JP2021181209A - Method of manufacturing laminated molding object and laminated molding system - Google Patents

Method of manufacturing laminated molding object and laminated molding system Download PDF

Info

Publication number
JP2021181209A
JP2021181209A JP2020088115A JP2020088115A JP2021181209A JP 2021181209 A JP2021181209 A JP 2021181209A JP 2020088115 A JP2020088115 A JP 2020088115A JP 2020088115 A JP2020088115 A JP 2020088115A JP 2021181209 A JP2021181209 A JP 2021181209A
Authority
JP
Japan
Prior art keywords
laminated
molding
laminated model
model
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020088115A
Other languages
Japanese (ja)
Inventor
貴徳 今城
Takanori Imashiro
碩 黄
Shuo Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020088115A priority Critical patent/JP2021181209A/en
Publication of JP2021181209A publication Critical patent/JP2021181209A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method and a system for manufacturing a laminated molding object capable of manufacturing a high-quality laminated molding object having a smooth outer surface.SOLUTION: There is provided a method for manufacturing a laminated molding object W by stacking weld beads B obtained by melting and solidifying a filler material M. The method includes a placement process in which a forming member 45 is placed on a base plate 51, and a forming process in which a laminated molding object W is formed by laminating weld beads B on the base plate 51 along the forming member 45 while contacting the forming member 45. As the forming member 45, a ceramic member based on zirconium oxide is used.SELECTED DRAWING: Figure 2B

Description

本発明は、積層造形物の製造方法及び積層造形システムに関する。 The present invention relates to a method for manufacturing a laminated model and a laminated model system.

近年、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで造形物を作製する。 In recent years, there has been an increasing need for modeling using a 3D printer as a means of production, and research and development are being promoted toward the practical application of modeling using metal materials. A 3D printer for modeling a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire, and laminates the molten metal to produce a model.

このような造形技術として、特許文献1には、モールド材に沿ってビードを形成することにより、造形物を造形するビードの形状を整えながら積層させて造形することが開示されている。 As such a modeling technique, Patent Document 1 discloses that by forming beads along a molding material, the beads for modeling a modeled object are laminated while being shaped.

中国特許出願公開第107803568号明細書Chinese Patent Application Publication No. 107803568

ところで、ビードを積層させて造形物を造形する積層造形では、精密な形状の造形が困難である。このため、造形物の造形後に、精度が必要な箇所を機械加工によって形成することとなり、手間を要する。 By the way, in the laminated modeling in which beads are laminated to form a modeled object, it is difficult to form a precise shape. For this reason, after the modeled object is modeled, a portion requiring precision is formed by machining, which is troublesome.

特許文献1に記載の造形技術によれば、モールド材に沿って形成した面の精度をある程度高めることができる。しかし、単に、モールド材に沿ってビードを形成するだけでは、モールド材にビードが貼り付いたり、モールド材が熱によって損傷したりするため、成形面を平滑に形成するには限度があった。 According to the modeling technique described in Patent Document 1, the accuracy of the surface formed along the mold material can be improved to some extent. However, simply forming a bead along the mold material causes the bead to stick to the mold material or the mold material to be damaged by heat, so that there is a limit to forming a smooth molded surface.

本発明の目的は、平滑な外面を有する積層造形物を製造することが可能な積層造形物の製造方法及び積層造形システムを提供することにある。 An object of the present invention is to provide a method for manufacturing a laminated model and a laminated model system capable of producing a laminated model having a smooth outer surface.

本発明は下記構成からなる。
(1) 溶加材を溶融及び凝固させた溶着ビードを積層させて積層造形物を造形する積層造形物の製造方法であって、
成形部材を母材上に配置させる配置工程と、
前記成形部材に接触させながら前記成形部材に沿って前記溶着ビードを前記母材上に積層させて積層造形物を造形する造形工程と、
を含み、
前記成形部材として、酸化ジルコニウムを基材とするセラミックス製の部材を用いる、
積層造形物の製造方法。
(2) 溶加材を溶融及び凝固させた溶着ビードを積層させて積層造形物を造形する積層造形装置と、前記積層造形物の外面の少なくとも一部を成形する成形装置と、を備えた積層造形システムであって、
前記積層造形装置は、
前記溶着ビードを形成するトーチと、
前記トーチを移動させて溶着ビードを積層させる移動機構と、
を有し、
前記成形装置は、
酸化ジルコニウムを基材とするセラミック製の成形部材と、
前記成形部材を移動させて前記溶着ビードの積層方向に沿う位置に配置させ、積層される前記溶着ビードに前記成形部材を接触させる移動機構と、
を有する、
積層造形システム。
The present invention has the following configuration.
(1) A method for manufacturing a laminated model, in which welded beads obtained by melting and solidifying a filler metal are laminated to form a laminated model.
The placement process for arranging the molded members on the base metal,
A molding step of laminating the welded bead on the base material along the molding member while in contact with the molding member to form a laminated model.
Including
As the molding member, a ceramic member having zirconium oxide as a base material is used.
Manufacturing method of laminated model.
(2) Lamination provided with a laminated molding device for forming a laminated model by laminating welded beads obtained by melting and solidifying a filler metal, and a molding device for forming at least a part of the outer surface of the laminated model. It ’s a modeling system,
The laminated modeling device is
With the torch forming the welded bead,
A moving mechanism that moves the torch to stack welded beads,
Have,
The molding apparatus is
Ceramic molding members based on zirconium oxide,
A moving mechanism that moves the molded member so that it is arranged at a position along the laminating direction of the welded bead and brings the molded member into contact with the welded bead to be laminated.
Have,
Laminated modeling system.

