JP2021179149A - Assembly structure for placing roadbed concrete, concrete press-in machine and roadbed concrete placing method - Google Patents

Assembly structure for placing roadbed concrete, concrete press-in machine and roadbed concrete placing method Download PDF

Info

Publication number
JP2021179149A
JP2021179149A JP2020085985A JP2020085985A JP2021179149A JP 2021179149 A JP2021179149 A JP 2021179149A JP 2020085985 A JP2020085985 A JP 2020085985A JP 2020085985 A JP2020085985 A JP 2020085985A JP 2021179149 A JP2021179149 A JP 2021179149A
Authority
JP
Japan
Prior art keywords
bar
concrete
vertical
roadbed
steel bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020085985A
Other languages
Japanese (ja)
Other versions
JP7008989B2 (en
Inventor
泰夫 西田
Yasuo Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gate Up LLC
Original Assignee
Gate Up LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gate Up LLC filed Critical Gate Up LLC
Priority to JP2020085985A priority Critical patent/JP7008989B2/en
Publication of JP2021179149A publication Critical patent/JP2021179149A/en
Application granted granted Critical
Publication of JP7008989B2 publication Critical patent/JP7008989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Road Paving Structures (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

To provide an assembly structure for placing roadbed concrete which resolves the problem of quality deterioration, defects, construction loss, etc., due to the finishing of a slope when placing roadbed concrete to construct it as an RC structure with the slope such as a roadbed surface of a highway ramp or a channel surface of a sub-bank of a dam.SOLUTION: A roadbed reinforcing bar is configured by upper and lower bars whose direction of either a vertical or horizontal steel bar roughly matches a direction of a drainage slope on an upper surface of a roadbed, and a substantially gate-type or rod-type stirrup reinforcement that restrains both upper and lower bars, and a net body structure is configured by a plurality of elongated belt-like net bodies having one or more planes; an axial direction of the net body is made approximately orthogonal to a direction of the drainage slope in a narrow space between the upper and lower bars; at least one plane of the net body is placed facing an approximately vertical portion of the stirrup reinforcement or a lower surface of the upper bar; and at least one end of the plane of the net body in a cross-sectional view is arranged in a slope portion in a direction of the drainage slope in a vertical cross-sectional view facing the lower surface of the upper bar.SELECTED DRAWING: Figure 3

Description

本発明は、勾配を有する路盤コンクリート打設のための組立構造物、特に、路盤コンクリートを拘束する網体の配置構造、そのためのコンクリート圧入器及び路盤コンクリートの打設方法に関する。 The present invention relates to an assembly structure for placing a roadbed concrete having a slope, particularly an arrangement structure of a net body for restraining the roadbed concrete, a concrete press-fitting device for that purpose, and a method for placing the roadbed concrete.

コンクリート構造物の歴史は古く、古代ローマ時代から実用化されてきた。しかし、これに鉄筋を入れて補強するRC(Reinforced Concrete)構造物は、19世紀になって登場したものである。一般に、RC構造物は、圧縮に強く引張に弱いコンクリートとその逆の鉄筋の一体構造において、代表的な破壊形態である曲げ破壊とせん断破壊について構造解析をした上で、大きくは鉄筋の引っ張り負担とコンクリートの圧縮負担に対して設計する。 Concrete structures have a long history and have been put into practical use since ancient Roman times. However, RC (Reinforced Concrete) structures, which are reinforced by inserting reinforcing bars, appeared in the 19th century. In general, RC structures have a structural analysis of bending fracture and shear fracture, which are typical fracture forms, in the integrated structure of concrete, which is strong in compression and weak in tension, and vice versa. And design for the compression load of concrete.

このため、鉄筋とコンクリートがジャンカを出さず密実に一体化するように、セメントペースト中に細骨材や粗骨材が均一に分散し、各仕上げ面が設計図と同一となるように締め固めて仕上げなければならないことが、コンクリート標準示方書などに定められている。 For this reason, fine aggregate and coarse aggregate are evenly dispersed in the cement paste so that the reinforcing bars and concrete are densely integrated without causing junkers, and each finished surface is compacted so that it is the same as the design drawing. It is stipulated in the concrete standard specifications that it must be finished.

図9に示す工具を参照して、RC構造物のコンクリート打設の手順について説明する。
コンクリートを、ポンプ車からのホース81を移動させて、型枠内隅々に充填しつつ、振動機82にてジャンカが出ないように均一に締固める。その上で、木鏝83やトンボ84にて表面を粗仕上げする。
The procedure for placing concrete in an RC structure will be described with reference to the tool shown in FIG.
The hose 81 from the pump truck is moved to fill the concrete in every corner of the formwork, and the concrete is uniformly compacted by the vibrator 82 so that the junker does not come out. Then, the surface is roughly finished with a wooden trowel 83 or a dragonfly 84.

その後、骨材やセメント分の沈降に伴いブリージングし、余剰水が表面に露呈後に、タンパー(人力タンパー85、エンジンタンパー86)にてタンピングする。 After that, it breathes as the aggregate and cement settle, and after excess water is exposed on the surface, it is tamped with a tamper (human-powered tamper 85, engine tamper 86).

さらに、表面に露呈した余剰水が、水和反応の再吸収や蒸発などにて散逸してから、凝結始発までの僅かな時間に、表面を金鏝88やトロウェル89などで段階的に圧着力を増大させつつ平滑に鏝仕上げして、打設を完了する。 Furthermore, the excess water exposed on the surface is dissipated by reabsorption or evaporation of the hydration reaction, and the surface is gradually crimped with a trowel 88 or Trowel 89 in a short time until the start of condensation. Finish the trowel smoothly while increasing the amount of water.

このように、RC構造物のコンクリート打設は、通常、充填・締固め、粗仕上げ、タンピング及び最終仕上げ、の順に行う。また、RC構造物は、このような施工制約上、一般に、鏝仕上げする表面と型枠にて保持する鉛直面とから構成することを前提に、設計される。 As described above, the concrete placement of the RC structure is usually performed in the order of filling / compaction, rough finishing, tamping and final finishing. Further, the RC structure is generally designed on the premise that it is composed of a surface to be troweled and a vertical surface held by a formwork due to such construction restrictions.

