JP2021179333A - Three-dimensional measuring device and light receiving device - Google Patents

Three-dimensional measuring device and light receiving device Download PDF

Info

Publication number
JP2021179333A
JP2021179333A JP2020083794A JP2020083794A JP2021179333A JP 2021179333 A JP2021179333 A JP 2021179333A JP 2020083794 A JP2020083794 A JP 2020083794A JP 2020083794 A JP2020083794 A JP 2020083794A JP 2021179333 A JP2021179333 A JP 2021179333A
Authority
JP
Japan
Prior art keywords
light
irradiation
cores
measured
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020083794A
Other languages
Japanese (ja)
Other versions
JP7478420B2 (en
Inventor
佳奈美 池田
Kanami Ikeda
誠 山田
Makoto Yamada
陽平 亀山
Yohei Kameyama
長規 小山
Osanori Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Public Corporation Osaka
Original Assignee
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Public Corporation Osaka filed Critical University Public Corporation Osaka
Priority to JP2020083794A priority Critical patent/JP7478420B2/en
Publication of JP2021179333A publication Critical patent/JP2021179333A/en
Application granted granted Critical
Publication of JP7478420B2 publication Critical patent/JP7478420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a space-saving type three-dimensional measuring device that receives emitted waves from a measurement object and materializes three-dimensional imaging of the measurement object.SOLUTION: A three-dimensional measuring device pertaining to the present invention comprises: an irradiation device configured to be capable of irradiating the irradiation region of a measurement object with spatial modulated irradiation light; and a light receiving device including a first multicore fiber having a plurality of cores capable of receiving emitted light that is emitted from the measurement object irradiated with irradiation light and includes information of the measurement object in the irradiation region and an optical information calculation unit configured to be capable of calculating the three-dimensional information of the measurement object on the basis of the optical information of emitted light received by each of the plurality of cores and the optical information of irradiation light. The first multicore fiber includes an appropriate numerical aperture so that the irradiation region is included within an overlap region where the ranges of light-receiving angles of emitted light receivable by each of two or more cores of the plurality of cores overlap each other.SELECTED DRAWING: Figure 1

Description

本発明は、3次元測定装置及び受光装置に関する。 The present invention relates to a three-dimensional measuring device and a light receiving device.

所定の変調パターンで空間変調した変調光を被測定物体に照射し、被測定物体から出射されるとともに被測定物体の情報を含む出射光を、空間分解能を持たない点型検出器等によって検出し、処理することによって、被測定物体の情報を取得できる。前述のように被測定物体の情報を取得する技術は、シングルピクセルイメージング(Single−pixel imaging:SPI)として知られており、点型検出器としては例えばフォトダイオードが用いられる。 The object to be measured is irradiated with the modulated light spatially modulated by a predetermined modulation pattern, and the emitted light emitted from the object to be measured and containing the information of the object to be measured is detected by a point detector or the like having no spatial resolution. , Information on the object to be measured can be obtained by processing. As described above, the technique for acquiring information on the object to be measured is known as single pixel imaging (SPI), and a photodiode is used as the point detector, for example.

例えば、非特許文献1に開示されているSPIでは、プロジェクタからスペックルパターンを有する変調光を被測定物体に照射し、被測定物体からプロジェクタに向かって反射される出射光を、4つのシングルピクセルフォトディテクタで受光し、取得した情報に基づいて被測定物体の情報が再生される。4つのシングルピクセルフォトディテクタは、プロジェクタの投影用のレンズと同じ面内に配置され、光軸に沿って見たときにレンズの上方、下方、及び両側方に互いに離れて配置されている。4つのシングルピクセルフォトディテクタで出射光を並列に取得することによって、非特許文献1に開示されているSPIでは、被測定物体の3次元イメージングを実現する。 For example, in the SPI disclosed in Non-Patent Document 1, the projector irradiates the object to be measured with modulated light having a speckle pattern, and the emitted light reflected from the object to be measured toward the projector is four single pixels. The light is received by the photo detector, and the information of the object to be measured is reproduced based on the acquired information. The four single-pixel photodetectors are located in the same plane as the projector's projection lens and are located above, below, and on both sides of the lens apart from each other when viewed along the optical axis. By acquiring the emitted light in parallel with four single pixel photodetectors, the SPI disclosed in Non-Patent Document 1 realizes three-dimensional imaging of the object to be measured.

SPIで構造化照明を形成する方法は、種々提案されている。例えば、上述の非特許文献1に開示されているSPIでは、プロジェクタは、3原色の発光ダイオード(Light−emitted source:LED)と、デジタルマイクロミラーデバイス(Digital micromirror device:DMD)と、を備える。LEDから出射された光は、DMDの互いに異なる方向に姿勢を変更可能な複数のマイクロミラーによって空間変調され、構造化照明を形成する。 Various methods for forming structured lighting with SPI have been proposed. For example, in the SPI disclosed in Non-Patent Document 1 described above, the projector includes a light-emitting diode (Light-emitted source: LED) of three primary colors and a digital micromirror device (DMD). The light emitted from the LEDs is spatially modulated by a plurality of micromirrors capable of changing their orientations in different directions of the DMD to form structured illumination.

上述のようにDMDや液晶空間光変調器等の変調器を用いて構造化照明を形成する方法では、被測定物体の情報を得るために、複数の変調パターンの構造化照明を形成する必要がある。被測定物体の情報の取得速度は、光源の発光パターンの切替時間及び変調器の動作時間に制約される。また、変調器及び変調器を動作させるためのドライバ等は、設置スペースを必要とする。例えば、非特許文献2には、マルチコアファイバ(Multu−core fiber:MCF)を用いて構造化照明を形成し、被測定物体の3次元情報を取得するSPIが開示されている。非特許文献2に開示されているSPIでは、MCFの各コアに入力する光学情報を切り替えることによって、MCFの出射端面から離れて配置された被測定物体に照射されるフラウンホーファー回折光の強度を変調し、複数の変調パターンの構造化照明を形成できる。MCFは受動デバイスであるため、非特許文献2に開示されているSPIでは、従来のSPIにおける変調器の動作時間に相当する時間をなくし、被測定物体の情報取得の高速化及び変調光を被測定物体に照射する照射装置の小型化が図られる。 In the method of forming structured illumination using a modulator such as a DMD or a liquid crystal spatial light modulator as described above, it is necessary to form structured illumination of a plurality of modulation patterns in order to obtain information on the object to be measured. be. The acquisition speed of the information of the object to be measured is limited by the switching time of the light emission pattern of the light source and the operating time of the modulator. Further, the modulator and the driver for operating the modulator or the like require an installation space. For example, Non-Patent Document 2 discloses an SPI that forms structured illumination using a multi-core fiber (Multu-core fiber: MCF) and acquires three-dimensional information of an object to be measured. In the SPI disclosed in Non-Patent Document 2, by switching the optical information input to each core of the MCF, the intensity of the Fraunhofer diffraction light applied to the object to be measured located away from the emission end face of the MCF is determined. It can be modulated to form structured optics with multiple modulation patterns. Since the MCF is a passive device, the SPI disclosed in Non-Patent Document 2 eliminates the time corresponding to the operating time of the modulator in the conventional SPI, speeds up the acquisition of information of the object to be measured, and receives the modulated light. The size of the irradiation device that irradiates the measurement object can be reduced.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, M. J. Padgett: “3D Computational Imaging with Single-Pixel Detectors”, Science, Vol. 340, Issue 6134, pp.844-847, 2013.B. Sun, MP Edgar, R. Bowman, LE Vittert, S. Welsh, A. Bowman, MJ Padgett: “3D Computational Imaging with Single-Pixel Detectors”, Science, Vol. 340, Issue 6134, pp.844-847 , 2013. Y. Kameyama, K. Ikeda, O. Koyama, M. Yamada: “Single-pixel Imaging using a Multi-core Fiber”, Technical Digest of OECC/PSC 2019, WP4-C2, 2019.Y. Kameyama, K. Ikeda, O. Koyama, M. Yamada: “Single-pixel Imaging using a Multi-core Fiber”, Technical Digest of OECC / PSC 2019, WP4-C2, 2019.

非特許文献1に開示されているSPIでは、各々のフォトディテクタの単一画素からなる受光部で出射光全体を受光するために、光波の伝搬方向において4つのフォトディテクタを被測定物体から離し、且つ投影用のレンズと同じ面内でフォトディテクタの受光角度を考慮した間隔で互いに離して配置する必要がある。したがって、非特許文献1に開示されているSPIでは、複数の受光部を配置する全体スペースが拡がるという課題があった。非特許文献2に開示されているSPIでは、照射装置の高速化及び小型化が図られる一方で、2次元イメージングに限られるという課題があった。そのため、所定のパターンで空間変調されるとともに被測定物体の情報を含む光波を受光して被測定物体の3次元イメージングを実現する省スペース型の受光装置及び当該受光装置を備えた3次元測定装置が求められていた。 In the SPI disclosed in Non-Patent Document 1, in order to receive the entire emitted light by the light receiving portion consisting of a single pixel of each photodetector, the four photodetectors are separated from the object to be measured and projected in the propagation direction of the light wave. It is necessary to arrange the photodetectors in the same plane as the lens at intervals considering the light receiving angle of the photodetector. Therefore, the SPI disclosed in Non-Patent Document 1 has a problem that the entire space for arranging a plurality of light receiving portions is expanded. The SPI disclosed in Non-Patent Document 2 has a problem that the irradiation device can be speeded up and downsized, but is limited to two-dimensional imaging. Therefore, a space-saving light-receiving device that is spatially modulated in a predetermined pattern and receives light waves containing information on the object to be measured to realize three-dimensional imaging of the object to be measured, and a three-dimensional measuring device provided with the light-receiving device. Was sought after.

本発明は、被測定物体からの出射波を受光して被測定物体の3次元イメージングを実現し、且つ省スペース型の3次元測定装置及び受光装置を提供する。 The present invention provides a space-saving three-dimensional measuring device and a light receiving device that receive light emitted waves from a measured object to realize three-dimensional imaging of the measured object.

本発明に係る3次元測定装置は、被測定物体の照射領域に対して前記照射領域内で所定の変調パターンで空間変調された照射光を照射可能に構成されている照射装置と、前記照射光が照射された前記被測定物体から出射されるとともに前記照射領域における前記被測定物体の情報を含む出射光を受光可能な複数のコアを有する第1マルチコアファイバと、前記複数のコアの各々が受光した前記出射光の光学情報及び前記照射光の光学情報に基づいて前記被測定物体の3次元情報を算出可能に構成されている光学情報算出部と、を有する受光装置と、を備える。前記第1マルチコアファイバは、前記複数のコアのうち2つ以上のコアの各々で受光可能な前記出射光の受光角度範囲が互いに重なる重なり領域内に前記照射領域が含まれるように、前記複数のコアの各々において前記出射光の最大受光角と前記被測定物体と前記第1マルチコアファイバとの間の領域の屈折率とによって求まる開口数を有する。 The three-dimensional measuring device according to the present invention includes an irradiation device configured to be capable of irradiating an irradiation region of an object to be measured with irradiation light spatially modulated by a predetermined modulation pattern in the irradiation region, and the irradiation light. A first multi-core fiber having a plurality of cores capable of receiving light emitted from the object to be measured and containing information on the object to be measured in the irradiation region, and each of the plurality of cores receives light. A light receiving device including an optical information calculation unit configured to be able to calculate three-dimensional information of the object to be measured based on the optical information of the emitted light and the optical information of the irradiation light. The first multi-core fiber has the plurality of irradiation regions so that the irradiation region is included in the overlapping region where the light receiving angle ranges of the emitted light that can be received by each of the two or more cores of the plurality of cores overlap each other. Each of the cores has a numerical aperture determined by the maximum light receiving angle of the emitted light and the refractive index of the region between the object to be measured and the first multi-core fiber.

上述の3次元測定装置では、前記出射光の進行方向において前記照射領域の少なくとも一部と重なる照射面と前記第1マルチコアファイバの受光端面との距離は、前記開口数と前記照射面に沿う方向での前記照射領域の大きさとに応じて設定されてもよい。 In the above-mentioned three-dimensional measuring device, the distance between the irradiation surface overlapping at least a part of the irradiation region in the traveling direction of the emitted light and the light receiving end surface of the first multi-core fiber is the direction along the numerical aperture and the irradiation surface. It may be set according to the size of the irradiation area in.

上述の3次元測定装置では、前記照射装置は、前記第1マルチコアファイバを共有し、光源と、前記光源から出射された光を互いに異なる空間分布を有する複数の光に変調するとともに、変調された前記複数の光を前記第1マルチコアファイバの複数のコアに入射させる変調器と、を備えてもよい。 In the above-mentioned three-dimensional measuring device, the irradiation device shares the first multi-core fiber, and the light source and the light emitted from the light source are modulated and modulated into a plurality of lights having different spatial distributions from each other. A modulator that causes the plurality of lights to be incident on the plurality of cores of the first multi-core fiber may be provided.

上述の3次元測定装置では、前記照射装置は、光源と、前記光源から出射された光を互いに異なる空間分布を有する複数の光に変調する変調器と、前記変調器で変調された前記複数の光が入射可能、且つ出射端から離れた前記被測定物体の照射領域で前記照射光を形成するように前記複数の光を前記出射端から出射する複数のコアを有するとともに、前記第1マルチコアファイバとは異なる位置に配置されている第2マルチコアファイバと、を備えてもよい。 In the above-mentioned three-dimensional measuring device, the irradiation device includes a light source, a modulator that modulates the light emitted from the light source into a plurality of lights having different spatial distributions from each other, and the plurality of modulators modulated by the modulator. The first multi-core fiber has a plurality of cores that emit the plurality of lights from the emission end so that the irradiation light is formed in the irradiation region of the object to be measured that can be incident with light and is away from the emission end. A second multi-core fiber, which is arranged at a different position from the above, may be provided.

