JP2021179278A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2021179278A
JP2021179278A JP2020084831A JP2020084831A JP2021179278A JP 2021179278 A JP2021179278 A JP 2021179278A JP 2020084831 A JP2020084831 A JP 2020084831A JP 2020084831 A JP2020084831 A JP 2020084831A JP 2021179278 A JP2021179278 A JP 2021179278A
Authority
JP
Japan
Prior art keywords
refrigerating
evaporator
chamber
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020084831A
Other languages
Japanese (ja)
Inventor
晃一 西村
Koichi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020084831A priority Critical patent/JP2021179278A/en
Publication of JP2021179278A publication Critical patent/JP2021179278A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

To reduce power consumption by improving refrigeration cycle efficiency in cooling a cold room.SOLUTION: A refrigerator includes: a cold room; a refrigeration room; a cold storage evaporator; a refrigeration evaporator; cold storage decompression means connected to the cold storage evaporator in series; refrigeration decompression means connected to the refrigeration evaporator in series; a compressor connected to an outlet pipe of the cold storage evaporator and an outlet pipe of the refrigeration evaporator; a radiator connected to discharge piping of the compressor in series; a selector valve for switching a flow of refrigerant to the cold storage evaporator and the refrigeration evaporator; and a heat storage material thermally coming into contact with either an inlet pipe or the outlet pipe of the cold storage evaporator.SELECTED DRAWING: Figure 2

Description

本開示は、冷蔵庫に関するものである。 This disclosure relates to a refrigerator.

特許文献1は、冷凍室と冷蔵室それぞれに蒸発器を備え、圧縮機の回転数により蒸発器の温度を制御する冷蔵庫を開示する。 Patent Document 1 discloses a refrigerator in which an evaporator is provided in each of a freezing chamber and a refrigerating chamber, and the temperature of the evaporator is controlled by the rotation speed of the compressor.

特開平11−173729号公報Japanese Unexamined Patent Publication No. 11-173729

本開示は、冷蔵室を冷却する際の冷凍サイクル効率を向上させ、消費電力量を低減することができる冷蔵庫を提供する。 The present disclosure provides a refrigerator capable of improving the refrigerating cycle efficiency when cooling the refrigerating chamber and reducing the power consumption.

本開示における冷蔵庫は、冷蔵室と、冷凍室と、冷蔵蒸発器と、冷凍蒸発器と、冷蔵蒸発器と直列に接続された冷蔵減圧手段と、冷凍蒸発器と直列に接続された冷凍減圧手段と、冷蔵蒸発器の出口配管と冷凍蒸発器の出口配管と接続される圧縮機と、圧縮機の吐出配管と直列に接続される放熱器と、冷蔵蒸発器と冷凍蒸発器への冷媒の流れを切り替える切替弁を備え、冷蔵蒸発器の入口パイプまたは出口パイプのいずれかと熱的に接触する蓄熱材を備える。 The refrigerator in the present disclosure includes a refrigerating chamber, a freezing chamber, a refrigerating evaporator, a refrigerating evaporator, a refrigerating decompression means connected in series with the refrigerating evaporator, and a refrigerating decompression means connected in series with the refrigerating evaporator. And the compressor connected to the outlet pipe of the refrigerated evaporator and the outlet pipe of the refrigerated evaporator, the radiator connected in series with the discharge pipe of the compressor, and the flow of the refrigerant to the refrigerated evaporator and the refrigerated evaporator. It is equipped with a switching valve that switches between, and is equipped with a heat storage material that makes thermal contact with either the inlet pipe or the outlet pipe of the refrigerating evaporator.

本開示における冷蔵庫は、冷蔵室を冷却する際の冷凍サイクル効率を向上させることができ、消費電力量を低減することができる。 The refrigerator in the present disclosure can improve the refrigerating cycle efficiency when cooling the refrigerating chamber, and can reduce the power consumption.

実施の形態1における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 1. 実施の形態1における冷蔵庫の冷凍サイクル図Refrigerator refrigeration cycle diagram according to the first embodiment 実施の形態1における冷蔵庫の動作と室内温度変化を示すタイミングチャートTiming chart showing the operation of the refrigerator and the change in room temperature in the first embodiment 従来の冷蔵庫の断面図Cross section of a conventional refrigerator 従来の冷蔵庫の冷凍サイクル図Refrigerator cycle diagram of a conventional refrigerator

(本開示の基礎となった知見等)
従来の冷蔵庫としては、冷凍室と冷蔵室それぞれに蒸発器を備え、圧縮機の回転数により蒸発器の温度を制御するものがある(例えば、特許文献1参照)。
(Findings, etc. that form the basis of this disclosure)
As a conventional refrigerator, an evaporator is provided in each of a freezing chamber and a refrigerating chamber, and the temperature of the evaporator is controlled by the rotation speed of the compressor (see, for example, Patent Document 1).

図4は、上記特許文献1に記載された従来の冷蔵庫の断面図、図5は、同冷蔵庫の冷凍サイクル図である。 FIG. 4 is a cross-sectional view of the conventional refrigerator described in Patent Document 1, and FIG. 5 is a refrigerating cycle diagram of the refrigerator.

図4、5において、従来の冷蔵庫1は、前面を開口し、仕切り2により上下に仕切られた断熱箱体3から構成されており、仕切り2より上方を、室内を約4℃の冷蔵温度帯に維持した冷蔵室4、仕切り2より下方を、室内を約−18℃の冷凍温度帯に維持した冷凍室5とし、前面が断熱扉6、7によって開閉自在に閉塞されている。 In FIGS. 4 and 5, the conventional refrigerator 1 is composed of a heat insulating box body 3 having an open front surface and partitioned up and down by a partition 2, and above the partition 2 is a refrigerating temperature zone of about 4 ° C. Below the refrigerator compartment 4 and the partition 2 maintained at the above, the refrigerator compartment 5 is maintained in a freezing temperature zone of about -18 ° C., and the front surface is closed by the heat insulating doors 6 and 7 so as to be openable and closable.