そこで、本発明は、平滑な外面を有する高品質な積層造形物を製造することが可能な積層造形物の製造方法及び積層造形システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a laminated model and a laminated model system capable of producing a high-quality laminated model having a smooth outer surface.

本発明の実施形態に係る製造システムの模式的な概略構成図である。It is a schematic schematic block diagram of the manufacturing system which concerns on embodiment of this invention. 積層造形物の製造工程を示す製造途中の積層造形物の概略側面図である。It is a schematic side view of the laminated model in the process of manufacturing which shows the manufacturing process of a laminated model. 積層造形物の製造工程を示す製造途中の積層造形物の概略側面図である。It is a schematic side view of the laminated model in the process of manufacturing which shows the manufacturing process of a laminated model. 積層造形物の製造工程を示す製造途中の積層造形物の概略側面図である。It is a schematic side view of the laminated model in the process of manufacturing which shows the manufacturing process of a laminated model. 積層造形物の製造工程を示す製造途中の積層造形物の概略側面図である。It is a schematic side view of the laminated model in the process of manufacturing which shows the manufacturing process of a laminated model. 溶着ビードを積層させた積層造形物の表面粗さを示すグラフであって、(A)は成形部材を用いて造形した積層造形物の表面の凹凸状態を示すグラフ、(B)は成形部材を用いずに造形した積層造形物の表面の凹凸状態を示すグラフである。It is a graph which shows the surface roughness of the laminated structure which laminated the welding bead, (A) is the graph which shows the uneven state of the surface of the laminated model which was molded using the molding member, (B) is the molding member. It is a graph which shows the uneven state of the surface of the laminated model which was modeled without using. 溶着ビードを積層させた積層造形物の画像であって、(A)は成形部材を用いて造形した積層造形物の画像、(B)は成形部材を用いずに造形した積層造形物の画像である。It is an image of a laminated model in which weld beads are laminated, (A) is an image of a laminated model formed by using a molding member, and (B) is an image of a laminated model formed without using a molding member. be. 表面に離型剤を塗布した砂型からなる板材を当て板として用いて造形した積層造形物の画像である。It is an image of a laminated model formed by using a plate material made of a sand mold having a mold release agent coated on the surface as a backing plate. アルミナ及びシリカを主に含有するセラミック製の板材を当て板として用いて造形した積層造形物の画像である。It is an image of a laminated model formed by using a ceramic plate material mainly containing alumina and silica as a backing plate.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は、本発明の実施形態に係る製造システムの模式的な概略構成図である。
図1に示すように、本構成の積層造形システム100は、積層造形装置11と、成形装置12と、積層造形装置11及び成形装置12を統括制御するコントローラ13と、電源装置15と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic schematic configuration diagram of a manufacturing system according to an embodiment of the present invention.
As shown in FIG. 1, the laminated modeling system 100 having this configuration includes a laminated modeling device 11, a molding device 12, a controller 13 that collectively controls the laminated modeling device 11 and the molding device 12, and a power supply device 15. ..

積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部21とを有する。トーチ17は、溶加材Mを先端から突出した状態に保持する。 The laminated modeling device 11 includes a welding robot 19 having a torch 17 on the tip shaft, and a filler material supply unit 21 that supplies a filler metal (welding wire) M to the torch 17. The torch 17 holds the filler metal M in a state of protruding from the tip.

溶接ロボット19は、多関節ロボットであり、ロボットアームの先端軸に取り付けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。 The welding robot 19 is an articulated robot, and the filler metal M is continuously supplied to the torch 17 attached to the tip shaft of the robot arm. The position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。 The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the laminated model to be manufactured. NS.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート51上に溶加材Mの溶融凝固体である線状の溶着ビードBが形成され、この溶着ビードBからなる積層造形物Wが造形される。 For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip. The torch 17 generates an arc from the tip of the filler metal M in a shield gas atmosphere while holding the filler metal M. The filler metal M is fed from the filler metal supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 17, a linear welded bead B that is a molten solidified body of the filler metal M is formed on the base plate 51. A laminated model W made of a welded bead B is formed.