上述の3次元測定装置では、前記照射装置は、光源と、前記光源から出射された光を前記光の光軸に交差する断面で前記照射領域以上の大きさを有する平行光にコリメートする第1レンズと、前記第1レンズによってコリメートされた前記光を空間変調することによって前記照射光を形成するとともに、前記照射光を前記照射領域に照射可能に構成されている空間変調器と、を備えてもよい。 In the above-mentioned three-dimensional measuring device, the irradiation device collimates the light source and the light emitted from the light source with parallel light having a size larger than the irradiation region in a cross section intersecting the optical axis of the light. A lens and a spatial modulator configured to form the irradiation light by spatially modulating the light collimated by the first lens and to irradiate the irradiation region with the irradiation light. May be good.

本発明に係る受光装置は、被測定物体の照射領域に対して前記照射領域内で所定の変調パターンで空間変調された照射光が照射された被測定物体の3次元情報を取得するために用いられる受光装置であり、前記照射光が照射された前記被測定物体から出射されるとともに前記照射領域における前記被測定物体の情報を含む出射光を受光可能な複数のコアを有する第1マルチコアファイバと、前記複数のコアの各々が受光した前記出射光の光学情報及び前記照射光の光学情報に基づいて前記被測定物体の3次元情報を算出可能に構成されている光学情報算出部と、を備える。前記第1マルチコアファイバは、前記複数のコアのうち2つ以上のコアの各々で受光可能な前記出射光の受光角度範囲が互いに重なる重なり領域内に前記照射領域が含まれるように、前記複数のコアの各々において前記受光角度範囲から決まる前記出射光の最大受光角と前記被測定物体と前記第1マルチコアファイバとの間の領域の屈折率とによって求まる開口数を有する。 The light receiving device according to the present invention is used to acquire three-dimensional information of the object to be measured that is irradiated with the irradiation light spatially modulated by a predetermined modulation pattern in the irradiation area of the object to be measured. A first multi-core fiber having a plurality of cores capable of receiving light emitted from the object to be measured irradiated with the irradiation light and including information on the object to be measured in the irradiation region. An optical information calculation unit configured to be able to calculate three-dimensional information of the object to be measured based on the optical information of the emitted light received by each of the plurality of cores and the optical information of the irradiation light. .. The first multi-core fiber has the plurality of irradiation regions so that the irradiation region is included in the overlapping region where the light receiving angle ranges of the emitted light that can be received by each of the two or more cores of the plurality of cores overlap each other. Each of the cores has a numerical aperture determined by the maximum light receiving angle of the emitted light determined from the light receiving angle range and the refractive index of the region between the object to be measured and the first multi-core fiber.

本発明によれば、被測定物体からの出射波を受光して被測定物体の3次元イメージングを実現し、且つ省スペース型の3次元測定装置及び受光装置を提供できる。 According to the present invention, it is possible to provide a space-saving three-dimensional measuring device and a light receiving device that receive light emitted waves from a measured object to realize three-dimensional imaging of the measured object.

本発明に係る第1実施形態の3次元測定装置の模式図である。It is a schematic diagram of the 3D measuring apparatus of 1st Embodiment which concerns on this invention. 図1に示す3次元測定装置のMCFの入射端面を見たときの側面図である。It is a side view when the incident end face of the MCF of the 3D measuring apparatus shown in FIG. 1 is seen. 図1に示す3次元測定装置のMCFの出射端面を見たときの側面図である。It is a side view when the emission end face of the MCF of the 3D measuring apparatus shown in FIG. 1 is seen. 図1に示す3次元測定装置のMCFの各コアの位相を示す模式図である。It is a schematic diagram which shows the phase of each core of the MCF of the 3D measuring apparatus shown in FIG. 図1に示す3次元測定装置における受光の様子を説明するための模式図である。It is a schematic diagram for demonstrating the state of the light-receiving state in the 3D measuring apparatus shown in FIG. 図1に示す3次元測定装置における受光の様子を説明するための模式図である。It is a schematic diagram for demonstrating the state of the light-receiving state in the 3D measuring apparatus shown in FIG. 本発明に係る第2実施形態の3次元測定装置の模式図である。It is a schematic diagram of the 3D measuring apparatus of the 2nd Embodiment which concerns on this invention. 図7に示す3次元測定装置における受光の様子を説明するための模式図である。It is a schematic diagram for demonstrating the state of the light-receiving state in the 3D measuring apparatus shown in FIG. 7. 本発明に係る第3実施形態の3次元測定装置の模式図である。It is a schematic diagram of the 3D measuring apparatus of the 3rd Embodiment which concerns on this invention. 図9に示す3次元測定装置の空間変調器の変調面を正面視したときの模式図である。It is a schematic diagram when the modulation plane of the spatial modulator of the 3D measuring apparatus shown in FIG. 9 is viewed from the front. 図9に示す3次元測定装置おける受光の様子を説明するための模式図である。It is a schematic diagram for demonstrating the state of the light-receiving state in the 3D measuring apparatus shown in FIG.

以下、本発明に係る3次元測定装置及び受光装置の好ましい実施形態について、図面を参照して説明する。 Hereinafter, preferred embodiments of the three-dimensional measuring device and the light receiving device according to the present invention will be described with reference to the drawings.

(第1実施形態)
図1に示すように、本発明に係る第1実施形態の3次元測定装置201は、照射装置211と、受光装置221と、を備える。照射装置211は、光源10と、分波器12と、複数の変調器14−1、・・・、14−mと、光サーキュレータ16−1・・・、16−mと、MCF(第1マルチコアファイバ)21と、を備える。mは、2以上の自然数であり、後述するMCF21のコア26−1・・・、26−mの総数である。
(First Embodiment)
As shown in FIG. 1, the three-dimensional measuring device 201 of the first embodiment according to the present invention includes an irradiation device 211 and a light receiving device 221. The irradiation device 211 includes a light source 10, a demultiplexer 12, a plurality of modulators 14-1, ..., 14-m, an optical circulator 16-1, 16-m, and an MCF (first). Multi-core fiber) 21 and. m is a natural number of 2 or more, and is the total number of cores 26-1 ..., 26-m of MCF21 described later.

光源10は、所定の中心波長(又はピーク波長)を有する光波LW1を出射する。光源10の出射端には、接続用ファイバ11−1の入射端が接続されている。分波器12の入射端には、接続用ファイバ11−1の出射端が接続されている。分波器12の出射端には、m本の接続用ファイバ11−2の各々の入射端が接続されている。分波器12は、接続用ファイバ11−1から入射した光波LW1を略m分割し、m本の接続用ファイバ11−2に入射させる。分波器12には、例えば接続用ファイバ11−1、11−2を備える公知の光カプラが用いられる。m本の接続用ファイバ11−2の各々の出射端には、変調器14−1・・・、14−mの各々の入射端が接続されている。 The light source 10 emits a light wave LW1 having a predetermined center wavelength (or peak wavelength). The incident end of the connecting fiber 11-1 is connected to the emitted end of the light source 10. The exit end of the connecting fiber 11-1 is connected to the incident end of the duplexer 12. Each incident end of m connecting fibers 11-2 is connected to the emitting end of the demultiplexer 12. The demultiplexer 12 divides the light wave LW1 incident from the connection fiber 11-1 into substantially m and causes the light wave LW1 to be incident on m connection fibers 11-2. As the duplexer 12, for example, a known optical coupler including connecting fibers 11-1 and 11-2 is used. The incident ends of the modulators 14-1 ... And 14-m are connected to the emitted ends of the m connecting fibers 11-2.

変調器14−1・・・、14−mの各々には、例えば位相シフタが用いられる。p番目の変調器14−pは、入射した光波LW1の位相を所定の位相量φシフトさせる。pは、1以上m以下の自然数を表す。変調器14−1・・・、14−mの出射端の各々には、接続用ファイバ11−3の入射端が接続されている。m本の接続用ファイバ11−3の各々の出射端は、光サーキュレータ16−1・・・、16−mの各々の第1入出射端(図示略)に接続されている。光サーキュレータ16−1・・・、16−mの各々の第2入出射端(図示略)には、接続用ファイバ11−4の入射端が接続されている。変調器14−1・・・、14−mの各々で変調された変調光LW2は、光サーキュレータ16−1・・・、16−mの第1入出射端から出射され、光サーキュレータ16−1・・・、16−mの第2入出射端からm本の接続用ファイバ11−4に入射する。 For example, a phase shifter is used for each of the modulators 14-1 ... And 14-m. The p-th modulator 14-p shifts the phase of the incident light wave LW1 by a predetermined phase amount φp. p represents a natural number of 1 or more and m or less. The incident end of the connecting fiber 11-3 is connected to each of the emitting ends of the modulators 14-1 ... And 14-m. Each emission end of the m connecting fibers 11-3 is connected to each of the first input / exit ends (not shown) of the optical circulators 16-1 ..., 16-m. The incident end of the connecting fiber 11-4 is connected to each of the second input / output ends (not shown) of the optical circulators 16-1 ... And 16-m. The modulated light LW2 modulated by each of the modulators 14-1 ..., 14-m is emitted from the first input / output ends of the optical circulators 16-1 ..., 16-m, and is emitted from the optical circulator 16-1. ..., It is incident on m connecting fibers 11-4 from the second input / output end of 16-m.

照射装置211は、MCF21を受光装置221と共有している。MDF21は、後述するように被測定物体100から出射される出射光LW4を受光する受光部材であるが、3次元測定装置201では被測定物体100に対して照射光LW3を照射する照射部材も兼ねている。 The irradiation device 211 shares the MCF 21 with the light receiving device 221. The MDF 21 is a light receiving member that receives the emitted light LW4 emitted from the object to be measured 100 as described later, but the coordinate measuring device 201 also serves as an irradiation member that irradiates the object 100 to be measured with the irradiation light LW3. ing.

図1から図3に示すように、MCF21は、複数のコア26−1・・・、26−mと、クラッド28と、を有する。図2等には、一例としてm=7の場合を示している。コア26−1は、z方向から見たときに、入射端面31及び出射端面32の中心に設けられている。6つのコア26−2、・・・、26−7は、入射端面31及び出射端面32においてコア26−1を中心とする同心円上の周方向で等間隔に設けられている。 As shown in FIGS. 1 to 3, the MCF 21 has a plurality of cores 26-1 ..., 26-m, and a clad 28. FIG. 2 and the like show the case where m = 7 as an example. The core 26-1 is provided at the center of the incident end surface 31 and the emitted end surface 32 when viewed from the z direction. The six cores 26-2, ..., 26-7 are provided at equal intervals in the circumferential direction on the concentric circle centered on the core 26-1 on the incident end surface 31 and the emitted end surface 32.

クラッド28は、MCF21の軸線方向に沿うz方向(即ち、光波LW1の進行方向)から見たときに、複数のコア26−1・・・、26−mの外周部に設けられている。クラッド28は、図2に示すように複数のコア26−1・・・、26−mの外周部でつながってMCF21で一体に設けられいていてもよく、複数のコア26−1・・・、26−mの各々の外周部に個別に設けられていてもよい。MCF21の入射端面31における複数のコア26−1・・・、26−mの入射端には、m本の接続用ファイバ11−4の各々の出射端が接続されている。 The clad 28 is provided on the outer peripheral portions of the plurality of cores 26-1 ..., 26-m when viewed from the z direction along the axial direction of the MCF 21 (that is, the traveling direction of the light wave LW1). As shown in FIG. 2, the clad 28 may be connected at the outer peripheral portions of a plurality of cores 26-1 ..., 26-m and integrally provided by the MCF 21, and the plurality of cores 26-1 ... It may be provided individually on each outer peripheral portion of 26-m. Each emission end of m connecting fibers 11-4 is connected to the incident ends of the plurality of cores 26-1 ..., 26-m on the incident end surface 31 of the MCF 21.

図1に示すように、MCF21の出射端面32に対して出射端面32における複数のコア26−1・・・、26−mの出射端から出射される変調波LW2の進行方向、即ちz方向において、出射端面32から所定の距離Z1離れた位置に、被測定物体100が配置されている。言い換えれば、出射端面32は、z方向において被測定物体100から距離Z1離れて配置されている。被測定物体100は、照射される光波に対して光学情報を付与可能な物体であればよく、特定の物体に限定されない。被測定物体100の形状は、特定の形状に限定されない。第1実施形態で例示する被測定物体100は、照射された光の少なくとも一部を反射可能な物体である。 As shown in FIG. 1, with respect to the emission end surface 32 of the MCF 21, a plurality of cores 26-1 ... The object to be measured 100 is arranged at a position Z1 away from the emission end surface 32 by a predetermined distance. In other words, the emission end surface 32 is arranged at a distance Z1 from the object to be measured 100 in the z direction. The object to be measured 100 may be any object as long as it can add optical information to the irradiated light wave, and is not limited to a specific object. The shape of the object to be measured 100 is not limited to a specific shape. The object to be measured 100 exemplified in the first embodiment is an object capable of reflecting at least a part of the irradiated light.

