JP2021179410A - Method for evaluating crack resistance property of plate material - Google Patents
Method for evaluating crack resistance property of plate material Download PDFInfo
- Publication number
- JP2021179410A JP2021179410A JP2020086203A JP2020086203A JP2021179410A JP 2021179410 A JP2021179410 A JP 2021179410A JP 2020086203 A JP2020086203 A JP 2020086203A JP 2020086203 A JP2020086203 A JP 2020086203A JP 2021179410 A JP2021179410 A JP 2021179410A
- Authority
- JP
- Japan
- Prior art keywords
- plate material
- bending
- crack resistance
- absorbing member
- preprocessing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000005452 bending Methods 0.000 claims abstract description 160
- 238000012360 testing method Methods 0.000 claims abstract description 63
- 238000007781 pre-processing Methods 0.000 claims abstract description 50
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000035939 shock Effects 0.000 claims description 42
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 description 21
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000000611 regression analysis Methods 0.000 description 12
- 238000000465 moulding Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 9
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は、板材の耐割れ特性の評価方法に関する。 The present invention relates to a method for evaluating crack resistance of a plate material.
車両用骨格部材のフロントサイドメンバーまたはリアサイドメンバーなどの衝撃吸収部材には、高い衝突安全性能が要求される。高い衝突安全性能を発揮するためには、衝撃吸収部材が衝突時に軸方向に蛇腹状に圧壊し、衝突エネルギーを大きく吸収することが好ましい。 High collision safety performance is required for impact absorbing members such as front side members or rear side members of vehicle skeleton members. In order to exhibit high collision safety performance, it is preferable that the shock absorbing member crushes in a bellows shape in the axial direction at the time of a collision and absorbs a large amount of collision energy.
しかし、自動車の燃費向上および安全性向上のために、上記衝撃吸収部材の材質としてハイテンと称される高強度鋼板が多く使用されるようなっている。そのため、衝撃吸収部材の延性が低下し、衝突時に割れが生じる可能性が高くなっている。衝撃吸収部材に割れが生じると、蛇腹状の圧壊が阻害され、意図される衝撃エネルギー吸収性能が発揮されないおそれがある。従って、衝撃吸収部材の割れなどを含む圧壊特性を評価する方法が求められている。好ましくは完全な車両用骨格にて実際の衝突を模擬した衝突実験を行うが、大規模および高コストとなることが懸念される。そのため、開発段階では衝撃吸収部材の圧壊特性を簡易に評価する方法が必要である。 However, in order to improve the fuel efficiency and safety of automobiles, high-strength steel plates called high-tensile steel are often used as the material of the shock absorbing member. Therefore, the ductility of the shock absorbing member is lowered, and the possibility of cracking at the time of collision is high. If the shock absorbing member is cracked, the bellows-shaped crushing may be hindered and the intended shock energy absorbing performance may not be exhibited. Therefore, there is a demand for a method for evaluating crushing characteristics including cracking of a shock absorbing member. It is preferable to perform a collision experiment simulating an actual collision with a complete vehicle skeleton, but there is a concern that it will be large-scale and costly. Therefore, at the development stage, a method for simply evaluating the crushing characteristics of the impact absorbing member is required.
衝撃吸収部材の圧壊特性を、当該衝撃吸収部材を構成する板材の耐割れ特性から簡易的に評価する方法が、例えば非特許文献1に開示されている。当該方法は、VDA曲げ試験と称され、ドイツ自動車工業会(VDA:Verband der Automobilindustrie)の中でVDA238−100として規格化されている。VDA曲げ試験は、部材が圧壊する際の割れ挙動を評価することを目的とした板材の曲げ試験である。VDA曲げ試験における割れが生じるまでの最大荷重時の曲げ角度(以下、VDA曲げ角度ともいう。)と、衝撃吸収部材の軸方向における圧壊特性との間には相関がある。即ち、VDA曲げ角度は、衝撃吸収部材の軸方向における圧壊特性を定量的に評価できる指標とされている。
For example, Non-Patent
非特許文献1の評価方法では、単純な平板に対する曲げ試験であるVDA曲げ試験が採用されている。そのため、圧壊を受ける衝撃吸収部材が成形加工を施されている場合に正確に評価できないおそれがある。具体的には、衝撃吸収部材が曲げ加工などの成形加工を施されていると、曲げ加工によって衝撃吸収部材には稜線部が生じる。稜線部には、成形加工により歪が蓄積されていることから、割れが生じやすい。稜線部には衝突時に大きな荷重がかかることから、稜線部に割れが生じると、衝撃吸収部材の衝撃エネルギー吸収性能は、大きく低下する。このような衝撃吸収部材の衝撃エネルギー吸収性能の低下については、VDA曲げ試験では定量的に評価できないおそれがある。従って、衝撃吸収部材の圧壊特性を簡易かつ定量的に評価するためには、成形加工を考慮して板材の耐割れ特性を評価する必要がある。
In the evaluation method of Non-Patent
本発明は、成形加工を施された衝撃吸収部材の圧壊特性を簡易かつ定量的に評価するための板材の耐割れ特性の評価方法を提供することを課題とする。 It is an object of the present invention to provide a method for evaluating the crack resistance property of a plate material for simply and quantitatively evaluating the crushing property of a shock absorbing member that has been molded.