なお、溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、積層造形物Wの更なる品質向上に寄与できる。 The heat source for melting the filler metal M is not limited to the above-mentioned arc. For example, a heat source by another method such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted. When heating by an electron beam or a laser, the heating amount can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the laminated model W can be further improved.

溶加材Mは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。 As the filler metal M, any commercially available welding wire can be used. For example, it is defined by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high tension steel and low temperature steel, arc welding flux containing wire for mild steel, high tension steel and low temperature steel (JIS Z 3313) and the like. Wire can be used.

成形装置12は、成形ロボット41を備えている。成形ロボット41は、溶接ロボット19と同様に、多関節ロボットであり、先端アーム43の先端部に、成形部材45を備える。成形ロボット41は、コントローラ13により、成形部材45が任意の姿勢を取り得るように、3次元的に移動可能となっている。 The molding apparatus 12 includes a molding robot 41. Like the welding robot 19, the molding robot 41 is an articulated robot, and a molding member 45 is provided at the tip of the tip arm 43. The molding robot 41 is three-dimensionally movable by the controller 13 so that the molding member 45 can take an arbitrary posture.

成形ロボット41は、積層造形装置11の溶接ロボット19によってベースプレート51に溶着ビードBを積層する際に、成形部材45をベースプレート51上に配置させる。 The forming robot 41 arranges the forming member 45 on the base plate 51 when the welding bead B is laminated on the base plate 51 by the welding robot 19 of the laminating modeling apparatus 11.

この成形装置12の成形ロボット41に保持された成形部材45は、酸化ジルコニウム(ジルコニア:ZrO)を基材とするセラミックス(ジルコニアセラミックス)製の板材である。ジルコニアセラミックスは、機械的強度、破壊靭性、耐摩耗性及び絶縁性に優れたセラミックスである。具体的には、この成形部材45は、酸化ジルコニウム(ZrO)を主成分としたセラミックスの板材であり、全成分のうちの不可避不純物などの残部を除いた各成分の比率は、酸化ジルコニウムが95重量%、酸化カルシウムが4.2重量%とされている。 The molding member 45 held by the molding robot 41 of the molding apparatus 12 is a plate material made of ceramics (zirconia ceramics) based on zirconium oxide (zirconia: ZrO 2). Zirconia ceramics are ceramics having excellent mechanical strength, fracture toughness, wear resistance and insulating properties. Specifically, this molding member 45 is a ceramic plate material containing zirconium oxide (ZrO 2 ) as a main component, and the ratio of each component excluding the balance such as unavoidable impurities among all the components is that zirconium oxide is used. It is 95% by weight and 4.2% by weight of calcium oxide.

コントローラ13は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。 The controller 13 has a CAD / CAM unit 31, an orbit calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.

CAD/CAM部31は、作製しようとする積層造形物Wの形状データを作成した後、複数の層に分割して各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データに基づいてトーチ17の移動軌跡を求める。また、軌道演算部33は、形状データに基づいて成形部材45を配置すべき位置情報を求める。記憶部35は、積層造形物Wの形状データ、生成された層形状データ、トーチ17の移動軌跡及び成形部材45の位置情報等のデータを記憶する。 The CAD / CAM unit 31 creates shape data of the laminated model W to be manufactured, and then divides the data into a plurality of layers to generate layer shape data representing the shape of each layer. The trajectory calculation unit 33 obtains the movement trajectory of the torch 17 based on the generated layer shape data. Further, the trajectory calculation unit 33 obtains position information on which the molding member 45 should be arranged based on the shape data. The storage unit 35 stores data such as shape data of the laminated model W, generated layer shape data, movement locus of the torch 17, and position information of the molding member 45.

制御部37は、記憶部35に記憶された層形状データやトーチ17の移動軌跡に基づく駆動プログラムを実行して、溶接ロボット19を駆動する。つまり、溶接ロボット19は、コントローラ13からの指令により、軌道演算部33で生成したトーチ17の移動軌跡に基づき、溶加材Mをアークで溶融させながらトーチ17を移動させ、ベースプレート51上に溶着ビードBを形成する。また、制御部37は、記憶部35に記憶された位置情報に基づく駆動プログラムを実行して、成形ロボット41を駆動する。これにより、成形ロボット41の先端アーム43に設けられた成形部材45がベースプレート51における位置情報に基づいた位置に配置される。 The control unit 37 drives the welding robot 19 by executing a drive program based on the layer shape data stored in the storage unit 35 and the movement locus of the torch 17. That is, the welding robot 19 moves the torch 17 while melting the filler metal M with an arc based on the movement locus of the torch 17 generated by the trajectory calculation unit 33 in response to a command from the controller 13, and welds it onto the base plate 51. Form bead B. Further, the control unit 37 executes a drive program based on the position information stored in the storage unit 35 to drive the molding robot 41. As a result, the molding member 45 provided on the tip arm 43 of the molding robot 41 is arranged at a position based on the position information on the base plate 51.

