JP6729761B2 - Fuel gas storage and supply system - Google Patents

Fuel gas storage and supply system Download PDF

Info

Publication number
JP6729761B2
JP6729761B2 JP2019096446A JP2019096446A JP6729761B2 JP 6729761 B2 JP6729761 B2 JP 6729761B2 JP 2019096446 A JP2019096446 A JP 2019096446A JP 2019096446 A JP2019096446 A JP 2019096446A JP 6729761 B2 JP6729761 B2 JP 6729761B2
Authority
JP
Japan
Prior art keywords
fuel gas
valve
pressure
pipe
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019096446A
Other languages
Japanese (ja)
Other versions
JP2019145526A (en
Inventor
健嗣 小宮
健嗣 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019096446A priority Critical patent/JP6729761B2/en
Publication of JP2019145526A publication Critical patent/JP2019145526A/en
Application granted granted Critical
Publication of JP6729761B2 publication Critical patent/JP6729761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池に燃料ガスを供給する燃料ガス貯蔵供給システムに関するものである。 The present invention relates to a fuel gas storage/supply system that supplies fuel gas to a fuel cell.

特許文献1には、燃料ガス用の第1タンク部と第2タンク部を備える燃料電池車が開示されている。第1タンク部と第2タンク部は、第1配管によって直列に接続されている。第1タンク部には、外部から燃料ガスを充填する際に用いる充填口が充填配管を介して接続されている。第2タンク部には、燃料ガスを燃料電池に供給する前に減圧するための高圧減圧弁が第2配管を介して接続されている。燃料ガスの充填時には、高圧減圧弁を閉鎖し、燃料ガスが充填口から第1タンク部と第2タンク部に充填される。燃料電池車の走行時には、高圧減圧弁が動作状態となり、第1タンク部から第1配管を経由して第2配管に流れた燃料ガス、及び、第2タンク部から第2配管に流れた燃料ガスが、高圧減圧弁によって減圧され、燃料電池に供給される。 Patent Document 1 discloses a fuel cell vehicle including a first tank portion for fuel gas and a second tank portion. The first tank portion and the second tank portion are connected in series by the first pipe. A filling port used for filling the fuel gas from the outside is connected to the first tank portion via a filling pipe. A high-pressure pressure reducing valve for reducing the pressure of the fuel gas before supplying it to the fuel cell is connected to the second tank portion via a second pipe. At the time of filling the fuel gas, the high-pressure pressure reducing valve is closed, and the fuel gas is filled from the filling port into the first tank portion and the second tank portion. During traveling of the fuel cell vehicle, the high-pressure pressure reducing valve is in an operating state, and the fuel gas flowing from the first tank part to the second pipe via the first pipe and the fuel gas flowing from the second tank part to the second pipe The gas is depressurized by the high pressure reducing valve and supplied to the fuel cell.

特開2015−148234号公報JP, 2005-148234, A

一般に、充填口から燃料ガスが外部に漏れることを防止するために、充填口には逆止弁が設けられている。燃料ガスの充填時において、高圧減圧弁が故障によって開放した場合には、燃料ガスが第1タンク部と第2タンク部に十分に充填されず、燃料電池に流れてしまう恐れがある。一方、燃料電池車の走行時において、充填口の逆止弁が故障によって開放した場合には、燃料ガスが第1タンク部と第2タンク部から充填口に逆流して、外部に漏洩してしまう恐れがある。 Generally, a check valve is provided at the filling port in order to prevent the fuel gas from leaking to the outside from the filling port. If the high-pressure pressure reducing valve is opened due to a failure during filling of the fuel gas, the fuel gas may not be sufficiently filled in the first tank portion and the second tank portion and may flow into the fuel cell. On the other hand, when the check valve at the filling port is opened due to a failure while the fuel cell vehicle is running, the fuel gas flows backward from the first tank portion and the second tank portion to the filling port and leaks to the outside. There is a risk that

本発明は、上述の課題の少なくとも一部を解決するものであり、以下の形態として実現することが可能である。本発明の一形態は、燃料電池に燃料ガスを供給する燃料ガス貯蔵供給システムであって、第1逆止弁を有する充填口と、前記燃料ガスの圧力を調整する減圧弁と、前記充填口と前記減圧弁を連結する燃料ガス配管と、前記燃料ガス配管に接続された単一のガスタンクと、前記ガスタンクと、前記充填口との間の前記燃料ガス配管に設けられた上流側シャットバルブと、前記充填口と前記上流側シャットバルブとの間の前記燃料ガス配管に設けられた第2逆止弁と、前記上流側シャットバルブと前記減圧弁との間の前記燃料ガス配管に設置された圧力センサと、前記圧力センサの圧力測定値を用いて前記上流側シャットバルブの開閉を制御する制御装置と、を備え、前記制御装置は、前記ガスタンクに前記燃料ガスが前記充填口を通じて充填されるときに、前記圧力センサから前記圧力測定値を経時的に繰り返し取得し、前記圧力測定値の上昇率が予め定められた上昇率閾値よりも小さい場合に、前記上流側シャットバルブを閉鎖させる、
燃料ガス貯蔵供給システムとして提供される。
The present invention solves at least a part of the problems described above, and can be implemented as the following modes. One aspect of the present invention is a fuel gas storage and supply system for supplying a fuel gas to a fuel cell, the filling port having a first check valve, a pressure reducing valve for adjusting the pressure of the fuel gas, and the filling port. And a fuel gas pipe connecting the pressure reducing valve, a single gas tank connected to the fuel gas pipe, the gas tank, and an upstream shut valve provided in the fuel gas pipe between the filling port and A second check valve provided in the fuel gas pipe between the filling port and the upstream shut valve, and installed in the fuel gas pipe between the upstream shut valve and the pressure reducing valve. A pressure sensor and a control device that controls opening and closing of the upstream side shut valve using a pressure measurement value of the pressure sensor, wherein the control device fills the gas tank with the fuel gas through the filling port. Sometimes, the pressure measurement value is repeatedly acquired over time from the pressure sensor, and when the rate of increase of the pressure measurement value is smaller than a predetermined rate of increase threshold value, the upstream shut valve is closed.
It is provided as a fuel gas storage and supply system.

(1)本発明の一形態によれば、燃料ガス貯蔵供給システムが提供される。この燃料電池に燃料ガスを供給する燃料ガス貯蔵供給システムは、第1逆止弁を有する充填口と、前記燃料ガスの圧力を調整する減圧弁と、前記充填口と前記減圧弁を連結する燃料ガス配管と、前記燃料ガス配管に接続された1つ以上のガスタンクと、前記1つ以上のガスタンクのうちで前記充填口に最も近い上流側ガスタンクと、前記充填口との間の前記燃料ガス配管に設けられた上流側シャットバルブと、前記充填口と前記上流側シャットバルブとの間の前記燃料ガス配管に設けられた第2逆止弁と、前記上流側シャットバルブと前記減圧弁との間の前記燃料ガス配管に設置された圧力センサと、前記圧力センサの圧力測定値を用いて前記上流側シャットバルブの開閉を制御する制御装置と、を備え、前記制御装置は、前記1つ以上のガスタンクに前記燃料ガスが前記充填口を通じて充填されるときに、前記圧力センサから前記圧力測定値を経時的に繰り返し取得し、前記圧力測定値の上昇率が予め定められた上昇率閾値よりも小さい場合に、前記上流側シャットバルブを閉鎖させる。 (1) According to one aspect of the present invention, a fuel gas storage/supply system is provided. A fuel gas storage/supply system for supplying fuel gas to a fuel cell includes a filling port having a first check valve, a pressure reducing valve for adjusting the pressure of the fuel gas, and a fuel connecting the filling port and the pressure reducing valve. A gas pipe, one or more gas tanks connected to the fuel gas pipe, an upstream gas tank closest to the filling port of the one or more gas tanks, and the fuel gas pipe between the filling port Between the upstream shut valve and the pressure reducing valve, and a second check valve provided in the fuel gas pipe between the filling port and the upstream shut valve. A pressure sensor installed in the fuel gas pipe, and a control device that controls the opening and closing of the upstream shut valve using the pressure measurement value of the pressure sensor, wherein the control device is one or more of the above. When the gas tank is filled with the fuel gas through the filling port, the pressure measurement value is repeatedly acquired from the pressure sensor over time, and the increase rate of the pressure measurement value is smaller than a predetermined increase rate threshold value. In some cases, the upstream shut valve is closed.