本発明は、板材を準備し、前記板材に予加工を施し、前記板材の前記予加工を施した部分に対して曲げ試験を実施することを含む、板材の耐割れ特性の評価方法を提供する。 The present invention provides a method for evaluating crack resistance of a plate material, which comprises preparing a plate material, preprocessing the plate material, and performing a bending test on the preprocessed portion of the plate material. ..
この方法によれば、衝撃吸収部材を構成する板材が成形加工を施されている場合に、予加工によって当該成形加工を模擬できる。従って、板材の耐割れ特性の評価を通じて、衝撃吸収部材の圧壊特性を高精度に評価できる。ここでの予加工は、衝撃吸収部材の成形加工時及び圧壊時の変形状態を再現するものであることが好ましい。例えば、予加工は、曲げ、引張り、圧縮、鍛造、または剪断等の加工を含んでもよい。また、予加工は、それらの加工を組み合わせたものであってもよい。 According to this method, when the plate material constituting the shock absorbing member is molded, the molding process can be simulated by preprocessing. Therefore, the crushing characteristics of the impact absorbing member can be evaluated with high accuracy through the evaluation of the crack resistance characteristics of the plate material. The pre-processing here preferably reproduces the deformed state at the time of molding and crushing of the shock absorbing member. For example, preprocessing may include processing such as bending, tensioning, compression, forging, or shearing. Further, the pre-processing may be a combination of these processes.
前記予加工は、曲げ加工を含んでいてもよい。 The pre-processing may include bending processing.
この方法によれば、板材で構成された衝撃吸収部材が曲げ加工を施されている場合に、予加工によって曲げ加工を模擬できる。従って、板材の耐割れ特性の評価を通じて、衝撃吸収部材の圧壊特性を高精度に評価できる。 According to this method, when the shock absorbing member made of a plate material is bent, the bending process can be simulated by preprocessing. Therefore, the crushing characteristics of the impact absorbing member can be evaluated with high accuracy through the evaluation of the crack resistance characteristics of the plate material.
前記予加工は、前記曲げ加工を元の状態に戻す曲げ戻し加工を含んでいてもよい。 The pre-processing may include a bending-back processing that returns the bending process to the original state.
この方法によれば、予加工の曲げ戻し加工によって板材の形状を平板状に復元できるとともに、圧壊中に蓄積される歪を模擬することができる。板材が平板状であることにより、予加工に続く曲げ試験を容易に実行できる。さらに、曲げ試験の段階では、板材に歪が蓄積されているため、予加工を施していない単なる平板と比べて、衝撃吸収部材の成形加工を考慮した板材の曲げ試験を実行できる。 According to this method, the shape of the plate material can be restored to a flat plate shape by the pre-processing bending back processing, and the strain accumulated during crushing can be simulated. Since the plate material has a flat plate shape, the bending test following the preprocessing can be easily performed. Further, at the stage of the bending test, since the strain is accumulated in the plate material, the bending test of the plate material in consideration of the molding process of the shock absorbing member can be executed as compared with a simple flat plate which has not been preprocessed.
前記予加工の前記曲げ加工では、前記板材の表層の曲げ歪を0.032以上としてもよい。 In the bending process of the preprocessing, the bending strain of the surface layer of the plate material may be 0.032 or more.
この方法によれば、一般的な車両用骨格部材の衝撃吸収部材が成形加工によって受ける曲げ歪がおよそ0.032以上であるため、当該曲げ歪を数値的に模擬できる。従って、上記板材の耐割れ特性の評価方法により、一般的な車両用骨格部材の衝撃吸収部材の圧壊特性を高精度に評価できる。なお、ここでの歪は公称歪であり、以降の歪の記載において数値を特定するものは公称歪であるものとする。 According to this method, since the bending strain received by the impact absorbing member of a general vehicle skeleton member due to the molding process is about 0.032 or more, the bending strain can be numerically simulated. Therefore, by the above-mentioned method for evaluating the crack resistance of the plate material, the crushing property of the shock absorbing member of a general vehicle skeleton member can be evaluated with high accuracy. It should be noted that the strain here is a nominal strain, and the strain whose numerical value is specified in the following description of the strain is assumed to be a nominal strain.
前記予加工の曲げ方向と、前記曲げ試験の曲げ方向とは、平行または直交していてもよい。 The bending direction of the preprocessing and the bending direction of the bending test may be parallel or orthogonal to each other.
この方法によれば、曲げ試験の再現性を向上でき、安定した曲げ試験を実現できる。 According to this method, the reproducibility of the bending test can be improved and a stable bending test can be realized.
前記板材は、車両用の高強度鋼板であってもよい。 The plate material may be a high-strength steel plate for vehicles.
この方法によれば、板材の材質を実際の車両と合わせることにより、車両用骨格部材の衝撃吸収部材の圧壊特性を高精度に評価できる。ここで、高強度鋼板とは、ハイテンと称される鋼材と同程度以上の強度を有するものをいう。 According to this method, by matching the material of the plate material with the actual vehicle, the crushing characteristics of the impact absorbing member of the vehicle skeleton member can be evaluated with high accuracy. Here, the high-strength steel plate means a steel material having a strength equal to or higher than that of a steel material called high-tensile steel.
前記曲げ試験は、VDA曲げ試験であってもよい。 The bending test may be a VDA bending test.
この方法によれば、上記相関の向上を正確かつ容易に確認できる。 According to this method, the improvement of the above correlation can be confirmed accurately and easily.