なお、ベースプレート51は、鋼板等の金属板からなり、基本的には積層造形物Wの底面(最下層の面)より大きいものが使用される。なお、ベースプレート51は、板状に限らず、ブロック体や棒状等、他の形状のベースであってもよい。 The base plate 51 is made of a metal plate such as a steel plate, and is basically larger than the bottom surface (bottom layer surface) of the laminated model W. The base plate 51 is not limited to a plate shape, and may be a base having another shape such as a block body or a rod shape.

次に、上記の積層造形システム100による積層造形物の製造方法について説明する。
図2A〜図2Dは、積層造形物の製造工程を示す製造途中の積層造形物の概略側面図である。
Next, a method of manufacturing a laminated model by the above-mentioned laminated modeling system 100 will be described.
2A to 2D are schematic side views of the laminated model in the process of manufacturing showing the manufacturing process of the laminated model.

(配置工程)
図2Aに示すように、成形装置12の成形部材45を、成形ロボット41の駆動により移動させ、ベースプレート51上に立設させた状態に配置させる。
(Placement process)
As shown in FIG. 2A, the molding member 45 of the molding apparatus 12 is moved by the drive of the molding robot 41 and placed in an upright state on the base plate 51.

(造形工程)
図2Bに示すように、積層造形装置11のトーチ17を溶接ロボット19の駆動により移動させながら溶加材Mを溶融させる。そして、溶融した溶加材Mからなる溶着ビードBをベースプレート51上に供給し、ベースプレート51上に溶着ビードBを積層させる。
(Modeling process)
As shown in FIG. 2B, the filler metal M is melted while the torch 17 of the laminated modeling apparatus 11 is moved by the drive of the welding robot 19. Then, the welded bead B made of the molten filler M is supplied onto the base plate 51, and the welded bead B is laminated on the base plate 51.

このとき、溶着ビードBを、ベースプレート51上に立設させた成形部材45に接触させながら、この成形部材45に沿って積層させる。そして、図2Cに示すように、溶着ビードBの積層を複数列にわたって行う。その後、溶着ビードBを目標数の列にわたって積層したら、図2Dに示すように、成形装置12の成形ロボット4を駆動させ、成形部材45をベースプレート51上から退避させる。なお、成形部材45は、一列目の溶着ビードBの積層後にベースプレート51上から退避させてもよい。 At this time, the welded bead B is laminated along the molding member 45 while being in contact with the molding member 45 erected on the base plate 51. Then, as shown in FIG. 2C, the welded beads B are laminated over a plurality of rows. After that, when the welded beads B are laminated over the target number of rows, the molding robot 4 of the molding apparatus 12 is driven to retract the molding member 45 from the base plate 51 as shown in FIG. 2D. The molding member 45 may be retracted from the base plate 51 after laminating the welded beads B in the first row.

上記の工程を行うことにより、ベースプレート51上に、溶着ビードBを積層させた積層造形物Wが造形される。 By performing the above steps, the laminated model W in which the welded beads B are laminated is formed on the base plate 51.

以上、説明したように、本実施形態に係る積層造形物の製造方法及び積層造形システムによれば、溶着ビードBを積層させて積層造形物Wを造形する際に溶着ビードBを成形部材45に接触させながら成形部材45に沿って積層させる。これにより、積層造形物Wは、成形部材45に接触させた面が成形部材45に沿って平滑に形成される。 As described above, according to the method for manufacturing a laminated molded product and the laminated molding system according to the present embodiment, the welded bead B is attached to the molding member 45 when the welded bead B is laminated to form the laminated molded product W. It is laminated along the molding member 45 while being in contact with each other. As a result, in the laminated model W, the surface in contact with the molded member 45 is formed smoothly along the molded member 45.

ここで、成形部材45は、酸化ジルコニウムを基材とするセラミック製であることから、溶着ビードBの貼り付きや溶着ビードBの熱による損傷を抑えることができる。これにより、溶着ビードBを積層してなる積層造形物Wの外面を平滑に成形することができ、さらに、積層させた溶着ビードB間の凹凸の発生も抑えることができる。したがって、平滑な外面を有する高品質な積層造形物Wを製造することができる。 Here, since the molding member 45 is made of ceramic using zirconium oxide as a base material, sticking of the welded bead B and damage due to heat of the welded bead B can be suppressed. As a result, the outer surface of the laminated model W formed by laminating the welded beads B can be smoothly formed, and the occurrence of unevenness between the laminated welded beads B can be suppressed. Therefore, it is possible to manufacture a high-quality laminated model W having a smooth outer surface.

