程を一層簡略化することが可能になる。 In the high-pressure container system 10 of FIG. 3, the assembly 58 is provided on the downstream side of the first pressure sensor 24 of the supply path 16. In this case, for example, the assembly 58 can be assembled to the existing high-pressure container system 10, and the manufacturing process of the high-pressure container system 10 of FIG. 3 can be further simplified.

また、高圧容器14から放出されたガスがアッセンブリ58を通過する際の圧力損失の影響を、第1圧力センサ24の測定値が受けることを回避できる。これによって、第1圧力センサ24による高圧容器14内のガス圧の測定を一層高精度に行うことが可能になる。 Further, it is possible to prevent the measured value of the first pressure sensor 24 from being affected by the pressure loss when the gas released from the high pressure container 14 passes through the assembly 58. This makes it possible to measure the gas pressure in the high pressure container 14 by the first pressure sensor 24 with higher accuracy.

図4の変形例に係る高圧容器システム10のように、供給路16の分岐部38、分岐路20、分岐路減圧弁22、第2圧力センサ26、分岐路規制弁48、供給路16の接続部50は、バルブアッセンブリ34の内部に設けられていてもよい。なお、本実施形態では、供給路16の分岐部38、分岐路20、分岐路減圧弁22、第2圧力センサ26、分岐路規制弁48、供給路16の接続部50は、バルブアッセンブリ34内の主止弁36の上流側に設けられることとするが、下流側に設けられていてもよい。 Connection of the branch portion 38, the branch path 20, the branch path pressure reducing valve 22, the second pressure sensor 26, the branch path regulation valve 48, and the supply path 16 of the supply path 16 as in the high-pressure container system 10 according to the modification of FIG. The portion 50 may be provided inside the valve assembly 34. In the present embodiment, the branch portion 38 of the supply path 16, the branch path 20, the branch path pressure reducing valve 22, the second pressure sensor 26, the branch path regulation valve 48, and the connection portion 50 of the supply path 16 are inside the valve assembly 34. Although it is provided on the upstream side of the main stop valve 36 of the above, it may be provided on the downstream side.

また、不図示ではあるが、高圧容器システム10は、分岐路規制弁48及び供給路16の接続部50を備えず、供給路16の分岐部38と、分岐路20と、分岐路減圧弁22と、第2圧力センサ26とのみがバルブアッセンブリ34の内部に設けられていてもよい。 Further, although not shown, the high-pressure container system 10 does not include the branch path regulation valve 48 and the connection portion 50 of the supply path 16, and the branch section 38 of the supply path 16, the branch path 20, and the branch path pressure reducing valve 22 are not provided. And only the second pressure sensor 26 may be provided inside the valve assembly 34.

図4の高圧容器システム10の制御方法は、基本的には、図2の高圧容器システム10の制御方法と同様に実施することができる。つまり、図4の実施形態に係る高圧容器システム10及びその制御方法においても、図1〜図3の実施形態に係る高圧容器システム10及びその制御方法と同様に、高圧容器14内の低圧域のガス圧を簡単な構成で高精度に測定することが可能になる。 The control method of the high-pressure container system 10 of FIG. 4 can be basically carried out in the same manner as the control method of the high-pressure container system 10 of FIG. That is, also in the high-pressure container system 10 and the control method thereof according to the embodiment of FIG. 4, the low-pressure region in the high-pressure container 14 is similar to the high-pressure container system 10 and the control method thereof according to the embodiments of FIGS. It is possible to measure the gas pressure with high accuracy with a simple configuration.

上記の通り、分岐路20では、その流路断面積を小さくできるため、分岐路20を形成する配管や、分岐路減圧弁22等を小型化することが可能になる。このため、分岐路20や、分岐路減圧弁22等をバルブアッセンブリ34に容易に組み込むことができる。その結果、高圧容器システム10の全体を効果的に小型化することが可能になる。 As described above, in the branch path 20, since the cross-sectional area of the flow path can be reduced, the piping forming the branch path 20, the branch path pressure reducing valve 22 and the like can be miniaturized. Therefore, the branch path 20, the branch path pressure reducing valve 22, and the like can be easily incorporated into the valve assembly 34. As a result, the entire high-pressure container system 10 can be effectively miniaturized.