この形態の燃料ガス貯蔵供給システムによれば、燃料ガスをガスタンクに充填する際、圧力センサの圧力測定値の上昇率が予め定められた上昇率閾値よりも小さい場合には、減圧弁が故障して開放している可能性が高い。このとき、制御装置が上流側シャットバルブを閉鎖させるので、燃料ガスがガスタンクに充填されずに燃料電池に流れてしまうことを抑制できる。また、充填口と上流側シャットバルブとの間に第2逆止弁が設けられているので、燃料ガスの充填中でないときに、充填口の第1逆止弁が故障して開放した場合に、第2逆止弁によって燃料ガスの充填口への逆流が抑制され、燃料ガスが外部に漏洩することを抑制できる。 According to the fuel gas storage/supply system of this aspect, when the fuel tank is filled with the fuel gas and the increase rate of the pressure measurement value of the pressure sensor is smaller than the predetermined increase rate threshold value, the pressure reducing valve fails. There is a high possibility that it is open. At this time, since the control device closes the upstream shut valve, it is possible to prevent the fuel gas from flowing into the fuel cell without being filled in the gas tank. Further, since the second check valve is provided between the filling port and the upstream shut valve, when the first check valve of the filling port fails and opens while the fuel gas is not being filled, The second check valve suppresses the backflow of the fuel gas to the filling port, and can prevent the fuel gas from leaking to the outside.

(2)上記形態の燃料ガス貯蔵供給システムにおいて、前記制御装置は、更に、前記燃料電池で前記燃料ガスが消費されるときに、前記圧力センサから前記圧力測定値を経時的に繰り返し取得し、前記圧力測定値の低下率が予め定められた低下率閾値よりも大きい場合、又は、前記圧力測定値が予め定められた圧力閾値よりも小さい場合に、前記上流側シャットバルブを閉鎖させてもよい。 (2) In the fuel gas storage and supply system according to the above aspect, the controller further repeatedly acquires the pressure measurement value from the pressure sensor over time when the fuel gas is consumed in the fuel cell, The upstream shut-off valve may be closed if the rate of decrease of the pressure measurement value is greater than a predetermined rate of decrease threshold value, or if the pressure measurement value is less than a predetermined pressure threshold value. ..

この形態の燃料ガス貯蔵供給システムによれば、燃料ガスが燃料電池で消費される際、圧力センサの圧力測定値の低下率が予め定められた低下率閾値よりも大きい場合、又は、圧力測定値が予め定められた圧力閾値よりも小さい場合には、第1逆止弁が故障して開放している可能性が高い。このとき、制御装置が上流側シャットバルブを閉鎖させるので、燃料ガスが外部に漏洩することを更に抑制できる。 According to the fuel gas storage and supply system of this aspect, when the fuel gas is consumed in the fuel cell, when the decrease rate of the pressure measurement value of the pressure sensor is larger than a predetermined decrease rate threshold value, or the pressure measurement value. Is smaller than a predetermined pressure threshold value, it is highly possible that the first check valve has failed and is open. At this time, since the control device closes the upstream shut valve, it is possible to further suppress the fuel gas from leaking to the outside.

(3)上記形態の燃料ガス貯蔵供給システムにおいて、前記1つ以上のガスタンクは、前記上流側ガスタンクに相当する第1ガスタンクと、第2ガスタンクとを含み、前記第1ガスタンク及び前記第2ガスタンクのそれぞれは、口金と、前記口金に接続されたバルブモジュールと、を有し、前記バルブモジュールは、前記燃料ガス配管の一部を構成するサブ配管と、前記サブ配管から分岐して前記口金と接続された分岐配管と、前記分岐配管に設けられたシャットバルブと、を有し、前記上流側シャットバルブは、前記第1ガスタンクの前記バルブモジュールと前記充填口との間の前記燃料ガス配管に設けられていてもよい。 (3) In the fuel gas storage and supply system according to the above aspect, the one or more gas tanks include a first gas tank corresponding to the upstream gas tank and a second gas tank, and the first gas tank and the second gas tank are the same. Each has a mouthpiece and a valve module connected to the mouthpiece, and the valve module is connected to the mouthpiece by branching from the sub-pipe forming a part of the fuel gas pipe and the sub-pipe. And a shut valve provided in the branch pipe, wherein the upstream shut valve is provided in the fuel gas pipe between the valve module and the filling port of the first gas tank. It may be.

この形態の燃料ガス貯蔵供給システムにおいても、燃料ガスをガスタンクに充填する際に、燃料ガスがガスタンクに充填されずに燃料電池に流れてしまうことを抑制できる。また、燃料ガスが燃料電池で消費される際に、燃料ガスが外部に漏洩することを抑制できる。 Also in the fuel gas storage/supply system of this aspect, when the fuel gas is filled in the gas tank, it is possible to prevent the fuel gas from flowing into the fuel cell without being filled in the gas tank. Further, when the fuel gas is consumed in the fuel cell, the fuel gas can be prevented from leaking to the outside.

(4)上記形態の燃料ガス貯蔵供給システムにおいて、前記1つ以上のガスタンクのそれぞれには、温度センサが設置されており、前記制御装置は、前記1つ以上のガスタンクに前記燃料ガスが前記充填口を通じて充填されるときに、更に、前記1つ以上のガスタンクのうちの少なくとも1つのガスタンクに設置された前記温度センサの温度測定値が、予め定められた温度閾値よりも高い場合に、前記上流側シャットバルブを閉鎖させるものとしてもよい。この形態の燃料ガス貯蔵供給システムによれば、燃料ガス充填中に何らかの異常によりガスタンクが高温になった場合に上流側シャットバルブを閉鎖させるので、燃料ガスの充填を停止できる。 (4) In the fuel gas storage/supply system of the above aspect, a temperature sensor is installed in each of the one or more gas tanks, and the control device fills the one or more gas tanks with the fuel gas. When filled through the mouth, further, if the temperature measurement value of the temperature sensor installed in at least one gas tank of the one or more gas tanks is higher than a predetermined temperature threshold value, the upstream The side shut valve may be closed. According to the fuel gas storage/supply system of this aspect, the upstream shut valve is closed when the temperature of the gas tank becomes high due to some abnormality during the filling of the fuel gas, so that the filling of the fuel gas can be stopped.