本実施形態に係るジルコニアを基材とするセラミック製の成形部材を用いて溶着ビードBを積層した積層造形物WAと、成形部材を用いずに溶着ビードBを積層した積層造形物WBのそれぞれの表面粗さの測定及び表面状態の観察を行った。溶着ビードBは、同一の溶接条件(溶接速度及び溶接電流)によって形成して積層させた。なお、表面粗さとしては、表面の凹凸最大差Rz及び算術平均粗さRaを求めた。算術平均粗さRaは、凹凸を平均にならした値であり、具体的には、積層造形物の表面における凸部(山)の面積の和と凹部(谷)の面積の和とが同一となる中心線を求め、この中心線で凹部(谷)を折り返した図形の面積を長さ(積層造形物の高さ方向の寸法)で割った値である。 Each of the laminated molded product WA in which the welded beads B are laminated using a ceramic molding member having a zirconia as a base material and the laminated molded product WB in which the welded beads B are laminated without using the molding member according to the present embodiment. The surface roughness was measured and the surface condition was observed. The welded beads B were formed and laminated under the same welding conditions (welding speed and welding current). As the surface roughness, the maximum difference Rz of the unevenness of the surface and the arithmetic average roughness Ra were obtained. The arithmetic average roughness Ra is a value obtained by averaging the unevenness, and specifically, the sum of the areas of the convex portions (mountains) and the sum of the areas of the concave portions (valleys) on the surface of the laminated model are the same. It is a value obtained by obtaining the center line, and dividing the area of the figure in which the recess (valley) is folded back at this center line by the length (dimension in the height direction of the laminated model).

図3は、溶着ビードを積層させた積層造形物の表面粗さを示すグラフであって、(A)は成形部材を用いて造形した積層造形物の表面の凹凸状態を示すグラフ、(B)は成形部材を用いずに造形した積層造形物の表面の凹凸状態を示すグラフである。図4は、溶着ビードを積層させた積層造形物の画像であって、(A)は成形部材を用いて造形した積層造形物の画像、(B)は成形部材を用いずに造形した積層造形物の画像である。 FIG. 3 is a graph showing the surface roughness of a laminated model in which welded beads are laminated, and FIG. 3A is a graph showing the uneven state of the surface of the laminated model formed by using a molding member, (B). Is a graph showing the uneven state of the surface of a laminated model formed without using a molding member. FIG. 4 is an image of a laminated model in which welded beads are laminated, (A) is an image of a laminated model formed by using a molding member, and (B) is an image of a laminated model formed by using a molding member. It is an image of an object.

成形部材を用いて造形した積層造形物WAでは、図3の(A)に示すように、表面の位置が高さ方向に沿って均等となった。そして、この積層造形物WAでは、表面の凹凸の最大差Rzが0.100mm、算術平均粗さRaが0.016mmであり、しかも、高さ方向にわたる傾きも抑えられていた。また、図4の(A)に示すように、積層造形物WAの表面状態は、その外観も平滑であり、各溶着ビードBの継ぎ目も目立たないことが確認された。 In the laminated molded product WA formed by using the molded member, the positions of the surfaces became uniform along the height direction as shown in FIG. 3A. In this laminated model WA, the maximum difference Rz of the unevenness of the surface was 0.100 mm, the arithmetic average roughness Ra was 0.016 mm, and the inclination in the height direction was suppressed. Further, as shown in FIG. 4A, it was confirmed that the surface condition of the laminated model WA was smooth in appearance and the seams of each welded bead B were not conspicuous.

成形部材を用いずに造形した積層造形物WBでは、図3の(B)に示すように、表面の位置が高さ方向に沿って変動した。そして、この積層造形物WBでは、表面の凹凸の最大差Rzが0.671mm、算術平均粗さRaが0.120mmであり、しかも、高さ方向にわたって傾きが生じていることが確認された。また、図4の(B)に示すように、積層造形物WBの表面状態は、各溶着ビードBの継ぎ目が目立つ状態であった。 In the laminated molded product WB molded without using the molding member, the position of the surface fluctuated along the height direction as shown in FIG. 3 (B). Then, in this laminated model WB, it was confirmed that the maximum difference Rz of the unevenness on the surface was 0.671 mm, the arithmetic average roughness Ra was 0.120 mm, and the inclination occurred in the height direction. Further, as shown in FIG. 4B, the surface condition of the laminated model WB was such that the seams of the welded beads B were conspicuous.