図2〜図4の高圧容器システム10では、供給路16の接続部50よりも下流側に、供給路減圧弁40が設けられることとした。この場合、供給路16から燃料電池12へと供給されるガスが、燃料電池12への供給に適したガス圧となるように容易に調整可能となる。なお、図2〜図4の高圧容器システム10では、供給路16における燃料電池12の前段において、水素ガスの圧力を特に調整する必要がない場合には、供給路減圧弁40を備えていなくてもよい。 In the high-pressure container system 10 of FIGS. 2 to 4, the supply passage pressure reducing valve 40 is provided on the downstream side of the connection portion 50 of the supply passage 16. In this case, the gas supplied from the supply path 16 to the fuel cell 12 can be easily adjusted to have a gas pressure suitable for supply to the fuel cell 12. The high-pressure container system 10 of FIGS. 2 to 4 does not have a supply passage pressure reducing valve 40 in the front stage of the fuel cell 12 in the supply passage 16 when it is not necessary to particularly adjust the pressure of hydrogen gas. May be good.

10…高圧容器システム 12…燃料電池
14…高圧容器 16…供給路
18…制御部 20…分岐路
22…分岐路減圧弁 24…第1圧力センサ
26…第2圧力センサ 28…ライナ
30…補強層 32…口金
34…バルブアッセンブリ 36…主止弁
38…分岐部 40…供給路減圧弁
44…第1圧力領域 46…第2圧力領域
48…分岐路規制弁 50…接続部
52…一次側接続口 54…二次側接続口
56…多岐管 58…アッセンブリ
10 ... High pressure container system 12 ... Fuel cell 14 ... High pressure container 16 ... Supply path 18 ... Control unit 20 ... Branch path 22 ... Branch path pressure reducing valve 24 ... First pressure sensor 26 ... Second pressure sensor 28 ... Liner 30 ... Reinforcing layer 32 ... Base 34 ... Valve assembly 36 ... Main stop valve 38 ... Branch 40 ... Supply path pressure reducing valve 44 ... First pressure region 46 ... Second pressure region 48 ... Branch path regulation valve 50 ... Connection 52 ... Primary side connection port 54 ... Secondary side connection port 56 ... Multi-purpose pipe 58 ... Assembly

Claims (11)