本発明は、上記以外の種々の形態で実現することも可能である。例えば、燃料電池システム等の形態で実現することができる。 The present invention can be realized in various forms other than the above. For example, it can be realized in the form of a fuel cell system or the like.

本発明の第1実施形態における燃料ガス貯蔵供給システムの概略説明図。The schematic explanatory drawing of the fuel-gas storage supply system in 1st Embodiment of this invention. 燃料ガス充填中の燃料ガス貯蔵供給システムの動作を説明する図。The figure explaining operation|movement of the fuel gas storage supply system during fuel gas filling. 燃料ガス充填中のフローチャート。6 is a flow chart during fuel gas filling. 車両走行中の燃料ガス貯蔵供給システムの動作を説明する図。The figure explaining operation|movement of the fuel gas storage supply system during vehicle traveling. 車両走行中のフローチャート。The flowchart while a vehicle is running. 第2実施形態における燃料ガス貯蔵供給システムの概略説明図。The schematic explanatory drawing of the fuel gas storage supply system in a 2nd embodiment. 第3実施形態における燃料ガス貯蔵供給システムの概略説明図。The schematic explanatory drawing of the fuel gas storage supply system in a 3rd embodiment.

・第1実施形態:
図1は、本発明の第1実施形態における燃料ガス貯蔵供給システム900の概略説明図である。燃料ガス貯蔵供給システム900は、例えば燃料電池車両に搭載され、燃料電池400に水素(燃料ガス)を供給する。燃料ガス貯蔵供給システム900は、充填口100と、燃料ガス配管200と、第1ガスタンク510と、第2ガスタンク520と、制御装置600とを備える。第1ガスタンク510は、2つのガスタンク510,520のうちで、充填口100に最も近い上流側ガスタンクに相当する。
First embodiment:
FIG. 1 is a schematic explanatory diagram of a fuel gas storage/supply system 900 according to the first embodiment of the present invention. The fuel gas storage/supply system 900 is mounted in, for example, a fuel cell vehicle and supplies hydrogen (fuel gas) to the fuel cell 400. The fuel gas storage/supply system 900 includes a filling port 100, a fuel gas pipe 200, a first gas tank 510, a second gas tank 520, and a control device 600. The first gas tank 510 corresponds to the upstream gas tank closest to the filling port 100 of the two gas tanks 510 and 520.

充填口100は、燃料ガス配管200の一端に取り付けられており、レセプタクル110と第1逆止弁120とを有する。レセプタクル110は、外部からの燃料ガスの入口である。第1逆止弁120は、燃料ガス貯蔵供給システム900内の燃料ガスがレセプタクル110に逆流して外部に漏洩するのを防止する弁である。 The filling port 100 is attached to one end of the fuel gas pipe 200, and has a receptacle 110 and a first check valve 120. The receptacle 110 is an inlet for fuel gas from the outside. The first check valve 120 is a valve that prevents the fuel gas in the fuel gas storage/supply system 900 from flowing back into the receptacle 110 and leaking to the outside.

燃料ガス配管200は、サブ配管201〜205によって構成されている。サブ配管201には、充填口100から、第2逆止弁210と、上流側シャットバルブ220とがこの順に設けられている。第2逆止弁210は、燃料ガスの充填口100への逆流を防止する弁である。上流側シャットバルブ220は、電磁開閉弁であり、制御装置600が供給する信号により開閉を切り替える。 The fuel gas pipe 200 is composed of sub-pipes 201 to 205. The sub pipe 201 is provided with a second check valve 210 and an upstream shut valve 220 in this order from the filling port 100. The second check valve 210 is a valve that prevents the backflow of fuel gas into the filling port 100. The upstream side shut valve 220 is an electromagnetic opening/closing valve, and switches opening/closing according to a signal supplied from the control device 600.

サブ配管201とサブ配管203の間には、第1ガスタンク510に付属する第1バルブモジュール230が接続されている。第1バルブモジュール230は、U型配管231と分岐配管239とを有する。U型配管231は、燃料ガス配管200の一部を構成し、サブ配管202に相当する。分岐配管239は、一端がU型配管231に接続されており、他端が第1ガスタンク510の口金511に接続されている。分岐配管239には、シャットバルブ232と安全弁233とが設けられている。 A first valve module 230 attached to the first gas tank 510 is connected between the sub pipe 201 and the sub pipe 203. The first valve module 230 has a U-shaped pipe 231 and a branch pipe 239. The U-shaped pipe 231 constitutes a part of the fuel gas pipe 200 and corresponds to the sub-pipe 202. One end of the branch pipe 239 is connected to the U-shaped pipe 231, and the other end thereof is connected to the base 511 of the first gas tank 510. The branch pipe 239 is provided with a shut valve 232 and a safety valve 233.

サブ配管203とサブ配管205の間には、第2ガスタンク520に付属する第2バルブモジュール240が接続されている。第2バルブモジュール240は、第1バルブモジュール230と同様に、U型配管241と分岐配管249とを有する。U型配管241は、燃料ガス配管200の一部を構成し、サブ配管204に相当する。分岐配管249は、一端がU型配管241に接続されており、他端が第2ガスタンク520の口金521に接続されている。分岐配管249には、シャットバルブ242と安全弁243とが設けられている。 A second valve module 240 attached to the second gas tank 520 is connected between the sub pipe 203 and the sub pipe 205. The second valve module 240 has a U-shaped pipe 241 and a branch pipe 249, similarly to the first valve module 230. The U-shaped pipe 241 constitutes a part of the fuel gas pipe 200 and corresponds to the sub-pipe 204. One end of the branch pipe 249 is connected to the U-shaped pipe 241, and the other end is connected to the base 521 of the second gas tank 520. The branch pipe 249 is provided with a shut valve 242 and a safety valve 243.

サブ配管205には、上流側から順に減圧弁250とインジェクタ260とが設けられている。減圧弁250は、ガスタンク510,520から供給された高圧の燃料ガスを低圧の燃料ガスに調整する。インジェクタ260は、燃料ガスを噴射させて燃料電池400に供給する。 The sub-pipe 205 is provided with a pressure reducing valve 250 and an injector 260 in order from the upstream side. The pressure reducing valve 250 adjusts the high-pressure fuel gas supplied from the gas tanks 510 and 520 to a low-pressure fuel gas. The injector 260 injects fuel gas and supplies it to the fuel cell 400.

2つのバルブモジュール230,240の間のサブ配管203には、圧力センサ330が設置されている。圧力センサ330は、サブ配管203を流れる燃料ガスの圧力を測定し、その圧力測定値を制御装置600に供給する。また、第1ガスタンク510と第2ガスタンク520にはそれぞれ、第1温度センサ310と第2温度センサ320が設置されている。温度センサ310,320は、ガスタンク510,520の温度を測定し、その温度測定値を制御装置600に供給する。 A pressure sensor 330 is installed in the sub pipe 203 between the two valve modules 230 and 240. The pressure sensor 330 measures the pressure of the fuel gas flowing through the sub pipe 203 and supplies the measured pressure value to the control device 600. A first temperature sensor 310 and a second temperature sensor 320 are installed in the first gas tank 510 and the second gas tank 520, respectively. The temperature sensors 310 and 320 measure the temperatures of the gas tanks 510 and 520 and supply the temperature measurement values to the control device 600.