RC構造物の劣化について、図10を参照して説明する。図10は、劣化メカニズムとタンピングの効果を示す図である。
RC構造物の劣化は、鉄筋の被り部11の表面から始まる。表面から侵入する劣化因子12には、塩化物イオン、二酸化炭素、酸素、水分などがある。それらの侵入速度の決定要因としては、セメントの種類や骨材の吸水率などのほか、この鉄筋16の被り部11の空隙の状態、すなわち緻密性が影響する。劣化因子12の侵入後における鉄筋の錆の進捗は、鉄筋とコンクリートとの密着の状態、すなわち密実性が影響する(図10の右側の図を参照)。
Deterioration of the RC structure will be described with reference to FIG. FIG. 10 is a diagram showing the deterioration mechanism and the effect of tamping.
Deterioration of the RC structure starts from the surface of the covering portion 11 of the reinforcing bar. Deterioration factors 12 that invade from the surface include chloride ions, carbon dioxide, oxygen, and water. In addition to the type of cement and the water absorption rate of the aggregate, the state of the voids in the covered portion 11 of the reinforcing bar 16, that is, the denseness, influences the factors that determine the penetration rate. The progress of rusting of the reinforcing bar after the invasion of the deterioration factor 12 is affected by the state of adhesion between the reinforcing bar and the concrete, that is, the solidity (see the figure on the right side of FIG. 10).

型枠にて保持する鉛直面は、コンクリートの配合品質と締固めの良否によって、緻密性、密実性及び耐久性が決まる。しかし、鏝仕上げする表面は型枠がないため、これに加え、粗仕上げ後のタンピング及び最終仕上げ(図9)の良否によって、緻密性や密実性及び耐久性が左右される。これは、ひとつには、コンクリートは、充填後、鉄筋の拘束を受ける箇所と受けない箇所においてコンクリートの凝結始発に至るまでの骨材やセメント分の沈降の度合いや収縮の度合いが異なるからである。もうひとつには、ブリージングに伴う水の抜け道となる水筋15は緻密性が低下するからである(図10の左側の図を参照)。 The vertical surface held in the formwork is determined by the quality of the concrete and the quality of the compaction, which determines the compactness, solidity and durability. However, since the surface to be troweled does not have a formwork, in addition to this, the fineness, the solidity and the durability are influenced by the quality of the tamping after the rough finishing and the final finishing (FIG. 9). This is because, in part, concrete has different degrees of sedimentation and shrinkage of aggregates and cements until the concrete starts to condense in places where the reinforcing bars are restrained and where they are not restrained after filling. .. The other reason is that the water streaks 15 that serve as a water escape route due to breathing are less dense (see the figure on the left side of FIG. 10).

つまり、タンピングを省くと、粗仕上げ後において、鉄筋直上の割れ13や鉄筋直下の空隙14が残り、鉄筋16の被り部11の緻密化や、鉄筋16自体のコンクリートとの密実化が図れない(図10の左側の図を参照)。また、コンクリートが柔らかい状態では木鏝83など軽量で幅広の鏝で柔らかく仕上げる。そして、表面に露呈した余剰水が散逸してから凝結始発までのコンクリートが固くなる状態では、金鏝88で段階的に強く圧着して仕上げる(図9、参照)。このことで、鉄筋16の被り部11の緻密化を効果的に高めることができる。 That is, if tamping is omitted, cracks 13 directly above the reinforcing bar and voids 14 directly below the reinforcing bar remain after rough finishing, and the covering portion 11 of the reinforcing bar 16 cannot be densified and the reinforcing bar 16 itself cannot be made dense with concrete. (See the figure on the left side of FIG. 10). If the concrete is soft, use a lightweight and wide trowel such as a wooden trowel 83 to finish it softly. Then, in a state where the concrete from the time when the excess water exposed on the surface is dissipated to the first condensation is hardened, the concrete is gradually and strongly crimped with a trowel 88 to finish (see FIG. 9). As a result, the densification of the covered portion 11 of the reinforcing bar 16 can be effectively enhanced.

要するに、タンピング及び段階的な鏝仕上げは、単に表面を平坦に仕上げるだけでなく、鉄筋起因による鉄筋直上の割れ13や鉄筋直下の空隙14を散逸させ、鉄筋を保護する被り部分の緻密性と密実性の向上を目的としている。また、ブリージングや凝結始発に対する、タンピング及び段階的な鏝仕上げのタイミングを間違えると、鉄筋の被り部は緻密化や密実化どころか脆弱になる場合もある。 In short, tamping and gradual trowel finishing not only finish the surface flat, but also dissipate cracks 13 directly above the reinforcing bar and voids 14 directly below the reinforcing bar due to the reinforcing bar, and the denseness and denseness of the covering part that protects the reinforcing bar. The purpose is to improve the actuality. In addition, if the timing of tamping and stepwise trowel finishing for breathing and the onset of condensation is incorrect, the covered part of the reinforcing bar may become vulnerable rather than densified or solidified.

一方、社会インフラにおけるRC構造物には、その機能から、7度を超える勾配の仕上げが求められる場合がある。例えば、「高速道路ランプの路盤面」や「ダムの副堤の水路面」などの勾配を有するRC構造物の場合がそれに当たる。 On the other hand, RC structures in social infrastructure may be required to finish with a gradient of more than 7 degrees due to their function. For example, it corresponds to the case of an RC structure having a slope such as "the roadbed surface of a highway ramp" or "the waterway surface of a sub-bank of a dam".

これらの勾配を有する路盤コンクリートの、充填・締固め・粗仕上げ、及び、タンピング・最終仕上げにおいては、ポンプにて充填したコンクリートは振動機にて締固めると局部的には水平になり仕上げ勾配を保てない。また、全体的には円弧滑りを伴う側方流動を起こし仕上げ面が下方は隆起し上方は逆に陥没する場合もある。 In the filling, compaction, rough finishing, tamping, and final finishing of roadbed concrete with these gradients, the concrete filled with the pump becomes locally horizontal when compacted with a vibrator, and the finishing gradient is adjusted. I can't keep it. In addition, as a whole, lateral flow accompanied by arc slip may occur, and the finished surface may be raised downward and depressed upward.

したがって、充填後、締固めてもその後の粗仕上げにおいては人力による掻き揚げが必要となり、十分締め固めることができない。その後、タンピングをすると、チクソトロピー性を有するコンクリートは再流動化し、局部的には垂れて仕上げ勾配が保てず、また、全体的には円弧滑りを伴う側方流動を起こす場合もある。このため、鉄筋の被り部や鉄筋周辺の緻密性や密実性及び耐久性が確保できないという問題があった(図19に示す「従来工法の課題」、参照)。 Therefore, even if it is compacted after filling, it is necessary to manually scrape it up in the subsequent rough finishing, and it cannot be sufficiently compacted. After that, when tamping is performed, the concrete having thixotropic property re-fluidizes and locally hangs down, the finish gradient cannot be maintained, and lateral flow accompanied by arc slip may occur as a whole. For this reason, there is a problem that the denseness, solidity, and durability of the covered portion of the reinforcing bar and the periphery of the reinforcing bar cannot be ensured (see "Problems of the conventional construction method" shown in FIG. 19).