高圧容器に貯蔵されたガスをガス消費部に導く供給路を備える高圧容器システムであって、
前記供給路の分岐部から分岐し且つ分岐路減圧弁が設けられた分岐路と、
前記分岐路減圧弁の一次側及び前記供給路に、前記高圧容器内と同圧となるように設けられた第1圧力領域と、
前記第1圧力領域のガス圧を測定する第1圧力センサと、
前記分岐路減圧弁の二次側に設けられた第2圧力領域と、
前記第2圧力領域のガス圧を測定し且つ前記第1圧力センサよりも測定レンジが狭い第2圧力センサと、
を備え、
前記分岐路減圧弁は、前記第1圧力領域のガス圧が調圧値より高いとき、前記第2圧力領域のガス圧を前記調圧値とし、前記第1圧力領域のガス圧が前記調圧値以下であるとき、前記第2圧力領域と前記第1圧力領域とを同圧にし、
前記第2圧力センサは、前記第2圧力領域と前記第1圧力領域とが同圧になるとき、前記高圧容器内のガス圧を測定可能となる、高圧容器システム。
A high-pressure container system equipped with a supply path that guides the gas stored in the high-pressure container to the gas consumption unit.
A branch path that branches from the branch portion of the supply path and is provided with a branch path pressure reducing valve, and a branch path.
A first pressure region provided on the primary side of the branch path pressure reducing valve and the supply path so as to have the same pressure as in the high pressure container.
A first pressure sensor that measures the gas pressure in the first pressure region,
A second pressure region provided on the secondary side of the branch path pressure reducing valve and
A second pressure sensor that measures the gas pressure in the second pressure region and has a narrower measurement range than the first pressure sensor.
Equipped with
When the gas pressure in the first pressure region is higher than the pressure adjusting value, the branch path pressure reducing valve sets the gas pressure in the second pressure region as the pressure adjusting value, and the gas pressure in the first pressure region is the pressure adjusting value. When it is equal to or less than the value, the pressure in the second pressure region and the pressure in the first pressure region are set to be the same.
The second pressure sensor is a high pressure container system capable of measuring the gas pressure in the high pressure container when the second pressure region and the first pressure region have the same pressure.
請求項1記載の高圧容器システムにおいて、
前記分岐路の流路断面積は、前記供給路の流路断面積よりも小さい、高圧容器システム。
In the high-pressure container system according to claim 1,
A high-pressure container system in which the channel cross-sectional area of the branch path is smaller than the channel cross-sectional area of the supply path.
請求項1又は2記載の高圧容器システムにおいて、
前記分岐路減圧弁の前記二次側では、前記分岐路が分岐路規制弁を介して前記供給路の接続部に接続され、
前記分岐路の前記分岐路規制弁よりも前記接続部側は前記第1圧力領域となり、前記分岐路規制弁よりも前記分岐路減圧弁の前記二次側は前記第2圧力領域となり、
前記分岐路規制弁は、前記供給路から前記接続部を介して前記分岐路に向かう前記ガスの流通を規制し、且つ前記第1圧力領域のガス圧が前記第2圧力領域のガス圧より低いときに、前記分岐路から前記接続部を介して前記供給路に向かう前記ガスの流通を許容する、高圧容器システム。
In the high pressure container system according to claim 1 or 2.
On the secondary side of the branch path pressure reducing valve, the branch path is connected to the connection portion of the supply path via the branch path regulation valve.
The connection portion side of the branch path regulation valve is the first pressure region, and the secondary side of the branch path pressure reducing valve is the second pressure region of the branch path regulation valve.
The branch path control valve regulates the flow of the gas from the supply path to the branch path through the connection portion, and the gas pressure in the first pressure region is lower than the gas pressure in the second pressure region. A high pressure vessel system that sometimes allows the flow of the gas from the branch path to the supply path through the connection.
請求項3記載の高圧容器システムにおいて、
前記供給路を形成する配管は、前記分岐部を形成する一次側接続口と、前記接続部を形成する二次側接続口とが設けられた多岐管を有し、
前記多岐管と、前記分岐路減圧弁と、前記第2圧力センサとは一体化されたアッセンブリである、高圧容器システム。
In the high-pressure container system according to claim 3,
The pipe forming the supply path has a wide variety of pipes provided with a primary side connection port forming the branch portion and a secondary side connection port forming the connection portion.
A high-pressure container system in which the multi-purpose pipe, the branch path pressure reducing valve, and the second pressure sensor are integrated as an assembly.
請求項4記載の高圧容器システムにおいて、
前記アッセンブリは、前記供給路の前記第1圧力センサよりも下流側に設けられる、高圧容器システム。
In the high pressure container system according to claim 4,
The assembly is a high-pressure container system provided on the downstream side of the first pressure sensor in the supply path.
請求項3〜5の何れか1項に記載の高圧容器システムにおいて、
前記供給路の前記接続部よりも下流側には、供給路減圧弁が設けられる、高圧容器システム。
In the high-pressure container system according to any one of claims 3 to 5.
A high-pressure container system in which a supply passage pressure reducing valve is provided on the downstream side of the connection portion of the supply passage.
請求項1〜3の何れか1項に記載の高圧容器システムにおいて、
前記高圧容器は、樹脂製のライナと、前記ライナの外面を覆う繊維強化樹脂製の補強層と、前記ライナ及び前記補強層の開口に設けられる口金と、を有し、
前記口金に取り付けられるバルブアッセンブリに、前記供給路の上流側の一部と、前記分岐路と、前記分岐路減圧弁と、前記第2圧力センサと、前記供給路を開閉する主止弁と、が設けられている、高圧容器システム。
In the high-pressure container system according to any one of claims 1 to 3.
The high-pressure container has a resin liner, a fiber-reinforced resin reinforcing layer that covers the outer surface of the liner, and a base provided at the opening of the liner and the reinforcing layer.
A part of the upstream side of the supply path, the branch path, the branch path pressure reducing valve, the second pressure sensor, and the main check valve for opening and closing the supply path are attached to the valve assembly attached to the base. Is provided with a high pressure vessel system.
高圧容器に貯蔵されたガスをガス消費部に導く供給路を備える高圧容器システムの制御方法であって、