制御装置600は、中央処理装置と、主記憶装置とを備えるマイクロコンピュータによって構成され、燃料ガス貯蔵供給システム900内の各種機器の動作を制御する。図1では、図示の便宜上、制御装置600と、上流側シャットバルブ220と温度センサ310,320及び圧力センサ330との間の制御信号やセンサ信号のための接続関係を破線で示している。制御装置600は、温度センサ310,320から供給される温度測定値、及び、圧力センサ330から供給される圧力測定値を用いて、上流側シャットバルブ220の開閉を制御する。 The control device 600 is configured by a microcomputer including a central processing unit and a main storage device, and controls the operation of various devices in the fuel gas storage/supply system 900. In FIG. 1, for convenience of illustration, broken lines indicate the connection relationship between the control device 600, the upstream shutoff valve 220, the temperature sensors 310 and 320, and the pressure sensor 330 for control signals and sensor signals. The control device 600 controls the opening/closing of the upstream shut valve 220 using the temperature measurement values supplied from the temperature sensors 310 and 320 and the pressure measurement value supplied from the pressure sensor 330.

ここで、燃料ガスをガスタンク510,520に充填する際、減圧弁250は閉鎖した状態であり、上流側シャットバルブ220及びバルブモジュール230,240それぞれのシャットバルブ232,242は開いた状態である。燃料ガスは充填口100のレセプタクル110からサブ配管201,202に流れ込み、分岐配管239を経由して第1ガスタンク510に充填される。また、サブ配管202に流れた燃料ガスの一部は、サブ配管203,204及び分岐配管249を経由して、第2ガスタンク520に充填される。 Here, when the gas tanks 510 and 520 are filled with the fuel gas, the pressure reducing valve 250 is in a closed state, and the upstream shut valve 220 and the shut valves 232 and 242 of the valve modules 230 and 240 are in an open state. The fuel gas flows from the receptacle 110 of the filling port 100 into the sub pipes 201 and 202, and is filled in the first gas tank 510 via the branch pipe 239. Further, a part of the fuel gas flowing into the sub pipe 202 is filled in the second gas tank 520 via the sub pipes 203 and 204 and the branch pipe 249.

一方、燃料ガス貯蔵供給システム900と燃料電池400を搭載した車両が走行する際、減圧弁250及び上流側シャットバルブ220、バルブモジュール230,240それぞれのシャットバルブ232,242は開いた状態である。第1ガスタンク510に貯蔵された燃料ガスは、分岐配管239と、U型配管231と、サブ配管203,204,205とを順に流れて燃料電池400に供給される。第2ガスタンク520に貯蔵された燃料ガスは、分岐配管249と、U型配管241と、サブ配管205とを順に流れて燃料電池400に供給される。なお、充填口100が第1逆止弁120を有するので、燃料ガスは充填口100から外に流れ出ない。また、充填口100と上流側シャットバルブ220との間に第2逆止弁210が設けられているので、第1逆止弁120が故障した場合にも、第2逆止弁210によって燃料ガスの逆流が防止され、燃料ガスが外部に漏洩することを抑制できる。 On the other hand, when the vehicle equipped with the fuel gas storage/supply system 900 and the fuel cell 400 travels, the pressure reducing valve 250, the upstream shutoff valve 220, and the shut valves 232 and 242 of the valve modules 230 and 240 are open. The fuel gas stored in the first gas tank 510 flows through the branch pipe 239, the U-shaped pipe 231, and the sub-pipes 203, 204, 205 in order, and is supplied to the fuel cell 400. The fuel gas stored in the second gas tank 520 sequentially flows through the branch pipe 249, the U-shaped pipe 241, and the sub pipe 205, and is supplied to the fuel cell 400. Since the filling port 100 has the first check valve 120, the fuel gas does not flow out from the filling port 100. Further, since the second check valve 210 is provided between the filling port 100 and the upstream shut valve 220, even if the first check valve 120 fails, the second check valve 210 causes the fuel gas to flow. Of the fuel gas can be prevented and the fuel gas can be prevented from leaking to the outside.

図2は、燃料ガスをガスタンク510,520に充填する際、減圧弁250が故障して開放した場合の燃料ガス貯蔵供給システム900の動作を説明する図である。制御装置600は、例えば赤外線によって水素ステーション700と信号を授受することが可能である。制御装置600と水素ステーション700との間の制御信号の接続関係を破線で示している。 FIG. 2 is a diagram illustrating an operation of the fuel gas storage/supply system 900 when the pressure reducing valve 250 is opened due to a failure when the fuel tanks 510 and 520 are filled with the fuel gas. The control device 600 can send and receive signals to and from the hydrogen station 700 by infrared rays, for example. The connection relationship of control signals between the control device 600 and the hydrogen station 700 is shown by a broken line.

水素ステーション700に貯蔵されている水素(燃料ガス)は、充填口100のレセプタクル110に接続されたノズル710を通じて燃料ガス貯蔵供給システム900に供給される。燃料ガス充填中、減圧弁250が正常に動作した場合、すなわち、減圧弁250が閉鎖している場合には、燃料ガスがガスタンク510,520に充填されるにつれ、圧力センサ330の圧力測定値が正常に上昇する。しかし、減圧弁250が故障して開放した場合には、燃料ガスがガスタンク510,520に充填されず、燃料電池400に流れてしまう。このため、圧力センサ330の圧力測定値の上昇率が正常の場合に比べて減少する。ここで、制御装置600は、圧力センサ330から圧力測定値を経時的に繰り返し取得し、その圧力測定値の上昇率が過小の場合(図2の事象E11)には、上流側シャットバルブ220を閉鎖させる(図2の事象E12)。従って、減圧弁250が故障して開放した場合にも、燃料ガスがガスタンク510,520に充填されずに燃料電池400に流れてしまうことを抑制できる。制御装置600は、更に、水素ステーション700に警報を出させるようにしてもよい(図2の事象E13)。この警報により、燃料ガス充填の操作者は水素の充填を停止することができる。 Hydrogen (fuel gas) stored in the hydrogen station 700 is supplied to the fuel gas storage/supply system 900 through a nozzle 710 connected to the receptacle 110 of the filling port 100. When the pressure reducing valve 250 operates normally during the filling of the fuel gas, that is, when the pressure reducing valve 250 is closed, as the fuel gas is filled in the gas tanks 510 and 520, the pressure measurement value of the pressure sensor 330 changes. Rises normally. However, when the pressure reducing valve 250 fails and opens, the fuel gas does not fill the gas tanks 510 and 520 and flows into the fuel cell 400. Therefore, the rate of increase of the pressure measurement value of the pressure sensor 330 decreases as compared with the normal case. Here, the control device 600 repeatedly acquires the pressure measurement value from the pressure sensor 330 over time, and when the rate of increase in the pressure measurement value is too small (event E11 in FIG. 2), the upstream shut valve 220 is turned on. Close (event E12 in FIG. 2). Therefore, even if the pressure reducing valve 250 fails and opens, it is possible to prevent the fuel gas from flowing into the fuel cell 400 without being filled in the gas tanks 510 and 520. The controller 600 may also cause the hydrogen station 700 to issue an alarm (event E13 in FIG. 2). With this alarm, the operator of the fuel gas filling can stop the hydrogen filling.