前記板材の耐割れ特性の評価方法は、前記板材で製造した中心軸を有する衝撃吸収部材を準備し、前記衝撃吸収部材の前記中心軸方向における圧壊試験を行い、前記圧壊試験の結果と、前記曲げ試験の結果との相関を確認することをさらに含んでいてもよい。 As a method for evaluating the crack resistance of the plate material, a shock absorbing member having a central axis manufactured from the plate material is prepared, a crush test of the shock absorbing member in the central axis direction is performed, and the result of the crush test and the above are described. It may further include confirming the correlation with the result of the bending test.
この方法によれば、上記板材の耐割れ特性の評価方法によってどの程度高精度に衝撃吸収部材の圧壊特性を評価できるかを確認できる。 According to this method, it is possible to confirm how accurately the crushing property of the shock absorbing member can be evaluated by the method for evaluating the crack resistance property of the plate material.
前記衝撃吸収部材は、車両用骨格部材のフロントサイドメンバーまたはリアサイドメンバーであってもよい。 The shock absorbing member may be a front side member or a rear side member of a vehicle skeleton member.
この方法によれば、上記板材の耐割れ特性の評価方法によってどの程度高精度にフロントサイドメンバーまたはリアサイドメンバーの圧壊特性を評価できるかを確認できる。 According to this method, it is possible to confirm how accurately the crushing characteristics of the front side member or the rear side member can be evaluated by the crack resistance evaluation method of the plate material.
本発明によれば、予加工を実行することにより、成形加工を施された衝撃吸収部材の圧壊特性を簡易に評価するための板材の耐割れ特性の評価方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for evaluating the crack resistance property of a plate material for easily evaluating the crushing property of a shock absorbing member that has been molded by performing preprocessing.
以下、添付図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
本実施形態では、板材の耐割れ特性の評価方法を説明する。板材の耐割れ特性は、当該板材を用いて形成された衝撃吸収部材の圧壊特性と相関があることが知られている。そのため、本実施形態の板材の耐割れ特性の評価方法を利用して、衝撃吸収部材の圧壊特性を評価できる。 In this embodiment, a method for evaluating the crack resistance of the plate material will be described. It is known that the crack resistance property of a plate material correlates with the crushing characteristic of a shock absorbing member formed by using the plate material. Therefore, the crushing property of the shock absorbing member can be evaluated by using the method for evaluating the crack resistance property of the plate material of the present embodiment.
本実施形態では、板材の耐割れ特性の評価方法において、板材に予加工を施すことで上記相関を向上させている。この相関の向上を確認すべく、衝撃吸収部材の圧壊試験と、板材の曲げ試験とを行った結果を順に以下で示す。 In the present embodiment, in the method for evaluating the crack resistance of the plate material, the above correlation is improved by preprocessing the plate material. In order to confirm the improvement of this correlation, the results of the crushing test of the impact absorbing member and the bending test of the plate material are shown below in order.
まず、図1を参照して、衝撃吸収部材1の圧壊試験を行った。
First, with reference to FIG. 1, a crush test of the
衝撃吸収部材1は、中心軸Lを有し、中心軸Lに垂直な断面において閉断面形状を有している。衝撃吸収部材1は、ハット部材10と、閉鎖板20とを含んでいる。
The
図2を参照して、ハット部材10は、平板を曲げ加工して形成されており、中心軸Lに垂直な断面形状がハット形である。具体的には、ハット部材10は、概ね逆U字形状を有する凸部11と、凸部11の両端から外側へ水平に延びるフランジ部12,13とを有している。
With reference to FIG. 2, the
詳細には、凸部11は、側壁11a,11bと、側壁11a,11bを接続する頂壁11cとからなる。側壁11a,11bは、鉛直方向から5度傾斜して配置されている(θ=5°)。凸部11の頂壁11cは、水平方向に45.0mm延びている(d1=45mm)。頂壁11cと側壁11a,11bとの接続部11d,11eの曲げ半径は、5.2mmである(R1=5.2mm)。フランジ部12,13は、水平方向に30.0mm延びている(d2=30.0mm)。フランジ部12,13の間は、55.5mm離れている(d3=55.5mm)。フランジ部12,13と側壁11a,11bとの接続部14,15の曲げ半径は、5.0mmである(R2=5.0mm)。ハット部材10の高さは、61.2mmである(d4=61.2mm)。また、ハット部材10の長さ(中心軸L方向)は、200mmである。
Specifically, the
以下の表1の通り、品種の略号C1〜C10およびG1〜G8の合計18種類の材料特性のハット部材10を用意した。略号C1〜C10の材質は冷間圧延鋼板(CR)であり、厚さが1.4mmである。略号G1〜G8の材質は合金化溶融亜鉛めっき鋼板(GA)であり、厚さが1.6mmである。これらの略号C1〜C10およびG1〜G8においては、強度クラス(MPa)、降伏応力YS(MPa)、引張強度TS(MPa)、およびVDA曲げ角度BA(度)が表に示す通り様々に設定されている。
As shown in Table 1 below,
再び図1を参照して、閉鎖板20は、平板状である。閉鎖板20は、ハット部材10のフランジ部12,13と平行に配置され、フランジ部12,13とスポット溶接されている。スポット溶接は、図示しないが25mm間隔で複数点において行われている。このようして、閉鎖板20は、ハット部材10の凸部11を閉じるように配置されている。閉鎖板20は、厚さ1.4mmの強度クラス590MPa級の冷間圧延鋼板(CR)または厚さ1.6mmの強度クラス590MPa級の合金化溶融亜鉛めっき鋼板(GA)である。前述の略号C1〜C10のハット部材10には前者の閉鎖板20を使用し、略号G1〜G8のハット部材10には後者の閉鎖板20を使用した。