前記高圧容器システムは、
前記供給路の分岐部から分岐し且つ分岐路減圧弁が設けられた分岐路と、
前記分岐路減圧弁の一次側及び前記供給路に、前記高圧容器内と同圧となるように設けられた第1圧力領域と、
前記第1圧力領域のガス圧を測定する第1圧力センサと、
前記分岐路減圧弁の二次側に設けられた第2圧力領域と、
前記第2圧力領域のガス圧を測定し且つ前記第1圧力センサよりも測定レンジが狭い第2圧力センサと、
を備え、
前記第1圧力領域のガス圧が調圧値より高いとき、前記分岐路減圧弁により前記第2圧力領域のガス圧を前記調圧値とし、
前記第1圧力領域のガス圧が前記調圧値以下であるとき、前記分岐路減圧弁により前記第2圧力領域と前記第1圧力領域とを同圧にし、前記第2圧力センサにより前記高圧容器内のガス圧を測定可能とする、高圧容器システムの制御方法。
A control method for a high-pressure container system equipped with a supply path that guides the gas stored in the high-pressure container to the gas consumption unit.
The high pressure vessel system
A branch path that branches from the branch portion of the supply path and is provided with a branch path pressure reducing valve, and a branch path.
A first pressure region provided on the primary side of the branch path pressure reducing valve and the supply path so as to have the same pressure as in the high pressure container.
A first pressure sensor that measures the gas pressure in the first pressure region,
A second pressure region provided on the secondary side of the branch path pressure reducing valve and
A second pressure sensor that measures the gas pressure in the second pressure region and has a narrower measurement range than the first pressure sensor.
Equipped with
When the gas pressure in the first pressure region is higher than the pressure regulation value, the gas pressure in the second pressure region is set as the pressure regulation value by the branch path pressure reducing valve.
When the gas pressure in the first pressure region is equal to or lower than the pressure adjustment value, the second pressure region and the first pressure region are made the same pressure by the branch path pressure reducing valve, and the high pressure container is made by the second pressure sensor. A control method for a high-pressure container system that enables measurement of the gas pressure inside.
請求項8記載の高圧容器システムの制御方法において、
前記分岐路減圧弁の前記二次側では、前記分岐路が分岐路規制弁を介して前記供給路の接続部に接続され、
前記分岐路の前記分岐路規制弁よりも前記接続部側は前記第1圧力領域となり、前記分岐路規制弁よりも前記分岐路減圧弁の前記二次側は前記第2圧力領域となり、
前記供給路から前記接続部を介して前記分岐路に向かう前記ガスの流通を前記分岐路規制弁により規制し、
前記第1圧力領域のガス圧が前記第2圧力領域のガス圧よりも低いとき、前記分岐路から前記接続部を介して前記供給路に向かう前記ガスの流通を前記分岐路規制弁により許容する、高圧容器システムの制御方法。
In the control method of the high-pressure container system according to claim 8,
On the secondary side of the branch path pressure reducing valve, the branch path is connected to the connection portion of the supply path via the branch path regulation valve.
The connection portion side of the branch path regulation valve is the first pressure region, and the secondary side of the branch path pressure reducing valve is the second pressure region of the branch path regulation valve.
The flow of the gas from the supply path to the branch path through the connection portion is regulated by the branch path control valve.
When the gas pressure in the first pressure region is lower than the gas pressure in the second pressure region, the branch path control valve allows the flow of the gas from the branch path to the supply path through the connection portion. , How to control the high pressure vessel system.
請求項8又は9記載の高圧容器システムの制御方法において、
前記高圧容器システムの制御部は、
前記第1圧力センサの測定値が前記調圧値より高いとき、前記第1圧力センサの測定値を用いて前記高圧容器内のガス量を求め、
前記第1圧力センサの測定値が前記調圧値以下であるとき、前記第1圧力センサの測定値を用いて前記高圧容器内のガス量を求めるとともに、前記第2圧力センサの測定値を用いて前記高圧容器内のガス圧が下限設定値を下回らないことを監視する、高圧容器システムの制御方法。
In the control method of the high pressure container system according to claim 8 or 9.
The control unit of the high-pressure container system is
When the measured value of the first pressure sensor is higher than the pressure adjusting value, the amount of gas in the high pressure container is obtained using the measured value of the first pressure sensor.
When the measured value of the first pressure sensor is equal to or less than the pressure adjusting value, the amount of gas in the high pressure container is obtained by using the measured value of the first pressure sensor, and the measured value of the second pressure sensor is used. A method for controlling a high-pressure container system, which monitors that the gas pressure in the high-pressure container does not fall below the lower limit set value.
請求項10記載の高圧容器システムの制御方法において、
前記制御部は、前記第2圧力センサの測定誤差の範囲分、前記下限設定値よりも高く設定された判定閾値と、前記第2圧力センサの測定値とを比較し、
前記第2圧力センサの測定値が前記判定閾値以下となった場合に、前記高圧容器と前記ガス消費部との間の前記ガスの流通を遮断する、高圧容器システムの制御方法。
In the control method of the high-pressure container system according to claim 10.
The control unit compares the determination threshold value set higher than the lower limit set value by the range of the measurement error of the second pressure sensor with the measured value of the second pressure sensor.
A control method for a high-pressure container system that shuts off the flow of the gas between the high-pressure container and the gas consuming unit when the measured value of the second pressure sensor becomes equal to or less than the determination threshold value.
JP2020090251A 2020-05-25 2020-05-25 High-pressure vessel system and its control method Pending JP2021185316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090251A JP2021185316A (en) 2020-05-25 2020-05-25 High-pressure vessel system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090251A JP2021185316A (en) 2020-05-25 2020-05-25 High-pressure vessel system and its control method