受光装置221は、MCF21と、計算機(光学情報算出部)50と、を備える。MCF21は、変調波LW2を出射して後述する照射光LW3を形成する照射部材であるが、そもそも照射光LW3が被測定物体100によって反射されることによって被測定物体100から出射される出射光LW4の受光部材である。光サーキュレータ16−1・・・、16−mの各々の第3入出射端(図示略)には、接続用ファイバ11−5の入射端が接続されている。m本の接続用ファイバ11−5の出射端は、光電変換器52に接続されている。光電変換器52は、接続ケーブル18等を介して、パーソナルコンピュータ等の計算機50に接続されている。光電変換器52は、m本の接続用ファイバ11−5の各々を介して受信した光強度等の出射光LW4の光学情報を電流値又は電圧値等に変換し、計算機50に出力する。計算機50には、不図示のケーブル或いは接続線を介して、被測定物体100の光学情報が反映されていない変調光LW3に関する光学情報が入力されている。計算機50は、複数のコア26−1・・・、26−mの各々が受光した出射光LW4の光学情報及び照射光LW3の光学情報に基づいて被測定物体100の3次元情報を算出可能に構成されている。 The light receiving device 221 includes an MCF 21 and a computer (optical information calculation unit) 50. The MCF 21 is an irradiation member that emits a modulated wave LW2 to form an irradiation light LW3, which will be described later. In the first place, the irradiation light LW3 is reflected by the measured object 100, so that the emitted light LW4 emitted from the measured object 100 is emitted. It is a light receiving member of. The incident end of the connecting fiber 11-5 is connected to each of the third input / output ends (not shown) of the optical circulators 16-1 ... And 16-m. The exit ends of the m connecting fibers 11-5 are connected to the photoelectric converter 52. The photoelectric converter 52 is connected to a computer 50 such as a personal computer via a connection cable 18 or the like. The photoelectric converter 52 converts the optical information of the emitted light LW4 such as the light intensity received through each of the m connecting fibers 11-5 into a current value or a voltage value, and outputs the optical information to the computer 50. Optical information about the modulated light LW3, which does not reflect the optical information of the object to be measured 100, is input to the computer 50 via a cable or a connecting line (not shown). The computer 50 can calculate the three-dimensional information of the object to be measured 100 based on the optical information of the emitted light LW4 and the optical information of the irradiation light LW3 received by each of the plurality of cores 26-1 ..., 26-m. It is configured.

接続用ファイバ11−1、11−2、11−3、11−4、11−5は、光LW1の中心波長に合わせて設計され、光LW1、変調波LW2、出射光LW4を伝搬可能に形成されている。なお、MCP21の複数のコア26−#に接続される変調器14−#、光サーキュレータ16−#の番号#は、互いに1対1で接続関係が明確であれば、必ずしも互いに一致しなくてもよい。 The connecting fibers 11-1, 11-2, 11-3, 11-4, 11-5 are designed according to the center wavelength of the optical LW1 and form the optical LW1, the modulated wave LW2, and the emitted light LW4 so as to be propagable. Has been done. The modulators 14- # and the optical circulators 16- # numbers # connected to the plurality of cores 26- # of the MCP21 do not necessarily match each other as long as the connection relationship is clear on a one-to-one basis. good.

3次元測定装置201において、光源10から出射された光LW1は、複数の変調器14−1・・・、14−mの各々によって位相シフトされ、変調光LW2としてMCF21のコア26−1・・・、26−mに入射する。MCF21のコア26−1・・・、26−mをz方向に伝搬した変調光LW2は、出射端から被測定物体100に向かって自由空間内に出射される。図4に示すように、MCF21の出射端面32では、相対的な位相量φの違いを持った変調光LW2がコア26−1・・・、26−mに供給されることによって変調元の変調波LW2の電場E(ζ,η)が発生する。iは、複数の変調器14−1・・・、14−mを用いて変調を行う回数の番号を表す。ζ,ηは、照射面105における照射光LW3の複素振幅分布F(x,y)に基づく変調光LW2の複素振幅分布における変数(即ち、フーリエ領域における空間周波数)を表す。照射面105は、z方向に直交するとともに互いに直交するx方向及びy方向で被測定物体100の測定対象領域である照射領域102と重なり、且つz方向に交差する平面である。照射面105と照射領域102とのz方向の距離差は、光学的に無視できる程度である。つまり、MCF21の出射端面32で複素振幅分布E(ζ,η)を有する変調光LW2は、出射端面32からz方向を中心にして自由空間を伝搬し、フラウンホーファー回折し、照射面105近傍で複素振幅分布F(x,y)を有する照射光LW3を形成する。複素振幅分布F(x,y)は、次に示す(1)式のように表される。 In the three-dimensional measuring device 201, the light LW1 emitted from the light source 10 is phase-shifted by each of the plurality of modulators 14-1 ..., 14-m, and the core 26-1 of the MCF 21 is used as the modulated light LW2. -It is incident on 26-m. The modulated light LW2 propagating in the z direction through the cores 26-1 ... Of the MCF 21 and 26-m is emitted into the free space from the emission end toward the object to be measured 100. As shown in FIG. 4, the exit end face 32 of MCF21, modulated light LW2 having a difference in relative phase quantity phi p is the core 26-1 ..., modulation source by being supplied to the 26-m electric field E i (ζ, η) of the modulated wave LW2 occurs. i represents the number of times of modulation using a plurality of modulators 14-1 ..., 14-m. zeta, eta represents the variable in the complex amplitude distribution of the modulated light LW2 based on the complex amplitude distribution F i of the irradiation light LW3 the irradiated surface 105 (x, y) (i.e., the spatial frequency in the Fourier domain). The irradiation surface 105 is a plane that overlaps with the irradiation region 102, which is the measurement target region of the object to be measured 100, in the x-direction and the y-direction that are orthogonal to each other in the z-direction and intersects in the z-direction. The difference in distance between the irradiation surface 105 and the irradiation region 102 in the z direction is optically negligible. That is, the modulated light LW2 having a complex amplitude distribution E i (ζ, η) on the emission end surface 32 of the MCF 21 propagates in free space around the z direction from the emission end surface 32, is Fraunhofer diffracted, and is near the irradiation surface 105. in the complex amplitude distribution F i (x, y) to form a radiation beam LW3 with. The complex amplitude distribution Fi (x, y) is expressed by the following equation (1).

Figure 2021179333
Figure 2021179333

(1)式において、jは虚数単位を表し、λは光波LW1、LW2の中心波長を表し、kは光波LW1、LW2の波数を表す。z方向でのMCF21の出射端面32と照射面105との所定の距離Z1は、フラウンホーファー近似が成り立つ範囲内で確保されている。したがって、複素振幅分布F(x,y)は、複素振幅分布E(ζ,η)をフーリエ変換することによって、次に示す(2)式のように表される。 In the equation (1), j represents an imaginary unit, λ represents the center wavelength of the light waves LW1 and LW2, and k represents the wave number of the light waves LW1 and LW2. The predetermined distance Z1 between the emission end surface 32 of the MCF 21 and the irradiation surface 105 in the z direction is secured within a range in which the Fraunhofer approximation holds. Therefore, the complex amplitude distribution Fi (x, y) is expressed by the Fourier transform of the complex amplitude distribution E i (ζ, η) as shown in Eq. (2) below.

Figure 2021179333
Figure 2021179333

照射面105における変調光LW3の光強度I(x,y)は、次に示す(3)式のように表される。 The light intensity I i (x, y) of the modulated light LW3 on the irradiation surface 105 is expressed by the following equation (3).

Figure 2021179333
Figure 2021179333

被測定物体100の照射領域102に照射された照射光LW3は、被測定物体100によって、z方向と平行且つ逆向きの−z方向を中心にして反射される。被測定物体100から反射(出射)された出射光LW4は、照射光LW3の光学情報に照射領域102の被測定物体100の光学情報を加えた光学情報を含んでいる。MCF21の複数のコア26−1・・・、26−mは、出射光LW4を受光可能に形成されている。具体的には、図5に示すように、MCF21のp番目のコア26−pには、最大受光角θmax-pよりも小さい受光角度範囲θ(<2θmax−p)内の受光角の出射光LW4が入射する。2θmax-pは、p番目のコア26−pの視野角を意味する。コア26−1・・・、26−mの各々に入射した出射光LW4は、コア26−1・・・、26−mとクラッド28との境界面で全反射を繰り返しつつ、コア26−1・・・、26−mの各々の内部を−z方向に進行する。 The irradiation light LW3 irradiated on the irradiation region 102 of the object to be measured 100 is reflected by the object 100 to be measured centering on the −z direction parallel to and opposite to the z direction. The emitted light LW4 reflected (emitted) from the measured object 100 includes optical information obtained by adding the optical information of the measured object 100 in the irradiation region 102 to the optical information of the irradiation light LW3. The plurality of cores 26-1 ..., 26-m of the MCF 21 are formed so as to be able to receive the emitted light LW4. Specifically, as shown in FIG. 5, the p-th core 26-p of the MCF 21 has a light-receiving angle within the light-receiving angle range θ p (<2θ max-p ) smaller than the maximum light-receiving angle θ max-p. The emitted light LW4 of the above is incident. 2θ max-p means the viewing angle of the p-th core 26-p. The emitted light LW4 incident on each of the cores 26-1 ..., 26-m repeats total internal reflection at the interface between the cores 26-1 ..., 26-m and the clad 28, and the core 26-1 ... ..., Proceed inside each of 26-m in the -z direction.

第1実施形態では、m個のコア26−1、・・・、26−mの屈折率ncoreは、互いに同一であると想定する。m個のコア26−1・・・、26−mは、受光部材としてのMCF21の受光端面33で互いに異なる位置に配置されている。3次元測定装置201では、受光端面33は、照射部材としてのMCF21の出射端面32と同一である。m個のコア26−1・・・、26−mのうちp番目のコア26−pの受光角度範囲θとq番目のコア26−qの受光角度範囲θとは、同じ大きさであるが、z方向に交差する交差方向(以下、単に交差方向という場合がある)で完全に重ならない。qは、pとは異なり、且つ1以上m以下の自然数を表す。 In the first embodiment, it is assumed that the refractive indexes n core of m cores 26-1, ..., 26-m are the same as each other. The m cores 26-1 ..., 26-m are arranged at different positions on the light receiving end surface 33 of the MCF 21 as a light receiving member. In the three-dimensional measuring device 201, the light receiving end surface 33 is the same as the emission end surface 32 of the MCF 21 as an irradiation member. the m cores 26-1 ..., and the light receiving angle range theta q of the light-receiving angle range theta p and q th core 26-q of the p-th core 26-p of 26-m, the same size However, they do not completely overlap in the crossing direction that intersects in the z direction (hereinafter, may be simply referred to as the crossing direction). q is different from p and represents a natural number of 1 or more and m or less.

被測定物体100とMCF21との間の自由空間(領域)の屈折率をnとすると、MCF21の開口数NA(Numerical aperture)は、次に示す(4)式のように表される。 When the refractive index of free space (area) between the object to be measured 100 and MCF21 and n s, the numerical aperture of MCF21 NA (Numerical aperture) is represented as the following equation (4).

Figure 2021179333
Figure 2021179333

(4)式において、最大受光角θMAXは、m個のコア26−1、・・・、26−mの互いに等しい最大受光角θmax−1、・・・、θmax−mと等しく、これらの最大受光角をまとめて記載したパラメータである。自由空間が空気で満ちており、n=1とすると、開口数NAは、次に示す(5)式のように表される。 In the equation (4), the maximum light receiving angle θ MAX is equal to the maximum light receiving angles θ max-1 , ..., θ max-m equal to each other of the m cores 26-1, ..., 26-m. These are the parameters that collectively describe the maximum light receiving angles. Assuming that the free space is filled with air and n s = 1, the numerical aperture NA is expressed by the following equation (5).

Figure 2021179333
Figure 2021179333

(5)式において、Δは、MCF21の比屈折率差であり、次に示す(6)式のように表される。 In the equation (5), Δ is the difference in the specific refractive index of the MCF 21, and is expressed as in the equation (6) shown below.

Figure 2021179333
Figure 2021179333

MCF21の開口数NAは、複数のコア26−1、・・・、26−mのうちコア26−p、26−qの各々で受光可能な受光角度範囲θ、θが互いに重なり、且つ受光角度範囲θ、θ同士の重なり領域OVL26内に被測定物体100の少なくとも照射領域102が含まれるように、設定されている。MCF21は、受光端面33と被測定物体100の照射領域102とが互いに向き合い、重なり領域OVL26内に被測定物体100の少なくとも照射領域102が含まれるという条件を満たす開口数NAを有する。図5では、重なり領域OVL26を形成する受光角度範囲θ、θをそれぞれ有するコア26−p、26−qがy方向で互いに隣り合っている。但し、重なり領域OVL26を形成するコア26−p、26−qは、y方向を含む交差方向で互いに隣り合っていなくてもよい。また、図5では照射領域102が含まれる重なり領域OVL26を形成するコアの数は2つであるが、3以上であってもよく、最大mである。照射領域102が含まれる重なり領域OVL26を形成するコアの数は、例えば3以上m以下であることが好ましい。 The numerical aperture NA of the MCF 21 is such that the light receiving angle ranges θ p and θ q that can be received by each of the cores 26-p and 26-q among the plurality of cores 26-1, ..., 26-m overlap each other and It is set so that at least the irradiation region 102 of the object to be measured 100 is included in the overlapping region OVL 26 between the light receiving angle ranges θ p and θ q. The MCF 21 has a numerical aperture NA that satisfies the condition that the light receiving end surface 33 and the irradiation region 102 of the measured object 100 face each other and at least the irradiation region 102 of the measured object 100 is included in the overlapping region OVL 26. In FIG. 5, cores 26-p and 26-q having light receiving angle ranges θ p and θ q forming the overlapping region OVL 26 are adjacent to each other in the y direction. However, the cores 26-p and 26-q forming the overlapping region OVL26 do not have to be adjacent to each other in the crossing direction including the y direction. Further, in FIG. 5, the number of cores forming the overlapping region OVL26 including the irradiation region 102 is two, but it may be three or more, and the maximum is m. The number of cores forming the overlapping region OVL26 including the irradiation region 102 is preferably 3 or more and m or less, for example.