制御装置600は、第1温度センサ310の第1温度測定値と、第2温度センサ320の第2温度測定値の少なくとも一方が、予め定められた温度閾値(例えば80〜90℃範囲内の任意の温度値)よりも高い場合に、上流側シャットバルブ220を閉鎖させるようにしてもよい。こうすれば、燃料ガス充填中に何らかの異常でガスタンク510,520が高温になった場合に燃料ガスの充填を停止できる。ただし、温度センサ310,320は省略してもよい。 In the control device 600, at least one of the first temperature measurement value of the first temperature sensor 310 and the second temperature measurement value of the second temperature sensor 320 has a predetermined temperature threshold value (for example, any value within a range of 80 to 90° C.). The temperature may be higher than the temperature value of 1), the upstream shutoff valve 220 may be closed. This makes it possible to stop the filling of the fuel gas when the gas tanks 510 and 520 have a high temperature due to some abnormality during the filling of the fuel gas. However, the temperature sensors 310 and 320 may be omitted.

図3は、燃料ガスをガスタンク510,520に充填する際のフローチャートである。充填開始後、ステップS810において、圧力センサ330(図1)は、燃料ガス配管200のサブ配管203(図1)を流れる燃料ガスの圧力を測定し、その圧力測定値を制御装置600(図1)に供給する。ステップS820において、制御装置600は、圧力測定値の上昇率が予め定められた上昇率閾値よりも小さいか否かを判定する。ここで、上昇率閾値は、予め制御装置600に記憶され、燃料ガスの圧力上昇率が正常と判定される最小値である。この上昇率閾値は、一定値としてもよく、あるいは、燃料ガスの充填に関連する1つ以上のパラメータ(例えば充填開始前の燃料ガスの残量や環境温度)に応じて決まる値としてもよい。 FIG. 3 is a flowchart for filling the fuel tanks 510 and 520 with the fuel gas. After the start of filling, in step S810, the pressure sensor 330 (FIG. 1) measures the pressure of the fuel gas flowing through the sub pipe 203 (FIG. 1) of the fuel gas pipe 200, and the pressure measurement value is used as the control device 600 (FIG. 1). ) To. In step S820, control device 600 determines whether or not the increase rate of the pressure measurement value is smaller than a predetermined increase rate threshold value. Here, the increase rate threshold value is a minimum value that is stored in the control device 600 in advance and that the fuel gas pressure increase rate is determined to be normal. This rising rate threshold value may be a constant value, or may be a value determined according to one or more parameters related to the filling of the fuel gas (for example, the remaining amount of the fuel gas before the start of filling or the environmental temperature).

ステップS820において、圧力測定値の上昇率が上昇率閾値よりも小さいと判定された場合には、制御装置600はステップS850において上流側シャットバルブ220を閉鎖させる。これにより、ステップS860において、燃料ガスの充填が停止される。一方、圧力測定値の上昇率が上昇率閾値以上と判定された場合には、ステップS830において充填が継続される。ステップS840において、充填が終了した場合には、水素ステーション700のノズル710(図2)が充填口100のレセプタクル110から取り外されて充填終了となる。充填が終了していない場合には、再度、ステップS810において圧力センサ330が燃料ガスの圧力を測定する。なお、温度センサ310,320の温度測定値と温度閾値との比較に応じて上流側シャットバルブ220の閉鎖要否を判断する場合には、その判断はステップS820で実行される。 When it is determined in step S820 that the increase rate of the pressure measurement value is smaller than the increase rate threshold value, the control device 600 closes the upstream shut valve 220 in step S850. As a result, in step S860, the filling of the fuel gas is stopped. On the other hand, when it is determined that the increase rate of the pressure measurement value is equal to or higher than the increase rate threshold value, the filling is continued in step S830. When the filling is completed in step S840, the nozzle 710 (FIG. 2) of the hydrogen station 700 is removed from the receptacle 110 of the filling port 100, and the filling is completed. If the filling is not completed, the pressure sensor 330 measures the pressure of the fuel gas again in step S810. When it is determined whether or not the upstream shut valve 220 needs to be closed according to the comparison between the temperature measurement values of the temperature sensors 310 and 320 and the temperature threshold value, the determination is performed in step S820.

図4は、燃料ガス貯蔵供給システム900と燃料電池400を搭載した車両が走行する際、充填口100の第1逆止弁120が故障して開放した場合の燃料ガス貯蔵供給システム900の動作を説明する図である。車両走行中に充填口100の第1逆止弁120が故障して開放した場合、充填口100と上流側シャットバルブ220との間に第2逆止弁210が設けられているので、第2逆止弁210によって燃料ガスの充填口100への逆流が抑制され、燃料ガスの漏洩を抑制できる。また、燃料ガスの漏洩を更に抑制するために、以下の制御を行うことも可能である。 FIG. 4 shows an operation of the fuel gas storage/supply system 900 when the first check valve 120 of the filling port 100 is broken and opened when a vehicle equipped with the fuel gas storage/supply system 900 and the fuel cell 400 travels. It is a figure explaining. When the first check valve 120 of the filling port 100 fails and opens during traveling of the vehicle, the second check valve 210 is provided between the filling port 100 and the upstream shut valve 220, so that the second check valve 210 is provided. The check valve 210 suppresses the backflow of the fuel gas into the filling port 100, and the leakage of the fuel gas can be suppressed. Further, in order to further suppress the fuel gas leakage, the following control can be performed.

図4において、車両走行中に、ガスタンク510,520から供給される燃料ガスが燃料電池400に消費されるにつれ、圧力センサ330の圧力測定値が正常に低下する。しかし、充填口100の第1逆止弁120が故障して開放した場合には、ガスタンク510,520から供給される燃料ガスの一部が充填口100のレセプタクル110から外部に漏洩してしまう可能性がある。このとき、第2逆止弁210が完全に閉鎖すれば、燃料ガスの外部への漏洩は発生しないが、第2逆止弁210も完全に閉鎖しない可能性がある。この場合には、圧力センサ330の圧力測定値の低下率が正常の場合に比べて増大し、燃料ガスの漏洩につれ圧力測定値が正常の場合に比べて低下する。ここで、制御装置600は、圧力センサ330から圧力測定値を経時的に繰り返し取得し、その圧力測定値の低下率が過大か、又は圧力測定値が過小の場合(図4の事象E21)には、上流側シャットバルブ220を閉鎖させる(図4の事象E22)。これにより、燃料ガスが充填口100へ逆流して外部に漏洩するのが抑制される。制御装置600は、更に、車両の運転者に警報を発するようにしてもよい。 In FIG. 4, as the fuel gas supplied from the gas tanks 510 and 520 is consumed by the fuel cell 400 while the vehicle is traveling, the pressure measurement value of the pressure sensor 330 normally decreases. However, when the first check valve 120 of the filling port 100 fails and opens, a part of the fuel gas supplied from the gas tanks 510 and 520 may leak from the receptacle 110 of the filling port 100 to the outside. There is a nature. At this time, if the second check valve 210 is completely closed, the fuel gas does not leak to the outside, but the second check valve 210 may not be completely closed. In this case, the decrease rate of the pressure measurement value of the pressure sensor 330 increases as compared with the normal case, and as the fuel gas leaks, the pressure measurement value decreases as compared with the normal case. Here, the control device 600 repeatedly acquires the pressure measurement value from the pressure sensor 330 over time, and when the decrease rate of the pressure measurement value is too large or the pressure measurement value is too small (event E21 in FIG. 4). Closes the upstream shut valve 220 (event E22 in FIG. 4). This suppresses the fuel gas from flowing back to the filling port 100 and leaking to the outside. The control device 600 may also issue an alarm to the driver of the vehicle.