このように、ジルコニアを基材とするセラミック製の成形部材を用いて造形した積層造形物WAは、成形部材を用いずに造形した積層造形物WBに比べ、表面の凹凸及び表面粗さを大幅に小さくすることが可能であることがわかった。 As described above, the laminated model WA formed by using the ceramic molding member using zirconia as a base material has significantly more surface irregularities and surface roughness than the laminated model WB formed without using the molding member. It turned out that it is possible to make it smaller.

次に、他の板状の部材を当て板として用い、この当て板に接触させながら溶着ビードBを積層した積層造形物WC,WDを造形し、それぞれの外観を観察した。積層造形物WCでは、表面に離型剤を塗布した砂型からなる板材を当て板として用い、積層造形物WDでは、アルミナ及びシリカを主に含有するセラミック製の板材を当て板として用いた。
図5は、表面に離型剤を塗布した砂型からなる板材を当て板として用いて造形した積層造形物の画像である。図6は、アルミナ及びシリカを主に含有するセラミック製の板材を当て板として用いて造形した積層造形物の画像である。
Next, using another plate-shaped member as a backing plate, laminated shaped objects WC and WD in which welded beads B were laminated while being in contact with the backing plate were formed, and their appearances were observed. In the laminated model WC, a plate material made of a sand mold coated with a mold release agent was used as a backing plate, and in the laminated model WD, a ceramic plate material mainly containing alumina and silica was used as a backing plate.
FIG. 5 is an image of a laminated model formed by using a plate material made of a sand mold having a mold release agent coated on the surface as a backing plate. FIG. 6 is an image of a laminated model formed by using a ceramic plate material mainly containing alumina and silica as a backing plate.

図5に示すように、表面に離型剤を塗布した砂型からなる板材を当て板として用いて造形した積層造形物WCでは、溶着ビードBの形成時にスパッタが多発し、当て板が損傷してしまい、当て板に沿って溶着ビードBを積層させることが困難であった。このため、造形された積層造形物WCの形が崩れてしまい、表面を平滑に形成することができなかった。 As shown in FIG. 5, in a laminated model WC formed by using a plate material made of a sand mold coated with a mold release agent on the surface as a backing plate, spatter frequently occurs during formation of the welded bead B, and the backing plate is damaged. Therefore, it was difficult to stack the welded beads B along the backing plate. For this reason, the shape of the laminated model WC that was modeled collapsed, and the surface could not be formed smoothly.

図6に示すように、アルミナ(Al)及びシリカ(SiO)を主に含有するセラミック製の板材を当て板として用いて造形した積層造形物WDでは、溶着ビードBを積層させることは可能であったが、溶着ビードBの積層途中に当て板の一部が溶融し、表面を平滑に形成することができなかった。 As shown in FIG. 6, in a laminated model WD formed by using a ceramic plate mainly containing alumina (Al 2 O 3 ) and silica (SiO 2) as a backing plate, a welded bead B is laminated. However, a part of the backing plate was melted during the laminating of the welded beads B, and the surface could not be formed smoothly.

上記の実施形態では、平滑面を有する板材からなる成形部材45を用いる場合を例示したが、成形部材45としては、板材に限らず、例えば、曲面を有するブロック材などの板材以外の部材でもよい。 In the above embodiment, the case where the molding member 45 made of a plate material having a smooth surface is used is exemplified, but the molding member 45 is not limited to the plate material, and may be a member other than the plate material such as a block material having a curved surface. ..

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the mutual combination of the configurations of the embodiments, the description of the specification, and the well-known technique. It is also a matter of the present invention to do so, and it is included in the scope of seeking protection.

以上の通り、本明細書には次の事項が開示されている。
(1) 溶加材を溶融及び凝固させた溶着ビードを積層させて積層造形物を造形する積層造形物の製造方法であって、
成形部材を母材上に配置させる配置工程と、
前記成形部材に接触させながら前記成形部材に沿って前記溶着ビードを前記母材上に積層させて積層造形物を造形する造形工程と、
を含み、
前記成形部材として、酸化ジルコニウムを基材とするセラミックス製の部材を用いる、
積層造形物の製造方法。
As described above, the following matters are disclosed in the present specification.
(1) A method for manufacturing a laminated model, in which welded beads obtained by melting and solidifying a filler metal are laminated to form a laminated model.
The placement process for arranging the molded members on the base metal,
A molding step of laminating the welded bead on the base material along the molding member while in contact with the molding member to form a laminated model.
Including
As the molding member, a ceramic member having zirconium oxide as a base material is used.
Manufacturing method of laminated model.