With reference to FIG. 1 again, the closing
圧壊試験では、衝撃吸収部材1を平坦な床面5と天面6とで挟んで固定し、中心軸L方向に天面6を介して衝撃吸収部材1に対して衝撃荷重Wを付加した。衝撃荷重Wは、重量188kgの錘を高さ12.0mから速度約50.0km/hで落下させたときの荷重に相当する。このときの衝撃吸収部材1の圧壊特性を圧壊状態に応じて割れ評点1〜5の5段階で評価した。割れ評点は、5が最も良好であり、4,3,2,1と順に悪化する評価点である。割れ評点は、圧壊試験の結果を以下の基準に基づいて目視で判断した。
In the crushing test, the
図3は、割れ評点が1の状態例を示している。ハット部材10には、大きな開口を生じる割れが発生している。大きな開口とは、割れの長さが例えば80mm以上であるものいう。また、ハット部材10が割れるだけでなく完全に分断される場合についても割れ評点1として評価した。
FIG. 3 shows an example of a state in which the crack score is 1. The
図4は、割れ評点が2の状態例を示している。ハット部材10には、中程度の開口を生じる割れが発生している。中程度の開口とは、割れの長さが例えば40mm以上80mm未満のものをいう。
FIG. 4 shows an example of a state in which the crack score is 2. The
図5は、割れ評点が3の状態例を示している。ハット部材10には、小さな開口を生じる割れが発生している。小さな開口とは、割れの長さが例えば40mm未満のものをいう。
FIG. 5 shows an example of a state in which the crack score is 3. The
図6は、割れ評点が4の状態例を示している。ハット部材10には、開口は生じていないが微小な割れが発生している。微小な割れに起因して偏って圧壊しており、均等に蛇腹状に圧壊していない。
FIG. 6 shows an example of a state in which the crack score is 4. The
図7は、割れ評点が5の状態例を示している。ハット部材10には、割れが生じていない。また、ハット部材10は、概ね均等に蛇腹状に圧壊している。
FIG. 7 shows an example of a state in which the crack score is 5. The
次に、上記のようにして得られた衝撃吸収部材1の圧壊特性(割れ評点)との相関をとるために板材の耐割れ特性を評価した。また、この相関について、板材の耐割れ特性の評価方法における予加工の有無による違いを確認した。
Next, the crack resistance property of the plate material was evaluated in order to correlate with the crushing property (cracking score) of the
図8〜11を参照して、本実施形態の板材2の耐割れ特性の評価方法を説明する。
A method for evaluating the crack resistance of the
まず、図8に示すように、ハット部材10と同じ材料特性の長方形平板状の板材2を準備する。即ち、上記表1に示す略号C1〜C10およびG1〜G8の18種類の板材2を準備する。このような材料特性の板材2は、車両用の高強度鋼板として用いられることが多く、車両用骨格部材の衝撃吸収部材1の圧壊特性を評価する場合に好ましい。
First, as shown in FIG. 8, a rectangular flat plate-shaped
次に、図9に示すように、予加工として曲げ加工を実行する。曲げ加工は、曲げ角度が90度かつ曲げ半径5.0mmのV曲げ金型を用いて実行する。このV曲げにより、板材2には稜線部2aが形成される。
Next, as shown in FIG. 9, bending processing is performed as preprocessing. The bending process is performed using a V-bending die having a bending angle of 90 degrees and a bending radius of 5.0 mm. By this V-bending, a
曲げ加工の条件は、本実施形態のものに限定されない。例えば、車両用骨格部材の衝撃吸収部材1(図1参照)の圧壊特性との相関を評価するためには、曲げ角度や曲げ半径に拘わらず、板材2の表層の曲げ歪を0.032以上とすることが好ましい。これにより、一般的な車両用骨格部材に使用される衝撃吸収部材が成形加工によって受ける曲げ歪がおよそ0.032以上であるため、当該曲げ歪を数値的に模擬できる。従って、一般的な車両用骨格部材の衝撃吸収部材1の圧壊特性を高精度に評価できる。
The bending conditions are not limited to those of the present embodiment. For example, in order to evaluate the correlation with the crushing characteristics of the impact absorbing member 1 (see FIG. 1) of the vehicle skeleton member, the bending strain of the surface layer of the
次に、図10に示すように、予加工として曲げ戻し加工を実行する。曲げ戻し加工は、上記図9に示すV曲げを元に戻す加工である。これにより、板材2が平坦な状態に戻される。図9にて稜線部2aとして示されていた部分には破線が付されている。曲げ戻し加工後には、板材2の形状は平板状で予加工を行わない場合概ね同じであるが、板材2の内部には歪が蓄積されている点で予加工を行わない場合と異なる。ここでの曲げ戻し加工は、曲げ戻し加工後のスプリングバックにより残存するV曲げの曲げ癖を考慮し、板材2を、完全に平坦な状態に戻すものであってもよいし、わずかに曲がった状態程度に戻すものであってもよい。
Next, as shown in FIG. 10, bending back processing is performed as preprocessing. The bending back processing is a processing for restoring the V bending shown in FIG. 9 above. As a result, the
次に、図10に示すように、ドイツ自動車工業会のVDA238−100に準拠した条件でVDA曲げ試験を実施する。VDA曲げ試験では、図9のV曲げの稜線と平行(詳細には曲げ稜線が一致)でV曲げの向きとは逆向きに曲げ加工を行い、割れが生じるまでの限界曲げ角度(VDA曲げ角度BA)を取得した。なお、試験結果の取得に際しては、曲げ戻し加工後のスプリングバックにより残存するV曲げの曲げ癖の影響を排除するためのデータ処理を実施した。 Next, as shown in FIG. 10, a VDA bending test is carried out under the conditions compliant with VDA238-100 of the German Association of the Automotive Industry. In the VDA bending test, bending is performed in the direction parallel to the ridgeline of the V-bending in FIG. 9 (specifically, the bending ridges match) and in the direction opposite to the direction of the V-bending, and the limit bending angle (VDA bending angle) until cracking occurs. BA) was acquired. When acquiring the test results, data processing was performed to eliminate the influence of the bending habit of the V-bending remaining due to the springback after the bending back processing.