特開平9−67890号公報Japanese Unexamined Patent Publication No. 9-67890 特開2000−38839号公報Japanese Unexamined Patent Publication No. 2000-38839 特開2002−309699号公報Japanese Unexamined Patent Publication No. 2002-309699 特許第6621441号公報Japanese Patent No. 6621441

次に、先行技術について説示する。
特許文献1に記載の技術は、打設するコンクリート表面に金網を活用するもので、建築分野の屋根のような薄層の急勾配コンクリートの仕上げ方法に関するものである。鉄筋の表面に亀甲金網を配し、亀甲金網より下方部分をまず充填し、その後亀甲金網の上方部分を仕上げる。急勾配にも拘わらず、コンクリートの垂れを解決するのに、好適な工法である。
Next, the prior art will be explained.
The technique described in Patent Document 1 utilizes a wire mesh on the surface of concrete to be cast, and relates to a method for finishing a thin layer of steep concrete such as a roof in the field of construction. A hexagonal wire mesh is placed on the surface of the reinforcing bar, the lower part of the hexagonal wire mesh is filled first, and then the upper part of the hexagonal wire mesh is finished. Despite the steep slope, it is a suitable construction method for solving concrete dripping.

しかし、急勾配の「高速道路ランプの路盤面」や「ダムの副堤の水路面」などの場合、コンクリートの層の厚みが厚いから、以下の課題がある。
1)亀甲金網は、下方部分を充填時コンクリートの揚圧力がかかるため、剥離するか固定する鉄筋ごとに位置ずれを起こす。
2)鉄筋の表面に、壁筋などの立ち上げ鉄筋や機械基礎などを固定する金物がある場合、亀甲金網を配置することができない。
However, in the case of a steep "highway ramp roadbed surface" or "dam sub-bank waterway surface", the concrete layer is thick, so there are the following problems.
1) Since the lifting pressure of concrete is applied to the lower part of the hexagonal wire mesh when filling it, the position of the reinforcing bar that peels off or is fixed is displaced.
2) If there is a metal fitting such as a wall reinforcement or a mechanical foundation on the surface of the reinforcing bar, the hexagonal wire mesh cannot be placed.

3)亀甲金網は、剛性が低く、剥離脱落を防ぐため鉄筋に多頻度の固定が必要となるため、施工が煩雑となる。
4)亀甲金網は、拘束する下方部分のコンクリートの局部的な垂れを防ぐが、全体的な円弧滑りを伴う側方流動を起こす場合、剛性がないからそれを防ぐことが難しい。
3) The hexagonal wire mesh has low rigidity and requires frequent fixing to the reinforcing bar to prevent it from peeling off, which makes the construction complicated.
4) The hexagonal wire mesh prevents the local sagging of the concrete in the lower part to be restrained, but it is difficult to prevent the lateral flow accompanied by the overall arc slip because it is not rigid.

5)亀甲金網は、上方の仕上げに対して、拘束するものがないから依然として垂れを防ぐことができず、品質不良の問題が残る。
6)亀甲金網は、鉄筋の被り部に配置するので異物となり、塩化物イオン、二酸化炭素、酸素、水分などの劣化因子が表面から侵入することを助長し、耐久性を損なう。
5) Since there is no restraint on the upper finish of the hexagonal wire mesh, it is still not possible to prevent sagging, and the problem of poor quality remains.
6) Since the hexagonal wire mesh is placed on the covering part of the reinforcing bar, it becomes a foreign substance, which promotes the invasion of deterioration factors such as chloride ion, carbon dioxide, oxygen, and water from the surface, and impairs durability.

7)亀甲金網を配置すると振動機にて締め固められないことから、ブリージング及び骨材やセメント分の沈降に伴う、鉄筋直上の割れや鉄筋直下の空隙の発生を除去できない。
8)薄層の急勾配の仕上げ技術であるため、コンクリートの層が肉厚である「高速道路ランプの路盤面」や「ダムの副堤の水路面」などの場合、コンクリートのチクソトロピー性に起因する力学挙動には対応できない。
7) When the hexagonal wire mesh is placed, it cannot be compacted by a vibrator, so that it is not possible to remove cracks directly above the reinforcing bars and voids directly below the reinforcing bars due to breathing and sedimentation of aggregates and cement.
8) Due to the steep slope finishing technology of thin layers, if the concrete layer is thick, such as "roadbed surface of highway ramp" or "waterway surface of sub-bank of dam", it is caused by the chixotropy of concrete. It cannot correspond to the dynamic behavior.

以上のように、特許文献1に記載の技術は、網体を表面に活用する技術であり、また、特許文献2と特許文献3に記載の技術は、網体を側面に活用する技術である(特許文献2の図1及び特許文献3の図1を参照)。要するに従来、一般的なRC構造物において、網体は、外側の面的な活用以外に活用されることはないのが通例である。 As described above, the technique described in Patent Document 1 is a technique for utilizing the mesh body on the surface, and the techniques described in Patent Document 2 and Patent Document 3 are techniques for utilizing the mesh body on the side surface. (See FIG. 1 of Patent Document 2 and FIG. 1 of Patent Document 3). In short, conventionally, in a general RC structure, the reticular formation is usually not utilized except for the outer surface utilization.

一方、特許文献4に記載の技術は、急勾配の打設するコンクリートの表面仕上げを行う車両搭載型の移動型枠装置に関するものである。表面型枠の角度を機械的に変化させることで、勾配の変化に追随する、いわゆる高価なコンクリートフィニッシャーに関する技術である(特許文献4の図9、参照)。 On the other hand, the technique described in Patent Document 4 relates to a vehicle-mounted mobile formwork device that finishes the surface of concrete to be cast on a steep slope. This is a technique related to a so-called expensive concrete finisher that follows a change in gradient by mechanically changing the angle of the surface formwork (see FIG. 9 of Patent Document 4).

以上を踏まえ、例えば「高速道路ランプの路盤面」や「ダムの副堤の水路面」など、勾配を有するRC構造物を構築する場合において、勾配の仕上げに求められる課題を列挙する。 Based on the above, when constructing an RC structure with a gradient, such as "roadbed surface of a highway ramp" or "waterway surface of a sub-bank of a dam", the problems required for finishing the gradient are listed.

1)勾配がある場合、充填したコンクリートは、振動機によって締固めると局部的には水平になり、勾配を保つことができない。したがって、締固めの度に、人力による掻き揚げが必要となる。そうすると、鉄筋とコンクリートとを密実に一体化できず、また、セメントペースト中に骨材が均一に分散されないため、品質が悪化する。 1) When there is a gradient, the filled concrete becomes locally horizontal when compacted by a vibrator, and the gradient cannot be maintained. Therefore, it is necessary to manually scoop up each time it is compacted. Then, the reinforcing bar and the concrete cannot be integrated tightly, and the aggregate is not uniformly dispersed in the cement paste, so that the quality is deteriorated.

2)7度を超えるような急な勾配でスランプが15cm程度の場合、充填したコンクリートは、振動機によって締固めると、全体的には円弧滑りを伴う側方流動を起こすので、仕上げ面において上方は沈降し下方は隆起する。この事態を恐れて十分に締め固めることができないため、締め固めに不良をきたす。 2) When the slump is about 15 cm with a steep slope exceeding 7 degrees, when the filled concrete is compacted by a vibrator, it causes lateral flow with arc slip as a whole, so it is upward on the finished surface. Settles and rises below. Fearing this situation, it cannot be compacted sufficiently, which causes a defect in compaction.

3)コンクリートの充填後に鉄筋の拘束を受ける箇所と受けない箇所では、コンクリートの凝結始発に至るまでに、骨材やセメント分の沈降の度合いや収縮の度合いが異なる。このため、タンピングを省くと、鉄筋直上の割れや鉄筋直下の空隙が残る。しかし、急勾配の場合、タンピングするとチクソトロピー性を有するコンクリートが再流動化して勾配を保つことができない。したがって、鉄筋直上の割れや鉄筋直下の空隙が残り、鉄筋の被り部の品質が悪化する。 3) The degree of sedimentation and shrinkage of aggregates and cement differs between the part where the reinforcing bar is restrained after filling the concrete and the part where it is not restrained until the concrete starts to condense. Therefore, if tamping is omitted, cracks directly above the reinforcing bar and voids directly below the reinforcing bar remain. However, in the case of a steep slope, when tamping is performed, the thixotropic concrete refluidizes and the slope cannot be maintained. Therefore, cracks directly above the reinforcing bar and voids directly below the reinforcing bar remain, and the quality of the covered portion of the reinforcing bar deteriorates.

4)勾配がある場合、十分なタンピングなしで鏝による最終仕上げを行うことになるから、単に平滑性の確保の意味しかなく、鉄筋の被り部は緻密化しない。そうすると、容易に、塩化物イオン、二酸化炭素、酸素、水分などの侵入を許すことになり、鉄筋の被り部の表面から始まるRC構造物の劣化につながる。このため、鉄筋の錆を助長させ、耐久性を損なう。 4) If there is a gradient, the final finish with a trowel will be performed without sufficient tamping, so there is only a meaning of ensuring smoothness, and the covered portion of the reinforcing bar is not densified. Then, chloride ions, carbon dioxide, oxygen, water, etc. are easily allowed to enter, which leads to deterioration of the RC structure starting from the surface of the covered portion of the reinforcing bar. For this reason, the rust of the reinforcing bar is promoted and the durability is impaired.

5)急勾配の場合、スランプが8cm程度の固練りのコンクリートや、増粘性を付与する混和剤を混入する高価な増粘コンクリートを全域に採用すれば、表面の仕上げ性を改善できる。しかし、このようなコンクリートでも、チクソトロピー性に起因する締固めによる円弧滑りを伴う側方流動を起こす根本的な問題は、本質的に解決しない。また、増粘コンクリートは、ポンプ圧送性が悪く閉塞しやすいので、施工ロスが大きくなる問題がある。 5) In the case of a steep slope, the surface finish can be improved by using hardened concrete with a slump of about 8 cm or expensive thickening concrete mixed with an admixture that imparts viscosity. However, even with such concrete, the fundamental problem of lateral flow accompanied by arc slip due to compaction due to thixotropy is not essentially solved. Further, the thickened concrete has a problem that the pumping property is poor and the concrete is easily closed, so that the construction loss becomes large.

6)仮に、コンクリートフィニッシャーを開発し勾配の仕上げの問題を機械的に解決しようとすれば、個々の構造物の形状に対して個別に開発が必要となるため、その開発に要する期間や費用は莫大となり実用的ではない(特許文献3の図9、参照)。 6) If a concrete finisher were to be developed to mechanically solve the problem of finishing the slope, it would be necessary to develop it individually for the shape of each structure, so the period and cost required for the development would be. It is enormous and impractical (see FIG. 9 of Patent Document 3).

7)コンクリートは、AE減水剤の表面活性作用による、気泡径が25〜250μm程度の微細な気泡を内包する粘弾性体である。この微細な気泡は、全体に圧縮力を受けるとエネルギーを内包しつつ弾性変形し収縮する。したがって、充填時、蓋を被せ全体に拘束し所定の圧で封入すれば、ブリージングに伴う沈降や収縮は凝結始発まで継続する弾性効果によって相殺でき、鉄筋直上の割れや鉄筋直下の空隙は発生しない。しかし、蓋を被すと、振動機で締め固めることができないため品質が悪化する。 7) Concrete is a viscoelastic body containing fine bubbles having a bubble diameter of about 25 to 250 μm due to the surface-activating action of the AE water reducing agent. When these fine bubbles receive a compressive force as a whole, they elastically deform and contract while containing energy. Therefore, at the time of filling, if the lid is put on the entire surface and sealed at a predetermined pressure, the sedimentation and contraction due to breathing can be offset by the elastic effect that continues until the start of condensation, and cracks directly above the reinforcing bar and voids directly below the reinforcing bar do not occur. .. However, if the lid is put on, the quality deteriorates because it cannot be compacted by a vibrator.

一方、上述した勾配の仕上げが求められるRC構造物を構築する際の課題を、特許文献1に記載の、鉄筋の上筋表面全域に網体を配し内部充填する方法によって解決を図る場合における課題を列挙する。 On the other hand, the above-mentioned problem in constructing an RC structure that requires a gradient finish is solved by the method described in Patent Document 1 in which a net body is arranged over the entire surface of the upper reinforcing bar of the reinforcing bar and the inside is filled. List the issues.

8)網体は、下方内部を充填時に、コンクリートの揚圧力が卓越し剥離するか、固定する上筋ごと位置ずれを起こす。
9)網体は、下方内部を充填時に、上方の1辺からの1方向の充填となり、充填経路が長く骨材が分離しセメントペーストのみが先走る。したがって、均一なコンクリートが打設できない。
8) When the lower part of the reticular formation is filled, the lifting pressure of the concrete is predominantly peeled off, or the position of the upper streaks to be fixed is displaced.
9) When the lower inside is filled, the net is filled in one direction from one upper side, the filling path is long, the aggregate is separated, and only the cement paste precedes. Therefore, uniform concrete cannot be placed.

10)鉄筋の上筋表面に壁筋などの立ち上げ鉄筋や機械基礎などを固定する金物がある場合には、網体を配置することができない。
11)網体には剛性がなく、鉄筋に多頻度箇所の固定が必要となるため、施工が煩雑となる。
10) If there is a metal fitting for fixing a rising reinforcing bar such as a wall reinforcing bar or a mechanical foundation on the surface of the upper reinforcing bar of the reinforcing bar, the net body cannot be arranged.
11) Since the net body has no rigidity and it is necessary to fix the reinforcing bars at frequent points, the construction becomes complicated.

12)上方の仕上げにおいて網体を拘束するものがないから、依然として垂れの問題やこれに伴う品質不良の問題が残る。
13)網体は、鉄筋の被り部に配置することから異物となり、この被り部の表面から塩化物イオン、二酸化炭素、酸素、水分などの劣化因子が侵入することを増長させ、耐久性を損なう。
12) Since there is nothing to restrain the net in the upper finish, the problem of sagging and the problem of poor quality associated with it still remain.
13) Since the reticular formation is placed on the covering part of the reinforcing bar, it becomes a foreign substance, and the invasion of deterioration factors such as chloride ions, carbon dioxide, oxygen, and water from the surface of the covering part is increased, and the durability is impaired. ..

14)勾配の仕上げが求められるRC構造物における網体の活用に関して、表面的な活用以外の実施例は過去には見当たらない。また、勾配の仕上げにおける品質劣化の要因解析や充填・締固め・タンピングに伴うコンクリートの力学挙動は、未解明である。 14) Regarding the utilization of reticular formation in RC structures that require a gradient finish, there have been no examples in the past other than superficial utilization. In addition, the analysis of factors of quality deterioration in the finishing of gradients and the mechanical behavior of concrete associated with filling, compaction, and tamping have not been clarified.

また、上述した勾配の仕上げが求められるRC構造物を構築する際の課題を、RC構造物全体を側部と上部に鋼製型枠を組付けして内部充填する方法によって解決を図る場合における課題を列挙する。
15)振動機が使用できないので、締固めが不要であるが高価なノンブリージングタイプの高流動コンクリートが必要となるため、工費を増大させる。
Further, in the case where the above-mentioned problem in constructing an RC structure that requires a gradient finish is solved by a method of assembling a steel formwork on the side and the upper part of the entire RC structure and filling the inside. List the issues.
15) Since the vibrator cannot be used, compaction is not required, but expensive non-breathing type high-fluidity concrete is required, which increases the construction cost.

16)側部と上部から構成する鋼製型枠の組立と解体が煩雑となるため、工期を遅延させる。
17)上筋表面に、壁筋などの立ち上げ鉄筋や機械基礎などを固定する金物がある場合には、上部から鋼製型枠で覆うことができない。
16) Assembling and disassembling the steel formwork composed of the side part and the upper part becomes complicated, so that the construction period is delayed.
17) If there is a metal fitting for fixing a rising reinforcing bar such as a wall bar or a mechanical foundation on the surface of the upper bar, it cannot be covered with a steel formwork from above.

さらに、上述した勾配の仕上げが求められるRC構造物を構築する際の課題を、RC構造物全体をプレキャスト化して組み立てる方法によって解決を図る場合の課題を列挙する。
18)現場打設による工法に比べて運搬費用(運賃)が嵩むため、工費を増大させる。
Further, the problems in constructing the RC structure that requires the finish of the above-mentioned gradient will be listed, and the problems in the case of solving the problem by the method of precasting and assembling the entire RC structure will be listed.
18) Since the transportation cost (freight) is higher than the construction method by casting on site, the construction cost will be increased.

19)プレキャスト工法は、多くは従来の設計思想を逸脱するため、設計責任や製造物責任の上で、発注者と受注者間での新たな取り決めが生じ煩雑となる。
20)用いるプレキャスト部材は、運搬重量上の制約があるため、適用できる現場が限られる。
19) Since most of the precast method deviates from the conventional design concept, new agreements between the orderer and the contractor are made in terms of design responsibility and product responsibility, which is complicated.
20) The precast members used are limited in terms of transport weight, so the applicable sites are limited.

上記課題を解決するために、路盤コンクリート打設のための組立構造物として、本発明は、概格子状に組む直線状の第1の縦横の棒鋼が形成する面の向きが路盤コンクリートの上面の向きと概合致し、第1の縦横の棒鋼のいずれかの棒鋼の方向が前記上面の水勾配の方向に概直交し、前記上面から所定の被り部を空けて配置される第1の縦横の棒鋼から成る上筋と、概格子状に組む直線状の第2の縦横の棒鋼のいずれかの棒鋼の方向が第1の縦横の棒鋼の前記水勾配の方向に概直交する棒鋼の方向に概合致する構造を有し、前記路盤コンクリートの下面から所定の被り部を空けて配置される第2の縦横の棒鋼から成る下筋と、上筋と下筋に対して両者の離隔を拘束する態様として、上筋を成す第1の縦横の棒鋼と下筋を成す第2の縦横の棒鋼のいずれかの棒鋼を、自らの両端にフック部を有し自らを概門型あるいは棒型に成す第3の棒鋼の当該フック部にて引っ掛ける構造を有して配置されるスターラップ筋とを備える路盤鉄筋と、
帯状で細長の少なくとも1以上の平面を有する複数の網体を備え、上筋を成す第1の縦横の棒鋼と下筋を成す第2の縦横の棒鋼との狭隘に、複数の網体の軸方向を前記水勾配の方向と概直交させ、少なくとも網体が有する平面の1つは、スターラップ筋を成す第3の棒鋼の概鉛直のいずれかの棒鋼部分に面してあるいは第1の縦横の棒鋼の下面に面して配置され、断面視で少なくとも網体が有する平面の1つの端部は、第1の縦横の棒鋼の下面に面して前記水勾配の方向の縦断面視で勾配部分に配置される網体構造物と
から構成されることを特徴とする。
In order to solve the above problems, as an assembly structure for placing roadbed concrete, the present invention presents the present invention in that the direction of the surface formed by the linear first vertical and horizontal steel bars assembled in a general grid pattern is the direction of the upper surface of the roadbed concrete. A first vertical and horizontal arrangement in which the direction of any of the first vertical and horizontal steel bars is approximately orthogonal to the direction of the water gradient of the upper surface and is arranged with a predetermined covering portion from the upper surface. Approximately in the direction of the steel bars in which the direction of the upper bar made of steel bars and one of the linear second vertical and horizontal steel bars assembled in a general grid pattern is approximately orthogonal to the direction of the water gradient of the first vertical and horizontal steel bars. A mode in which a lower bar made of a second vertical and horizontal steel bar, which has a matching structure and is arranged with a predetermined covering portion from the lower surface of the roadbed concrete, and an upper bar and a lower bar are restrained from each other. As a method, one of the first vertical and horizontal steel bars forming the upper bar and the second vertical and horizontal steel bars forming the lower bar is formed into a general gate type or a bar type by having hook portions at both ends of the steel bar. A roadbed reinforcing bar provided with a stirrup bar arranged so as to have a structure of being hooked by the hook portion of the steel bar of No. 3 and a roadbed reinforcing bar.
A strip-shaped strip having a plurality of nets having at least one or more planes, and a shaft of a plurality of nets in a narrow space between a first vertical and horizontal steel bar forming an upper bar and a second vertical and horizontal bar steel forming a lower bar. The direction is approximately orthogonal to the direction of the water gradient, and at least one of the planes of the network faces the approximately vertical steel bar portion of the third steel bar forming the stirrup bar or the first vertical and horizontal directions. One end of a plane that is arranged facing the lower surface of the steel bar and has at least one end of the plane in the cross-sectional view faces the lower surface of the first vertical and horizontal steel bar and is sloped in the vertical cross-sectional view in the direction of the water gradient. It is characterized by being composed of a network structure arranged in a portion.

本発明によれば、次のような効果を奏することができる。
1)網体は、上筋の下面に面することから、
・コンクリート充填時に発生する揚圧力においても上筋に拘束されるので、浮き上がり剥離することはない。
・路盤鉄筋の上筋表面に壁筋などの立ち上がる鉄筋や機械基礎などを固定する金物がある場合でも、支障がない。
・鉄筋の被り部に網体などの異物を配さないから、被り部の表面からの劣化因子(塩化物イオン、二酸化炭素、酸素、水分など)の侵入を最小化し、耐久性が向上する。
2)網体は、帯状細長の軸方向を路盤の水勾配の方向と概直交させることから、コンクリートの充填上昇に伴い断面視同時に下から包含でき、位置ずれを起こしにくい。
3)網体は、軸方向を水勾配の方向と概直交方向とし、平面視で離隔を設け間欠に固定する。このため、間欠に空く離隔部において、コンクリート充填に伴いここより表面に吹き出そうとするコンクリートは、離隔をおいて向かい合う網体間に形成される粗骨材のアーチング効果により低減し、十分に締固めてタンピングを施すことができる(図17のステップ5に示すアーチング効果77を参照)。
4)網体として、金属板に切込みを入れ、引き延ばした網目を持つラス網またはエキスパンドメタルを採用すれば、セメントペーストの透過率は大きくなる。したがって、タンピングの際、網体下方から必要なセメントペーストが容易に上方へ供給されるので、鉄筋直上の割れや鉄筋直下の空隙を逸散させ鉄筋の付着性能が向上する。
5)網体として、鉄にクロムまたはクロムとニッケルを含む、錆びにくい合金鋼であるステンレス仕様のラス網またはエキスパンドメタルを採用することにより、密着する鉄筋との異種材料間に発生するガルパニック腐食(異種金属接触腐食)を最小化する。
6)網体として、FRP(FIber ReInforced PLastIcs)などの繊維強化プラスチックを格子状、概ハニカム状又は水玉状などに成型した有孔板を加工して採用することにより、エキスパンドメタルのステンレス仕様の場合と同様の効果を得つつ、さらに軽量化し設置も簡便化できる。
7)網体の網に空く孔は、例えばφ30〜50mmの円形を必要最小限に包含する。そうすると、φ25〜40mmの粗骨材の透過は許さないから側方流動を抑止でき、φ28mmの小径バイブレータにてここを貫通させつつ上下一体に締固められる。したがって、密実かつ均一なコンクリートを打設することができる。
8)上述の効果は、露天、トンネル内を問わず、カント勾配を有し、路盤面の水勾配に位置付けられる横断勾配を距離程方向に連続的に変化させる、「高速道路ランプの路盤面」や「高速新幹線の路盤面」においても、同様の効果を得ることができる。
9)概格子状の上筋及び下筋を構成するいずれかの棒鋼は、水勾配の方向に概直交するから、ここにスターラップ筋を組み付ければ、容易にスターラップ筋を構成する概鉛直の棒鋼は、水勾配の方向に概直交して林立する。したがって、この林立するスターラップ筋を構成する概鉛直の棒鋼に面して網体を配置すれば、網体は水勾配の方向に概直交する配置となり、上述した網体としての必要機能を容易に実現できる。
According to the present invention, the following effects can be obtained.
1) Since the reticular formation faces the lower surface of the upper muscle,
-Since it is restrained by the upper streaks even with the lifting pressure generated during concrete filling, it does not float and peel off.
-There is no problem even if there is a metal fitting to fix a rising reinforcing bar such as a wall reinforcing bar or a mechanical foundation on the surface of the upper reinforcing bar of the roadbed reinforcing bar.
-Since foreign substances such as nets are not placed on the covering part of the reinforcing bar, the invasion of deterioration factors (chloride ion, carbon dioxide, oxygen, moisture, etc.) from the surface of the covering part is minimized, and the durability is improved.
2) Since the axial direction of the strip-shaped slender is approximately orthogonal to the direction of the water gradient of the roadbed, the reticular formation can be included from below at the same time in the cross-sectional view as the concrete filling rises, and misalignment is unlikely to occur.
3) The reticular formation has an axial direction approximately orthogonal to the direction of the water gradient, and is fixed intermittently with a separation in a plan view. For this reason, in the intermittently vacant separation part, the concrete that tends to blow out to the surface from here due to concrete filling is reduced by the arching effect of the coarse aggregate formed between the mesh bodies facing each other with the separation, and is sufficiently tightened. It can be compacted and tamped (see arching effect 77 shown in step 5 of FIG. 17).
4) If a lath net or expanded metal having a cut in a metal plate and a stretched mesh is used as the net body, the transmittance of the cement paste will be increased. Therefore, at the time of tamping, the necessary cement paste is easily supplied upward from the lower part of the net body, so that cracks directly above the reinforcing bar and voids directly below the reinforcing bar are dissipated and the adhesion performance of the reinforcing bar is improved.
5) Galpanic corrosion that occurs between different materials from the reinforcing bars that adhere to each other by using a stainless steel lath net or expanded metal, which is a rust-resistant alloy steel containing chromium or chromium and nickel in iron, as the net body. Minimize (contact corrosion of dissimilar metals).
6) In the case of expanded metal stainless steel specifications by processing and adopting a perforated plate made of fiber reinforced plastic such as FRP (FIber Reinforced PlastIcs) molded into a lattice shape, approximately honeycomb shape or polka dot shape as a net body. While obtaining the same effect as the above, the weight can be further reduced and the installation can be simplified.
7) The holes in the net of the reticular formation include, for example, a circle having a diameter of 30 to 50 mm to the minimum necessary. Then, since the permeation of the coarse aggregate of φ25 to 40 mm is not allowed, the lateral flow can be suppressed, and the small diameter vibrator of φ28 mm penetrates the coarse aggregate and compacts the upper and lower parts integrally. Therefore, it is possible to cast solid and uniform concrete.
8) The above-mentioned effect is "the roadbed surface of the highway ramp" which has a cant gradient regardless of whether it is in the open air or in the tunnel and continuously changes the cross slope positioned at the water gradient of the roadbed surface in the distance direction. The same effect can be obtained on the roadbed surface of the high-speed Shinkansen.
9) Since any of the steel bars that make up the upper and lower bars in a grid pattern is approximately orthogonal to the direction of the water gradient, if a stirrup bar is attached here, the stirrup bar can be easily constructed vertically. Steel bars stand approximately orthogonally to the direction of the water gradient. Therefore, if the reticular formation is arranged facing the approximately vertical steel bars constituting this forested stirrup bar, the reticular formation will be arranged approximately orthogonal to the direction of the water gradient, and the necessary functions as the above-mentioned reticular formation will be facilitated. Can be realized.