Publications (1)

Publication Number Publication Date
JP2021185316A true JP2021185316A (en) 2021-12-09

Family

ID=78815739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090251A Pending JP2021185316A (en) 2020-05-25 2020-05-25 High-pressure vessel system and its control method

Country Status (1)

Country Link
JP (1) JP2021185316A (en)

Similar Documents

Publication Publication Date Title
CA2768892C (en) Vehicle
JP4863031B2 (en) FUEL CELL SYSTEM, FUEL GAS SUPPLY METHOD, AND MOBILE BODY
CN102792506B (en) High pressure gas supply system and fuel cell system
JP6706085B2 (en) Fuel supply system, fuel supply method and aircraft
JP7140734B2 (en) Methods for estimating the internal pressure of gas supply systems and gas tanks
JP2018080753A (en) Fuel gas storage and supply system
JP2014088935A (en) Fluid supply system
JP6077565B2 (en) Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station
EP2001787A2 (en) Liquid dispense system
KR20180066305A (en) Valve for hydrogen storage tank
CN110911710B (en) Gas supply system, fuel cell system provided with gas supply system, and method for controlling gas supply system
JP6826616B2 (en) High-pressure container system and fuel cell vehicle
WO2011016091A1 (en) Gas filling device and gas filling method
JP2021185316A (en) High-pressure vessel system and its control method
US20100006596A1 (en) Fuel supply system
CN110958989A (en) Device for producing and distributing nitrogen, in particular for a liquefied gas vessel
JP5239376B2 (en) Fuel cell system
JP4139311B2 (en) Shutoff valve open / close state determination system and shutoff valve open / close state determination method
KR101226437B1 (en) Fuel supplying system of space vehicles and method of using the same.
CN101991922B (en) Circuit for supplying a respiratory gas to aircraft passenger from pressurized source comprising pressure regulating unit
JP6800258B2 (en) High-pressure tank residual pressure judgment system, high-pressure tank residual pressure judgment method, fuel cell vehicle
JP5299855B2 (en) vehicle
JP2007005037A (en) Fuel cell system
JP6729761B2 (en) Fuel gas storage and supply system
JP2021187187A (en) Storage vessel system and control method of storage vessel system