このようにして、上記予加工を行った場合の板材2の耐割れ特性としてVDA曲げ角度BAを取得し、予加工を行っていない場合のVDA曲げ角度BA(上記表1の最も右の列に示す)と比較した。
In this way, the VDA bending angle BA is acquired as the crack resistance characteristic of the
図12は、VDA曲げ角度BAと割れ評点の関係を示している。グラフの横軸は、VDA曲げ角度BA(度)を示し、縦軸は割れ評点を示している。図12では、略号C1〜C10の結果が示されている。グラフ中の黒丸は予加工を施した場合を示し、白丸は予加工を施していない場合を示している。グラフ中の実線で示す曲線は、予加工を施した場合のデータ(黒丸で示す)を、ロジスティック関数を用いて回帰分析した結果を示している。この回帰分析の決定係数R2は0.83であった。グラフ中の破線で示す曲線は、予加工を施していない場合のデータ(白丸で示す)を、ロジスティック関数を用いて回帰分析した結果を示している。この回帰分析の決定係数R2は0.73であった。従って、略号C1〜C10の結果については、予加工を施したことにより、衝撃吸収部材1の圧壊特性(割れ評点)と、板材の耐割れ特性(VDA曲げ角度BA)との相関が向上したことを確認できた。
FIG. 12 shows the relationship between the VDA bending angle BA and the crack score. The horizontal axis of the graph shows the VDA bending angle BA (degrees), and the vertical axis shows the crack score. FIG. 12 shows the results of the abbreviations C1 to C10. Black circles in the graph indicate the case of preprocessing, and white circles indicate the case of no preprocessing. The curve shown by the solid line in the graph shows the result of regression analysis of the preprocessed data (indicated by black circles) using a logistic function. The coefficient of determination R 2 of the regression analysis was 0.83. The curve shown by the broken line in the graph shows the result of regression analysis of the data (indicated by white circles) without preprocessing using a logistic function. The coefficient of determination R 2 of the regression analysis was 0.73. Therefore, regarding the results of the abbreviations C1 to C10, the correlation between the crushing characteristics (cracking score) of the
図13は、VDA曲げ角度BAと割れ評点の関係を示している。グラフの横軸および縦軸は、図12と同じである。図13では、略号G1〜G8の結果が示されている。グラフ中の黒三角は予加工を施した場合を示し、白三角は予加工を施していない場合を示している。グラフ中の実線で示す曲線は、予加工を施した場合のデータ(黒三角で示す)を、ロジスティック関数を用いて回帰分析した結果を示している。この回帰分析の決定係数R2は0.91であった。グラフ中の破線で示す曲線は、予加工を施していない場合のデータ(白三角で示す)を、ロジスティック関数を用いて回帰分析した結果を示している。この回帰分析の決定係数R2は0.74であった。従って、略号G1〜G8の結果についても、予加工を施したことにより、衝撃吸収部材1の圧壊特性(割れ評点)と、板材の耐割れ特性(VDA曲げ角度BA)との相関が向上したことを確認できた。
FIG. 13 shows the relationship between the VDA bending angle BA and the crack score. The horizontal axis and the vertical axis of the graph are the same as those in FIG. FIG. 13 shows the results of the abbreviations G1 to G8. The black triangles in the graph indicate the case of preprocessing, and the white triangles indicate the case of no preprocessing. The curve shown by the solid line in the graph shows the result of regression analysis of the preprocessed data (indicated by the black triangle) using a logistic function. The coefficient of determination R 2 of the regression analysis was 0.91. The curve shown by the broken line in the graph shows the result of regression analysis using the logistic function of the data (indicated by the white triangle) without preprocessing. The coefficient of determination R 2 of the regression analysis was 0.74. Therefore, regarding the results of the abbreviations G1 to G8, the correlation between the crushing characteristics (cracking score) of the
本実施形態の板材の耐割れ特性の評価方法によれば、以下の作用効果を奏する。 According to the method for evaluating the crack resistance of the plate material of the present embodiment, the following effects are obtained.