この積層造形物の製造方法によれば、溶着ビードを積層させて積層造形物を造形する際に溶着ビードを成形部材に接触させながら成形部材に沿って積層させる。これにより、積層造形物は、成形部材に接触させた面が成形部材に沿って平滑に形成される。
ここで、成形部材は、酸化ジルコニウムを基材とするセラミック製であることから、溶着ビードの貼り付きや溶着ビードの熱による損傷を抑えることができる。これにより、溶着ビードを積層してなる積層造形物の外面を平滑に成形することができ、さらに、積層させた溶着ビード間の凹凸の発生も抑えることができる。したがって、高品質な積層造形物を製造することができる。
According to this method for manufacturing a laminated model, when the welded beads are laminated to form a laminated model, the welded beads are laminated along the molded member while being in contact with the molded member. As a result, in the laminated model, the surface in contact with the molded member is smoothly formed along the molded member.
Here, since the molded member is made of ceramic using zirconium oxide as a base material, sticking of the welded bead and damage due to heat of the welded bead can be suppressed. As a result, the outer surface of the laminated model formed by laminating the welded beads can be smoothly formed, and the occurrence of unevenness between the laminated welded beads can be suppressed. Therefore, it is possible to manufacture a high-quality laminated model.

(2) 前記積層造形物の外面となる少なくとも一部に前記成形部材を接触させて前記積層造形物を造形する、(1)に記載の積層造形物の製造方法。 (2) The method for manufacturing a laminated model according to (1), wherein the molded member is brought into contact with at least a part of the outer surface of the laminated model to form the laminated model.

この積層造形物の製造方法によれば、造形した積層造形物における成形部材と接触した外面を平滑に形成することができる。これにより、平滑な外面を有する積層造形物を製造することができる。 According to this method for manufacturing a laminated model, the outer surface of the modeled laminated model in contact with the molding member can be formed smoothly. This makes it possible to manufacture a laminated model having a smooth outer surface.

(3) 溶加材を溶融及び凝固させた溶着ビードを積層させて積層造形物を造形する積層造形装置と、前記積層造形物の外面の少なくとも一部を成形する成形装置と、を備えた積層造形システムであって、
前記積層造形装置は、
前記溶着ビードを形成するトーチと、
前記トーチを移動させて溶着ビードを積層させる移動機構と、
を有し、
前記成形装置は、
酸化ジルコニウムを基材とするセラミック製の成形部材と、
前記成形部材を移動させて前記溶着ビードの積層方向に沿う位置に配置させ、積層される前記溶着ビードに前記成形部材を接触させる移動機構と、
を有する、
積層造形システム。
(3) Lamination provided with a laminated molding device for forming a laminated model by laminating welded beads obtained by melting and solidifying a filler metal, and a molding device for forming at least a part of the outer surface of the laminated model. It ’s a modeling system,
The laminated modeling device is
With the torch forming the welded bead,
A moving mechanism that moves the torch to stack welded beads,
Have,
The molding apparatus is
Ceramic molding members based on zirconium oxide,
A moving mechanism that moves the molded member so that it is arranged at a position along the laminating direction of the welded bead and brings the molded member into contact with the welded bead to be laminated.
Have,
Laminated modeling system.

この積層造形システムによれば、溶着ビードを積層させて積層造形物を造形する際に溶着ビードを成形部材に接触させながら成形部材に沿って積層させることができる。これにより、積層造形物の成形部材に接触させた面を成形部材に沿って平滑に形成することができる。また、成形部材は、酸化ジルコニウムを基材とするセラミック製であることから、溶着ビードの貼り付きや溶着ビードの熱による損傷を抑えることができる。これにより、溶着ビードを積層してなる積層造形物の外面を平滑に成形することができ、さらに、積層させた溶着ビード間の凹凸の発生も抑えることができる。したがって、高品質な積層造形物を製造することができる。 According to this laminated molding system, when the welded beads are laminated to form a laminated model, the welded beads can be laminated along the molded member while being in contact with the molded member. As a result, the surface of the laminated model in contact with the molded member can be smoothly formed along the molded member. Further, since the molded member is made of ceramic using zirconium oxide as a base material, sticking of the welded bead and damage due to heat of the welded bead can be suppressed. As a result, the outer surface of the laminated model formed by laminating the welded beads can be smoothly formed, and the occurrence of unevenness between the laminated welded beads can be suppressed. Therefore, it is possible to manufacture a high-quality laminated model.