冷蔵室4と冷凍室5の背面には、図示しないインバーター電源により能力制御可能な圧縮機8と、圧縮機8の吐出配管8aと接続される放熱器としての凝縮器9と、切替弁としての三方弁10と、冷蔵減圧手段としての冷蔵キャピラリ11と、冷凍減圧手段としての冷凍キャピラリ12と接続して冷凍サイクル13を構成する冷蔵蒸発器14及び冷凍蒸発器15と、それぞれの蒸発器で生成した冷気を冷蔵室4及び冷凍室5内へそれぞれ循環させる冷蔵ファン16、冷凍ファン17を備えている。 On the back of the refrigerator compartment 4 and the freezer compartment 5, a compressor 8 whose capacity can be controlled by an inverter power supply (not shown), a condenser 9 as a radiator connected to the discharge pipe 8a of the compressor 8, and a switching valve are provided. Generated by each of the refrigerating evaporator 14 and the refrigerating evaporator 15 which are connected to the three-way valve 10, the refrigerating capillary 11 as the refrigerating depressurizing means, and the refrigerating capillary 12 as the refrigerating and depressurizing means to form the refrigerating cycle 13. A refrigerating fan 16 and a refrigerating fan 17 for circulating the cooled air into the refrigerating chamber 4 and the refrigerating chamber 5, respectively, are provided.

また、冷蔵室4と冷凍室5の内部には、それぞれの貯蔵室(冷蔵室4、冷凍室5)内の温度を測定する冷蔵室センサ18と冷凍室センサ19を備えている。 Further, inside the refrigerating chamber 4 and the freezing chamber 5, a refrigerating chamber sensor 18 and a freezing chamber sensor 19 for measuring the temperature in each of the storage chambers (refrigerating chamber 4, freezing chamber 5) are provided.

以上のように構成された従来の冷蔵庫において、冷却運転を開始すると、圧縮機8が運転し、冷蔵室センサ18、冷凍室センサ19の検知した温度を元に、三方弁10によって冷媒の流れが切り替わることにより、冷蔵室4の冷却と冷凍室5の冷却を切り替える。 In the conventional refrigerator configured as described above, when the cooling operation is started, the compressor 8 operates, and the flow of the refrigerant is flown by the three-way valve 10 based on the temperatures detected by the refrigerating room sensor 18 and the freezing room sensor 19. By switching, the cooling of the refrigerating chamber 4 and the cooling of the freezing chamber 5 are switched.

まず冷凍室5の冷却時は、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷凍キャピラリ12を流れ、低温低圧の気液二層冷媒となって冷凍蒸発器15へと流れる。 First, when the freezer chamber 5 is cooled, the high-temperature and high-pressure gas refrigerant compressed by the compressor 8 is cooled by the condenser 9 to become a low-temperature and high-pressure liquid refrigerant. This liquid refrigerant flows through the refrigerating capillary 12 by the three-way valve 10, becomes a low-temperature low-pressure gas-liquid two-layer refrigerant, and flows to the refrigerating evaporator 15.

冷凍蒸発器15へと流れた冷媒は、冷凍室5内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、再び圧縮機8へと吸い込まれる。 The refrigerant flowing to the refrigerating evaporator 15 evaporates by exchanging heat with the air in the freezing chamber 5, generates cold air by the heat of vaporization of evaporation, and is sucked into the compressor 8 again.

この時生成した冷気は、冷凍ファン17により、冷凍室5内を循環し、冷凍室5を冷却し、冷凍室センサ19がある一定の温度以下になると冷凍室5の冷却運転は終了する。 The cold air generated at this time is circulated in the freezing chamber 5 by the freezing fan 17 to cool the freezing chamber 5, and when the freezing chamber sensor 19 falls below a certain temperature, the cooling operation of the freezing chamber 5 ends.

次に、冷蔵室4の冷却時は、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷蔵キャピラリ11を流れ、低温低圧の気液二層冷媒となって冷蔵蒸発器14へと流れる。 Next, when the refrigerating chamber 4 is cooled, the high-temperature and high-pressure gas refrigerant compressed by the compressor 8 is cooled by the condenser 9, and becomes a low-temperature and high-pressure liquid refrigerant. This liquid refrigerant flows through the refrigerated capillary 11 through the three-way valve 10, becomes a low-temperature low-pressure gas-liquid two-layer refrigerant, and flows to the refrigerated evaporator 14.

冷蔵蒸発器14へと流れた冷媒は、冷蔵室4内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、再び圧縮機8へと吸い込まれる。 The refrigerant flowing to the refrigerating evaporator 14 evaporates by exchanging heat with the air in the refrigerating chamber 4, generates cold air by the heat of evaporation vaporization, and is sucked into the compressor 8 again.

この時生成した冷気は、冷蔵ファン16により、冷蔵室4内を循環し、冷蔵室4を冷却し、冷蔵室センサ18がある一定の温度以下になると、冷蔵室4の冷却運転は終了する。 The cold air generated at this time is circulated in the refrigerating chamber 4 by the refrigerating fan 16 to cool the refrigerating chamber 4, and when the refrigerating chamber sensor 18 falls below a certain temperature, the cooling operation of the refrigerating chamber 4 ends.