板材2を用いて形成された衝撃吸収部材1が成形加工を施されている場合に、予加工によって当該成形加工を模擬できる。従って、板材2の耐割れ特性の評価を通じて、衝撃吸収部材1の圧壊特性を高精度に評価できる。
When the
また、本実施形態では予加工として曲げ加工および曲げ戻し加工を採用しているため、板材2の形状を平板状に復元できるとともに、圧壊中に蓄積される歪を模擬することができる。板材2が平板状であることにより、予加工に続くVDA曲げ試験を容易に実施できる。さらに、VDA曲げ試験の段階では、板材2に歪が蓄積されているため、予加工を施していない単なる平板と比べて、衝撃吸収部材1の成形加工を考慮したVDA曲げ試験を実施できる。
Further, since the bending process and the bending back process are adopted as the preprocessing in this embodiment, the shape of the
なお、本実施形態における曲げ戻し加工は、省略されてもよい。即ち、予加工として曲げ加工のみを行ってもよい。予加工として曲げ加工のみを採用することにより、板材2で構成された衝撃吸収部材1がハット部材10のように稜線部2aを有する場合でも、予加工の曲げ加工によって稜線部2aを模擬できる。従って、板材2の耐割れ特性の評価を通じて、衝撃吸収部材1の圧壊特性を高精度に評価できる。
The bending back processing in the present embodiment may be omitted. That is, only bending may be performed as preprocessing. By adopting only the bending process as the preprocessing, even when the
また、本実施形態では予加工の曲げ方向(曲げ稜線)と、VDA曲げ試験の曲げ方向(曲げ稜線)とが平行であるため、VDA曲げ試験の再現性を向上でき、安定したVDA曲げ試験を実現できる。 Further, in the present embodiment, since the bending direction (bending ridge line) of the preprocessing and the bending direction (bending ridge line) of the VDA bending test are parallel, the reproducibility of the VDA bending test can be improved and a stable VDA bending test can be performed. realizable.
また、本実施形態では曲げ試験としてVDA曲げ試験を採用している。VDA曲げ試験は衝撃吸収部材1の圧壊特性との相関が知られているため、その相関の向上の程度を正確かつ容易に確認できる。曲げ試験としては、VDA曲げ試験だけでなく、これに類似の任意の曲げ試験を採用し得る。
Further, in this embodiment, the VDA bending test is adopted as the bending test. Since the VDA bending test is known to have a correlation with the crushing characteristics of the
本実施形態では、相関の向上を決定係数R2のように数値的に確認できるため、板材2の耐割れ特性の評価方法によってどの程度高精度に衝撃吸収部材1の圧壊特性を評価できるかを確認できる。
In the present embodiment, since it can be confirmed numerically as the coefficient of determination R 2 to improve the correlation, whether the degree precision by the evaluation method of anti-crack properties of the
また、衝撃吸収部材1としては具体的に車両用骨格部材のフロントサイドメンバーまたはリアサイドメンバーを採用してもよい。これにより、上記板材の耐割れ特性の評価方法によってどの程度高精度にフロントサイドメンバーまたはリアサイドメンバーの圧壊特性を評価できるかを確認できる。
Further, as the
(第1変形例)
図14を参照して、第1変形例では、上記実施形態で行われた曲げ試験(図11参照)とは別の曲げ試験を実施する。
(First modification)
With reference to FIG. 14, in the first modification, a bending test different from the bending test (see FIG. 11) performed in the above embodiment is performed.
本変形例の曲げ試験は、ドイツ自動車工業会のVDA238−100に準拠した条件でVDA曲げ試験を実施する点は上記実施形態と同じであるが、図11の曲げる向きとは逆向きの曲げを行うVDA曲げ試験を実施する。即ち、図9のV曲げの稜線部2aと平行(本変形例では一致)でV曲げの向きと同じ向きに曲げ加工を行い、割れが生じる限界曲げ角度(VDA曲げ角度BA)を取得した。なお、本変形例においても、試験結果の取得に際しては、曲げ戻し加工後のスプリングバックにより残存するV曲げの曲げ癖の影響を排除するためのデータ処理を実施した。
The bending test of this modification is the same as that of the above embodiment in that the VDA bending test is carried out under the conditions conforming to VDA238-100 of the German Association of the Automotive Industry, but the bending direction opposite to the bending direction of FIG. 11 is performed. Perform the VDA bending test to be performed. That is, the bending process was performed in the same direction as the V-bending direction in parallel with the
このようにして得られた結果を図15に示す。図15は、VDA曲げ角度BAと割れ評点の関係を示している。グラフの横軸および縦軸は、図12,13と同じである。図15では、上記表1の略号G1〜G8の結果が示されている。グラフ中の灰色の三角は予加工を施した場合を示している。予加工を施していない場合は示されていないが、図13に示すデータ(白三角)と同じである。グラフ中の実線で示す曲線は、予加工を施した場合のデータ(灰色の三角で示す)を、ロジスティック関数を用いて回帰分析した結果を示している。この回帰分析の決定係数R2は0.91であった。予加工を施していない場合の決定係数R2は図13を参照して前述したように0.74であった。従って、略号G1〜G8の結果について、予加工を施したことにより、衝撃吸収部材1の圧壊特性(割れ評点)と、板材の耐割れ特性(VDA曲げ角度BA)との相関が向上したことを確認できた。
The results thus obtained are shown in FIG. FIG. 15 shows the relationship between the VDA bending angle BA and the crack score. The horizontal axis and the vertical axis of the graph are the same as those in FIGS. 12 and 13. FIG. 15 shows the results of the abbreviations G1 to G8 in Table 1 above. The gray triangles in the graph show the case of pre-processing. Although not shown when no preprocessing is performed, the data is the same as the data (white triangle) shown in FIG. The curve shown by the solid line in the graph shows the result of regression analysis of the preprocessed data (shown by the gray triangle) using the logistic function. The coefficient of determination R2 for this regression analysis was 0.91. The coefficient of determination R2 in the case of no preprocessing was 0.74 as described above with reference to FIG. Therefore, regarding the results of the abbreviations G1 to G8, the correlation between the crushing characteristics (cracking score) of the
(第2変形例)
図16を参照して、第2変形例では、上記実施形態および第1変形例で行われた曲げ試験(図11,14参照)とは別の曲げ試験を実施する。
(Second modification)
With reference to FIG. 16, in the second modification, a bending test different from the bending test (see FIGS. 11 and 14) performed in the above-described embodiment and the first modification is performed.