11 積層造形装置
12 成形装置
17 トーチ
19 溶接ロボット(移動機構)
41 成形ロボット(移動機構)
45 成形部材
51 ベースプレート(母材)
100 積層造形システム
B 溶着ビード
M 溶加材
W 積層造形物
11 Laminated molding device 12 Molding device 17 Torch 19 Welding robot (movement mechanism)
41 Molding robot (movement mechanism)
45 Molding member 51 Base plate (base material)
100 Laminated modeling system B Welding bead M Welding material W Laminated modeling object

Claims (3)

溶加材を溶融及び凝固させた溶着ビードを積層させて積層造形物を造形する積層造形物の製造方法であって、
成形部材を母材上に配置させる配置工程と、
前記成形部材に接触させながら前記成形部材に沿って前記溶着ビードを前記母材上に積層させて積層造形物を造形する造形工程と、
を含み、
前記成形部材として、酸化ジルコニウムを基材とするセラミックス製の部材を用いる、
積層造形物の製造方法。
It is a method for manufacturing a laminated model, in which welded beads obtained by melting and solidifying a filler metal are laminated to form a laminated model.
The placement process for arranging the molded members on the base metal,
A molding step of laminating the welded bead on the base material along the molding member while in contact with the molding member to form a laminated model.
Including
As the molding member, a ceramic member having zirconium oxide as a base material is used.
Manufacturing method of laminated model.
前記積層造形物の外面となる少なくとも一部に前記成形部材を接触させて前記積層造形物を造形する、
請求項1に記載の積層造形物の製造方法。
The molded member is brought into contact with at least a part of the outer surface of the laminated model to form the laminated model.
The method for manufacturing a laminated model according to claim 1.
溶加材を溶融及び凝固させた溶着ビードを積層させて積層造形物を造形する積層造形装置と、前記積層造形物の外面の少なくとも一部を成形する成形装置と、を備えた積層造形システムであって、
前記積層造形装置は、
前記溶着ビードを形成するトーチと、
前記トーチを移動させて溶着ビードを積層させる移動機構と、
を有し、
前記成形装置は、
酸化ジルコニウムを基材とするセラミック製の成形部材と、
前記成形部材を移動させて前記溶着ビードの積層方向に沿う位置に配置させ、積層される前記溶着ビードに前記成形部材を接触させる移動機構と、
を有する、
積層造形システム。
A laminated molding system including a laminated molding device that forms a laminated model by laminating welded beads obtained by melting and solidifying a filler metal, and a molding device that forms at least a part of the outer surface of the laminated model. There,
The laminated modeling device is
With the torch forming the welded bead,
A moving mechanism that moves the torch to stack welded beads,
Have,
The molding apparatus is
Ceramic molding members based on zirconium oxide,
A moving mechanism that moves the molded member so that it is arranged at a position along the laminating direction of the welded bead and brings the molded member into contact with the welded bead to be laminated.
Have,
Laminated modeling system.
JP2020088115A 2020-05-20 2020-05-20 Method of manufacturing laminated molding object and laminated molding system Pending JP2021181209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020088115A JP2021181209A (en) 2020-05-20 2020-05-20 Method of manufacturing laminated molding object and laminated molding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020088115A JP2021181209A (en) 2020-05-20 2020-05-20 Method of manufacturing laminated molding object and laminated molding system

Publications (1)

Publication Number Publication Date
JP2021181209A true JP2021181209A (en) 2021-11-25

Family

ID=78605820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020088115A Pending JP2021181209A (en) 2020-05-20 2020-05-20 Method of manufacturing laminated molding object and laminated molding system

Country Status (1)

Country Link
JP (1) JP2021181209A (en)

Similar Documents

Publication Publication Date Title
CN111344096B (en) Method and apparatus for manufacturing layered molded article
CN111417485B (en) Method and apparatus for manufacturing shaped object
JP6978350B2 (en) Work posture adjustment method, model manufacturing method and manufacturing equipment
WO2020085295A1 (en) Method for manufacturing laminated molding, and laminated molding
JP6865667B2 (en) Manufacturing method of laminated model
JP6802773B2 (en) Manufacturing method of laminated model and laminated model
JP7258715B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6810018B2 (en) Manufacturing method of laminated model
JP7327995B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7193423B2 (en) Laminate-molded article manufacturing method
JP7028737B2 (en) Manufacturing method of modeled object, manufacturing equipment and modeled object
JP2020168642A (en) Laminated molding manufacturing method and laminated molding
CN111565877B (en) Method and apparatus for manufacturing shaped object, and shaped object
JP2021181209A (en) Method of manufacturing laminated molding object and laminated molding system
JP6859471B1 (en) Manufacturing method of laminated model
JP7355672B2 (en) Manufacturing method for additively manufactured objects
JP7160764B2 (en) Laminate-molded article manufacturing method
JP7181154B2 (en) Laminate-molded article manufacturing method
JP7303162B2 (en) Laminate-molded article manufacturing method
JP2021059772A (en) Manufacturing method of laminate molded product and laminate molded product
JP2024025180A (en) Control information generation device, control information generation method, program, and laminate molding method
JP2021137846A (en) Method for manufacturing laminated molding and laminated molding
JP2024058958A (en) Method for manufacturing molded article and lamination planning method
JP2021178329A (en) Method of manufacturing stack structure
JP2024130922A (en) Method for correcting control information of additive manufacturing device, molding method, and program