図5は、燃料ガス貯蔵供給システム900と燃料電池400を搭載した車両が走行する際のフローチャートである。走行開始後、ステップS910において、圧力センサ330(図1)は、燃料ガス配管200のサブ配管203(図1)を流れる燃料ガスの圧力を測定し、その圧力測定値を制御装置600(図1)に供給する。ステップS920において、制御装置600は、圧力測定値の低下率が予め定められた低下率閾値よりも大きいか否か、又は、圧力測定値が予め定められた圧力閾値よりも小さいか否かを判定する。ここで、低下率閾値は、予め制御装置600に記憶され、燃料ガスの圧力低下率が正常と判定される最大値である。また、圧力閾値は、予め制御装置600に記憶され、燃料電池400(図1)の正常な作動を維持するための燃料ガスの最低圧力である。低下率閾値は、一定値としてもよく、あるいは、燃料ガスの消費に関連する1つ以上のパラメータ(例えば、燃料電池400への燃料ガスの供給量や環境温度)に応じて決まる値としてもよい。圧力閾値も同様である。 FIG. 5 is a flowchart when a vehicle equipped with the fuel gas storage/supply system 900 and the fuel cell 400 travels. After starting traveling, in step S910, the pressure sensor 330 (FIG. 1) measures the pressure of the fuel gas flowing through the sub pipe 203 (FIG. 1) of the fuel gas pipe 200, and the pressure measurement value is used as the control device 600 (FIG. 1). ) To. In step S920, control device 600 determines whether the decrease rate of the pressure measurement value is larger than a predetermined decrease rate threshold value or whether the pressure measurement value is smaller than a predetermined pressure threshold value. To do. Here, the decrease rate threshold value is a maximum value that is stored in the control device 600 in advance and that the fuel gas pressure decrease rate is determined to be normal. Further, the pressure threshold value is stored in advance in the control device 600 and is the minimum pressure of the fuel gas for maintaining the normal operation of the fuel cell 400 (FIG. 1). The decrease rate threshold value may be a constant value, or may be a value determined according to one or more parameters related to fuel gas consumption (for example, the supply amount of fuel gas to the fuel cell 400 or the environmental temperature). .. The same applies to the pressure threshold.

ステップS920において、圧力測定値の低下率が低下率閾値よりも大きいと判定された場合、又は、圧力測定値が圧力閾値よりも小さいと判定された場合には、制御装置600はステップS930において上流側シャットバルブ220を閉鎖させて、ステップS940に移行する。一方、圧力測定値の低下率が低下率閾値以下、かつ、圧力測定値が圧力閾値以上と判定された場合には、そのままステップS940に移行する。ステップS940において、走行が終了した場合には、車両が停止する。走行が終了していない場合には、再度、ステップS910において圧力センサ330が燃料ガスの圧力を測定する。なお、このような車両走行中に圧力測定値に応じて上流側シャットバルブ220を閉鎖させる制御は、省略してもよい。 If it is determined in step S920 that the decrease rate of the pressure measurement value is greater than the decrease rate threshold value, or if it is determined that the pressure measurement value is less than the pressure threshold value, control device 600 performs upstream processing in step S930. The side shut valve 220 is closed, and the process proceeds to step S940. On the other hand, if it is determined that the decrease rate of the pressure measurement value is less than or equal to the reduction rate threshold value and the pressure measurement value is greater than or equal to the pressure threshold value, the process directly proceeds to step S940. In step S940, the vehicle is stopped when the traveling is completed. If the traveling has not ended, the pressure sensor 330 measures the pressure of the fuel gas again in step S910. The control for closing the upstream shut valve 220 according to the pressure measurement value while the vehicle is traveling may be omitted.

以上説明したように、第1実施形態では、燃料ガスを充填する際、圧力センサ330の圧力測定値の上昇率が予め定められた上昇率閾値よりも小さいと判定された場合に、制御装置600が上流側シャットバルブ220を閉鎖させるので、燃料ガスがガスタンク510,520に充填されずに燃料電池400に流れてしまうことを抑制できる。また、充填口100と上流側シャットバルブ220との間に第2逆止弁210が設けられているので、車両が走行する際に充填口100の第1逆止弁120が故障して開放した場合に、第2逆止弁210によって燃料ガスの充填口100への逆流が抑制され、燃料ガスが外部に漏洩することを抑制できる。 As described above, in the first embodiment, when filling the fuel gas, when it is determined that the rate of increase of the pressure measurement value of the pressure sensor 330 is smaller than the predetermined rate of increase threshold, the control device 600. Closes the upstream shut valve 220, so that it is possible to prevent the fuel gas from flowing into the fuel cell 400 without being filled in the gas tanks 510 and 520. In addition, since the second check valve 210 is provided between the filling port 100 and the upstream shut valve 220, the first check valve 120 of the filling port 100 fails and opens when the vehicle travels. In this case, the backflow of the fuel gas to the filling port 100 is suppressed by the second check valve 210, and the fuel gas can be suppressed from leaking to the outside.

なお、ガスタンク510,520のうち、減圧弁250により近い第2ガスタンク520及び第2バルブモジュール240は省略してもよい。逆に、3つ以上のガスタンクを設けるようにしてもよい。換言すれば、燃料ガス貯蔵供給システム900は、1つ以上のガスタンクを有するように構成される。この場合に、上流側シャットバルブ220は、充填口100と充填口100に最も近い上流側ガスタンク(第1ガスタンク510)との間の燃料ガス配管200(サブ配管201)に設けられる。また、圧力センサ330は、上流側シャットバルブ220と減圧弁250との間の燃料ガス配管200(サブ配管201〜205のいずれか)に設置される。 Of the gas tanks 510 and 520, the second gas tank 520 and the second valve module 240 that are closer to the pressure reducing valve 250 may be omitted. On the contrary, three or more gas tanks may be provided. In other words, the fuel gas storage and delivery system 900 is configured with one or more gas tanks. In this case, the upstream shut valve 220 is provided in the fuel gas pipe 200 (sub pipe 201) between the filling port 100 and the upstream gas tank (first gas tank 510) closest to the filling port 100. Further, the pressure sensor 330 is installed in the fuel gas pipe 200 (one of the sub pipes 201 to 205) between the upstream shut valve 220 and the pressure reducing valve 250.

・第2実施形態:
図6は、第2実施形態における燃料ガス貯蔵供給システム900bの概略説明図であり、図1に対応した図である。図1に示す第1実施形態との違いは、圧力センサ330の設置位置、及び、バルブモジュール230b,240bの構成のみであり、他の構成は第1実施形態と同様である。図6において、圧力センサ330は、第2ガスタンク520のバルブモジュール240b内のU型配管241に接続されている。第1ガスタンク510のバルブモジュール230bのU型配管231には、フィルタ234,237と、逆止弁236,238と、開閉弁235とが設けられている。バルブモジュール240bも同様である。フィルタ234,237を設ければ、外部から充填された燃料ガスの中の異物を除去することができる。また、逆止弁236,238を設ければ、燃料ガスが充填口100側への逆流をより確実に抑制できる。
-Second embodiment:
FIG. 6 is a schematic explanatory diagram of a fuel gas storage/supply system 900b in the second embodiment, and is a diagram corresponding to FIG. 1. The difference from the first embodiment shown in FIG. 1 is only the installation position of the pressure sensor 330 and the configuration of the valve modules 230b and 240b, and the other configurations are the same as those of the first embodiment. In FIG. 6, the pressure sensor 330 is connected to the U-shaped pipe 241 in the valve module 240b of the second gas tank 520. The U-shaped pipe 231 of the valve module 230b of the first gas tank 510 is provided with filters 234 and 237, check valves 236 and 238, and an opening/closing valve 235. The same applies to the valve module 240b. If the filters 234 and 237 are provided, foreign matter in the fuel gas filled from the outside can be removed. Further, by providing the check valves 236 and 238, it is possible to more reliably suppress the backflow of the fuel gas toward the filling port 100 side.

図6において、燃料ガス充填中に減圧弁250が故障して開放した場合の動作(図示せず)は、図2に示した第1実施形態の事象E11,E12と同様である。また、車両走行中に充填口100の第1逆止弁120が故障して開放した場合の動作(図示せず)は、図4に示した第1実施形態の事象E21,E22と同様である。この第2実施形態も、第1実施形態とほぼ同様の効果を有する。 In FIG. 6, the operation (not shown) when the pressure reducing valve 250 fails and opens during the fuel gas filling is the same as the events E11 and E12 of the first embodiment shown in FIG. Further, the operation (not shown) when the first check valve 120 of the filling port 100 is broken and opened while the vehicle is traveling is similar to the events E21 and E22 of the first embodiment shown in FIG. .. The second embodiment also has substantially the same effects as the first embodiment.

・第3実施形態:
図7は、第3実施形態における燃料ガス貯蔵供給システム900cの概略説明図であり、図1に対応した図である。図1に示す第1実施形態との違いは、燃料ガス配管200cの構成、及び、バルブモジュール230c,240cの構成のみであり、他の構成は第1実施形態と同様である。燃料ガス配管200cは、充填口100と減圧弁250を連結し、その途中に分岐流路270,280が設けられている。バルブモジュール230c,240cはそれぞれ、U型配管が省略されている。第1バルブモジュール230cの配管239が第1分岐流路270と接続されており、第2バルブモジュール240cの配管249が第2分岐流路280と接続されている。図7において、上流側シャットバルブ220は、第1分岐流路270の分岐点と充填口100との間の燃料ガス配管200cに設けられている。こうすれば、走行中に充填口100の第1逆止弁120が故障して開放した場合に、第1ガスタンク510と第2ガスタンク520両方からの燃料ガスの逆流を抑制でき、燃料ガスが外部に漏洩することを抑制できる。
-Third embodiment:
FIG. 7 is a schematic explanatory diagram of a fuel gas storage/supply system 900c in the third embodiment, and is a diagram corresponding to FIG. 1. The difference from the first embodiment shown in FIG. 1 is only the configuration of the fuel gas pipe 200c and the configurations of the valve modules 230c and 240c, and the other configurations are the same as those of the first embodiment. The fuel gas pipe 200c connects the filling port 100 and the pressure reducing valve 250, and branch channels 270 and 280 are provided in the middle thereof. The U-shaped piping is omitted in each of the valve modules 230c and 240c. The pipe 239 of the first valve module 230c is connected to the first branch flow passage 270, and the pipe 249 of the second valve module 240c is connected to the second branch flow passage 280. In FIG. 7, the upstream shut valve 220 is provided in the fuel gas pipe 200 c between the branch point of the first branch flow passage 270 and the filling port 100. With this configuration, when the first check valve 120 of the filling port 100 is broken and opened during traveling, it is possible to suppress the backflow of the fuel gas from both the first gas tank 510 and the second gas tank 520, and the fuel gas is external Can be prevented from leaking to.

図7において、燃料ガス充填中に減圧弁250が故障して開放した場合の動作(図示せず)は、図2に示した第1実施形態の事象E11,E12と同様である。また、車両走行中に充填口100の第1逆止弁120が故障して開放した場合の動作(図示せず)は、図4に示した第1実施形態の事象E21,E22と同様である。この第3実施形態も、第1実施形態とほぼ同様の効果を有する。 In FIG. 7, the operation (not shown) when the pressure reducing valve 250 breaks down and opens while filling the fuel gas is similar to the events E11 and E12 of the first embodiment shown in FIG. Further, the operation (not shown) when the first check valve 120 of the filling port 100 is broken and opened while the vehicle is traveling is similar to the events E21 and E22 of the first embodiment shown in FIG. .. The third embodiment also has substantially the same effects as the first embodiment.

・変形例:
なお、この発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・Modification:
The present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the scope of the invention, and the following modifications are possible, for example.

・変形例1:
以上の実施形態では、燃料ガス貯蔵供給システム900は車載の燃料電池400に用いられていたが、本発明は定置型の燃料電池のための燃料ガス貯蔵供給システムにも適用可能である。
-Modification 1:
In the above embodiment, the fuel gas storage/supply system 900 was used for the on-vehicle fuel cell 400, but the present invention is also applicable to the fuel gas storage/supply system for a stationary fuel cell.

本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中や変形例の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiments and modified examples, and can be realized in various configurations without departing from the spirit of the invention. For example, the technical features of the embodiments corresponding to the technical features of each of the embodiments and the modifications described in the section of the summary of the invention are to solve some or all of the above problems, or the above effects. In order to achieve some or all of the above, it is possible to appropriately replace or combine. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

100…充填口
110…レセプタクル
120…第1逆止弁
200,200c…燃料ガス配管
201〜205…サブ配管
210…第2逆止弁
220…上流側シャットバルブ
230,230b,230c…第1バルブモジュール
231…U型配管
232…シャットバルブ
233…安全弁
234,237…フィルタ
235…開閉弁
236,238…逆止弁
239…分岐配管
240,240b,240c…第2バルブモジュール
241…U型配管
242…シャットバルブ
243…安全弁
249…分岐配管
250…減圧弁
260…インジェクタ
270…第1分岐流路
280…第2分岐流路
310…第1温度センサ
320…第2温度センサ
330…圧力センサ
400…燃料電池
510…第1ガスタンク
511…口金
520…第2ガスタンク
521…口金
600…制御装置
700…水素ステーション
710…ノズル
900,900b,900c…燃料ガス貯蔵供給システム
100... Filling port 110... Receptacle 120... First check valve 200, 200c... Fuel gas piping 201-205... Sub piping 210... Second check valve 220... Upstream shut valve 230, 230b, 230c... First valve module 231... U-shaped pipe 232... Shut valve 233... Safety valve 234, 237... Filter 235... Open/close valve 236, 238... Check valve 239... Branch pipe 240, 240b, 240c... Second valve module 241... U-shaped pipe 242... Shut Valve 243... Safety valve 249... Branch pipe 250... Pressure reducing valve 260... Injector 270... First branch flow passage 280... Second branch flow passage 310... First temperature sensor 320... Second temperature sensor 330... Pressure sensor 400... Fuel cell 510 ... 1st gas tank 511... Clasp 520... 2nd gas tank 521... Clasp 600... Control device 700... Hydrogen station 710... Nozzle 900, 900b, 900c... Fuel gas storage supply system

Claims (4)

燃料電池に燃料ガスを供給する燃料ガス貯蔵供給システムであって、
第1逆止弁を有する充填口と、
前記燃料ガスの圧力を調整する減圧弁と、
前記充填口と前記減圧弁を連結する燃料ガス配管と、
前記燃料ガス配管に接続された単一のガスタンクと、
記ガスタンクと、前記充填口との間の前記燃料ガス配管に設けられた上流側シャットバルブと、
前記充填口と前記上流側シャットバルブとの間の前記燃料ガス配管に設けられた第2逆止弁と、
前記上流側シャットバルブと前記減圧弁との間の前記燃料ガス配管に設置された圧力センサと、
前記圧力センサの圧力測定値を用いて前記上流側シャットバルブの開閉を制御する制御装置と、
を備え、
前記制御装置は、前記ガスタンクに前記燃料ガスが前記充填口を通じて充填されるときに、前記圧力センサから前記圧力測定値を経時的に繰り返し取得し、前記圧力測定値の上昇率が予め定められた上昇率閾値よりも小さい場合に、前記上流側シャットバルブを閉鎖させる、
燃料ガス貯蔵供給システム。
A fuel gas storage and supply system for supplying fuel gas to a fuel cell,
A filling port having a first check valve,
A pressure reducing valve for adjusting the pressure of the fuel gas,
A fuel gas pipe connecting the filling port and the pressure reducing valve,
A single gas tank connected to the fuel gas line,
Before outs Stancu, an upstream shut valve provided in the fuel gas pipe between the filling port,
A second check valve provided in the fuel gas pipe between the filling port and the upstream shut valve;
A pressure sensor installed in the fuel gas pipe between the upstream shut valve and the pressure reducing valve;
A control device for controlling the opening and closing of the upstream shut valve using the pressure measurement value of the pressure sensor,
Equipped with
Wherein the controller, when the fuel gas before outs Stancu is filled through the filling opening, wherein over time and repeatedly obtains the pressure measurements from the pressure sensor, defined rising rate of the pressure measurements in advance Closing the upstream shut-off valve if less than a predetermined rise rate threshold,
Fuel gas storage and supply system.
請求項1に記載の燃料ガス貯蔵供給システムにおいて、
前記制御装置は、更に、前記燃料電池で前記燃料ガスが消費されるときに、前記圧力センサから前記圧力測定値を経時的に繰り返し取得し、前記圧力測定値の低下率が予め定められた低下率閾値よりも大きい場合、又は、前記圧力測定値が予め定められた圧力閾値よりも小さい場合に、前記上流側シャットバルブを閉鎖させる、
燃料ガス貯蔵供給システム。
The fuel gas storage and supply system according to claim 1,
When the fuel gas is consumed in the fuel cell, the control device further repeatedly acquires the pressure measurement value from the pressure sensor over time, and the decrease rate of the pressure measurement value is a predetermined decrease. If it is greater than a rate threshold value or if the pressure measurement value is less than a predetermined pressure threshold value, the upstream shutoff valve is closed.
Fuel gas storage and supply system.
請求項1又は請求項2に記載の燃料ガス貯蔵供給システムにおいて
記ガスタンクは、口金と、前記口金に接続されたバルブモジュールと、を有し、
前記バルブモジュールは、前記燃料ガス配管の一部を構成するサブ配管と、前記サブ配管から分岐して前記口金と接続された分岐配管と、前記分岐配管に設けられたシャットバルブと、を有し、
前記上流側シャットバルブは、前記ガスタンクの前記バルブモジュールと前記充填口との間の前記燃料ガス配管に設けられている、
燃料ガス貯蔵供給システム。
The fuel gas storage and supply system according to claim 1 or 2 ,
Before outs Stan click has a mouthpiece, and a valve module that is connected to the mouthpiece,
The valve module includes a sub-pipe forming a part of the fuel gas pipe, a branch pipe branched from the sub-pipe and connected to the base, and a shut valve provided in the branch pipe. ,
The upstream shut-off valve is provided in the fuel gas pipe between the valve module and the filling opening of the front Kiga Stancu,
Fuel gas storage and supply system.
請求項1〜3のいずれか一項に記載の燃料ガス貯蔵供給システムにおいて、
記ガスタンクには、温度センサが設置されており、
前記制御装置は、前記ガスタンクに前記燃料ガスが前記充填口を通じて充填されるときに、更に、前記温度センサの温度測定値が、予め定められた温度閾値よりも高い場合に、前記上流側シャットバルブを閉鎖させる、
燃料ガス貯蔵供給システム。
The fuel gas storage and supply system according to any one of claims 1 to 3,
The front-outs Stan click, has been installed temperature sensor,
Wherein the controller, when the fuel gas before outs Stancu is filled through the fill port, further, if the temperature measurement value before Symbol temperature sensor is higher than a predetermined temperature threshold value, said upstream Close the side shut valve,
Fuel gas storage and supply system.
JP2019096446A 2019-05-23 2019-05-23 Fuel gas storage and supply system Active JP6729761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096446A JP6729761B2 (en) 2019-05-23 2019-05-23 Fuel gas storage and supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096446A JP6729761B2 (en) 2019-05-23 2019-05-23 Fuel gas storage and supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016223198A Division JP6531747B2 (en) 2016-11-16 2016-11-16 Fuel gas storage supply system

Publications (2)

Publication Number Publication Date
JP2019145526A JP2019145526A (en) 2019-08-29
JP6729761B2 true JP6729761B2 (en) 2020-07-22

Family

ID=67771314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096446A Active JP6729761B2 (en) 2019-05-23 2019-05-23 Fuel gas storage and supply system

Country Status (1)

Country Link
JP (1) JP6729761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023058084A (en) * 2021-10-13 2023-04-25 本田技研工業株式会社 gas supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900037B1 (en) * 2005-01-26 2009-06-01 도요타 지도샤(주) Fuel tank system
JP2014126150A (en) * 2012-12-27 2014-07-07 Honda Motor Co Ltd High-pressure gas utilization system
JP5959463B2 (en) * 2013-03-27 2016-08-02 本田技研工業株式会社 Fuel cell vehicle and moving body

Also Published As

Publication number Publication date
JP2019145526A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6531747B2 (en) Fuel gas storage supply system
US10648618B2 (en) Fuel gas filling system and fuel gas filling method
US8770012B2 (en) Fuel leakage detection system and detection method
US10804548B2 (en) Fuel cell system and hydrogen leak decision method in fuel cell system
JP2007024152A (en) Gas supply device
JP2007092927A (en) Gas feeder
JP6729761B2 (en) Fuel gas storage and supply system
US20160010799A1 (en) Method for performing a pressure test on a tank and tank filling apparatus
JP4811604B2 (en) Gas filling system
JP2018533187A (en) Fuel cell system leak monitoring
WO2011016091A1 (en) Gas filling device and gas filling method
CN111463454A (en) High-pressure vessel system and fuel cell vehicle
JP2013104343A (en) Fuel shutoff valve diagnosis apparatus
JP6919482B2 (en) Fuel cell system
KR102286842B1 (en) The method for detecting malfunction of the high pressure cylinder disposed in a fuel cell system
JPH09257195A (en) Gas supply device
JP2007146806A (en) Fuel system for liquefied gas fuel engine
JP4138395B2 (en) Liquefied gas fuel supply device
JP2020078101A (en) Vehicle travelling by using fuel gas
JP4211001B2 (en) Gas leak detector for high pressure tank system
JP4287989B2 (en) Abnormality detection method for gas turbine fuel supply system
JP4878809B2 (en) Gas supply device
JP2002188797A (en) Fuel mixing and filling system
JP2000274594A (en) Testing system of pressure rise supply device and testing method
JP2010174951A (en) Gas filling device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6729761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151