本変形例の曲げ試験は、ドイツ自動車工業会のVDA238−100に準拠した条件でVDA曲げ試験を実施する点は上記実施形態と同じであるが、図11の曲げ稜線(曲げ方向)とは直交する曲げ稜線(曲げ方向)を形成する曲げを行うVDA曲げ試験を実施する。即ち、図9のV曲げの稜線部2a(図16にて破線で示す)と直交する方向に曲げ加工を行い、新たに稜線部2bを形成し、割れが生じる限界曲げ角度(VDA曲げ角度BA)を取得した。なお、本変形例においても、試験結果の取得に際しては、曲げ戻し加工後のスプリングバックにより残存するV曲げの曲げ癖の影響を排除するためのデータ処理を実施した。
The bending test of this modification is the same as the above embodiment in that the VDA bending test is carried out under the conditions conforming to VDA238-100 of the German Association of the Automotive Industry, but it is orthogonal to the bending ridge line (bending direction) in FIG. Perform a VDA bending test to perform bending to form a bending ridge (bending direction). That is, the bending process is performed in the direction orthogonal to the V-bending
このようにして得られた結果を図17に示す。図17は、VDA曲げ角度BAと割れ評点の関係を示している。グラフの横軸および縦軸は、図12,13と同じである。図17では、上記表1の略号C1,C3〜C10の結果が示されている。グラフ中の灰色の丸は予加工を施した場合を示している。予加工を施していない場合は示されていないが、図12に示すデータ(白丸)と同じである。グラフ中の実線で示す曲線は、予加工を施した場合のデータ(灰色の丸で示す)を、ロジスティック関数を用いて回帰分析した結果を示している。この回帰分析の決定係数R2は0.84であった。予加工を施していない場合の決定係数R2は図12を参照して前述したように0.73であった。従って、略号C1,C3〜C10の結果について、予加工を施したことにより、衝撃吸収部材1の圧壊特性(割れ評点)と、板材の耐割れ特性(VDA曲げ角度BA)との相関が向上したことを確認できた。
The results thus obtained are shown in FIG. FIG. 17 shows the relationship between the VDA bending angle BA and the crack score. The horizontal axis and the vertical axis of the graph are the same as those in FIGS. 12 and 13. FIG. 17 shows the results of the abbreviations C1 and C3 to C10 in Table 1 above. The gray circles in the graph indicate the case of preprocessing. Although not shown when no preprocessing is performed, the data is the same as the data (white circles) shown in FIG. The curve shown by the solid line in the graph shows the result of regression analysis of the preprocessed data (indicated by the gray circle) using the logistic function. The coefficient of determination R2 for this regression analysis was 0.84. The coefficient of determination R2 in the case of no preprocessing was 0.73 as described above with reference to FIG. Therefore, by preprocessing the results of the abbreviations C1 and C3 to C10, the correlation between the crushing characteristics (cracking score) of the
第1変形例および第2変形例に示すように、予加工の曲げ方向と曲げ試験の曲げ方向との関係を様々に変更しても相関は向上する。これは、ハット部材10のような成形加工された部材は、内部に歪が蓄積しており、予加工により板材2に歪が蓄積した状態を模擬できることによると考えられる。そのため、予加工は、曲げ加工に限らず、引張り、圧縮、鍛造、または剪断等の歪を蓄積させる加工であっても同様に相関の向上が見込まれる。また、予加工は、それらの加工を組み合わせたものであってもよいことは明らかである。
As shown in the first modification and the second modification, the correlation is improved even if the relationship between the bending direction of the pre-machining and the bending direction of the bending test is changed in various ways. It is considered that this is because the molded member such as the
以上より、本発明の具体的な実施形態およびその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although the specific embodiment of the present invention and the modification thereof have been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.
1 衝撃吸収部材
2 板材
2a,2b 稜線部
5 床面
6 天面
10 ハット部材
11 凸部
11a,11b 側壁
11c 頂壁
11d,11e 接続部
12,13 フランジ部
14,15 接続部
20 閉鎖板
1
Claims (9)
前記板材に予加工を施し、
前記板材の前記予加工を施した部分に対して曲げ試験を実施する
ことを含む、板材の耐割れ特性の評価方法。 Prepare the board and
The plate material is preprocessed and
A method for evaluating crack resistance of a plate material, which comprises performing a bending test on the preprocessed portion of the plate material.