冷蔵室4の冷却時、冷蔵室4の温度は、約4℃の冷蔵温度帯となっており、冷凍室5の冷却時に比べて冷蔵蒸発器14と熱交換する空気温度が高くなることにより、冷蔵蒸発器14の温度も冷凍室23の冷却モード時に比べて高くなる。これにより、圧縮機8の吸込ガスと吐出ガスの圧力比である圧縮比が小さくなることにより、圧縮機8の入力と冷蔵蒸発器14の能力の比であらわされる、冷凍サイクル13の効率も高くなる。 When the refrigerating chamber 4 is cooled, the temperature of the refrigerating chamber 4 is in the refrigerating temperature range of about 4 ° C., and the air temperature for heat exchange with the refrigerating evaporator 14 is higher than that when the refrigerating chamber 5 is cooled. The temperature of the refrigerating evaporator 14 is also higher than that in the cooling mode of the freezer chamber 23. As a result, the compression ratio, which is the pressure ratio between the suction gas and the discharge gas of the compressor 8, becomes smaller, so that the efficiency of the refrigeration cycle 13, which is represented by the ratio of the input of the compressor 8 to the capacity of the refrigerating evaporator 14, is also high. Become.

一方、冷蔵蒸発器14の温度が高くなることにより、圧縮機8が吸い込む冷媒ガスの密度が、冷凍室5の冷却時に比べて約2倍に大きくなる。これにより、冷凍サイクル13を循環する冷媒の循環量が大きくなり、冷蔵蒸発器14の能力が冷蔵室4の負荷量に比べて大きくなるため、能力を使い切れないと、実際に使われる能力が減少することによる冷凍サイクル13の効率低下だけでなく、冷蔵蒸発器14で蒸発し切れなかった液冷媒を圧縮機8が吸い込んでしまう。 On the other hand, as the temperature of the refrigerating evaporator 14 becomes higher, the density of the refrigerant gas sucked by the compressor 8 becomes about twice as large as that when the freezer chamber 5 is cooled. As a result, the circulation amount of the refrigerant circulating in the refrigerating cycle 13 becomes large, and the capacity of the refrigerating evaporator 14 becomes larger than the load amount of the refrigerating chamber 4. Therefore, if the capacity cannot be used up, the capacity actually used decreases. Not only does this reduce the efficiency of the refrigeration cycle 13, but the compressor 8 sucks in the liquid refrigerant that has not completely evaporated in the refrigerating evaporator 14.

圧縮機8が液冷媒を吸い込むと、液冷媒が圧縮機8内の摺動部(図示せず)の潤滑油を洗い流すことにより摩耗が発生したり、圧縮機8が液を圧縮することにより内部の部品を破損させるなど、信頼性を低下させる恐れがある。 When the compressor 8 sucks in the liquid refrigerant, the liquid refrigerant flushes the lubricating oil of the sliding portion (not shown) in the compressor 8 to cause wear, or the compressor 8 compresses the liquid to the inside. There is a risk of reducing reliability, such as damaging parts of.

この時、冷蔵室センサ18の検知した温度により、圧縮機8の能力を低下させたり、冷蔵ファン16の能力を増加させたりすることにより、冷蔵蒸発器14の能力を使い切ることができる。 At this time, the capacity of the refrigerating evaporator 14 can be used up by reducing the capacity of the compressor 8 or increasing the capacity of the refrigerating fan 16 depending on the temperature detected by the refrigerating chamber sensor 18.

そして、冷蔵室センサ18、冷凍室センサ19の温度がある一定の温度以下になると、圧縮機8を停止し、冷却運転を終了する。 Then, when the temperatures of the refrigerating chamber sensor 18 and the freezing chamber sensor 19 become equal to or lower than a certain temperature, the compressor 8 is stopped and the cooling operation is terminated.

しかしながら、上記従来の冷蔵庫の構成では、蒸発温度を冷蔵室4を冷却するのに適した温度に上昇させるために、圧縮機8の能力を低下させる、または冷蔵ファン16の能力を上昇させる制御となっており、圧縮機8の能力を低下させると、圧縮機8の効率が低下したり、騒音が大きくなるなどの課題があり、冷蔵ファン16の能力を上昇させると、冷蔵ファン16の入力が大きくなったり、冷蔵ファン16の騒音が大きくなるなどの課題があった。 However, in the above-mentioned conventional refrigerator configuration, in order to raise the evaporation temperature to a temperature suitable for cooling the refrigerating chamber 4, the capacity of the compressor 8 is reduced or the capacity of the refrigerating fan 16 is increased. If the capacity of the compressor 8 is reduced, the efficiency of the compressor 8 is lowered and the noise is increased. If the capacity of the refrigerating fan 16 is increased, the input of the refrigerating fan 16 is input. There were problems such as the increase in size and the increase in noise of the refrigerating fan 16.

発明者らは、以上のような課題があることを発見し、その課題を解決するために、本開示の主題を構成するに至った。 The inventors have discovered that there is a problem as described above, and have come to construct the subject matter of the present disclosure in order to solve the problem.

そこで、本開示は、冷蔵室を冷却する際の冷凍サイクル効率を向上させることができ、消費電力量を低減することができる冷蔵庫を提供する。 Therefore, the present disclosure provides a refrigerator capable of improving the refrigerating cycle efficiency when cooling the refrigerating chamber and reducing the amount of power consumption.

以下図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanations may be omitted than necessary. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted.

なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(実施の形態1)
以下、図1〜3を用いて実施の形態1を説明する。なお、上記従来の冷蔵庫と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 3. The same parts as those of the conventional refrigerator are designated by the same reference numerals and the description thereof will be omitted.

[1−1.構成]
図1及び図2において、本実施の形態における冷蔵庫20は、仕切り2により上下に仕切られた断熱箱体21から構成されており、仕切り2より上方を、室内を約4℃の冷蔵温度帯に維持した冷蔵室22、仕切り2より下方を、室内を約−18℃の冷凍温度帯に維持した冷凍室23とし、前面が断熱扉6、7によって開閉自在に閉塞されている。
[1-1. composition]
In FIGS. 1 and 2, the refrigerator 20 in the present embodiment is composed of a heat insulating box body 21 partitioned up and down by a partition 2, and the room above the partition 2 is in a refrigerating temperature zone of about 4 ° C. Below the maintained refrigerating chamber 22 and partition 2, there is a freezing chamber 23 in which the interior is maintained in a freezing temperature range of about -18 ° C., and the front surface is closed by the heat insulating doors 6 and 7 so as to be openable and closable.

冷蔵室22と冷凍室23の背面には、圧縮機8、凝縮器9、三方弁10、冷蔵キャピラリ11、冷凍キャピラリ12、逆止弁24と接続して冷凍サイクル25を構成する冷蔵蒸発器26及び冷凍蒸発器15と、それぞれの蒸発器で生成した冷気を冷蔵室22及び冷凍室23内へ循環させる冷蔵ファン16、冷凍ファン17を備えている。 On the back surface of the refrigerating chamber 22 and the freezing chamber 23, a refrigerating evaporator 26 is connected to a compressor 8, a condenser 9, a three-way valve 10, a refrigerating capillary 11, a refrigerating capillary 12, and a check valve 24 to form a refrigerating cycle 25. The refrigerating evaporator 15 and the refrigerating fan 16 and the refrigerating fan 17 for circulating the cold air generated by the respective evaporators into the refrigerating chamber 22 and the freezing chamber 23 are provided.

冷蔵蒸発器26及び冷凍蒸発器15のそれぞれの出口パイプ26a、15aは、圧縮機8に接続されている。 The outlet pipes 26a and 15a of the refrigerated evaporator 26 and the refrigerated evaporator 15 are connected to the compressor 8.

また、冷蔵室22と冷凍室23内部には、それぞれの貯蔵室内の温度を測定する冷蔵室センサ18と冷凍室センサ19を備えている。 Further, inside the refrigerating chamber 22 and the freezing chamber 23, a refrigerating chamber sensor 18 and a freezing chamber sensor 19 for measuring the temperature in each storage chamber are provided.

冷蔵蒸発器26の近傍には、蓄熱材27を備えている。蓄熱材27は、凝固点が、冷蔵室22の温度より低く冷凍室23の温度より高い温度、例えば、−5℃の高吸水性樹脂を、図示しない樹脂ケース内に充填した構成となっており、冷蔵蒸発器26の入口パイプ28と熱的に接触している。 A heat storage material 27 is provided in the vicinity of the refrigerated evaporator 26. The heat storage material 27 has a structure in which a highly water-absorbent resin having a freezing point lower than the temperature of the refrigerating chamber 22 and higher than the temperature of the freezing chamber 23, for example, −5 ° C., is filled in a resin case (not shown). It is in thermal contact with the inlet pipe 28 of the refrigerated evaporator 26.

[1−2.動作]
以上のように構成された実施の形態1の冷蔵庫について、以下その動作、作用の一例を図3に基づいて説明する。
[1-2. motion]
The refrigerator of the first embodiment configured as described above will be described below with reference to FIG. 3 as an example of its operation and operation.

図3に示すように、冷却運転を開始すると、冷蔵室センサ18、冷凍室センサ19が検知した温度を元に、冷凍室冷却モードと、冷蔵室蓄冷モードと、冷蔵室放冷モードを切り替える。 As shown in FIG. 3, when the cooling operation is started, the freezing room cooling mode, the refrigerating room cold storage mode, and the refrigerating room cooling mode are switched based on the temperatures detected by the refrigerating room sensor 18 and the freezing room sensor 19.

まず冷凍室冷却モードについて説明する。冷蔵室センサ18がある一定温度以下で且つ、冷凍室センサ19がある一定温度以上の時に、冷凍室冷却モードとなる。 First, the freezing room cooling mode will be described. When the refrigerating chamber sensor 18 is at a certain temperature or lower and the freezing chamber sensor 19 is at a certain temperature or higher, the freezing chamber cooling mode is set.

冷凍室冷却モード時、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷凍キャピラリ12を流れ、低温低圧の気液二層冷媒となって冷凍蒸発器15へと流れる。 In the freezer compartment cooling mode, the high temperature and high pressure gas refrigerant compressed by the compressor 8 is cooled by the condenser 9 and becomes a low temperature and high pressure liquid refrigerant. This liquid refrigerant flows through the refrigerating capillary 12 by the three-way valve 10, becomes a low-temperature low-pressure gas-liquid two-layer refrigerant, and flows to the refrigerating evaporator 15.

冷凍蒸発器15へと流れた冷媒は、冷凍室23内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、冷凍蒸発器15を出たガス冷媒は、逆止弁24を流れ、再び圧縮機8へと吸い込まれる。 The refrigerant flowing to the refrigerating evaporator 15 evaporates by exchanging heat with the air in the freezing chamber 23, and cold air is generated by the heat of evaporation vaporization, and the gas refrigerant leaving the refrigerating evaporator 15 is a check valve 24. And is sucked into the compressor 8 again.

この時生成した冷気は、冷凍ファン17により、冷凍室23内を循環し、冷凍室23を冷却し、冷凍室センサ19がある一定の温度以下になると冷凍室冷却モードは終了する。 The cold air generated at this time is circulated in the freezing chamber 23 by the freezing fan 17 to cool the freezing chamber 23, and when the freezing chamber sensor 19 falls below a certain temperature, the freezing chamber cooling mode ends.

次に、冷蔵室蓄冷モードについて説明する。冷蔵室センサ18がある一定温度以上で、冷凍室センサ19がある一定温度以下、且つ蓄熱材27が融解した状態の時に、冷蔵室蓄冷モードとなる。 Next, the refrigerating room cold storage mode will be described. When the refrigerating chamber sensor 18 is above a certain temperature, the freezing chamber sensor 19 is below a certain temperature, and the heat storage material 27 is in a molten state, the refrigerating chamber cold storage mode is set.

冷蔵室蓄冷モード時、圧縮機8により圧縮された高温高圧のガス冷媒は、凝縮器9で冷却され、低温高圧の液冷媒となる。この液冷媒は、三方弁10により、冷蔵キャピラリ11を流れ、低温低圧の気液二層冷媒となって冷蔵蒸発器26へと流れる。 In the refrigerating room cold storage mode, the high-temperature and high-pressure gas refrigerant compressed by the compressor 8 is cooled by the condenser 9 and becomes a low-temperature and high-pressure liquid refrigerant. This liquid refrigerant flows through the refrigerated capillary 11 through the three-way valve 10, becomes a low-temperature low-pressure gas-liquid two-layer refrigerant, and flows to the refrigerated evaporator 26.

冷蔵蒸発器26へと流れた冷媒は、冷蔵蒸発器26で冷蔵室22内の空気と熱交換することで蒸発し、蒸発気化熱により冷気を生成し、再び圧縮機8へと吸い込まれる。 The refrigerant flowing to the refrigerating evaporator 26 evaporates by exchanging heat with the air in the refrigerating chamber 22 in the refrigerating evaporator 26, generates cold air by the heat of evaporation vaporization, and is sucked into the compressor 8 again.

この時生成した冷気は、冷蔵ファン16により、冷蔵室22内を循環し、冷蔵室22を冷却し、冷蔵室センサ18がある一定の温度以下になると、冷蔵室蓄冷モードは終了する。 The cold air generated at this time is circulated in the refrigerating chamber 22 by the refrigerating fan 16, cools the refrigerating chamber 22, and when the refrigerating chamber sensor 18 falls below a certain temperature, the refrigerating chamber cold storage mode ends.

またこれと同時に、蓄熱材27が冷蔵蒸発器26の入口パイプ28と熱交換する。この時、入口パイプ28の温度は蓄熱材27の凝固点である−5℃以下となっており、蓄熱材27が凝固する。 At the same time, the heat storage material 27 exchanges heat with the inlet pipe 28 of the refrigerating evaporator 26. At this time, the temperature of the inlet pipe 28 is -5 ° C. or lower, which is the freezing point of the heat storage material 27, and the heat storage material 27 solidifies.

冷蔵室冷却時、冷蔵室22の温度は、約4℃の冷蔵温度帯となっており、冷凍室23冷却時に比べて冷蔵蒸発器26と熱交換する空気温度が高くなることにより、冷蔵蒸発器26の温度も冷凍室冷却モード時に比べて高くなる。これにより、圧縮機8の吸込ガスと吐出ガスの圧力比である圧縮比が小さくなることにより、圧縮機8の入力と冷蔵蒸発器26の能力の比であらわされる、冷凍サイクル25の効率も高くなる。 When the refrigerating chamber is cooled, the temperature of the refrigerating chamber 22 is in the refrigerating temperature range of about 4 ° C., and the air temperature for heat exchange with the refrigerating evaporator 26 is higher than that when the refrigerating chamber 23 is cooled. The temperature of 26 is also higher than that in the freezer cooling mode. As a result, the compression ratio, which is the pressure ratio between the suction gas and the discharge gas of the compressor 8, becomes smaller, so that the efficiency of the refrigeration cycle 25, which is expressed by the ratio of the input of the compressor 8 to the capacity of the refrigerating evaporator 26, is also high. Become.

一方、冷蔵蒸発器26の温度が高くなることにより、圧縮機8が吸い込む冷媒ガスの密度が、冷凍室23の冷却時に比べて約2倍に大きくなる。これにより、冷凍サイクル25を循環する冷媒の循環量が大きくなり、冷蔵蒸発器26の能力が冷蔵室22の負荷量に比べて大きくなるため、能力を使い切れないと、実際に使われる能力が減少することによる冷凍サイクル25の効率低下だけでなく、冷蔵蒸発器26で蒸発し切れなかった液冷媒を圧縮機8が吸い込んでしまうことによる圧縮機8の信頼性を低下させる恐れがある。 On the other hand, as the temperature of the refrigerating evaporator 26 rises, the density of the refrigerant gas sucked by the compressor 8 becomes about twice as high as that when the freezer chamber 23 is cooled. As a result, the circulation amount of the refrigerant circulating in the refrigerating cycle 25 becomes large, and the capacity of the refrigerating evaporator 26 becomes larger than the load amount of the refrigerating chamber 22. Therefore, if the capacity cannot be used up, the capacity actually used decreases. This may not only reduce the efficiency of the refrigerating cycle 25, but also reduce the reliability of the compressor 8 due to the compressor 8 sucking in the liquid refrigerant that could not be completely evaporated by the refrigerating evaporator 26.

これに対し、本実施の形態においては、冷蔵室22の冷却で使い切れなかった冷蔵蒸発器26の能力を、冷蔵蒸発器26の入口パイプ28と熱的に接触している蓄熱材27を凝固させる際の凝固潜熱として利用することができる。 On the other hand, in the present embodiment, the capacity of the refrigerating evaporator 26 that has not been used up due to the cooling of the refrigerating chamber 22 is used to solidify the heat storage material 27 that is in thermal contact with the inlet pipe 28 of the refrigerating evaporator 26. It can be used as latent heat for solidification.

次に、冷蔵室放冷モードについて説明する。冷蔵室センサ18がある一定温度以上で、冷凍室センサ19がある一定温度以下、且つ蓄熱材27が凝固した状態の時に、冷蔵室放冷モードとなる。 Next, the refrigerating room cooling mode will be described. When the refrigerating chamber sensor 18 is at a certain temperature or higher, the freezing chamber sensor 19 is at a certain temperature or lower, and the heat storage material 27 is in a solidified state, the refrigerating chamber cooling mode is set.

冷蔵室放冷モード時、圧縮機8を停止し、冷蔵ファン16のみを運転する。この時、蓄熱材27は凝固状態であると共に、冷蔵蒸発器26と熱的に接触しているため、蓄熱材27が冷蔵室22内の空気と熱交換することにより、蓄熱材27が融解し、融解潜熱により冷気を生成する。そして冷蔵ファン16により、冷蔵室22内を循環し、冷蔵室22を冷却し、冷蔵室センサ18がある一定の温度以下になると、冷蔵室放冷モードは終了する。 In the refrigerating room cooling mode, the compressor 8 is stopped and only the refrigerating fan 16 is operated. At this time, since the heat storage material 27 is in a solidified state and is in thermal contact with the refrigerating evaporator 26, the heat storage material 27 melts by exchanging heat with the air in the refrigerating chamber 22. , Generates cold air by latent heat of melting. Then, the refrigerating fan 16 circulates in the refrigerating chamber 22 to cool the refrigerating chamber 22, and when the refrigerating chamber sensor 18 falls below a certain temperature, the refrigerating chamber cooling mode ends.

そして、冷蔵室センサ18、冷凍室センサ19のそれぞれの温度がある一定の温度以下になると、圧縮機8を停止し、冷却運転を終了する。 Then, when the temperatures of the refrigerating chamber sensor 18 and the freezing chamber sensor 19 become equal to or lower than a certain temperature, the compressor 8 is stopped and the cooling operation is terminated.

[1−3.効果等]
以上のように、本実施の形態において、冷蔵庫20は、冷蔵室22と、冷凍室23と、冷蔵蒸発器26と、冷凍蒸発器15と、冷蔵キャピラリ11と、冷凍キャピラリ12と、圧縮機8と、凝縮器9と、三方弁10と、蓄熱材27を備えている。冷蔵キャピラリ11は、冷蔵蒸発器26と直列に接続されている。冷凍キャピラリ12は、冷凍蒸発器15と直列に接続されている。圧縮機8は、冷蔵蒸発器26の出口パイプ26aと冷凍蒸発器15の出口パイプ15aと接続される。
[1-3. Effect, etc.]
As described above, in the present embodiment, the refrigerator 20 includes the refrigerating chamber 22, the freezing chamber 23, the refrigerating evaporator 26, the refrigerating evaporator 15, the refrigerating capillary 11, the refrigerating capillary 12, and the compressor 8. A condenser 9, a three-way valve 10, and a heat storage material 27 are provided. The refrigerated capillary 11 is connected in series with the refrigerated evaporator 26. The freezing capillary 12 is connected in series with the freezing evaporator 15. The compressor 8 is connected to the outlet pipe 26a of the refrigerating evaporator 26 and the outlet pipe 15a of the refrigerating evaporator 15.

凝縮器9は、圧縮機8の吐出配管8aと直列に接続される。三方弁10は、冷蔵蒸発器26、冷凍蒸発器15への冷媒の流れを切り替える。蓄熱材27は、冷蔵蒸発器26の入口パイプ28に熱的に接触している。 The condenser 9 is connected in series with the discharge pipe 8a of the compressor 8. The three-way valve 10 switches the flow of the refrigerant to the refrigerating evaporator 26 and the freezing evaporator 15. The heat storage material 27 is in thermal contact with the inlet pipe 28 of the refrigerated evaporator 26.

これにより、圧縮機8の能力を低下させることなく、冷蔵蒸発器26の能力を使い切ることができ、圧縮機8の効率低下や冷蔵ファン16の入力増加また、騒音増大をさせることもなく、冷凍サイクル25の効率を向上させ、冷蔵庫20の省エネ性能を向上させることができる。また、蓄熱材27の潜熱を利用して冷蔵室22冷却時の蒸発温度を上昇させることができる。 As a result, the capacity of the refrigerating evaporator 26 can be used up without deteriorating the capacity of the compressor 8, and refrigeration is performed without reducing the efficiency of the compressor 8 or increasing the input of the refrigerating fan 16 or increasing the noise. The efficiency of the cycle 25 can be improved, and the energy saving performance of the refrigerator 20 can be improved. Further, the latent heat of the heat storage material 27 can be used to raise the evaporation temperature when the refrigerating chamber 22 is cooled.

また、冷蔵室蓄冷モード時に、蓄熱材27に蓄えた冷熱により、圧縮機8を運転することなく冷蔵室22を冷却することができ、従来の冷蔵庫に比べて圧縮機8の運転時間が短縮され、静音性の高い冷蔵庫20とすることができる。なお、上記実施の形態では、蓄熱材27を冷蔵蒸発器26の入口パイプ28に熱的に接触させたが、冷蔵蒸発器26の出口パイプ26aに熱的に接触させるようにしても同様の効果が得られることは言うまでもない。 Further, in the refrigerating room cold storage mode, the cold heat stored in the heat storage material 27 can cool the refrigerating room 22 without operating the compressor 8, and the operating time of the compressor 8 is shortened as compared with the conventional refrigerator. The refrigerator 20 can be quiet. In the above embodiment, the heat storage material 27 is thermally contacted with the inlet pipe 28 of the refrigerated evaporator 26, but the same effect can be obtained by thermally contacting the outlet pipe 26a of the refrigerated evaporator 26. Needless to say,

また、蓄熱材27の凝固点が冷蔵室22の温度より低く冷凍室23温度より高い構成としたので、冷蔵室22の蒸発温度を、より冷蔵室22の冷却に適した蒸発温度に上昇させることができる。 Further, since the freezing point of the heat storage material 27 is lower than the temperature of the refrigerating chamber 22 and higher than the temperature of the refrigerating chamber 23, the evaporation temperature of the refrigerating chamber 22 can be raised to a temperature more suitable for cooling the refrigerating chamber 22. can.

尚、本実施の形態において、蓄熱材27の凝固点は、−5℃として説明したが、冷蔵室放冷モード時に冷蔵室22内を冷却できる温度であれば良く、例えば0℃とすることで、冷蔵蒸発器26の温度をさらに高くでき、圧縮機8の吸込ガスの圧力が高くなることにより、冷凍サイクル25の効率をさらに向上させることができる。 Although the freezing point of the heat storage material 27 has been described as −5 ° C. in the present embodiment, it may be any temperature as long as it can cool the inside of the refrigerating chamber 22 in the refrigerating chamber cooling mode, for example, 0 ° C. By further increasing the temperature of the refrigerating evaporator 26 and increasing the pressure of the suction gas of the compressor 8, the efficiency of the refrigerating cycle 25 can be further improved.

また、圧縮機8の運転中でかつ冷蔵室22の冷却中に、蓄熱材27及び冷蔵室22内を冷却することにより蓄熱材27に熱エネルギーを蓄え、次回の冷蔵室22の冷却時に蓄熱材27に蓄えた熱エネルギーにより冷蔵室22内を冷却するようにしたので、蓄熱材27により蓄熱した冷熱を、冷蔵室22内を冷却する際に利用することができる。 Further, while the compressor 8 is operating and the refrigerating chamber 22 is being cooled, the heat storage material 27 and the inside of the refrigerating chamber 22 are cooled to store heat energy in the heat storage material 27, and the heat storage material is stored at the next cooling of the refrigerating chamber 22. Since the inside of the refrigerating chamber 22 is cooled by the heat energy stored in 27, the cold heat stored by the heat storage material 27 can be used when cooling the inside of the refrigerating chamber 22.

また、本実施の形態において、冷却モードは、冷凍室冷却モードと冷蔵室蓄冷モードと冷蔵室放冷モードの3つのモードで説明したが、冷凍室冷却モード時に蓄熱材27により冷蔵室22を冷却することで、圧縮機8の停止中以外は常に冷蔵室22を冷却することで、冷蔵室22の温度変動を抑制することができ、冷蔵室22内の貯蔵物の保鮮性能を向上させることができる。 Further, in the present embodiment, the cooling mode has been described in three modes of the freezing room cooling mode, the refrigerating room cooling mode, and the refrigerating room cooling mode, but the refrigerating room 22 is cooled by the heat storage material 27 in the freezing room cooling mode. By doing so, the temperature fluctuation of the refrigerating chamber 22 can be suppressed by always cooling the refrigerating chamber 22 except when the compressor 8 is stopped, and the freshness-retaining performance of the storage in the refrigerating chamber 22 can be improved. can.

また、本実施の形態においては、冷蔵室放冷モード時及び圧縮機8停止時の三方弁10の動作には言及しなかったが、三方弁10を冷蔵キャピラリ11へと冷媒を流すモードと、冷凍キャピラリ12へと冷媒を流すモードと、冷蔵キャピラリ11、冷凍キャピラリ12どちらにも冷媒を流さない閉塞状態を選択できるようにし、冷蔵室放冷モード時及び圧縮機8停止時に閉塞状態とすることで、圧縮機8が動いていない時に冷凍サイクル25の高圧側の高温冷媒が低圧側の冷蔵蒸発器26または冷凍蒸発器15へと流れることによる室内昇温を防ぎ、冷凍サイクル25の効率を向上させることができる。 Further, in the present embodiment, the operation of the three-way valve 10 in the refrigerating room cooling mode and when the compressor 8 is stopped is not mentioned, but the mode in which the refrigerant flows through the three-way valve 10 to the refrigerating capillary 11 It is possible to select a mode in which the refrigerant flows to the refrigerating capillary 12 and a closed state in which no refrigerant flows in either the refrigerating capillary 11 or the refrigerating capillary 12, and the closed state is set in the refrigerating room cooling mode and when the compressor 8 is stopped. Therefore, when the compressor 8 is not operating, the high temperature refrigerant on the high pressure side of the refrigerating cycle 25 flows to the refrigerating evaporator 26 or the refrigerating evaporator 15 on the low pressure side to prevent indoor temperature rise and improve the efficiency of the refrigerating cycle 25. Can be made to.

本開示は、冷蔵室を冷却する際の冷凍サイクル効率を向上させ、消費電力量を低減することができるので、家庭用および業務用など様々な種類および大きさの冷蔵庫に適用することができる。 The present disclosure can be applied to refrigerators of various types and sizes, such as those for home and commercial use, because it can improve the refrigerating cycle efficiency when cooling the refrigerator compartment and reduce the power consumption.

1、20 冷蔵庫
2 仕切り
3、21 断熱箱体
4、22 冷蔵室
5、23 冷凍室
6、7 断熱扉
8 圧縮機
8a 吐出配管
9 凝縮器(放熱器)
10 三方弁(切替弁)
11 冷蔵キャピラリ(冷蔵減圧手段)
12 冷凍キャピラリ(冷凍減圧手段)
13、25 冷凍サイクル
14、26 冷蔵蒸発器
15 冷凍蒸発器
15a、26a 出口パイプ
16 冷蔵ファン
17 冷凍ファン
18 冷蔵室センサ
19 冷凍室センサ
24 逆止弁
27 蓄熱材
28 入口パイプ
1,20 Refrigerator 2 Partition 3,21 Insulation box 4,22 Refrigerator room 5,23 Freezer room 6,7 Insulation door 8 Compressor 8a Discharge piping 9 Condenser (heat sink)
10 Three-way valve (switching valve)
11 Refrigerated capillaries (refrigerated decompression means)
12 Freezing capillary (freezing decompression means)
13, 25 Refrigerator cycle 14, 26 Refrigerator evaporator 15 Refrigerator evaporator 15a, 26a Outlet pipe 16 Refrigerator fan 17 Refrigerator fan 18 Refrigerator chamber sensor 19 Refrigerator chamber sensor 24 Check valve 27 Heat storage material 28 Inlet pipe

Claims (3)

冷蔵室と、冷凍室と、冷蔵蒸発器と、冷凍蒸発器と、前記冷蔵蒸発器と直列に接続された冷蔵減圧手段と、前記冷凍蒸発器と直列に接続された冷凍減圧手段と、前記冷蔵蒸発器の出口パイプと前記冷凍蒸発器の出口パイプと接続される圧縮機と、前記圧縮機の吐出配管と直列に接続される放熱器と、前記冷蔵蒸発器ならびに前記冷凍蒸発器への冷媒の流れを切り替える切替弁と、を備え、
前記冷蔵蒸発器の入口パイプまたは前記出口パイプのいずれかと熱的に接触する蓄熱材を備えたことを特徴とする冷蔵庫。
A refrigerating chamber, a freezing chamber, a refrigerating evaporator, a refrigerating evaporator, a refrigerating decompressing means connected in series with the refrigerating evaporator, a refrigerating depressurizing means connected in series with the refrigerating evaporator, and the refrigerating chamber. A compressor connected to the outlet pipe of the evaporator and the outlet pipe of the refrigerating evaporator, a radiator connected in series with the discharge pipe of the compressor, and a refrigerant to the refrigerating evaporator and the refrigerating evaporator. Equipped with a switching valve that switches the flow,
A refrigerator comprising a heat storage material that is in thermal contact with either the inlet pipe or the outlet pipe of the refrigerating evaporator.
前記蓄熱材の凝固点が前記冷蔵室の温度より低く前記冷凍室の温度より高いことを特徴とした請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the freezing point of the heat storage material is lower than the temperature of the refrigerating chamber and higher than the temperature of the freezing chamber. 前記圧縮機の運転中でかつ前記冷蔵室冷却中に、前記蓄熱材及び前記冷蔵室内を冷却することにより前記蓄熱材に熱エネルギーを蓄え、次回の前記冷蔵室の冷却時に前記蓄熱材に蓄えた熱エネルギーにより前記冷蔵室内を冷却するようにした請求項1又は2に記載の冷蔵庫。 Thermal energy was stored in the heat storage material by cooling the heat storage material and the refrigerating chamber while the compressor was in operation and the refrigerating chamber was cooled, and was stored in the heat storage material at the next cooling of the refrigerating room. The refrigerator according to claim 1 or 2, wherein the refrigerating chamber is cooled by heat energy.
JP2020084831A 2020-05-14 2020-05-14 refrigerator Pending JP2021179278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020084831A JP2021179278A (en) 2020-05-14 2020-05-14 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020084831A JP2021179278A (en) 2020-05-14 2020-05-14 refrigerator

Publications (1)

Publication Number Publication Date
JP2021179278A true JP2021179278A (en) 2021-11-18

Family

ID=78511390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020084831A Pending JP2021179278A (en) 2020-05-14 2020-05-14 refrigerator

Country Status (1)

Country Link
JP (1) JP2021179278A (en)

Similar Documents

Publication Publication Date Title
KR100785116B1 (en) Refrigerator
KR100691587B1 (en) Refrigerator
JP5261066B2 (en) Refrigerator and refrigerator
JP2009300000A (en) Refrigerator-freezer and cooling storage
CN100371662C (en) Refrigerator
JP3461736B2 (en) refrigerator
JP3906637B2 (en) Freezer refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP6101926B2 (en) refrigerator
JP2019100585A (en) refrigerator
JP2013092340A (en) Refrigerator
JP2003050073A5 (en)
JP2021179278A (en) refrigerator
KR100451710B1 (en) Refrigerator with cold regenerative room
JP2006125843A (en) Cooling cycle and refrigerator
JP5056026B2 (en) vending machine
KR100377618B1 (en) Refrigerator with Phase change material
JP2006029761A (en) Refrigerator
JP5068340B2 (en) Freezer refrigerator
JP2010249444A (en) Freezer-refrigerator
JP2003207250A (en) Refrigerator
CN217274927U (en) Refrigeration device with cascade refrigeration system
JP2005106315A (en) Refrigerator-freezer
JP2012087952A (en) Refrigerator freezer
JP2010038483A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507