MCF21の開口数NAは、(4)式で表されるように、最大受光角θMAX及び屈折率nによって求まる。最大受光角θMAXは、主に屈折率ncore、ncladによって求められる。したがって、前述の条件;「重なる領域OVL26内に被測定物体100の少なくとも照射領域102が含まれる」を満たすように決められる開口数NAに応じて、MCF21の屈折率ncore、nclad及びこれら以外の設計パラメータが設定されている。 The numerical aperture NA of the MCF 21 is obtained by the maximum light receiving angle θ MAX and the refractive index n s as expressed by the equation (4). The maximum light receiving angle θ MAX is mainly obtained by the refractive index n core and n clad . Therefore, depending on the numerical aperture NA determined to satisfy the above-mentioned conditions; "at least the irradiation region 102 of the object to be measured 100 is included in the overlapping region OVL26", the refractive index n core , n clad of the MCF 21 and other than these. Design parameters are set.

MCF21の屈折率ncore、ncladは、MCF21の複数のコア26−1、・・・、26−m及びクラッド28の材質によって、ある程度の数値範囲内、或いは特定の値で決まる場合がある。クラッド28は、例えば高純度の石英ガラスによって形成されている。複数のコア26−1、・・・、26−mは、クラッド28の石英ガラスに、ゲルマニウム(Ge)、リン(P)等の不純物がドープされ、クラッド28の石英ガラスよりも0.2〜0.3%程度高い屈折率を有する石英ガラスで形成されている。屈折率ncoreは1.5に近い所定値に設定され、屈折率ncladは1.5から数%増の範囲内の所定値に設定されている。 The refractive index n core , n clad of the MCF 21 may be determined within a certain numerical range or by a specific value depending on the materials of the plurality of cores 26-1, ..., 26-m and the clad 28 of the MCF 21. The clad 28 is formed of, for example, high-purity quartz glass. In the plurality of cores 26-1, ..., 26-m, the quartz glass of the clad 28 is doped with impurities such as germanium (Ge) and phosphorus (P), and 0.2 to 0.2 to more than the quartz glass of the clad 28. It is made of quartz glass having a high refractive index of about 0.3%. The refractive index n core is set to a predetermined value close to 1.5, and the refractive index n clad is set to a predetermined value within a range of 1.5 to several percent increase.

MCF21の屈折率ncore、ncladが特定値に制約されると、最大受光角θMAXが制約されるので、結果として開口数NAが制約される。開口数NAが所定の範囲内に制約され、被測定物体100の照射領域102の大きさが決まっている場合、z方向(出射光LW4の進行方向)において照射面105とMCF21の受光端面33との距離Z1は、前述の条件を満たすように、開口数NAとz方向から見たときの照射面105の大きさとによって設定されている。 When the refractive indexes n core and n clad of the MCF 21 are constrained to a specific value, the maximum light receiving angle θ MAX is constrained, and as a result, the numerical aperture NA is constrained. When the numerical aperture NA is restricted within a predetermined range and the size of the irradiation region 102 of the object to be measured 100 is determined, the irradiation surface 105 and the light receiving end surface 33 of the MCF 21 in the z direction (the traveling direction of the emitted light LW4). The distance Z1 is set by the numerical aperture NA and the size of the irradiation surface 105 when viewed from the z direction so as to satisfy the above-mentioned conditions.

MCF21の複数のコア26−1、・・・、26−mの各々で受光された出射光LW4の光強度(光学情報)は、光電変換器52に取り込まれる。光電変換器52は、取り込まれた光強度を、計算機50で取り扱い可能な電流値又は電圧値等に変換する。変換された電流値又は電圧値等の電気情報は、計算機50に出力される。計算機50は、入力された電気情報及び照射光LW3の光学情報から変換された電気情報に基づいて、被測定物体100の照射面105における2次元の光学情報を算出する。被測定物体100の2次元の光学情報の算出方法は、例えば反復法等が挙げられるが、特に限定されない。計算機50には、出射光LW4及び照射光LW3の各々の光学情報に基づいて被測定物体100の光学情報を算出するプログラムが内蔵されている。 The light intensity (optical information) of the emitted light LW4 received by each of the plurality of cores 26-1, ..., 26-m of the MCF 21 is taken into the photoelectric converter 52. The photoelectric converter 52 converts the captured light intensity into a current value, a voltage value, or the like that can be handled by the computer 50. The converted electric information such as the current value or the voltage value is output to the computer 50. The computer 50 calculates two-dimensional optical information on the irradiation surface 105 of the object to be measured 100 based on the input electrical information and the electrical information converted from the optical information of the irradiation light LW3. The method for calculating the two-dimensional optical information of the object to be measured 100 includes, for example, an iterative method, but is not particularly limited. The computer 50 has a built-in program that calculates the optical information of the object to be measured 100 based on the optical information of the emitted light LW4 and the irradiation light LW3.

例えば、m個の変調器14−1、・・・、14−mを用いて照射光LW3の空間変調を行う回数、即ち測定回数をCとし、照射領域102における測定位置(即ち、画素)の総数をXとする。変調回数c番目の照射光LW3のx番目の測定位置の光強度I(x,y)をIc−xと記載する。変調回数c番目の出射光LW4を複数のコア26−1、・・・、26−mの各々で検出したときの光強度をBとし、x番目の測定位置での被測定物体100の強度をOとすると、次に示す(7)式が成立する。 For example, the number of times the irradiation light LW3 is spatially modulated using m modulators 14-1, ..., 14-m, that is, the number of measurements is C, and the measurement position (that is, the pixel) in the irradiation region 102. Let X be the total number. The light intensity I c (x, y) at the x-th measurement position of the irradiation light LW3 at the c-th modulation count is referred to as I c-x . Let B c be the light intensity when the output light LW4 at the cth modulation count is detected at each of the plurality of cores 26-1, ..., 26-m, and the intensity of the object 100 to be measured at the xth measurement position. When is Ox, the following equation (7) is established.

Figure 2021179333
Figure 2021179333

(7)式に、m個の変調器14−1、・・・、14−mの変調パターンから算出可能な光強度I1−1、・・・、IC―X、及びMCF21のコア26−1、・・・、26−mの各々で検出した出射光LW4の光強度Bを代入すると、算出するべき被測定物体100の強度Oが得られる。 In the equation (7), the light intensities I 1-1 , ..., IC-X, and the core 26 of the MCF21, which can be calculated from the modulation patterns of m modulators 14-1, ..., 14-m. -1, ..., substituting light intensity B c of the emitted light LW4 detected by each of the 26-m, the strength O x of the measured object 100 to be calculated is obtained.

前述のようにMCF21の複数のコア26−1、・・・、26−mは、MCF21の開口数NAで決まる視野角を有する。複数のコア26−1、・・・、26−mのうち、少なくとも重なり領域OVL26を形成するコア26−p、26−qの各々で受光した出射光LW4の強度Oから再構成される画像は、視差画像であり、照射領域102における被測定物体100のz方向の強度Tを含んでいる。 As described above, the plurality of cores 26-1, ..., 26-m of the MCF 21 have a viewing angle determined by the numerical aperture NA of the MCF 21. A plurality of core 26-1, ..., among the 26-m, reconstructed image from the intensity O X of the emitted light LW4 received at each core 26-p, 26-q to form at least the overlapping region OVL26 is parallax images includes z-direction strength T X of the object to be measured 100 in the irradiation region 102.

図6に示すように、例えば複数のコア26−1、・・・、26−mのうち、2つのコア26−p、26−qの各々の交差方向(図6ではy方向)の中心と被測定物体100の照射領域102内のv番目の測定位置Hとを結ぶ線をS1、S2とする。測定位置Hを中心として、線S1と線S2とがなす角度をθとする。y方向での2つのコア26−p、26−qの中心間の距離をDとする。z方向におけるMCF21の受光端面33と測定位置Hとの距離をZとすると、次に示す(8)式及び(9)式が成り立つ。 As shown in FIG. 6, for example, among a plurality of cores 26-1, ..., 26-m, with the center of each of the two cores 26-p, 26-q in the crossing direction (y direction in FIG. 6). the line connecting the v-th measurement position H v in the irradiation region 102 of the object to be measured 100 and S1, S2. Let θ b be the angle formed by the line S1 and the line S2 with the measurement position H v as the center. the distance between the centers of two cores 26-p, 26-q in the y-direction and D C. When the light receiving end surface 33 of MCF21 in the z-direction distance between the measurement position H v and Z X, the following equation (8) and (9) below is satisfied.

Figure 2021179333
Figure 2021179333

Figure 2021179333
Figure 2021179333

例えば、MCF21の設計パラメータとして距離Dは既知であると考えると、2つのコア26−p、26−qの各々で受光した出射光LW4の強度O等の光学情報に基づいて角度θがわかれば、(8)式及び(9)式によって距離Zが算出される。距離Z1に対する距離Zの相対値を算出することによって、照射面105を基準面とした被測定物体100の厚みに関する光学情報を強度Tとして取得できる。また、強度O、Tを得ることによって、被測定物体100の3次元イメージングが実現される。 For example, considering that the distance D C as a design parameter of MCF21 known, the angle based on the optical intensity information O X like of the emitted light LW4 received at each of the two cores 26-p, 26-q θ b If it is known, the distance Z X is calculated by the equations (8) and (9). By calculating the relative value of the distance Z X for the distance Z1, it can acquire optical information related to the thickness of the object to be measured 100 and the reference surface of the irradiation surface 105 as the intensity T X. The intensity O X, by obtaining a T X, 3-dimensional imaging of the object to be measured 100 is realized.

以上説明した第1実施形態の3次元測定装置201は、照射装置211と、受光装置221と、を備える。照射装置211は、被測定物体100の照射領域102内の交差方向で所定の変調パターンで空間変調された照射光LW3を照射領域102に対して照射可能に構成されている。受光装置221は、MCF21と、計算機50と、を有する。MCF21は、複数のコア26−1、・・・、26−mを有する。複数のコア26−1、・・・、26−mは、照射光LW3が照射された被測定物体100から出射されるとともに、照射領域102における被測定物体100の情報を含む出射光LW4を受光可能に形成されている。計算機50は、複数のコア26−1、・・・、26−mの各々が受光した出射光LW4の光学情報及び照射光LW3の光学情報に基づいて被測定物体100の3次元情報を算出可能に構成されている。MCF21は、複数のコア26−1、・・・、26−mのうち2つ以上のコア(例えば、26−p、26−q)の各々で受光可能な出射光LW4の受光角度範囲θ、θが互いに重なる重なり領域OVL26内に照射領域102が含まれるように、所定の開口数NAを有する。所定の開口数NAは、複数のコア26−1、・・・、26−mの各々において受光角度範囲から決まる出射光の最大受光角θMAXと被測定物体100とMCF21との間の領域の屈折率とによって求まる。 The three-dimensional measuring device 201 of the first embodiment described above includes an irradiation device 211 and a light receiving device 221. The irradiation device 211 is configured to be able to irradiate the irradiation region 102 with the irradiation light LW3 spatially modulated by a predetermined modulation pattern in the crossing direction in the irradiation region 102 of the object to be measured 100. The light receiving device 221 has an MCF 21 and a computer 50. The MCF 21 has a plurality of cores 26-1, ..., 26-m. The plurality of cores 26-1, ..., 26-m are emitted from the measured object 100 irradiated with the irradiation light LW3, and receive the emitted light LW4 including the information of the measured object 100 in the irradiation region 102. It is formed as possible. The computer 50 can calculate the three-dimensional information of the object to be measured 100 based on the optical information of the emitted light LW4 and the optical information of the irradiation light LW3 received by each of the plurality of cores 26-1, ..., 26-m. It is configured in. The MCF 21 has a light receiving angle range θ p of the emitted light LW4 that can be received by each of two or more cores (for example, 26-p, 26-q) out of a plurality of cores 26-1, ..., 26-m. , Θ q have a predetermined numerical aperture NA so that the irradiation region 102 is included in the overlapping region OVL 26 where θ q overlaps with each other. Predetermined numerical aperture NA, a plurality of core 26-1, ..., the area between the 26-m in each of the maximum light receiving angle theta MAX and the object to be measured 100 of the outgoing light determined by the light receiving angle range MCF21 It is determined by the refractive index.

上述の3次元測定装置201では、MCF21の複数のコア26−1、・・・、26−mのうち少なくとも1つのコアで受光した出射光LW4の光強度B等の光学情報と被測定物体100に照射する前の照射光LW3のIC−X等の光学情報とに基づいて、照射領域102を含む総数Xの測定位置の被測定物体100の強度O等の光学情報を2次元情報として取得できる。また、上述の3次元測定装置201では、被測定物体100の照射領域102が少なくとも2つのコア26−p、26−qの受光角度範囲θp、θqの重なり領域OVL26に含まれるため、コア26−p、26−qによって照射面105を基準面として互いに視差を含む出射光LW4の光学情報を取得し、前述の視差の効果に基づいて被測定物体100のz方向(即ち、厚み方向)の強度Z等の光学情報を取得できる。上述の3次元測定装置201によれば、交差方向における被測定物体100の強度O等の光学情報に加えてz方向の強度Z等の光学情報を取得し、被測定物体100の3次元イメージングを実現できる。 In three-dimensional measurement apparatus 201 described above, a plurality of cores 26-1 MCF21, · · ·, at least one optical information and the object to be measured of the light intensity B C etc. of the emitted light LW4 received at the core of the 26-m 100 based on the optical information I C-X and the like of the illumination light LW3 before irradiation, the two-dimensional information of the optical information of the intensity O x or the like of the object to be measured 100 of the measurement position of the total number X comprising an irradiation region 102 Can be obtained as. Further, in the above-mentioned three-dimensional measuring device 201, since the irradiation region 102 of the object to be measured 100 is included in the overlapping region OVL26 of the light receiving angle ranges θp and θq of at least two cores 26-p and 26-q, the core 26- Optical information of the emitted light LW4 including parallax is acquired by p and 26-q with the irradiation surface 105 as a reference plane, and the intensity of the object to be measured 100 in the z direction (that is, the thickness direction) based on the above-mentioned effect of parallax. Optical information such as Z x can be acquired. According to the three-dimensional measuring apparatus 201 described above, it acquires the optical information such as the z-direction strength Z x in addition to the optical information of the intensity O x or the like of the object to be measured 100 in the cross direction, three-dimensional object to be measured 100 Imaging can be realized.

上述の3次元測定装置201では、被測定物体100から出射される出射光LW4を受光する複数のコア26−1、・・・、26−mが交差方向で例えば1mm以下の直径のMCF21に配置されている。そのため、互いに独立した複数の受光素子を空間内に分散させて配置する従来の装置に比べて、受光素子に相当する複数のコア26−1、・・・、26−m同士の交差方向での間隔を縮小し、受光部材の省スペース化を図ることができる。 In the above-mentioned three-dimensional measuring device 201, a plurality of cores 26-1, ..., 26-m that receive the emitted light LW4 emitted from the object to be measured 100 are arranged in the MCF 21 having a diameter of, for example, 1 mm or less in the crossing direction. Has been done. Therefore, compared to the conventional device in which a plurality of light receiving elements independent of each other are dispersed and arranged in the space, a plurality of cores 26-1, ..., 26-m corresponding to the light receiving elements are arranged in the crossing direction. It is possible to reduce the space and save space for the light receiving member.

第1実施形態の3次元測定装置201では、Z方向において照射領域102と少なくとも一部で重なり且つz方向に略直交する照射面105とMCF21において照射面105に平行且つz方向に略直交する受光端面33との距離Z1は、MCF21の開口数NAと照射面105に沿う方向での照射領域102の大きさD102とに応じて設定されている。 In the three-dimensional measuring device 201 of the first embodiment, the light receiving surface 105 which overlaps with the irradiation region 102 in the Z direction and is substantially orthogonal to the z direction and the light receiving surface of the MCF 21 which is parallel to the irradiation surface 105 and substantially orthogonal to the z direction. The distance Z1 from the end surface 33 is set according to the number of openings NA of the MCF 21 and the size D102 of the irradiation region 102 in the direction along the irradiation surface 105.

上述の3次元測定装置201では、例えばMCF21のコア26−1、・・・、26−m及びクラッド28の材質の屈折率が特定値に制約される場合に、特定の屈折率に基づいて予め定まる開口数NAと、照射領域102の大きさD102とに応じて、開口数NAによって決まる重なり領域OVL26に照射領域102が含まれるように、距離Z1を設定できる。3次元測定装置201によれば、交差方向における被測定物体100の強度O等の光学情報に加えてz方向の強度Z等の光学情報を取得し、被測定物体100の3次元イメージングを実現できる。 In the above-mentioned three-dimensional measuring device 201, for example, when the refractive index of the material of the core 26-1, ..., 26-m of the MCF 21 and the clad 28 is restricted to a specific value, the refractive index is preliminarily based on the specific refractive index. The distance Z1 can be set so that the irradiation region 102 is included in the overlapping region OVL26 determined by the numerical aperture NA according to the fixed numerical aperture NA and the size D102 of the irradiation region 102. According to the three-dimensional measuring device 201, obtains an optical information such as the z-direction strength Z x in addition to the optical information of the intensity O x or the like of the object to be measured 100 in the cross direction, the three-dimensional imaging of the object to be measured 100 realizable.

第1実施形態の3次元測定装置201において、照射装置211は、受光装置221とMCF21を共有し、光源10と、複数の変調器14−1、・・・、14−mと、を備える。複数の変調器14−1、・・・、14−mは、光源10から出射された光LW1を互いに異なる位相(空間分布)を有する複数の光に変調するとともに、変調された複数の光をMCF21の複数のコア26−1、・・・、26−mに入射させる。 In the three-dimensional measuring device 201 of the first embodiment, the irradiation device 211 shares the light receiving device 221 and the MCF 21, and includes a light source 10 and a plurality of modulators 14-1, ..., 14-m. The plurality of modulators 14-1, ..., 14-m modulate the light LW1 emitted from the light source 10 into a plurality of lights having different phases (spatial distributions) from each other, and also modulate the plurality of modulated lights into a plurality of lights having different phases (spatial distribution). It is incident on a plurality of cores 26-1, ..., 26-m of MCF21.

上述の3次元測定装置201では、MCF21は、受光装置221の受光部材であるが、照射装置211の投光部材を兼ねている。従来では投光部材と受光部材とを別々に配置するためのスペースを確保しなければならなかったが、上述の3次元測定装置201によれば、これらのスペースを1つにまとめ、全体の設置スペースを小さくすることができる。 In the above-mentioned three-dimensional measuring device 201, the MCF 21 is a light receiving member of the light receiving device 221 but also serves as a light projecting member of the irradiation device 211. In the past, it was necessary to secure a space for separately arranging the light projecting member and the light receiving member, but according to the above-mentioned three-dimensional measuring device 201, these spaces are combined into one and installed as a whole. Space can be reduced.

上述の3次元測定装置201では、MCF21の複数のコア26−1、・・・、26−mの各々に、複数の変調器14−1、・・・、14−mの各々で所定の位相量に位相シフトされた変調光LW2が入射する。コア26−1、・・・、26−mごとにz方向に伝搬した変調光LW2は、MCF21の出射端面32から自由空間内に出射するとともに拡散し、フラウンホーファー回折によって合成され、照射領域102において所定の空間分布を有する変調光LW2を形成する。複数の変調器14−1、・・・、14−mの各々での位相シフト量と照射領域102での空間分布とは互いに対応するため、複数の変調器14−1、・・・、14−mの各々での位相シフト量を適宜設定及び変更すれば、所望の空間分布を有する変調光LW2を容易に形成できる。 In the above-mentioned three-dimensional measuring device 201, each of the plurality of cores 26-1, ..., 26-m of the MCF 21 has a predetermined phase in each of the plurality of modulators 14-1, ..., 14-m. The modulated light LW2 whose phase is shifted to the quantity is incident. The modulated light LW2 propagating in the z direction every 26-1, ..., 26-m is emitted from the emission end surface 32 of the MCF 21 into the free space and diffused, synthesized by Fraunhofer diffraction, and is synthesized in the irradiation region 102. A modulated light LW2 having a predetermined spatial distribution is formed in the above. Since the phase shift amount in each of the plurality of modulators 14-1, ..., 14-m and the spatial distribution in the irradiation region 102 correspond to each other, the plurality of modulators 14-1, ..., 14 By appropriately setting and changing the phase shift amount at each of −m, the modulated light LW2 having a desired spatial distribution can be easily formed.

以上説明した第1実施形態の受光装置221は、被測定物体100の照射領域102に対して照射領域102内で所定の変調パターンで空間変調された変調光LW2が照射されたときの被測定物体100の3次元情報を取得するために用いられる装置である。受光装置221は、上述のMCF21と、計算機50と、を備える。MCF21は、複数のコア26−1、・・・、26−mのうち2つ以上のコア(例えば、26−p、26−q)の各々で受光可能な出射光LW4の受光角度範囲θ、θが互いに重なる重なり領域OVL26内に照射領域102が含まれるように、所定の開口数NAを有する。 The light receiving device 221 of the first embodiment described above is the object to be measured when the irradiated area 102 of the object to be measured 100 is irradiated with the modulated light LW2 spatially modulated by a predetermined modulation pattern in the irradiation area 102. It is a device used to acquire 100 three-dimensional information. The light receiving device 221 includes the above-mentioned MCF 21 and a computer 50. The MCF 21 has a light receiving angle range θ p of the emitted light LW4 that can be received by each of two or more cores (for example, 26-p, 26-q) out of a plurality of cores 26-1, ..., 26-m. , Θ q have a predetermined numerical aperture NA so that the irradiation region 102 is included in the overlapping region OVL 26 where θ q overlaps with each other.

上述の受光装置221によれば、少なくとも照射領域102に変調光LW2が照射された被測定物体100について、交差方向における複数の検出点(即ち、照射領域102内の測定位置)の強度O等の光学情報に加えてz方向の強度Z等の光学情報を取得し、被測定物体100の3次元イメージングを実現できる。また、受光装置221において、高い開口数NAを有する複数のコア26−1、・・・、26−mが交差方向でミクロンオーダーの短い間隔をあけて配置されている。したがって、互いに独立した複数の受光素子を空間内に分散させて配置する従来の受光装置に比べて、小型な受光装置221を実現できる。 According to the light receiving device 221 described above, the object to be measured 100 modulated light LW2 is irradiated to at least the irradiation region 102, a plurality of detection points in the cross direction (i.e., measurement position of the irradiation region 102) intensity O x or the like In addition to the optical information of the above, optical information such as the intensity Z x in the z direction can be acquired, and three-dimensional imaging of the object to be measured 100 can be realized. Further, in the light receiving device 221, a plurality of cores 26-1, ..., 26-m having a high numerical aperture NA are arranged at short intervals on the order of microns in the crossing direction. Therefore, it is possible to realize a small light receiving device 221 as compared with the conventional light receiving device in which a plurality of light receiving elements independent of each other are dispersed and arranged in the space.

(第2実施形態)
次いで、本発明に係る第2実施形態の3次元測定装置202について説明する。以下、3次元測定装置202の構成のうち、第1実施形態の3次元測定装置201の構成と共通するものには、当該構成と同一の符号を付し、第1実施形態と重複する説明は省略する。
(Second Embodiment)
Next, the three-dimensional measuring device 202 of the second embodiment according to the present invention will be described. Hereinafter, among the configurations of the three-dimensional measuring device 202, those common to the configuration of the three-dimensional measuring device 201 of the first embodiment are designated by the same reference numerals as those of the configuration, and the description overlapping with the first embodiment will be described. Omit.

第2実施形態では、図7に示すように、3次元測定装置202の照射装置212は、光源10と、分波器12と、複数の変調器14−1、・・・、14−gと、受光装置221のMCF21とは別体のMCF(第2マルチコアファイバ)22と、を備える。gは、2以上の自然数であり、MCF22のコア26−1・・・、26−gの総数である。gは、mと等しくてもよく、mとは異なってもよい。 In the second embodiment, as shown in FIG. 7, the irradiation device 212 of the coordinate measuring device 202 includes a light source 10, a demultiplexer 12, and a plurality of modulators 14-1, ..., 14-g. A MCF (second multi-core fiber) 22 separate from the MCF 21 of the light receiving device 221 is provided. g is a natural number of 2 or more, and is the total number of cores 26-1 ..., 26-g of MCF22. g may be equal to or different from m.

MCF22は、複数のコア26−1・・・、26−gを有する。複数のコア26−1・・・、26−gの入射端には、g本の接続用ファイバ11−3の各々の出射端が接続されている。複数のコア26−1・・・、26−gには、g本の接続用ファイバ11−3を介して変調器14−1、・・・、14−gで変調された複数の光が入射可能である。複数のコア26−1・・・、26−gの出射端から、変調光LW2が自由空間内に出射される。 The MCF 22 has a plurality of cores 26-1, ..., 26-g. The exit ends of g of the connecting fibers 11-3 are connected to the incident ends of the plurality of cores 26-1 ..., 26-g. A plurality of lights modulated by the modulators 14-1, ..., 14-g are incident on the plurality of cores 26-1 ..., 26-g via g connecting fibers 11-3. It is possible. Modulated light LW2 is emitted into the free space from the emission ends of the plurality of cores 26-1 ..., 26-g.

MCF21とMCF22とは、互いに異なる位置に配置され、被測定物体100の照射領域102の中央Qを中心とする周方向で互いに間隔をあけて配置されている。MCF22の出射端面38は、z方向で被測定物体100の照射領域102と向き合っている。MCF21の受光端面33は、略中央Cを中心としてMCF22の出射端面38とは異なる角度方向から被測定物体100の照射領域102と向き合っている。MCF22は、MCF21とは別体であるが、第1実施形態で説明した照射部材としてのMCF21と同様の原理に基づいて複数のコア26−1・・・、26−gの配置及び各コアを伝搬する光の位相シフト量に応じて、出射端面38で変調光LW2を形成する。MCF22の出射端面38で複素振幅分布E(ζ,η)を有する変調光LW2は、出射端面38からz方向を中心にして自由空間を伝搬し、フラウンホーファー回折し、照射面105近傍で複素振幅分布F(x,y)を有する照射光LW3を形成する。なお、図7及び図8に示す照射面105について、中央Qを中心とする照射面105の角度は適宜設定される。 The MCF 21 and the MCF 22 are arranged at different positions from each other, and are arranged at intervals in the circumferential direction centered on the center Q of the irradiation region 102 of the object to be measured 100. The emission end surface 38 of the MCF 22 faces the irradiation region 102 of the object to be measured 100 in the z direction. The light receiving end surface 33 of the MCF 21 faces the irradiation region 102 of the object to be measured 100 from an angle direction different from that of the emission end surface 38 of the MCF 22 with the center C as the center. Although the MCF 22 is a separate body from the MCF 21, a plurality of cores 26-1 ..., 26-g arrangement and each core are arranged based on the same principle as the MCF 21 as the irradiation member described in the first embodiment. Modulated light LW2 is formed on the emission end face 38 according to the phase shift amount of the propagating light. The modulated light LW2 having a complex amplitude distribution E i (ζ, η) on the emission end surface 38 of the MCF 22 propagates in free space around the z direction from the emission end surface 38, is Fraunhofer diffracted, and is complex in the vicinity of the irradiation surface 105. amplitude distribution F i (x, y) to form a radiation beam LW3 with. With respect to the irradiation surface 105 shown in FIGS. 7 and 8, the angle of the irradiation surface 105 centered on the center Q is appropriately set.