前記衝撃吸収部材の前記中心軸方向における圧壊試験を行い、
前記圧壊試験の結果と、前記曲げ試験の結果との相関を確認する
ことをさらに含む、請求項1から請求項7のいずれか1項に記載の板材の耐割れ特性の評価方法。 A shock absorbing member having a central axis manufactured from the above-mentioned plate material is prepared.
A crush test of the shock absorbing member in the direction of the central axis was performed.
The method for evaluating crack resistance of a plate material according to any one of claims 1 to 7, further comprising confirming a correlation between the result of the crushing test and the result of the bending test.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020086203A JP7369088B2 (en) | 2020-05-15 | 2020-05-15 | Evaluation method of crack resistance properties of plate materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020086203A JP7369088B2 (en) | 2020-05-15 | 2020-05-15 | Evaluation method of crack resistance properties of plate materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021179410A true JP2021179410A (en) | 2021-11-18 |
JP7369088B2 JP7369088B2 (en) | 2023-10-25 |
Family
ID=78511274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020086203A Active JP7369088B2 (en) | 2020-05-15 | 2020-05-15 | Evaluation method of crack resistance properties of plate materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7369088B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296234A (en) * | 1985-06-24 | 1986-12-27 | Sumitomo Metal Ind Ltd | Method for measuring displacement of crack aperture in destructive tenacity test |
JP2002022631A (en) * | 2000-07-03 | 2002-01-23 | Kobe Steel Ltd | Method for evaluating hemming properties of aluminum alloy panel material |
JP2016080464A (en) * | 2014-10-15 | 2016-05-16 | 株式会社神戸製鋼所 | Crack resistant performance evaluation method of metal plate |
JP2016170165A (en) * | 2015-03-11 | 2016-09-23 | 新日鐵住金株式会社 | Evaluation device and evaluation method for bending resistance of metal plate |
WO2020129903A1 (en) * | 2018-12-17 | 2020-06-25 | Jfeスチール株式会社 | Test method and equipment for evaluating collision performance of metal sheet for vehicle body |
-
2020
- 2020-05-15 JP JP2020086203A patent/JP7369088B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296234A (en) * | 1985-06-24 | 1986-12-27 | Sumitomo Metal Ind Ltd | Method for measuring displacement of crack aperture in destructive tenacity test |
JP2002022631A (en) * | 2000-07-03 | 2002-01-23 | Kobe Steel Ltd | Method for evaluating hemming properties of aluminum alloy panel material |
JP2016080464A (en) * | 2014-10-15 | 2016-05-16 | 株式会社神戸製鋼所 | Crack resistant performance evaluation method of metal plate |
JP2016170165A (en) * | 2015-03-11 | 2016-09-23 | 新日鐵住金株式会社 | Evaluation device and evaluation method for bending resistance of metal plate |
WO2020129903A1 (en) * | 2018-12-17 | 2020-06-25 | Jfeスチール株式会社 | Test method and equipment for evaluating collision performance of metal sheet for vehicle body |
Also Published As
Publication number | Publication date |
---|---|
JP7369088B2 (en) | 2023-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11590591B2 (en) | Press die designing method using an index value obtained from two stress gradients in sheet thickness direction and gradient of surface stress distribution in direction | |
EP2050522A2 (en) | Perforated metal sheet | |
KR102556134B1 (en) | Method and facility for collision performance evaluation test for metal sheet material for automobile body | |
Narayanan et al. | Predicting the forming limit strains of tailor-welded blanks | |
JP2021179410A (en) | Method for evaluating crack resistance property of plate material | |
JP2023143651A (en) | Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article | |
WO2021171678A1 (en) | Press forming method and shape evaluation method for press formed article | |
Valeš et al. | Outer car body panels made of dual-phase steel | |
Sato et al. | Effect of Local Ductility of Advanced High Strength Steels in 980MPa and 1180MPa Grades on Crash Performance of Automotive Structures | |
Macek et al. | 3 rd Generation AHSS Virtual and Physical Stamping Evaluation | |
JP4582630B2 (en) | Press molding method for structural members with excellent shock absorption characteristics | |
de Oliveira et al. | Influence of drawbead geometry and blank holder force on the dual phase steel formability | |
Wiesenmayer et al. | Fundamental mechanisms and their interactions in shear‐clinching technology and investigation of the process robustness | |
TWI498765B (en) | Heat treatment method of structural part and structural part | |
Said et al. | Analysis of springback effects in deep drawing processes: simulation and experimental studies | |
Karabulut et al. | Finite element analysis of springback of high-strength metal SCGA1180DUB while U-channeling, according to wall angle and die radius | |
Madi et al. | An analysis of the forming speed variation with relation to deep drawing depth of steel DP 600 sheets | |
WO2024224674A1 (en) | Delayed fracture characteristic evaluation method, delayed fracture prediction method, program, and press-molded article production method | |
Tummers | Development of a Tailor-Welded Hot Stamped Side Frame Member | |
Maculotti et al. | Analysis of residual plastic deformation of blanked sheets out of automotive aluminium alloys through hardness map | |
WO2023181539A1 (en) | Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article | |
Sato et al. | Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures | |
Gao et al. | Impact simulation of Hydro-formed front end vehicle structure | |
Choi et al. | Development of a spot weld analysis model that incorporates strain rate | |
Sato et al. | Effect of local ductility on crash performance of automotive structures considering press forming strain of advanced high strength steels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231013 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7369088 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |