JP2021183782A - Design method of steel beam - Google Patents

Design method of steel beam Download PDF

Info

Publication number
JP2021183782A
JP2021183782A JP2020089631A JP2020089631A JP2021183782A JP 2021183782 A JP2021183782 A JP 2021183782A JP 2020089631 A JP2020089631 A JP 2020089631A JP 2020089631 A JP2020089631 A JP 2020089631A JP 2021183782 A JP2021183782 A JP 2021183782A
Authority
JP
Japan
Prior art keywords
web
reinforcing member
hole
steel beam
stiffeners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020089631A
Other languages
Japanese (ja)
Other versions
JP7423419B2 (en
Inventor
雅史 仁田脇
Masafumi Nitawaki
大吾 石井
Daigo Ishii
寛之 久保山
Hiroyuki Kuboyama
伸也 牛坂
Shinya Ushizaka
祐周 小澤
Hirochika Ozawa
卓矢 松下
Takuya Matsushita
真士 豊田
Masashi Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2020089631A priority Critical patent/JP7423419B2/en
Publication of JP2021183782A publication Critical patent/JP2021183782A/en
Application granted granted Critical
Publication of JP7423419B2 publication Critical patent/JP7423419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

To provide a design method of a steel beam in which a through hole does not interfere with a steel beam end reinforcement member (a first reinforcement member) and in which a through hole size is not restricted.SOLUTION: An upper side equivalent width-thickness ratio of stiffeners 51, 52 (first reinforcement members) and a lower side equivalent width-thickness ratio of the stiffeners 51, 52 in a web 4 respectively satisfy a required width-thickness ratio condition of the web 4. A length dimension of the stiffeners 51, 52 and a range where the stiffeners 51, 52 are installed are set so that a setting moment of a part where the stiffeners 51, 52 are provided in a steel beam 1 is larger than a local buckling limit strength of a part where the stiffeners 51, 52 are not provided in the steel beam 1. A shear margin of a part where the stiffeners 51, 52 are not provided in the web 4 is set to be equal to or larger than 1.29.SELECTED DRAWING: Figure 1

Description

本発明は、鉄骨梁の設計方法に関する。 The present invention relates to a method for designing a steel beam.

鉄骨造建物における鉄骨梁の鋼材量削減を目的として、鉄骨梁端ウェブ補強工法が各種提案されている(例えば、特許文献1、2参照)。この工法では、設計上の発生応力が低いスパン中央部に合せて梁断面サイズを決定し、鉄骨梁端部のヒンジ形成位置近傍のウェブにはスチフナ等の補強部材を溶接して補強する。このように、必要箇所のみ補強することで鉄骨梁全体の必要塑性変形能力を確保しながら、架構全体の鋼材量を削減することができる。基本的には、鉄骨梁のウェブの座屈に対してスチフナなどの補強部材を設けて補強する工法は一般的であり、鋼構造設計規準(AIJ)の付録にも設計法が示されている。 Various methods for reinforcing steel beam end webs have been proposed for the purpose of reducing the amount of steel material in steel beams in steel-framed buildings (see, for example, Patent Documents 1 and 2). In this method, the beam cross-sectional size is determined according to the central part of the span where the stress generated in the design is low, and a reinforcing member such as a stiffener is welded to the web near the hinge formation position at the end of the steel frame beam to reinforce it. In this way, by reinforcing only the necessary parts, it is possible to reduce the amount of steel material in the entire frame while ensuring the required plastic deformation capacity of the entire steel frame beam. Basically, it is common to install a reinforcing member such as a stiffener to reinforce the buckling of the web of the steel beam, and the design method is also shown in the appendix of the Steel Structure Design Standard (AIJ). ..

一方、鉄骨梁には設備配管等の配置のため、貫通孔を設けることが多い。この場合、貫通孔設置による鉄骨梁の耐力低下を防止するため、貫通孔まわりに補強部材を設けて補強する工法(鉄骨梁貫通孔補強工法)がある。こちらも一般的な工法であり、在来工法では、例えば、補強板およびスリーブ管による補強部材を設けている。また、貫通孔まわりを補強するリング状の補強部材も各種販売されている。
これらの鉄骨梁端のウェブを補強する補強部材(鉄骨梁端補強部材とする)を設ける鉄骨梁端ウェブ補強工法と、貫通孔回りを補強する補強部材(貫通孔補強部材とする)を設ける鉄骨梁貫通孔補強工法とは、それぞれ独立して設計される。
On the other hand, through holes are often provided in the steel beam for the arrangement of equipment piping and the like. In this case, in order to prevent the strength of the steel beam from being lowered due to the installation of the through hole, there is a method of reinforcing the steel beam by providing a reinforcing member around the through hole (steel beam through hole reinforcement method). This is also a general construction method, and in the conventional construction method, for example, a reinforcing plate and a reinforcing member by a sleeve pipe are provided. In addition, various ring-shaped reinforcing members that reinforce the circumference of the through hole are also sold.
A steel beam end web reinforcement method that provides a reinforcing member (referred to as a steel beam end reinforcing member) that reinforces the web at the steel beam end, and a steel frame that provides a reinforcing member (referred to as a through hole reinforcing member) that reinforces the circumference of the through hole. It is designed independently of the beam through hole reinforcement method.

特許第6105878号公報Japanese Patent No. 6105878 特開2014−43751号公報Japanese Unexamined Patent Publication No. 2014-43751

しかしながら、鉄骨梁端補強部材を設置する領域にウェブを貫通する貫通孔を設ける場合、貫通孔補強部材が鉄骨梁端補強部材と干渉し、貫通孔補強部材および鉄骨梁端補強部材それぞれの加工や溶接が難しくなることがある。また、貫通孔補強部材が鉄骨梁端補強部材と干渉しないようにするには、貫通孔のサイズが制限されてしまい、設計自由度が低くなる。 However, when a through hole penetrating the web is provided in the area where the steel beam end reinforcing member is installed, the through hole reinforcing member interferes with the steel beam end reinforcing member, and the through hole reinforcing member and the steel beam end reinforcing member are processed. Welding can be difficult. Further, in order to prevent the through hole reinforcing member from interfering with the steel beam end reinforcing member, the size of the through hole is limited, and the degree of freedom in design is reduced.

そこで本発明は、貫通孔が鉄骨梁端補強部材(第1補強部材)と干渉しないとともに、貫通孔のサイズが制限されない鉄骨梁の設計方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for designing a steel frame beam in which the through hole does not interfere with the steel beam end reinforcing member (first reinforcing member) and the size of the through hole is not limited.

上記目的を達成するため、本発明に係る鉄骨梁の設計方法は、ウェブの長さ方向の端部近傍に、前記ウェブを厚さ方向に貫通する貫通孔が形成され、前記ウェブの座屈を防止する第1補強部材と、前記貫通孔による前記ウェブの耐力低下を防止する第2補強部材と、が設けられ、前記第1補強部材は、前記ウェブの長さ方向に延び、前記ウェブの長さ方向の端部近傍かつ前記貫通孔よりも前記ウェブの長さ方向の端部側における前記ウェブの高さ方向の中間部に接合され、前記第2補強部材は、リング状に形成され、前記貫通孔の縁部に沿って接合された鉄骨梁の設計方法において、前記ウェブにおける前記第1補強部材の上側の等価幅厚比および前記第1補強部材の下側の等価幅厚比それぞれが、必要となる前記ウェブの幅厚比の条件を満たし、前記鉄骨梁における前記第1補強部材が設けられる部分の設計用モーメントが、前記鉄骨梁における前記第1補強部材が設けられない部分の局部座屈限界耐力よりも大きくなるように前記第1補強部材の長さ寸法および前記第1補強部材を設置する範囲を設定し、前記ウェブにおける前記第1補強部材が設けられない部分のせん断余裕度が1.29以上となるように設計し、前記貫通孔の芯から前記ウェブの長さ方向の端部側に向かう前記第2補強部材の内径寸法の1.5倍の長さ範囲において、前記第1補強部材の設置を部分的に省略可能に構成されていることを特徴とする。 In order to achieve the above object, in the method for designing a steel beam according to the present invention, a through hole penetrating the web in the thickness direction is formed in the vicinity of the end portion in the length direction of the web to buckle the web. A first reinforcing member for preventing and a second reinforcing member for preventing a decrease in the strength of the web due to the through hole are provided, and the first reinforcing member extends in the length direction of the web and has the length of the web. The second reinforcing member is formed in a ring shape and is joined to an intermediate portion in the height direction of the web in the vicinity of the end in the buckling direction and on the end side in the length direction of the web from the through hole. In the method of designing a steel beam joined along the edge of the through hole, the equivalent width-thickness ratio on the upper side of the first reinforcing member and the equivalent width-thickness ratio on the lower side of the first reinforcing member in the web are respectively. The design moment of the portion of the steel beam where the first reinforcing member is provided satisfies the requirement of the required width-thickness ratio of the web, and the local seat of the portion of the steel beam where the first reinforcing member is not provided. The length dimension of the first reinforcing member and the range in which the first reinforcing member is installed are set so as to be larger than the buckling limit strength, and the shear margin of the portion of the web where the first reinforcing member is not provided is set. The first reinforcing member is designed to have a length of 1.29 or more, and is 1.5 times the inner diameter of the second reinforcing member from the core of the through hole toward the end side in the length direction of the web. (1) It is characterized in that the installation of the reinforcing member can be partially omitted.

本発明では、貫通孔の芯からウェブの長さ方向の端部側に向かう第2補強部材の内径寸法の1.5倍の長さ範囲において、第1補強部材の設置を部分的に省略可能に構成されている。これにより、設計された第1補強部材の設置位置に貫通孔が干渉する場合には、第1補強部材を部分的に省略することで、貫通孔を第1補強部材と干渉しないように設置することができる。また、貫通孔のサイズが制限されず、設計の自由度を高めることができる。 In the present invention, the installation of the first reinforcing member can be partially omitted in the length range of 1.5 times the inner diameter of the second reinforcing member from the core of the through hole toward the end side in the length direction of the web. It is configured in. As a result, when the through hole interferes with the installed position of the designed first reinforcing member, the through hole is installed so as not to interfere with the first reinforcing member by partially omitting the first reinforcing member. be able to. In addition, the size of the through hole is not limited, and the degree of freedom in design can be increased.

本発明によれば、貫通孔が第1補強部材と干渉しないとともに、貫通孔のサイズが制限されず、設計の自由度を高めることができる。 According to the present invention, the through hole does not interfere with the first reinforcing member, the size of the through hole is not limited, and the degree of freedom in design can be increased.

本発明の実施形態による鉄骨梁の一例を示す水平断面図(図2のA−A線断面図)である。It is a horizontal sectional view (A-A line sectional view of FIG. 2) which shows an example of the steel frame beam by embodiment of this invention. 鉄骨梁の側面図である。It is a side view of a steel beam. (a)は鋼構造設計基準に示された圧縮応力度分布係数を示す図、(b)は、本実施形態の圧縮応力度分布係数を示す図である。(A) is a diagram showing the compressive stress distribution coefficient shown in the steel structure design standard, and (b) is a diagram showing the compressive stress distribution coefficient of the present embodiment. 設計用モーメント分布を示す図である。It is a figure which shows the moment distribution for design. せん断余裕度、塑性変形倍率および補剛長さの関係を示すグラフである。It is a graph which shows the relationship between the shear margin, the plastic deformation magnification, and the stiffening length. スチフナの省略範囲を示す図である。It is a figure which shows the omission range of a stiffener. 終局状態の鉄骨梁を示す図である。It is a figure which shows the steel beam in the final state. 無次元化した荷重変形関係を示すグラフである。It is a graph which shows the load deformation relation which became dimensionless. 最大耐力の90%時、最大耐力時それぞれの塑性変形倍率および累積塑性変形倍率を示す表である。It is a table which shows the plastic deformation ratio and the cumulative plastic deformation ratio at 90% of the maximum proof stress and at the maximum proof stress, respectively. 試験体の一覧を示す表である。It is a table which shows the list of the test piece. (a)は試験体No.C−1の側面図、(b)は平面図、(c)はスチフナ設置部分の断面図である。(A) is the test piece No. A side view of C-1, (b) is a plan view, and (c) is a cross-sectional view of a stiffener installation portion. (a)は試験体No.C−3の側面図、(b)は平面図、(c)はスチフナ設置部分の断面図である。(A) is the test piece No. A side view of C-3, (b) is a plan view, and (c) is a cross-sectional view of a stiffener installation portion. (a)は試験体No.D−1の側面図、(b)は平面図、(c)はスチフナ設置部分の断面図である。(A) is the test piece No. A side view of D-1, (b) is a plan view, and (c) is a cross-sectional view of a stiffener installation portion. (a)は試験体No.D−2の側面図、(b)は平面図、(c)はスチフナ設置部分の断面図である。(A) is the test piece No. A side view of D-2, (b) is a plan view, and (c) is a cross-sectional view of a stiffener installation portion. 載荷振幅を示すグラフである。It is a graph which shows the loading amplitude. 試験体No.C−1およびC−3の加力装置を示す図である。Specimen No. It is a figure which shows the force device of C-1 and C-3. 試験体No.D−1およびD−2の加力装置を示す図である。Specimen No. It is a figure which shows the momentary apparatus of D-1 and D-2. 変位測定位置を示す図である。It is a figure which shows the displacement measurement position. 塑性変形能力の評価手法を示すグラフである。It is a graph which shows the evaluation method of a plastic deformation ability. (a)は試験体ごとの最大耐力時の塑性変形倍率の実験結果、(b)は試験体ごとの最大耐力の90%時の塑性変形倍率の実験結果、(c)は試験体ごとの累積塑性変形倍率の実験結果である。(A) is the experimental result of the plastic deformation magnification at the maximum yield strength of each test piece, (b) is the experimental result of the plastic deformation magnification at 90% of the maximum yield strength of each test piece, and (c) is the cumulative result of each test piece. It is an experimental result of the plastic deformation magnification. 実験結果の一覧である。It is a list of experimental results. 試験体No.C−1の各サイクルの変形性状を示す写真である。Specimen No. It is a photograph which shows the deformation property of each cycle of C-1. 試験体No.C−1の無次元化した荷重と部材角との関係を示すグラフである。Specimen No. It is a graph which shows the relationship between the dimensionless load of C-1 and a member angle. 試験体No.C−1の骨格曲線を示す図である。Specimen No. It is a figure which shows the skeleton curve of C-1. 試験体No.C−1の実験結果を示す表である。Specimen No. It is a table which shows the experimental result of C-1. 試験体No.C−3の各サイクルの変形性状を示す写真である。Specimen No. It is a photograph which shows the deformation property of each cycle of C-3. 試験体No.C−3の無次元化した荷重と部材角との関係を示すグラフである。Specimen No. It is a graph which shows the relationship between the dimensionless load of C-3 and a member angle. 試験体No.C−3の骨格曲線を示す図である。Specimen No. It is a figure which shows the skeleton curve of C-3. 試験体No.C−3の実験結果を示す表である。Specimen No. It is a table which shows the experimental result of C-3. 試験体No.D−1の各サイクルの変形性状を示す写真である。Specimen No. It is a photograph which shows the deformation property of each cycle of D-1. 試験体No.D−1の無次元化した荷重と部材角との関係を示すグラフである。Specimen No. It is a graph which shows the relationship between the dimensionless load of D-1 and a member angle. 試験体No.D−1の骨格曲線を示す図である。Specimen No. It is a figure which shows the skeleton curve of D-1. 試験体No.D−1の実験結果を示す表である。Specimen No. It is a table which shows the experimental result of D-1. 試験体No.D−2の各サイクルの変形性状を示す写真である。Specimen No. It is a photograph which shows the deformation property of each cycle of D-2. 試験体No.D−2の無次元化した荷重と部材角との関係を示すグラフである。Specimen No. It is a graph which shows the relationship between the dimensionless load of D-2 and a member angle. 試験体No.D−2の骨格曲線を示す図である。Specimen No. It is a figure which shows the skeleton curve of D-2. 試験体No.D−2の実験結果を示す表である。Specimen No. It is a table which shows the experimental result of D-2.

以下、本発明の実施形態による鉄骨梁の設計方法について、図1−図9に基づいて説明する。
図1および図2に示すように、本実施形態による鉄骨梁1は、H型鋼で、上フランジ2、下フランジ3およびウェブ4を有している。図1では、鉄骨梁1の長さ方向の一方の端部近傍11(鉄骨梁1における長さ方向の一方の端部1aから中央に向かった所定の範囲)を示している。鉄骨梁1の端部1aは、柱12に接合されている。鉄骨梁1の端部1a近傍には、ハンチ13が形成されている。
Hereinafter, a method for designing a steel beam according to an embodiment of the present invention will be described with reference to FIGS. 1 to 9.
As shown in FIGS. 1 and 2, the steel beam 1 according to the present embodiment is an H-shaped steel and has an upper flange 2, a lower flange 3, and a web 4. FIG. 1 shows the vicinity of one end of the steel beam 1 in the length direction (a predetermined range from one end 1a of the steel beam 1 in the length direction toward the center). The end portion 1a of the steel frame beam 1 is joined to the column 12. A haunch 13 is formed in the vicinity of the end portion 1a of the steel frame beam 1.

ウェブ4の長さ方向の端部近傍41(ウェブ4における鉄骨梁1の長さ方向の端部近傍11に対応する部分、長さ方向の一方の端部4aから中央に向かった所定の範囲)には、ウェブ4の座屈を防止するためのスチフナ51,52(第1補強部材)が設けられている。本実施形態では、ウェブ4の片側(厚さ方向の一方側)に上下方向に間隔をあけて2つずつスチフナ51,52が設けられている。上側のスチフナ51(以下、上側スチフナ51とする)は、上フランジ2の下側に間隔をあけて設けられ、下側のスチフナ52(以下、下側スチフナ52とする)は下フランジ3の上側に間隔をあけて設けられている。スチフナ51,52は、上フランジ2および下フランジ3と平行に設けられている。上側スチフナ51と下側スチフナ52とは、略同じ形状に形成されている。
上側スチフナ51および下側スチフナ52は、ウェブ4の長さ方向の両側の端部近傍41にそれぞれ設けられている。
41 near the end of the web 4 in the length direction (a portion of the web 4 corresponding to the vicinity of the end 11 of the steel beam 1 in the length direction, a predetermined range from one end 4a in the length direction toward the center) Is provided with stiffeners 51 and 52 (first reinforcing member) for preventing buckling of the web 4. In the present embodiment, two stiffeners 51 and 52 are provided on one side (one side in the thickness direction) of the web 4 at intervals in the vertical direction. The upper stiffener 51 (hereinafter referred to as the upper stiffener 51) is provided on the lower side of the upper flange 2 at intervals, and the lower stiffener 52 (hereinafter referred to as the lower stiffener 52) is provided on the upper side of the lower flange 3. It is provided at intervals. The stiffeners 51 and 52 are provided in parallel with the upper flange 2 and the lower flange 3. The upper stiffener 51 and the lower stiffener 52 are formed in substantially the same shape.
The upper stiffener 51 and the lower stiffener 52 are provided near the ends 41 on both sides of the web 4 in the length direction, respectively.

ウェブ4の長さ方向の端部近傍41には、例えば、設備配管を通すための貫通孔43が形成されている。貫通孔43は、ウェブ4を厚さ方向に貫通し、ウェブ4の長さ方向の端部4aよりも中央に向かった位置で、スチフナ51,52の長さ方向の他方側に設けられている。貫通孔43は、ウェブ4の長さ方向の端部近傍41におけるスチフナ51,52が設けられていない区間に設けられている。ウェブ4の片側(厚さ方向の一方側)には、貫通孔43の縁部に沿ってリング状の貫通孔補強部材6(第2補強部材)が設けられている。 For example, a through hole 43 for passing equipment piping is formed in the vicinity of the end portion 41 in the length direction of the web 4. The through hole 43 penetrates the web 4 in the thickness direction and is provided on the other side of the stiffeners 51 and 52 in the length direction at a position toward the center of the end portion 4a in the length direction of the web 4. .. The through hole 43 is provided in a section in the vicinity of the end portion 41 in the length direction of the web 4 where the stiffeners 51 and 52 are not provided. On one side (one side in the thickness direction) of the web 4, a ring-shaped through hole reinforcing member 6 (second reinforcing member) is provided along the edge of the through hole 43.

本実施形態による鉄骨梁の設計方法では、ウェブの等価幅厚比、スチフナの長さ寸法(補剛長さle、図1および図2参照)および設置位置、スチフナの必要剛性、ウェブのせん断余裕度、貫通孔の位置について検討する。 In the method for designing a steel beam according to the present embodiment, the equivalent width-thickness ratio of the web, the length dimension of the stiffener (stiffening length le, see FIGS. 1 and 2) and the installation position, the required rigidity of the stiffener, and the shear margin of the web. Consider the position of the through hole.

(ウェブの等価幅厚比の検討)
ウェブの等価幅厚比の検討では、図2に示すウェブ4における上側スチフナ51の上側の領域45(外側サブパネル45とする)、ウェブ4における下側スチフナ52の下側の領域46(外側サブパネル46とする)、およびウェブ4における上側スチフナ51と下側スチフナ52との間の領域47(内側サブパネル47とする)それぞれの等価幅厚比を検討する。本実施形態では、外側サブパネル45のせいd、外側サブパネル46のせいd、内側サブパネル47のせいdの比率は、1:2:1としている。
等価幅厚比は、等価幅厚比の算定方法(星川努、原田幸博:ウェブを軸方向スチフナで補強したH形鋼梁の塑性変形能力、鋼構造論文集、第20巻、第80号、p.19−32、2013.12)を準用し、下式(1)−(4)を用いて算定する。算定した等価幅厚比が鉄骨梁として必要な幅厚比制限を満足するように設計する。図3(a)に(鋼構造設計基準に示された圧縮応力度分布係数を示し、図3(b)に本実施形態の圧縮応力度分布係数を示す。
(Examination of equivalent width-thickness ratio of the web)
In the examination of the equivalent width-thickness ratio of the web, the upper region 45 (referred to as the outer subpanel 45) of the upper stiffener 51 in the web 4 and the lower region 46 (outer subpanel 46) of the lower stiffener 52 in the web 4 shown in FIG. The equivalent width / thickness ratio of each of the region 47 (referred to as the inner subpanel 47) between the upper stiffener 51 and the lower stiffener 52 in the web 4 is examined. In the present embodiment, the ratio of the cause d of the outer subpanel 45, the cause d of the outer subpanel 46, and the cause d of the inner subpanel 47 is 1: 2: 1.
Equivalent width-thickness ratio is the calculation method of equivalent width-thickness ratio (Tsutomu Hoshikawa, Yukihiro Harada: Plastic deformation ability of H-shaped steel beam with web reinforced with axial stiffener, Steel Structure Papers, Vol. 20, No. 80, P.19-32, 2013.12) shall be applied mutatis mutandis, and the calculation shall be made using the following equations (1)-(4). Design so that the calculated equivalent width-thickness ratio satisfies the width-thickness ratio limit required for steel beams. FIG. 3A shows the compressive stress distribution coefficient shown in the steel structure design standard, and FIG. 3B shows the compressive stress distribution coefficient of the present embodiment.

Figure 2021183782
Figure 2021183782

算定された外側サブパネル45の等価幅厚比、外側サブパネル46の等価幅厚比、および内側サブパネル47の等価幅厚比のうちの値の大きい等価幅厚比を採用してウェブ4の等価幅厚比の検討を行う。
なお、スチフナがウェブの片側に対して1つのみ設けられている場合は、ウェブにおけるスチフナの上側の領域、およびウェブにおけるスチフナの下側の領域のそれぞれの等価幅厚比を検討し、大きい等価幅厚比を採用して幅厚比制限の照査を行う。また、スチフナがウェブの片側に対して3つ以上設けられている場合は、ウェブにおける一番上のスチフナの上側の領域、およびウェブにおける一番下のスチフナの下側の領域、ウェブにおける上下に並んだスチフナの間の領域のそれぞれの等価幅厚比を検討し、大きい等価幅厚比を採用して幅厚比制限の照査を行う。
The equivalent width / thickness ratio of the web 4 is adopted by adopting the calculated equivalent width / thickness ratio of the outer subpanel 45, the equivalent width / thickness ratio of the outer subpanel 46, and the equivalent width / thickness ratio of the inner subpanel 47. Examine the ratio.
If only one stiffener is provided on one side of the web, the equivalent width-thickness ratios of the upper region of the stiffener on the web and the lower region of the stiffener on the web are examined, and a large equivalent width is obtained. The width-thickness ratio is adopted to check the width-thickness ratio limit. Also, if three or more stiffeners are provided on one side of the web, the area above the top stiffener on the web and the area below the bottom stiffener on the web, above and below the web. The equivalent width-thickness ratio of each area between the lined stiffeners is examined, and a large equivalent width-thickness ratio is adopted to check the width-thickness ratio limitation.

(スチフナの長さ寸法および設置位置の検討)
スチフナ51,52を設ける長さ寸法(補剛長さle、図1参照)および設置位置は、鉄骨梁の設計用モーメント分布に応じて設定する。図4に示すように、鉄骨梁1におけるスチフナ51,52が設けられている部分の端部71(補剛端部)の設計用モーメントM´に対して、鉄骨梁1におけるスチフナ51,52が設けられていない部分の梁断面の局部座屈限界耐力Mが上回ることを確認する。ここで、局部座屈限界耐力は、「日本建築学会:鋼構造限界状態設計指針」に基づき算定する。薄肉化したウェブ4について着目すると、局部座屈限界耐力は、下式(5)−(7)を用いて算定する。
(Examination of the length dimension and installation position of the stiffener)
The length dimension (stiffening length le, see FIG. 1) and the installation position where the stiffeners 51 and 52 are provided are set according to the design moment distribution of the steel beam. As shown in FIG. 4, the stiffener for the design for the moment M'D end 71 of the portion stiffener 51 and 52 steel beam 1 is provided (HoTsuyoshitan unit), the steel beam 1 51 to verify that the local buckling limit strength M c of the beam cross section of the portion not provided above. Here, the local buckling limit yield strength is calculated based on "Architectural Institute of Japan: Steel Structure Limit State Design Guideline". Focusing on the thinned web 4, the local buckling limit proof stress is calculated using the following equations (5)-(7).

Figure 2021183782
Figure 2021183782

(スチフナの必要剛性の検討)
スチフナの必要剛性は、「日本建築学会:鋼構造設計規準」に基づき検討する。スチフナの断面2次半径i(ウェブ面を主軸として算定)が、下式(8)−(12)を用いて算定した値以上であることを確認する。
(Examination of required rigidity of stiffener)
The required rigidity of the stiffener will be examined based on "Architectural Institute of Japan: Steel Structure Design Standards". Confirm that the geometrical moment of inertia i (calculated with the web surface as the main axis) of the stiffener is equal to or greater than the value calculated using the following equations (8)-(12).

Figure 2021183782
Figure 2021183782

(ウェブのせん断余裕度の検討)
ウェブにおけるスチフナが設けられていない区間(以下、無補剛区間とする)におけるせん断座屈による崩壊についてせん断余裕度に着目して検討を行う。ここで、せん断余裕度とは、ウェブのせん断耐力Qと鉄骨梁の端部が全塑性モーメントに達するときの鉄骨梁に作用するせん断力Qpの比であるQ/Qとして表現できる。鉄骨梁の耐力上昇の影響を考慮し、ウェブの無補剛区間においてせん断余裕度が1.29以上を確保できるように設計する。ウェブのせん断耐力Qは、下式(13)を用いて算定する。図5に、せん断余裕度、塑性変形倍率および補剛長さの関係を示すグラフを示す。
(Examination of web shear margin)
We will examine the collapse due to shear buckling in the section where the stiffener is not provided on the web (hereinafter referred to as the non-stiffening section), focusing on the shear margin. Here, the shear margin can be expressed as Q w / Q p , which is the ratio of the shear strength Q w of the web to the shear force Q p acting on the steel beam when the end of the steel beam reaches the total plastic moment. Considering the effect of increased yield strength of steel beams, design so that a shear margin of 1.29 or more can be secured in the unstiffened section of the web. The shear strength Q w of the web is calculated using the following equation (13). FIG. 5 shows a graph showing the relationship between the shear margin, the plastic deformation magnification, and the stiffening length.

Figure 2021183782
Figure 2021183782

(スチフナと貫通孔の位置の検討)
上記のように設計されたスチフナは、貫通孔(貫通孔補強部材)と干渉しない場合には、上記のスチフナの補剛長さおよび設置位置を採用する。スチフナと貫通孔とが干渉する場合は、貫通孔の芯からウェブの長さ方向の一方側に向かう貫通孔補強部材の内径φの1.5倍の(1.5φ)長さ範囲でスチフナを省略することが可能である。図6に、スチフナ51,52の省略可能範囲53、スチフナ51,52の省略された部分511,521を示す。
(Examination of the position of the stiffener and the through hole)
The stiffener designed as described above adopts the stiffening length and installation position of the stiffener as described above when it does not interfere with the through hole (through hole reinforcing member). If the stiffener interferes with the through hole, use the stiffener within a length range of 1.5 times (1.5φ) the inner diameter φ of the through hole reinforcing member that goes from the core of the through hole to one side in the length direction of the web. It can be omitted. FIG. 6 shows the optional range 53 of the stiffeners 51 and 52 and the omitted portions 511, 521 of the stiffeners 51 and 52.

図7の終局状態の鉄骨梁を示す図、図8の無次元化した荷重変形関係を示すグラフ、図9のFEM解析結果から最大耐力の90%時の塑性変形倍率μ90%が4以上(FAランク相当)を確保できており、十分な塑性変形能力を有すると考えられる。ηは、累積塑性変形倍率を示している。 From the figure showing the steel beam in the final state of FIG. 7, the graph showing the dimensionless load deformation relationship of FIG. 8, and the FEM analysis result of FIG. 9, the plastic deformation magnification μ 90% at 90% of the maximum yield strength is 4 or more ( It is considered that it has a sufficient plastic deformation ability (equivalent to FA rank). η indicates the cumulative plastic deformation magnification.

次に、上記の本実施形態による鉄骨梁の設計方法の作用・効果について説明する。
上記の本実施形態による鉄骨梁の設計方法では、スチフナ51,52と貫通孔43とが干渉する場合は、貫通孔43の芯からウェブ4の長さ方向の一方側に向かう貫通孔補強部材6の内径φの1.5倍の(1.5φ)長さ範囲でスチフナ51,52を省略することが可能である。これにより、貫通孔43をスチフナ51,52と干渉しないように設けることができるとともに、貫通孔43のサイズの制限が限定されず設計の自由度を高めることができる。
Next, the operation and effect of the steel beam design method according to the above embodiment will be described.
In the method for designing a steel beam according to the present embodiment, when the stiffeners 51 and 52 and the through hole 43 interfere with each other, the through hole reinforcing member 6 is directed from the core of the through hole 43 to one side in the length direction of the web 4. It is possible to omit the stiffeners 51 and 52 within a length range of 1.5 times the inner diameter φ of (1.5φ). As a result, the through hole 43 can be provided so as not to interfere with the stiffeners 51 and 52, and the size of the through hole 43 is not limited, and the degree of freedom in design can be increased.

本実施形態による鉄骨梁の設計方法の効果を確認する実験を行った。
実験では、図10に示す試験体No.C−1、試験体No.C−3、試験体No.D−1、試験体No.D−2の計4体の試験体を用いた。図11−14に示すように、4つの試験体は、それぞれ同じH形鋼を使用しており、ウェブ4の片側に上下2つのスチフナ51,52が接合され、それぞれ貫通孔43が形成されている。試験体No.C−1および試験体No.C−3には、鉄骨梁の長さ方向に間隔をあけて3つの貫通孔43が形成され。試験体No.D−1および試験体No.D−2には、鉄骨梁の長さ方向に間隔をあけて2つの貫通孔43が形成されている。4つの試験体は、それぞれ貫通孔43の縁部に貫通孔補強部材6が設けられている。
An experiment was conducted to confirm the effect of the steel beam design method according to this embodiment.
In the experiment, the test piece No. shown in FIG. C-1, Specimen No. C-3, test piece No. D-1, Specimen No. A total of 4 test pieces of D-2 were used. As shown in FIGS. 11-14, the four test pieces each use the same H-shaped steel, and two upper and lower stiffeners 51 and 52 are joined to one side of the web 4, and a through hole 43 is formed in each. There is. Specimen No. C-1 and test piece No. Three through holes 43 are formed in C-3 at intervals in the length direction of the steel beam. Specimen No. D-1 and test piece No. Two through holes 43 are formed in D-2 at intervals in the length direction of the steel frame beam. Each of the four test pieces is provided with a through hole reinforcing member 6 at the edge of the through hole 43.

図11に示す試験体No.C−1と図12に示す試験体No.C−3とは、梁長さ、貫通孔43の設置位置が互いに同じで、貫通孔補強部材6が異なっている。試験体No.C−1では、貫通孔補強部材6として日本ファブテック株式会社のEGリング(登録商標)を採用し、試験体No.C−2では、貫通孔補強部材6としてセンクシア株式会社のハイリング(登録商標)を採用している。
試験体No.C−1および試験体No.C−3は、いずれも梁長さが2112mmで、貫通孔補強部材6の内径が192mmである。
Specimen No. shown in FIG. C-1 and the test piece No. shown in FIG. The beam length and the installation position of the through hole 43 are the same as those of the C-3, and the through hole reinforcing member 6 is different. Specimen No. In C-1, the EG ring (registered trademark) of Nippon Fabtech Co., Ltd. is adopted as the through hole reinforcing member 6, and the test piece No. In C-2, Hiring (registered trademark) of Senxia Co., Ltd. is adopted as the through hole reinforcing member 6.
Specimen No. C-1 and test piece No. Each of C-3 has a beam length of 2112 mm and an inner diameter of the through hole reinforcing member 6 of 192 mm.

図13に示す試験体No.D−1と図14に示す試験体No.D−2とは、梁長さ、貫通孔補強部材6が互いに同じで、2つの貫通孔43の設置間隔が異なっている。試験体No.D−1および試験体No.D−2は、いずれも貫通孔補強部材6として日本ファブテック株式会社のEGリング(登録商標)を採用している。試験体No.D−1よりも試験体No.D−2の方が2つの貫通孔43の貫通孔の設置間隔が広く設定されている。貫通孔43の貫通孔の設置間隔は、試験体No.D1では720mm、試験体No.D−2では864mmである。
試験体No.D−1および試験体No.D−2は、いずれも梁長さが3312mmで、貫通孔補強部材6の内径が288mmである。
Specimen No. shown in FIG. D-1 and the test piece No. shown in FIG. The beam length and the through hole reinforcing member 6 are the same as those of D-2, and the installation intervals of the two through holes 43 are different. Specimen No. D-1 and test piece No. Both D-2 use the EG ring (registered trademark) of Nippon Fabtech Co., Ltd. as the through hole reinforcing member 6. Specimen No. Test piece No. than D-1. In D-2, the installation interval of the through holes of the two through holes 43 is set wider. The installation intervals of the through holes of the through holes 43 are set to the test piece No. In D1, 720 mm, test piece No. In D-2, it is 864 mm.
Specimen No. D-1 and test piece No. Each of D-2 has a beam length of 3312 mm and an inner diameter of the through hole reinforcing member 6 of 288 mm.

試験体への載荷は、図15に示すような漸増変位振幅繰り返し載荷とする。漸増変位振幅繰り返し載荷では既往の文献(建築研究所、日本鉄鋼連盟:鋼構造建築物の構造性能評価試験法に関する研究委員会報告書、2002.04)に示される載荷履歴を用い、θpを基準として増分変位を2θp、各振幅を2回繰り返すものとした。実験の制御では、θpの値を試験体パラメータごとに算定し実験に用いた。
図16に試験体No.C−1および試験体No.C−3の加力装置図81を示し、図17に試験体No.D−1および試験体No.D−2の加力装置図82を示す。加力は、2000kN串型ジャッキを用いて静的載荷を行う。荷重の計測は、ジャッキに取り付けたロードセルを用いる。4つの試験体それぞれの変形は、図18に示す試験体における位置の変位を変位計により計測する。試験体軸心の加力点における水平変位(d1、d2)、エンドプレートの水平変位(d3〜d6)および鉛直変位(d7〜d10)を計測する。
図19には、塑性変形能力の評価手法を示す。
The loading on the test piece shall be a gradual increase displacement amplitude repeated loading as shown in FIG. For repeated loading of gradual displacement amplitude, the loading history shown in the previous literature (Building Research Institute, Japan Iron and Steel Federation: Research Committee Report on Structural Performance Evaluation Test Method for Steel Structure Buildings, 2002.04) is used, and θp is used as a reference. The incremental displacement was set to 2θp, and each amplitude was repeated twice. In the control of the experiment, the value of θp was calculated for each test piece parameter and used in the experiment.
FIG. 16 shows the test piece No. C-1 and test piece No. The force device of C-3 is shown in FIG. 81, and FIG. 17 shows the test piece No. D-1 and test piece No. The force device FIG. 82 of D-2 is shown. The force is statically loaded using a 2000 kN skewer jack. A load cell attached to a jack is used to measure the load. For the deformation of each of the four test pieces, the displacement of the position in the test piece shown in FIG. 18 is measured by a displacement meter. Horizontal displacement (d1, d2), horizontal displacement (d3 to d6) and vertical displacement (d7 to d10) of the end plate at the force point of the test piece axis are measured.
FIG. 19 shows an evaluation method of plastic deformation ability.

図20および図21に実験結果における最大耐力、最大耐力時の塑性変形倍率、最大耐力の90%時の塑性変形倍率および累積塑性変形倍率をに示す。実験を行ったすべての試験体においてμ90%は、FAランク相当の鉄骨梁に求められる塑性変形倍率4以上を確保していることが確認できる。今回の実験結果から本実施形態による鉄骨梁の施工方法を用いることによる塑性変形能力の向上に対する有効性を示すことができた。 20 and 21 show the maximum proof stress, the plastic deformation ratio at the maximum proof stress, the plastic deformation ratio at 90% of the maximum proof stress, and the cumulative plastic deformation ratio in the experimental results. It can be confirmed that μ 90% of all the test specimens subjected to the experiment secures the plastic deformation magnification of 4 or more required for the steel beam corresponding to FA rank. From the results of this experiment, it was possible to show the effectiveness of using the steel beam construction method according to this embodiment for improving the plastic deformation ability.

試験体ごとの実験結果について説明する。
(試験体No.C−1)
図22−図25に示すように、試験体No.C−1は、4θまでは安定した履歴性状を示す。+6θの1サイクル目で鉄骨梁端部のフランジおよび、ウェブにおけるスチフナが設けられている区間(以下、スチフナ補剛区間)の局部座屈が顕著に確認され、耐力は低下した。終局時の変形性状は、ハンチ拡幅開始部におけるフランジの局部座屈およびウェブのスチフナ補剛区間のせん断型の局部座屈が確認された。
The experimental results for each test piece will be described.
(Test No. C-1)
As shown in FIGS. 22 to 25, the test piece No. C-1 shows stable history properties up to 4θ p. + 6θ p flanges and steel beam end in the first cycle, section stiffener in the web is provided (hereinafter, stiffener stiffening section) local buckling of confirmed significantly, yield strength decreased. As for the deformation properties at the end, local buckling of the flange at the start of haunch widening and shear type local buckling of the stiffener stiffening section of the web were confirmed.

(試験体No.C−3)
図26−図29に示すように、試験体No.C−3は、−4θの1サイクル目にスチフナ間でウェブの局部座屈が発生した。+4θの2サイクル目にスチフナ間のウェブの局部座屈の影響を受けて耐力低下が確認された。+6θの1サイクル目の載荷途中に局部座屈が進展し、耐力上昇が期待できないため+6θの1サイクル目の途中で載荷を終了した。
(Test No. C-3)
As shown in FIGS. 26-29, the test piece No. In C-3, local buckling of the web occurred between the stiffeners in the first cycle of -4θ p. + 4θ strength decreases under the influence of the web of local buckling between the stiffener to the second cycle of p has been confirmed. + 6θ progress is local buckling in the middle loading of the first cycle of p, strength increase has finished loading in the middle of the first cycle of the order that can not be expected + 6θ p.

(試験体No.D−1)
図30−図33に示すように、試験体No.D−1は、+4θの2サイクル目で鉄骨梁端部のフランジの局部座屈に伴う耐力低下が発生した。このとき、全体座屈モードの影響による鉄骨梁のねじれも確認された。+6θの1サイクル目の2θを超えたところで全体座屈モードが顕著に表れ、貫通孔補強付近のフランジの変形が急速に進展したため+6θの1サイクル目の途中で載荷を終了した。
(Test No. D-1)
As shown in FIGS. 30-33, the test piece No. In the second cycle of +4 θ p , the yield strength of D-1 decreased due to the local buckling of the flange at the end of the steel frame beam. At this time, the twist of the steel beam due to the influence of the overall buckling mode was also confirmed. + 6θ p overall buckling mode beyond the first cycle of 2 [Theta] p of remarkably appears, the deformation of the flange near the through-hole reinforcement has finished loading in the middle of the first cycle of rapidly because of the progress + 6θ p.

(試験体No.D−2)
図34−図37に示すように、試験体No.D−2は、4θの1サイクル目で鉄骨梁端側の貫通孔補強部材付近のフランジに局部座屈が発生した。4θの2サイクル目で鉄骨梁端側の貫通孔補強部材付近のフランジの局部座屈に伴う耐力低下が発生した。+6θの1サイクル目の載荷途中に鉄骨梁端側の貫通孔補強部材付近のフランジとスチフナ補剛区間のウェブの局部座屈が急速に進展し、耐力上昇も期待できないため+6θの1サイクル目の途中で載荷を終了した。
(Test No. D-2)
As shown in FIGS. 34-37, the test piece No. In D-2, local buckling occurred in the flange near the through hole reinforcing member on the end side of the steel frame beam in the first cycle of 4θ p. 4θ strength reduction due to local buckling of the flange around the through-hole reinforcing members steel beam end in the second cycle of p occurs. During the first cycle of + 6θ p , the local buckling of the flange near the through hole reinforcement member on the steel beam end side and the web of the stiffener stiffening section rapidly progresses, and the bearing capacity cannot be expected to increase. Therefore, one cycle of + 6θ p. I finished loading in the middle of my eyes.

以上、本発明による鉄骨梁の設計方法の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記の実施形態では、ウェブ4の片側のみにスチフナ51,52が設けられているが、ウェブ4の両側にスチフナ51,52が設けられていてもよい。また、スチフナ51,52が設けられる位置や向き、スチフナ51,52の数は適宜設定されてよい。
上記の実施形態では、ウェブ4の片側のみに貫通孔補強部材6が設けられているが、ウェブ4の両側に貫通孔補強部材6が設けられていてもよい。
Although the embodiment of the steel beam design method according to the present invention has been described above, the present invention is not limited to the above embodiment and can be appropriately modified without departing from the spirit of the present invention.
For example, in the above embodiment, the stiffeners 51 and 52 are provided on only one side of the web 4, but the stiffeners 51 and 52 may be provided on both sides of the web 4. Further, the position and orientation in which the stiffeners 51 and 52 are provided and the number of stiffeners 51 and 52 may be appropriately set.
In the above embodiment, the through hole reinforcing member 6 is provided only on one side of the web 4, but the through hole reinforcing member 6 may be provided on both sides of the web 4.

上記の実施形態では、ウェブ4の座屈を防止するための第1補強部材としてスチフナ51,52が設けられているが、スチフナ51,52以外の部材が設けられていてもよい。 In the above embodiment, the stiffeners 51 and 52 are provided as the first reinforcing member for preventing the web 4 from buckling, but members other than the stiffeners 51 and 52 may be provided.

1 鉄骨梁
1a 端部
4 ウェブ
5 貫通孔補強部材(第2補強部材)
4a 端部
41 端部近傍
43 貫通孔
51,52 スチフナ(第1補強部材)
1 Steel beam 1a End 4 Web 5 Through hole reinforcement member (second reinforcement member)
4a End 41 Near the end 43 Through holes 51, 52 Stiffener (first reinforcing member)

Claims (1)

ウェブの長さ方向の端部近傍に、前記ウェブを厚さ方向に貫通する貫通孔が形成され、
前記ウェブの座屈を防止する第1補強部材と、
前記貫通孔による前記ウェブの耐力低下を防止する第2補強部材と、が設けられ、
前記第1補強部材は、前記ウェブの長さ方向に延び、前記ウェブの長さ方向の端部近傍かつ前記貫通孔よりも前記ウェブの長さ方向の端部側における前記ウェブの高さ方向の中間部に接合され、
前記第2補強部材は、リング状に形成され、前記貫通孔の縁部に沿って接合された鉄骨梁の設計方法において、
前記ウェブにおける前記第1補強部材の上側の等価幅厚比および前記第1補強部材の下側の等価幅厚比それぞれが、必要となる前記ウェブの幅厚比の条件を満たし、
前記鉄骨梁における前記第1補強部材が設けられる部分の設計用モーメントが、前記鉄骨梁における前記第1補強部材が設けられない部分の局部座屈限界耐力よりも大きくなるように前記第1補強部材の長さ寸法および前記第1補強部材を設置する範囲を設定し、
前記ウェブにおける前記第1補強部材が設けられない部分のせん断余裕度が1.29以上となるように設計し、
前記貫通孔の芯から前記ウェブの長さ方向の端部側に向かう前記第2補強部材の内径寸法の1.5倍の長さ範囲において、前記第1補強部材の設置を部分的に省略可能に構成されていることを特徴とする鉄骨梁の設計方法。
A through hole that penetrates the web in the thickness direction is formed near the end in the length direction of the web.
The first reinforcing member for preventing buckling of the web and
A second reinforcing member is provided to prevent the web from reducing its proof stress due to the through hole.
The first reinforcing member extends in the length direction of the web, and is in the height direction of the web in the vicinity of the end portion in the length direction of the web and on the end side in the length direction of the web with respect to the through hole. Joined in the middle,
In the method for designing a steel beam, the second reinforcing member is formed in a ring shape and joined along the edge of the through hole.
Each of the equivalent width-thickness ratio on the upper side of the first reinforcing member and the equivalent width-thickness ratio on the lower side of the first reinforcing member in the web satisfies the required width-thickness ratio of the web.
The first reinforcing member so that the design moment of the portion of the steel beam where the first reinforcing member is provided is larger than the local buckling limit strength of the portion of the steel beam where the first reinforcing member is not provided. And set the range to install the first reinforcing member.
Designed so that the shear margin of the portion of the web where the first reinforcing member is not provided is 1.29 or more.
Installation of the first reinforcing member can be partially omitted in a length range of 1.5 times the inner diameter of the second reinforcing member from the core of the through hole toward the end side in the length direction of the web. A method of designing a steel beam, which is characterized by being configured in.
JP2020089631A 2020-05-22 2020-05-22 Steel beam design method Active JP7423419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089631A JP7423419B2 (en) 2020-05-22 2020-05-22 Steel beam design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089631A JP7423419B2 (en) 2020-05-22 2020-05-22 Steel beam design method

Publications (2)

Publication Number Publication Date
JP2021183782A true JP2021183782A (en) 2021-12-02
JP7423419B2 JP7423419B2 (en) 2024-01-29

Family

ID=78767200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089631A Active JP7423419B2 (en) 2020-05-22 2020-05-22 Steel beam design method

Country Status (1)

Country Link
JP (1) JP7423419B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271450A (en) 2000-03-27 2001-10-05 Taisei Corp Beam with auxiliary flange
JP5229799B2 (en) 2008-08-23 2013-07-03 岡部株式会社 Method and system for supporting reinforcement design of steel beam through hole
JP6389670B2 (en) 2014-07-16 2018-09-12 株式会社竹中工務店 Member end structure
JP6715203B2 (en) 2017-03-22 2020-07-01 センクシア株式会社 Beam reinforcement structure
JP6589922B2 (en) 2017-03-31 2019-10-16 Jfeスチール株式会社 Beam reinforcement structure and beam reinforcement method
JP7207982B2 (en) 2018-12-10 2023-01-18 清水建設株式会社 Steel beams and how to design steel beams

Also Published As

Publication number Publication date
JP7423419B2 (en) 2024-01-29

Similar Documents

Publication Publication Date Title
Zhao et al. Local buckling behavior of steel angle core members in buckling-restrained braces: Cyclic tests, theoretical analysis, and design recommendations
Ricles et al. Development of improved welded moment connections for earthquake-resistant design
JP7196886B2 (en) Steel beam with floor slab
Najafgholipour et al. An alternative detail for continuity plates in steel beam to box-column moment-connections
Jin et al. Shear Capacity of Precast Prestressed Concrete Beam-Column Joint Assembled by Unbonded Tendon.
Oh et al. Seismic performance evaluation of Korean column-tree steel moment connections
JP6065690B2 (en) Beam end joint structure
JP2021183782A (en) Design method of steel beam
Yan et al. Cyclic tests on concrete-filled composite plate shear walls with enhanced C-channels
JP6681277B2 (en) Joint strength evaluation method of beam-column joint structure, method of designing beam-column joint structure, and beam-column joint structure
JP2019007172A (en) Column beam joining structure
Kodera et al. Characteristics of an ultra-high-performance-concrete (UHPC) against impact loading Part 1: Basic characteristics test and evaluation of bearing force of UHPCs
JP6996544B2 (en) Seismic retrofitting method for existing structures
Regec et al. Test of a fully-welded beam-to-column connection
Hoffman et al. Analysis of stress distribution and failure behavior of cellular beams
Kanno et al. Strength of CFT connection stiffened with T-shaped interior diaphragms
JP4984908B2 (en) Reinforced structure of concrete beam with opening, method for manufacturing concrete beam with opening, beam structure, steel pipe for opening reinforcement
Chusilp et al. Cyclic shear behaviour of steel box girders: experiment and analysis
JP6936033B2 (en) Floor structure opening width setting method and floor structure
Yoshino et al. Rotational Stiffening Performance of Roof Folded Plates in Torsion Tests and the Stiffening Effect of Roof Folded Plates on the Lateral Buckling of H Beams in Steel Structures
Bozkurt Developing replaceable members for steel lateral load resisting systems
JP7380230B2 (en) Beam opening reinforcement method and beam structure
JP7351271B2 (en) Steel beams, column-beam joint structures, and structures containing them
Al-Faten et al. Effect of composite action on castellated steel beam under combined bending and torsion moments
Oh et al. Experimental verification of seismic performance of built-up beam-to-column connections with ductile detail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R150 Certificate of patent or registration of utility model

Ref document number: 7423419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150