図8では、受光装置221と被測定物体100との配置をわかりやすく示すために、照射装置212は省略されている。図8に示すように、MCF21の開口数NAは、複数のコア26−1、・・・、26−mのうちコア26−p、26−qの各々で受光可能な受光角度範囲θ、θが互いに重なり、且つ重なり領域OVL26内に被測定物体100の少なくとも照射領域102が含まれる、という条件を満たすように設定されている。 In FIG. 8, the irradiation device 212 is omitted in order to clearly show the arrangement of the light receiving device 221 and the object to be measured 100. As shown in FIG. 8, the numerical aperture NA of the MCF 21 is a light receiving angle range θ p , which can be received by each of the cores 26-p and 26-q among the plurality of cores 26-1, ..., 26-m. It is set so as to satisfy the condition that θ q overlaps with each other and at least the irradiation region 102 of the object to be measured 100 is included in the overlapping region OVL 26.

第2実施形態では、照射面105は、照射領域102の中央Qを通り、w方向に直交する面とする。第1実施形態と同様にコア26−1、・・・、26−m及びクラッド28の材質特有の屈折率によってMCF21の開口数NAが所定の範囲内に制約され、被測定物体100の照射領域102の大きさが決まっている場合、w方向(出射光LW4の進行方向)において照射面105とMCF21の受光端面33との距離Z1は、前述の条件を満たすように、開口数NAとw方向から見たときの照射面105の大きさとによって設定されている。 In the second embodiment, the irradiation surface 105 is a surface that passes through the center Q of the irradiation region 102 and is orthogonal to the w direction. Similar to the first embodiment, the numerical aperture NA of the MCF 21 is restricted within a predetermined range by the refractive index peculiar to the materials of the cores 26-1, ..., 26-m and the clad 28, and the irradiation region of the object to be measured 100 is irradiated. When the size of 102 is determined, the distance Z1 between the irradiation surface 105 and the light receiving end surface 33 of the MCF 21 in the w direction (traveling direction of the emitted light LW4) is the numerical aperture NA and the w direction so as to satisfy the above conditions. It is set according to the size of the irradiation surface 105 when viewed from above.

照射光LW3が照射された被測定物体100の照射領域102から、z方向及び−z方向に対して傾斜したw方向に向かって出射光LW4が反射される。出射光LW4は、MCF21の複数のコア26−1・・・、26−mで受光される。その後の受光装置221での動作等は、第1実施形態で説明した受光装置221での動作等と同様である。但し、第2実施形態の受光装置221は、第1実施形態の受光装置221とは異なり、照射装置212と共有する部分を有していない。MCF21の複数のコア26−1・・・、26−mの出射端の各々には、接続用ファイバ11−5の入射端が接続されている。 The emitted light LW4 is reflected from the irradiation region 102 of the object to be measured 100 irradiated with the irradiation light LW3 in the w direction inclined with respect to the z direction and the −z direction. The emitted light LW4 is received by a plurality of cores 26-1 ..., 26-m of the MCF 21. The subsequent operation of the light receiving device 221 and the like are the same as the operation of the light receiving device 221 described in the first embodiment. However, unlike the light receiving device 221 of the first embodiment, the light receiving device 221 of the second embodiment does not have a portion shared with the irradiation device 212. The incident end of the connecting fiber 11-5 is connected to each of the exit ends of the plurality of cores 26-1 ... Of the MCF 21 and 26-m.

以上説明した第2実施形態の3次元測定装置202は、照射装置212と、受光装置221と、を備える。第2実施形態の受光装置221は、MCF21及び計算機50を備える。3次元測定装置202及び受光装置221において、MCF21は、複数のコア26−1、・・・、26−mのうち2つ以上のコア(例えば、26−p、26−q)の各々で受光可能な出射光LW4の受光角度範囲θ、θが互いに重なる重なり領域OVL26内に照射領域102が含まれるように、所定の開口数NAを有する。 The three-dimensional measuring device 202 of the second embodiment described above includes an irradiation device 212 and a light receiving device 221. The light receiving device 221 of the second embodiment includes an MCF 21 and a computer 50. In the three-dimensional measuring device 202 and the light receiving device 221, the MCF 21 receives light from each of two or more cores (for example, 26-p, 26-q) out of the plurality of cores 26-1, ..., 26-m. It has a predetermined numerical aperture NA so that the irradiation region 102 is included in the overlapping region OVL 26 in which the light receiving angle ranges θ p and θ q of the possible emitted light LW4 overlap each other.

第2実施形態の3次元測定装置202及び受光装置221によれば、第1実施形態の3次元測定装置201と同様に、交差方向における被測定物体100の強度O等の光学情報に加えてz方向の強度Z等の光学情報を取得し、被測定物体100の3次元イメージングを実現できる。また、第2実施形態の3次元測定装置202及び受光装置221によれば、互いに独立した複数の受光素子を空間内に分散させて配置する従来の装置に比べて、受光素子に相当する複数のコア26−1、・・・、26−m同士の交差方向での間隔を縮小し、受光部材の省スペース化を図ることができる。 According to the three-dimensional measuring device 202 and the light receiving device 221 of the second embodiment, similarly to the three-dimensional measuring apparatus 201 of the first embodiment, in addition to the optical information of the intensity O x or the like of the object to be measured 100 in the cross direction It is possible to acquire optical information such as the intensity Z x in the z direction and realize three-dimensional imaging of the object to be measured 100. Further, according to the three-dimensional measuring device 202 and the light receiving device 221 of the second embodiment, a plurality of light receiving elements corresponding to the light receiving elements are compared with the conventional device in which a plurality of light receiving elements independently of each other are dispersed and arranged in the space. The space between the cores 26-1, ..., 26-m in the crossing direction can be reduced to save space for the light receiving member.

第2実施形態の3次元測定装置202では、照射装置212は、光源10と、複数の変調器14−1、・・・、14−gと、MCF22と、を備える。複数の変調器14−1、・・・、14−gは、光源10から出射された光LW1を互いに異なる空間分布を有する複数の変調光LW2に変調する。MCF22は、複数のコア26−1・・・、26−gを有し、MCF21とは別体で形成され、MCF21とは異なる位置に配置されている。複数のコア26−1・・・、26−gは、変調器14−1、・・・、14−gで変調された複数の変調光LW2が入射可能、且つ出射端から離れた位置にある被測定物体100の照射領域102の近傍で照射光LW3を形成するように、複数の変調光LW2を出射端から出射する。 In the three-dimensional measuring device 202 of the second embodiment, the irradiation device 212 includes a light source 10, a plurality of modulators 14-1, ..., 14-g, and an MCF 22. The plurality of modulators 14-1, ..., 14-g modulate the light LW1 emitted from the light source 10 into a plurality of modulated light LW2 having different spatial distributions from each other. The MCF 22 has a plurality of cores 26-1 ..., 26-g, is formed separately from the MCF 21, and is arranged at a position different from that of the MCF 21. The plurality of cores 26-1 ..., 26-g are located at positions away from the emission end so that the plurality of modulated light LW2 modulated by the modulators 14-1, ..., 14-g can be incident. A plurality of modulated lights LW2 are emitted from the emission end so as to form the irradiation light LW3 in the vicinity of the irradiation region 102 of the object to be measured 100.

上述の3次元測定装置202によれば、投光部材としてのMCF22と、受光部材としてのMCF21とを別体とすることによって、MCF22は投光部材として求められる条件を満たすように設計され、MCF21は受光部材として求められる条件を満たすように設計可能である。MCF22に求められる条件は、複数の変調器14−1、・・・、14−gで変調された変調光LW2をコア26−1・・・、26−gの出射端から自由空間内に出射させるとともにフラウンホーファー回折させた際に、照射領域102近傍で照射光LW3を形成することである。MCF22のコア26−1・・・、26−gの数g、配置及び開口数NA等の設計パラメータは、MCF21とは独立に、前述の条件を満たすように適宜設定されている。一方、MCF21に求められる条件は、複数のコア26−1、・・・、26−mのうち2つ以上のコア(例えば、26−p、26−q)の各々で受光可能な出射光LW4の受光角度範囲θ、θが互いに重なる重なり領域OVL26内に照射領域102が含まれることである。MCF21のコア26−1・・・、26−mの数m、配置及び開口数NA等の設計パラメータは、前述の条件を満たすように適宜設定されている。第1実施形態では、MCF21は、受光部材と投光部材とを兼ねているため、上述のMCF21に求められる条件とMCF22に求められる条件の両方を同時に満たす設計パラメータを有する必要がある。第2実施形態の3次元測定装置202によれば、照射装置212、受光装置221及び3次元測定装置202の設計の自由度を高めることができる。 According to the above-mentioned three-dimensional measuring device 202, the MCF 22 is designed to satisfy the conditions required for the light projecting member by separating the MCF 22 as the light projecting member and the MCF 21 as the light receiving member. Can be designed to satisfy the conditions required for a light receiving member. The conditions required for the MCF 22 are that the modulated light LW2 modulated by a plurality of modulators 14-1, ..., 14-g is emitted into the free space from the emission ends of the cores 26-1 ..., 26-g. When the Fraunhofer diffraction is performed at the same time, the irradiation light LW3 is formed in the vicinity of the irradiation region 102. Design parameters such as core 26-1 ... Of MCF22, number g of 26-g, arrangement and numerical aperture NA are appropriately set so as to satisfy the above-mentioned conditions independently of MCF21. On the other hand, the condition required for the MCF 21 is the emitted light LW4 that can be received by each of two or more cores (for example, 26-p, 26-q) out of a plurality of cores 26-1, ..., 26-m. The irradiation region 102 is included in the overlapping region OVL 26 in which the light receiving angle ranges θ p and θ q of the above overlap with each other. Design parameters such as core 26-1 ... Of MCF21, number m of 26-m, arrangement and numerical aperture NA are appropriately set so as to satisfy the above-mentioned conditions. In the first embodiment, since the MCF 21 also serves as a light receiving member and a light projecting member, it is necessary to have design parameters that simultaneously satisfy both the conditions required for the MCF 21 and the conditions required for the MCF 22 described above. According to the three-dimensional measuring device 202 of the second embodiment, the degree of freedom in designing the irradiation device 212, the light receiving device 221 and the three-dimensional measuring device 202 can be increased.

(第3実施形態)
次いで、本発明に係る第3実施形態の3次元測定装置203について説明する。以下、3次元測定装置203の構成のうち、第1実施形態の3次元測定装置201の構成及び第2実施形態の3次元測定装置202と共通するものには、当該構成と同一の符号を付し、第1実施形態と重複する説明は省略する。
(Third Embodiment)
Next, the three-dimensional measuring device 203 of the third embodiment according to the present invention will be described. Hereinafter, among the configurations of the three-dimensional measuring device 203, those common to the configuration of the three-dimensional measuring device 201 of the first embodiment and the three-dimensional measuring device 202 of the second embodiment are designated by the same reference numerals as those of the configuration. However, the description overlapping with the first embodiment will be omitted.

図9に示すように、3次元測定装置203の照射装置213は、光源10と、第1レンズ71と、空間変調器80と、を備える。第1レンズ71は、光源10から出射された光LW1を光軸に交差する断面で照射領域102以上の大きさを有する平行光にコリメートする。第1レンズ71は、光源10の出射端から光LW1の光軸上で第1レンズ71の焦点距離f1だけ離れた位置に配置されている。第1レンズ71の開口サイズ及び開口数は、焦点距離f1及び空間変調器80の変調面81の大きさをふまえて適宜設定されている。 As shown in FIG. 9, the irradiation device 213 of the coordinate measuring device 203 includes a light source 10, a first lens 71, and a spatial modulator 80. The first lens 71 collimates the light LW1 emitted from the light source 10 with parallel light having a size of the irradiation region 102 or more in a cross section intersecting the optical axis. The first lens 71 is arranged at a position separated from the emission end of the light source 10 by the focal length f1 of the first lens 71 on the optical axis of the light LW1. The aperture size and numerical aperture of the first lens 71 are appropriately set based on the focal length f1 and the size of the modulation surface 81 of the spatial modulator 80.

図10に示すように、空間変調器80において光LW1が照射される面は、変調面81を構成している。空間変調器80は、変調面81に光LW1の光軸方向に交差する面内の画素に対応して配列された複数の変調素子82を有する。複数の変調素子82は、不図示の制御装置に接続され、制御装置から受信する電気信号に応じて第1レンズ71でコリメートされた平行光LW1−2の反射方向、位相等の空間分布を互いに独立に変更する。空間変調器80としては、例えば空間光位相変調器(Liquid Crystal On Silicon − Spatial Light Modulator:LCOS−SLM)、Digital Micromirror Device(DMD)等を適用できる。空間変調器80が例えばLCOS−SLMであれば、変調素子82として、液晶とCMOS(Complementary Metal Oxide Semiconductor)との積層体が用いられる。空間変調器80が例えばDMDであれば、変調素子82として、画素と略同じ大きさの微小平板鏡と、微小平板鏡の傾斜を変更するためのCMOSと、微小平板鏡及びCMOSとを連結するヒンジ等を備えた機構が用いられる。 As shown in FIG. 10, the surface irradiated with the light LW1 in the spatial modulator 80 constitutes the modulation surface 81. The spatial modulator 80 has a plurality of modulation elements 82 arranged on the modulation surface 81 corresponding to the pixels in the plane intersecting the optical axis direction of the optical LW1. The plurality of modulation elements 82 are connected to a control device (not shown), and the spatial distributions such as the reflection direction and the phase of the parallel light LW1-2 collimated by the first lens 71 according to the electric signal received from the control device are distributed to each other. Change independently. As the spatial modulator 80, for example, a spatial optical phase modulator (Liquid Crystal On Silicon-Spatial Light Modular: LCOS-SLM), a Digital Micromirror Device (DMD), or the like can be applied. If the spatial modulator 80 is, for example, an LCOS-SLM, a laminate of a liquid crystal display and a CMOS (Complementary Metal Oxide Semiconductor) is used as the modulation element 82. If the spatial modulator 80 is, for example, a DMD, the modulation element 82 connects a microplate mirror having substantially the same size as a pixel, a CMOS for changing the inclination of the microplate mirror, a microplate mirror, and a CMOS. A mechanism equipped with a hinge or the like is used.

図9に示すように、3次元測定装置203の受光装置222は、第2実施形態の3次元測定装置202の受光装置222と同じ構成を備え、MCF21の受光端面33よりもw方向の後方に配置された第2レンズ72をさらに備える。第2レンズ72は、MCF21の受光端面33から光LW4の光軸上(即ち、w方向)で第2レンズ72の焦点距離f2だけ離れた位置に配置されている。第2レンズ72の開口サイズ及び開口数は、焦点距離f2及び被測定物体100の照射領域102の大きさをふまえて適宜設定されている。 As shown in FIG. 9, the light receiving device 222 of the three-dimensional measuring device 203 has the same configuration as the light receiving device 222 of the three-dimensional measuring device 202 of the second embodiment, and is behind the light receiving end surface 33 of the MCF 21 in the w direction. Further provided with an arranged second lens 72. The second lens 72 is arranged at a position separated from the light receiving end surface 33 of the MCF 21 on the optical axis of the optical LW4 (that is, in the w direction) by the focal length f2 of the second lens 72. The aperture size and numerical aperture of the second lens 72 are appropriately set based on the focal length f2 and the size of the irradiation region 102 of the object to be measured 100.

3次元測定装置203では、光源10から出射されると共に第1レンズ71でコリメートされた平行光LW1−2は、空間変調器80によって変調面81で空間変調され、照射光LW3を形成する。照射光LW3は、変調された空間分布を略保った状態で被測定物体100の照射領域102に照射される。被測定物体100から反射された出射光LW4は、コリメートされている状態を略保持しつつ、w方向に進行し、第2レンズ72に入射する。 In the three-dimensional measuring device 203, the parallel light LW1-2 emitted from the light source 10 and collimated by the first lens 71 is spatially modulated on the modulation surface 81 by the spatial modulator 80 to form the irradiation light LW3. The irradiation light LW3 irradiates the irradiation region 102 of the object to be measured 100 with the modulated spatial distribution substantially maintained. The emitted light LW4 reflected from the object to be measured 100 travels in the w direction while substantially maintaining the collimated state, and is incident on the second lens 72.

図11に示すように、MCF21の開口数NAは、複数のコア26−1、・・・、26−mのうちコア26−p、26−qの各々で受光可能な受光角度範囲θ、θが互いに重なり、且つ重なり領域OVL26内に被測定物体100の少なくとも照射領域102が含まれるという条件を満たすように設定されている。第2レンズ72は、被測定物体100からコリメートされた状態で反射された出射光LW3をw方向を中心に収束させて高い結合効率でMCF21の複数のコア26−1、・・・、26−mの少なくとも2つのコア26−p、26−qに入射させるために設けられている。第3実施形態において、重なり領域OVL26内に被測定物体100の少なくとも照射領域102が含まれるということは、第2レンズ72に入射する照射領域102からの出射光LW4が重なり領域OVL26内に含まれることを意味する。 As shown in FIG. 11, the numerical aperture NA of the MCF 21 is a light receiving angle range θ p , which can be received by each of the cores 26-p and 26-q among the plurality of cores 26-1, ..., 26-m. It is set so as to satisfy the condition that θ q overlaps with each other and at least the irradiation region 102 of the object to be measured 100 is included in the overlapping region OVL 26. The second lens 72 converges the emitted light LW3 reflected from the object to be measured 100 in a collimated state around the w direction, and has a high coupling efficiency with a plurality of cores 26-1, ..., 26- of the MCF 21. It is provided to be incident on at least two cores 26-p and 26-q of m. In the third embodiment, the fact that at least the irradiation region 102 of the object to be measured 100 is included in the overlapping region OVL 26 means that the emitted light LW4 from the irradiation region 102 incident on the second lens 72 is included in the overlapping region OVL 26. Means that.

第3実施形態では、照射面105は、照射領域102をw方向の前方へ第2レンズ72の中心面(又は主面)に移動させた照射領域102´の少なくとも一部と重なる面とする。第1実施形態と同様にコア26−1、・・・、26−m及びクラッド28の材質特有の屈折率によってMCF21の開口数NAが所定の範囲内に制約され、被測定物体100の照射領域102及び照射領域102´の大きさが決まっている場合、w方向(出射光LW4の進行方向)において照射面105とMCF21の受光端面33との距離Z1は、前述の条件を満たすように、開口数NAとw方向から見たときの照射面105の大きさとによって設定されている。 In the third embodiment, the irradiation surface 105 is a surface that overlaps with at least a part of the irradiation region 102 ′ in which the irradiation region 102 is moved forward in the w direction to the central surface (or main surface) of the second lens 72. Similar to the first embodiment, the numerical aperture NA of the MCF 21 is restricted within a predetermined range by the refractive index peculiar to the materials of the cores 26-1, ..., 26-m and the clad 28, and the irradiation region of the object to be measured 100 is irradiated. When the sizes of 102 and the irradiation region 102'are determined, the distance Z1 between the irradiation surface 105 and the light receiving end surface 33 of the MCF 21 in the w direction (the traveling direction of the emitted light LW4) is an opening so as to satisfy the above conditions. It is set by the numerical aperture and the size of the irradiation surface 105 when viewed from the w direction.

第2レンズ72に入射した出射光LW4は、w方向に進行しつつ、w方向に交差する方向で収束し、MCF21の複数のコア26−1・・・、26−mで受光される。その後の受光装置222での動作等は、第1実施形態で説明した受光装置221での動作等と同様である。但し、第3実施形態の受光装置222は、第2実施形態の受光装置221と同様に、照射装置213と共有する部分を有していない。MCF21の複数のコア26−1・・・、26−mの出射端の各々には、接続用ファイバ11−5の入射端が接続されている。 The emitted light LW4 incident on the second lens 72 travels in the w direction, converges in the direction intersecting the w direction, and is received by the plurality of cores 26-1 ..., 26-m of the MCF 21. The subsequent operation of the light receiving device 222 and the like are the same as the operation and the like of the light receiving device 221 described in the first embodiment. However, the light receiving device 222 of the third embodiment does not have a portion shared with the irradiation device 213 like the light receiving device 221 of the second embodiment. The incident end of the connecting fiber 11-5 is connected to each of the exit ends of the plurality of cores 26-1 ... Of the MCF 21 and 26-m.

以上説明した第3実施形態の3次元測定装置203は、照射装置213と、受光装置222と、を備える。第3実施形態の受光装置222は、MCF21及び計算機50を備える。3次元測定装置203及び受光装置222において、MCF21は、複数のコア26−1、・・・、26−mのうち2つ以上のコア(例えば、26−p、26−q)の各々で受光可能な出射光LW4の受光角度範囲θ、θが互いに重なる重なり領域OVL26内に照射領域102´が含まれるように、所定の開口数NAを有する。 The three-dimensional measuring device 203 of the third embodiment described above includes an irradiation device 213 and a light receiving device 222. The light receiving device 222 of the third embodiment includes an MCF 21 and a computer 50. In the three-dimensional measuring device 203 and the light receiving device 222, the MCF 21 receives light from each of two or more cores (for example, 26-p, 26-q) out of the plurality of cores 26-1, ..., 26-m. It has a predetermined numerical aperture NA so that the irradiation region 102'is included in the overlapping region OVL 26 in which the light receiving angle ranges θ p and θ q of the possible emitted light LW4 overlap each other.

第3実施形態の3次元測定装置203及び受光装置222によれば、第1実施形態の3次元測定装置201と同様に、交差方向における被測定物体100の強度O等の光学情報に加えてz方向の強度Z等の光学情報を取得し、被測定物体100の3次元イメージングを実現できる。また、第2実施形態の3次元測定装置202及び受光装置222によれば、互いに独立した複数の受光素子を空間内に分散させて配置する従来の装置に比べて、受光素子に相当する複数のコア26−1、・・・、26−m同士の交差方向での間隔を縮小し、受光部材の省スペース化を図ることができる。 According to the three-dimensional measuring device 203 and the light receiving device 222 of the third embodiment, similarly to the three-dimensional measuring apparatus 201 of the first embodiment, in addition to the optical information of the intensity O x or the like of the object to be measured 100 in the cross direction It is possible to acquire optical information such as the intensity Z x in the z direction and realize three-dimensional imaging of the object to be measured 100. Further, according to the three-dimensional measuring device 202 and the light receiving device 222 of the second embodiment, a plurality of light receiving elements corresponding to the light receiving elements are compared with the conventional device in which a plurality of light receiving elements independently of each other are dispersed and arranged in the space. The space between the cores 26-1, ..., 26-m in the crossing direction can be reduced to save space for the light receiving member.

第3実施形態の3次元測定装置203では、照射装置213は、光源10と、第1レンズ71と、空間変調器80と、を備える。第1レンズ71は、光源10から出射された光LW1を光LW1の光軸に交差する断面及び空間変調器80の変調面81で照射領域102以上の大きさを有する平行光LW1−2にコリメートする。空間変調器80は、第1レンズ71によってコリメートされた平行光LW1−2を空間変調することによって照射光LW3を形成するとともに、照射光LW3を被測定物体100の照射領域102に照射可能に構成されている。 In the three-dimensional measuring device 203 of the third embodiment, the irradiation device 213 includes a light source 10, a first lens 71, and a spatial modulator 80. The first lens 71 collimates the light LW1 emitted from the light source 10 with the parallel light LW1-2 having a size of the irradiation region 102 or more on the cross section intersecting the optical axis of the light LW1 and the modulation surface 81 of the spatial modulator 80. do. The spatial modulator 80 is configured to form the irradiation light LW3 by spatially modulating the parallel light LW1-2 collimated by the first lens 71, and to irradiate the irradiation region 102 of the object to be measured 100 with the irradiation light LW3. Has been done.

上述の3次元測定装置203では、第1実施形態の3次元測定装置201及び第2実施形態の3次元測定装置202とは異なり、MCFではなく空間変調器80を用いて、光源10から出射され且つ第1レンズ71でコリメートされた平行光LW1−2を空間変調し、直接的に照射光LW3を形成できる。 In the above-mentioned three-dimensional measuring device 203, unlike the three-dimensional measuring device 201 of the first embodiment and the three-dimensional measuring device 202 of the second embodiment, the space modulator 80 is used instead of the MCF to emit light from the light source 10. Moreover, the parallel light LW1-2 collimated by the first lens 71 can be spatially modulated to directly form the irradiation light LW3.

第3実施形態の3次元測定装置203では、受光装置222は、第2レンズ72と、MCF21と、計算機50と、を備える。第2レンズ72は、概ねコリメートされた状態で被測定物体100から出射された出射光LW4をw方向を中心にw方向に交差する方向で集光させてMCF21のコア26−1、・・・、26−mに入射させることができる。受光装置222によれば、第2レンズ72を配置するスペースを必要とするものの、受光素子として、高い開口数NAを有する複数のコア26−1、・・・、26−mをMCF21においてw方向に交差する面内でミクロンオーダーの短い間隔をあけて配置し、小型化を図ることができる。 In the three-dimensional measuring device 203 of the third embodiment, the light receiving device 222 includes a second lens 72, an MCF 21, and a computer 50. The second lens 72 condenses the emitted light LW4 emitted from the object to be measured 100 in a substantially collimated state in a direction intersecting the w direction with the w direction as the center, and the core 26-1 of the MCF 21 ... , 26-m can be incident. According to the light receiving device 222, although a space for arranging the second lens 72 is required, as a light receiving element, a plurality of cores 26-1, ..., 26-m having a high numerical aperture NA are placed in the w direction in the MCF 21. It can be miniaturized by arranging them at short intervals on the order of microns in the planes intersecting with each other.

なお、第3実施形態の3次元測定装置203において、第2レンズ72を配置しなくても被測定物体100の照射領域102から出射される出射光LW4が被測定物体100の光学情報を取得可能な程度に高い効率でMCF21のコア26−1、・・・、26−mで受光可能な場合は、第2レンズ72を省略可能である。 In the three-dimensional measuring device 203 of the third embodiment, the emitted light LW4 emitted from the irradiation region 102 of the measured object 100 can acquire the optical information of the measured object 100 without arranging the second lens 72. The second lens 72 can be omitted if light can be received by the cores 26-1, ..., 26-m of the MCF 21 with a high efficiency.

以上、本発明の好ましい実施形態について詳述したが、本発明は特定の態様に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々変形及び変更可能である。 Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to a specific aspect. The present invention can be variously modified and modified within the scope of the gist of the present invention described in the claims.

例えば、第1実施形態のMCF21では、上述したようにMCF21が投光部材と受光部材とを兼ねている。所定の空間分布を有する照射光LW3をフラウンホーファー回折によって形成するために求められるコアの数及びコア同士の間隔と、重なり領域OVL26に照射領域102が含まれる条件を満たすために求められるコアの数及びコア同士の間隔とは、異なる場合がある。その場合は、MCF21のコアの数mは、前述の求められるコアの数のうち大きい方の数と同一であってもよい。MCF21のコア同士の最小間隔は、前述の求められるコア同士の間隔のうち小さい方の間隔と同一であってもよい。前述の求められるコアの数のうち小さい方については、MCF21のm個のコア26−1、・・・、26−mのうちの前述の求められるコアの数のうち小さい方の数のコアのみを用いることができる。例えば、所定の空間分布を有する照射光LW3をフラウンホーファー回折によって形成するために求められるコアの数が8であり、重なり領域OVL26に照射領域102が含まれる条件を満たすために求められるコアの数が2であれば、MCF21のコアの数mを8とし、被測定物体100から出射される出射波LW4を8個のコアのうち重なり領域OVL26に照射領域102が含まれる条件を満たす間隔を有する2つのコアで受光すればよい。 For example, in the MCF 21 of the first embodiment, as described above, the MCF 21 serves as both a light emitting member and a light receiving member. The number of cores required to form the irradiation light LW3 having a predetermined spatial distribution by Fraunhofer diffraction, the distance between the cores, and the number of cores required to satisfy the condition that the overlap region OVL 26 includes the irradiation region 102. And the spacing between cores may differ. In that case, the number m of the cores of the MCF 21 may be the same as the larger number of the above-mentioned required number of cores. The minimum spacing between the cores of the MCF 21 may be the same as the smaller spacing of the above-mentioned required spacing between the cores. Regarding the smaller number of the above-mentioned required cores, only the smaller number of the above-mentioned required number of cores among the m cores 26-1, ..., 26-m of the MCF21. Can be used. For example, the number of cores required to form the irradiation light LW3 having a predetermined spatial distribution by Fraunhofer diffraction is 8, and the number of cores required to satisfy the condition that the overlap region OVL 26 includes the irradiation region 102. If is 2, the number m of the cores of the MCF 21 is set to 8, and the emitted wave LW4 emitted from the object to be measured 100 has an interval satisfying the condition that the irradiation region 102 is included in the overlapping region OVL 26 among the eight cores. It suffices to receive light with two cores.

上述の各実施形態では、例えば光源10から出射された光LW1を光軸に交差する面内で位相変調することによって照射波LW3を形成することを説明したが、照射波LW3は光LW1の位相以外に強度、偏光等を変調することによって形成されてもよい。本発明において、照射波LW3は、MCF21の複数のコアで出射波LW4を受光することによって被測定物体100の3次元イメージングが可能となるように空間変調されればよい。 In each of the above-described embodiments, for example, it has been described that the irradiation wave LW3 is formed by phase-modulating the light LW1 emitted from the light source 10 in a plane intersecting the optical axis, but the irradiation wave LW3 is the phase of the light LW1. In addition to this, it may be formed by modulating the intensity, polarization, or the like. In the present invention, the irradiation wave LW3 may be spatially modulated so that the object to be measured 100 can be three-dimensionally imaged by receiving the emitted wave LW4 at the plurality of cores of the MCF 21.

本発明に係る受光装置は、既設され且つ被測定物体に照射波を照射する別の装置と併用されてもよい。 The light receiving device according to the present invention may be used in combination with another device that is already installed and irradiates the object to be measured with an irradiation wave.

本発明に係る3次元測定装置及び受光装置は、上述の各実施形態で説明したように被測定物体から反射される出射波に限らず、被測定物体から透過した出射波を受光してもよい。また、本発明に係る3次元測定装置及び受光装置では、計算機で被測定物体の光学情報を抽出可能であれば、出射波に対して所定の光学処理が施されても構わない。 The three-dimensional measuring device and the light receiving device according to the present invention are not limited to the emitted wave reflected from the measured object as described in each of the above-described embodiments, and may receive the emitted wave transmitted from the measured object. .. Further, in the three-dimensional measuring device and the light receiving device according to the present invention, a predetermined optical process may be applied to the emitted wave as long as the optical information of the object to be measured can be extracted by the computer.

201、202、203 3次元測定装置
211、212、213 照射装置
221、222 受光装置
201, 202, 203 3D measuring device 211, 212, 213 Irradiating device 221, 222 Light receiving device

Claims (6)

被測定物体の照射領域に対して前記照射領域内で所定の変調パターンで空間変調された照射光を照射可能に構成されている照射装置と、
前記照射光が照射された前記被測定物体から出射されるとともに前記照射領域における前記被測定物体の情報を含む出射光を受光可能な複数のコアを有する第1マルチコアファイバと、前記複数のコアの各々が受光した前記出射光の光学情報及び前記照射光の光学情報に基づいて前記被測定物体の3次元情報を算出可能に構成されている光学情報算出部と、を有する受光装置と、
を備え、
前記第1マルチコアファイバは、前記複数のコアのうち2つ以上のコアの各々で受光可能な前記出射光の受光角度範囲が互いに重なる重なり領域内に前記照射領域が含まれるように、前記複数のコアの各々において前記出射光の最大受光角と前記被測定物体と前記第1マルチコアファイバとの間の領域の屈折率とによって求まる開口数を有する、
3次元測定装置。
An irradiation device configured to be capable of irradiating the irradiation area of the object to be measured with irradiation light spatially modulated by a predetermined modulation pattern in the irradiation area.
A first multi-core fiber having a plurality of cores capable of receiving emitted light emitted from the object to be measured irradiated with the irradiation light and including information on the object to be measured in the irradiation region, and the plurality of cores. A light receiving device having an optical information calculation unit configured to be able to calculate three-dimensional information of the object to be measured based on the optical information of the emitted light received by each of them and the optical information of the irradiation light.
Equipped with
The first multi-core fiber has the plurality of irradiation regions so that the irradiation region is included in the overlapping region where the light receiving angle ranges of the emitted light that can be received by each of the two or more cores of the plurality of cores overlap each other. Each of the cores has a numerical aperture determined by the maximum light receiving angle of the emitted light and the refractive index of the region between the object to be measured and the first multi-core fiber.
3D measuring device.
前記出射光の進行方向において前記照射領域の少なくとも一部と重なる照射面と前記第1マルチコアファイバの受光端面との距離は、前記開口数と前記照射面に沿う方向での前記照射領域の大きさとに応じて設定されている、
請求項1に記載の3次元測定装置。
The distance between the irradiation surface that overlaps at least a part of the irradiation region in the traveling direction of the emitted light and the light receiving end surface of the first multi-core fiber is the numerical aperture and the size of the irradiation region in the direction along the irradiation surface. Set according to,
The three-dimensional measuring device according to claim 1.
前記照射装置は、
前記第1マルチコアファイバを共有し、
光源と、
前記光源から出射された光を互いに異なる空間分布を有する複数の光に変調するとともに、変調された前記複数の光を前記第1マルチコアファイバの複数のコアに入射させる変調器と、
を備える、
請求項1又は2に記載の3次元測定装置。
The irradiation device is
Sharing the first multi-core fiber,
Light source and
A modulator that modulates the light emitted from the light source into a plurality of lights having different spatial distributions, and causes the plurality of modulated lights to be incident on a plurality of cores of the first multi-core fiber.
To prepare
The three-dimensional measuring device according to claim 1 or 2.
前記照射装置は、
光源と、
前記光源から出射された光を互いに異なる空間分布を有する複数の光に変調する変調器と、
前記変調器で変調された前記複数の光が入射可能、且つ出射端から離れた前記被測定物体の照射領域で前記照射光を形成するように前記複数の光を前記出射端から出射する複数のコアを有するとともに、前記第1マルチコアファイバとは異なる位置に配置されている第2マルチコアファイバと、
を備える、
請求項1又は2に記載の3次元測定装置。
The irradiation device is
Light source and
A modulator that modulates the light emitted from the light source into a plurality of lights having different spatial distributions from each other.
A plurality of light emitted from the emission end so that the plurality of light modulated by the modulator can be incident and the irradiation light is formed in the irradiation region of the object to be measured away from the emission end. A second multi-core fiber having a core and arranged at a position different from that of the first multi-core fiber,
To prepare
The three-dimensional measuring device according to claim 1 or 2.
前記照射装置は、
光源と、
前記光源から出射された光を前記光の光軸に交差する断面で前記照射領域以上の大きさを有する平行光にコリメートする第1レンズと、
前記第1レンズによってコリメートされた前記光を空間変調することによって前記照射光を形成するとともに、前記照射光を前記照射領域に照射可能に構成されている空間変調器と、
を備える、
請求項1又は2に記載の3次元測定装置。
The irradiation device is
Light source and
A first lens that collimates the light emitted from the light source with parallel light having a size larger than the irradiation region in a cross section intersecting the optical axis of the light.
A spatial modulator configured to form the irradiation light by spatially modulating the light collimated by the first lens and to irradiate the irradiation region with the irradiation light.
To prepare
The three-dimensional measuring device according to claim 1 or 2.
被測定物体の照射領域に対して前記照射領域内で所定の変調パターンで空間変調された照射光が照射された被測定物体の3次元情報を取得するために用いられる受光装置であり、
前記照射光が照射された前記被測定物体から出射されるとともに前記照射領域における前記被測定物体の情報を含む出射光を受光可能な複数のコアを有する第1マルチコアファイバと、
前記複数のコアの各々が受光した前記出射光の光学情報及び前記照射光の光学情報に基づいて前記被測定物体の3次元情報を算出可能に構成されている光学情報算出部と、
を備え、
前記第1マルチコアファイバは、前記複数のコアのうち2つ以上のコアの各々で受光可能な前記出射光の受光角度範囲が互いに重なる重なり領域内に前記照射領域が含まれるように、前記複数のコアの各々において前記受光角度範囲から決まる前記出射光の最大受光角と前記被測定物体と前記第1マルチコアファイバとの間の領域の屈折率とによって求まる開口数を有する、
受光装置。
It is a light receiving device used to acquire three-dimensional information of an object to be measured that is spatially modulated with an irradiation light having a predetermined modulation pattern in the irradiation area of the object to be measured.
A first multi-core fiber having a plurality of cores capable of emitting light emitted from the object to be measured irradiated with the irradiation light and receiving emitted light including information on the object to be measured in the irradiation region.
An optical information calculation unit configured to be able to calculate three-dimensional information of the object to be measured based on the optical information of the emitted light received by each of the plurality of cores and the optical information of the irradiation light.
Equipped with
The first multi-core fiber has the plurality of irradiation regions so that the irradiation region is included in the overlapping region where the light receiving angle ranges of the emitted light that can be received by each of the two or more cores of the plurality of cores overlap each other. Each of the cores has a numerical aperture determined by the maximum light receiving angle of the emitted light determined from the light receiving angle range and the refractive index of the region between the object to be measured and the first multi-core fiber.
Light receiving device.
JP2020083794A 2020-05-12 2020-05-12 Three-dimensional measuring device and light receiving device Active JP7478420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020083794A JP7478420B2 (en) 2020-05-12 2020-05-12 Three-dimensional measuring device and light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020083794A JP7478420B2 (en) 2020-05-12 2020-05-12 Three-dimensional measuring device and light receiving device

Publications (2)

Publication Number Publication Date
JP2021179333A true JP2021179333A (en) 2021-11-18
JP7478420B2 JP7478420B2 (en) 2024-05-07

Family

ID=78511214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020083794A Active JP7478420B2 (en) 2020-05-12 2020-05-12 Three-dimensional measuring device and light receiving device

Country Status (1)

Country Link
JP (1) JP7478420B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726028B2 (en) 2001-03-30 2005-12-14 住友重機械工業株式会社 3D shape measuring device
JP4383840B2 (en) 2003-12-11 2009-12-16 浜松ホトニクス株式会社 3D shape measuring device
JP2008196930A (en) 2007-02-13 2008-08-28 Soatec Inc Optical measuring device

Also Published As

Publication number Publication date
JP7478420B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP7190337B2 (en) Multiple image display device with diffractive optical lens
JP6124385B2 (en) Image projector and light assembly
US7413311B2 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
EP2093601B1 (en) Microscope device and image processing method
CN110161680A (en) A kind of holographical wave guide display device and its display methods
CN108802989B (en) Parallel multizone image device
KR20130100693A (en) Illumination optical system, light irradiation apparatus for spectrometory, and spectrometer
KR20100009943A (en) Scanning display apparatus using laser light source
CN109031915A (en) A kind of method and system obtaining multimode fibre imaging transmission matrix
CN110741305A (en) Scanning display device and scanning display system
JP6116142B2 (en) Scanning confocal laser microscope
JP2018180116A (en) Optical deflection device and lidar device
JP2014048096A (en) Two-dimensional spectral measurement device, and two-dimensional spectral measurement method
TW202204970A (en) Methods and devices for optimizing contrast for use with obscured imaging systems
KR100754683B1 (en) Laser projector
TW201303364A (en) Projector and light splitting unit and light combining unit thereof
JP7478420B2 (en) Three-dimensional measuring device and light receiving device
CN109141287B (en) Point light source array generator based on spatial light modulator and obtaining method thereof
WO2017006370A1 (en) Digital holographic projection device
US10359692B2 (en) Laser illumination system and method for eliminating laser speckle thereof
JP3865306B2 (en) Stereoscopic imaging display device
KR100790121B1 (en) Laser projector
JP6229929B2 (en) Illumination device and projection device
US11789271B2 (en) Display apparatus for providing expanded viewing window
US20230012288A1 (en) Eye information detection device and image display apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415