図1は、各網体の構造を示す図である。FIG. 1 is a diagram showing the structure of each network. 図2は、実施例1の路盤コンクリート勾配5度の打設を示す図である。FIG. 2 is a diagram showing casting of a roadbed concrete gradient of 5 degrees according to the first embodiment. 図3は、実施例2の路盤コンクリート勾配10度の打設を示す図である。FIG. 3 is a diagram showing casting of a roadbed concrete gradient of 10 degrees according to the second embodiment. 図4は、実施例3の路盤コンクリート勾配15度の打設を示す図である。FIG. 4 is a diagram showing the placement of the roadbed concrete with a gradient of 15 degrees according to the third embodiment. 図5は、図4の一部を拡大し、その後のステップを示す図である。FIG. 5 is a diagram showing a part of FIG. 4 enlarged and subsequent steps. 図6は、コンクリート圧入器を設置する鉄筋及び網体を示す図である。FIG. 6 is a diagram showing a reinforcing bar and a reticular formation in which a concrete press-fitting device is installed. 図7は、コンクリート圧入器の構造を示す図である。FIG. 7 is a diagram showing the structure of a concrete press-fitting device. 図8は、コンクリート圧入器を鉄筋及び網体に設置した状況を示す図である。FIG. 8 is a diagram showing a situation in which a concrete press-fitting device is installed on a reinforcing bar and a mesh body. 図9は、路盤コンクリートの打設の各段階で使用する工具をコンクリートの各打設段階に分類して示す図である。FIG. 9 is a diagram showing tools used in each stage of roadbed concrete placement classified into each stage of concrete placement. 図10は、劣化メカニズムとタンピングの効果を示す図である。FIG. 10 is a diagram showing the deterioration mechanism and the effect of tamping. 図11は、実施例2の路盤コンクリートの全体の配筋図を示す図である。FIG. 11 is a diagram showing an overall bar arrangement diagram of the roadbed concrete of the second embodiment. 図12は、実施例2の図11の一部を拡大する図である。FIG. 12 is an enlarged view of a part of FIG. 11 of the second embodiment. 図13は、実施例2の路盤コンクリートの全体の型枠図を示す図である。FIG. 13 is a diagram showing an overall formwork diagram of the roadbed concrete of the second embodiment. 図14は、実施例2の図13のアンカー用棒鋼(スターラップ筋26(38)固定用)68付近を拡大する図である。FIG. 14 is an enlarged view of the vicinity of the anchor steel bar (for fixing the stirrup bar 26 (38)) 68 of FIG. 13 of the second embodiment. 図15は、実施例2の図13のセパレーター用棒鋼(上筋31固定用)69付近を拡大する図である。FIG. 15 is an enlarged view of the vicinity of the separator steel bar (for fixing the upper bar 31) 69 of FIG. 13 of the second embodiment. 図16は、実施例2の打設ステップ1〜3を示す図である。FIG. 16 is a diagram showing casting steps 1 to 3 of the second embodiment. 図17は、実施例2の打設ステップ4〜6を示す図である。FIG. 17 is a diagram showing casting steps 4 to 6 of the second embodiment. 図18は、実施例2の打設ステップ1〜3の平面的な打設順序を示す図である。FIG. 18 is a diagram showing a planar casting order of the casting steps 1 to 3 of the second embodiment. 図19は、実施例2の打設ステップを従来工法にて施工した場合の課題と、本発明の効果を示す図である。FIG. 19 is a diagram showing the problems when the casting step of the second embodiment is performed by the conventional method and the effect of the present invention. 図20は、実施例1〜3に用いるスターラップ筋の種類を示す図である。FIG. 20 is a diagram showing the types of stirrup muscles used in Examples 1 to 3.

以下、本発明を実施するための形態として、実施例1〜実施例3について、図を参照して説明する。 Hereinafter, Examples 1 to 3 will be described with reference to the drawings as embodiments for carrying out the present invention.

本発明に係る施工要素としては、「路盤鉄筋の組立構造」と、「型枠構造」と、「路盤コンクリートの打設方法」及び「網体の配置構造」がある。その共通した目的は、側方流動を抑止し、十分な締固めとタンピングを行うことにある。 Construction elements according to the present invention include "assembly structure of roadbed reinforcing bars", "formwork structure", "method of placing roadbed concrete", and "arrangement structure of net body". Its common purpose is to curb lateral flow and provide adequate compaction and tamping.

図1は、実施例1〜実施例3において用いる網体を示す図である。I状網体(縦配置)51、I状網体(横配置)52及び逆L状網体53の3種類があり、図1には、それぞれの網体の、正面図、その右側に側面図、その下側に平面図、の3面図を示している。 FIG. 1 is a diagram showing a network body used in Examples 1 to 3. There are three types: I-shaped formation (vertical arrangement) 51, I-shaped formation (horizontal arrangement) 52, and inverted L-shaped formation 53. FIG. 1 shows a front view of each formation and a side surface on the right side thereof. A three-view view is shown below the figure and a plan view below the figure.

3種類の網体に共通する特徴は、部材表面が網状で、断面視概I状または概L状で帯状細長の形態であって、正面図に示す状態で、上筋と下筋の間の上筋下面に面して結束線にて結束し配置することである。 The common feature of the three types of reticular formation is that the surface of the member is reticulated, and the cross-sectional view is approximately I-shaped or approximately L-shaped and strip-shaped. It is to be bound and arranged by a binding line facing the lower surface of the upper muscle.

また、I状網体(横配置)52には、ポンプホース挿入孔76が開口する(図1の下の図)。これは、コンクリート圧入器のガイド管の挿入を受けるためのもので(これについては後述する)、必要に応じて、各網体の水平に配するいずれかの各面54に開口してもよい。これらを、勾配条件や施工条件に合わせて適切に選定し配置する。 Further, a pump hose insertion hole 76 is opened in the I-shaped reticular formation (horizontal arrangement) 52 (lower view of FIG. 1). This is for receiving the insertion of the guide pipe of the concrete press-fitting device (this will be described later), and may be opened to each side 54 of each net body arranged horizontally, if necessary. .. These are appropriately selected and arranged according to the gradient conditions and construction conditions.

次に、図2〜図4に基づき、路盤コンクリートの勾配条件を異にする場合のコンクリート打設例について説明する。
図2は、実施例1として、路盤コンクリート勾配5度の場合の打設であり、図3は、実施例2として、路盤コンクリート勾配10度の場合の打設であり、図4は、実施例3として、路盤コンクリート勾配15度の場合の打設である。
Next, an example of concrete placement when the slope conditions of the roadbed concrete are different will be described with reference to FIGS. 2 to 4.
FIG. 2 is a placement in the case of a roadbed concrete gradient of 5 degrees as Example 1, FIG. 3 is a placement in the case of a roadbed concrete slope of 10 degrees as Example 2, and FIG. 4 is an embodiment. 3 is the placement when the roadbed concrete slope is 15 degrees.

実施例1〜3について、共通の施工要素である、「路盤鉄筋の組立構造」、「型枠構造」及び「路盤コンクリートの打設方法」の構成と効果については、まとめて説明する。 The configurations and effects of "Assembly structure of roadbed reinforcing bars", "Formwork structure" and "Method of placing roadbed concrete", which are common construction elements, will be collectively described with respect to Examples 1 to 3.

また、個別の施工要素である、「網体の配置構造」の構成と効果については、各実施例個別に説明する。その理由は、「網体の配置構造」は、コンクリートの締固めとタンピングに対する側方流動性を低減するために、勾配の大小で定まる側方流動性の大小によって定まるからである。実際には、勾配条件や配合条件、構造条件などの個別の施工条件に対し、網体及びその配置構造を適切に組み合わせかつ変更してもよい。 In addition, the configuration and effects of the "reticulation arrangement structure", which is an individual construction element, will be described individually for each embodiment. The reason is that the "reticular formation structure" is determined by the magnitude of the lateral fluidity, which is determined by the magnitude of the gradient, in order to reduce the lateral fluidity to the compaction and tamping of the concrete. In practice, the reticular formation and its arrangement structure may be appropriately combined and changed for individual construction conditions such as gradient conditions, compounding conditions, and structural conditions.

さらに、本発明の施工要素を多岐にわたり活用する実施例2の「路盤コンクリート勾配10度の打設」については、図11〜19を用いて補足を加えて詳細に説明する。 Further, the “casting of roadbed concrete with a gradient of 10 degrees” of Example 2 in which the construction elements of the present invention are widely utilized will be described in detail with reference to FIGS. 11 to 19.

先ず、実施例1〜3(図2〜図4)において共通の施工要素である、「路盤鉄筋の組立構造」について説明する。なお、実施例2については、図11、図12を併せて参照する。
1)上筋24
概格子状に組む直線状の棒鋼の縦横の面の向きが、路盤上面1の向きと概合致し、縦横いずれかの棒鋼の方向が路盤上面1の水勾配3の方向に概直交し、路盤上面1から所定の被り部11を空けて配置する。なお、図2〜4に示す実施例1〜3では、上筋24の棒鋼の端部はフック状であるが、この端部をコの字に屈曲して下筋側に定着しても差し支えない(図示せず)。
First, "assembly structure of roadbed reinforcing bar", which is a common construction element in Examples 1 to 3 (FIGS. 2 to 4), will be described. In addition, about Example 2, FIG. 11 and FIG. 12 are also referred to.
1) Upper muscle 24
The orientation of the vertical and horizontal surfaces of the linear steel bars assembled in a general grid pattern roughly matches the orientation of the roadbed upper surface 1, and the direction of either the vertical or horizontal steel bars is approximately orthogonal to the direction of the water gradient 3 of the roadbed upper surface 1, and the roadbed. A predetermined covering portion 11 is arranged with a space from the upper surface 1. In Examples 1 to 3 shown in FIGS. 2 to 4, the end of the steel bar of the upper bar 24 is hook-shaped, but this end may be bent into a U shape and fixed to the lower bar side. Not (not shown).

2)下筋25
概格子状に組む直線状の棒鋼の縦横の面の向きが、路盤下面2の向きと概合致し、縦横の棒鋼の方向が上筋24の縦横の棒鋼の方向に概合致し、路盤下面2から所定の被り部11を空けて配置する。なお、図2〜4に示す実施例1〜3では、下筋25の棒鋼の端部はフック状であるが、この端部をコの字に屈曲して上筋側に定着しても差し支えない(図示せず)。
2) Lower muscle 25
The orientation of the vertical and horizontal surfaces of the linear steel bars assembled in a general grid pattern roughly matches the direction of the roadbed lower surface 2, the direction of the vertical and horizontal steel bars roughly matches the direction of the vertical and horizontal steel bars of the upper bar 24, and the roadbed lower surface 2 A predetermined covering portion 11 is vacated from the above and arranged. In Examples 1 to 3 shown in FIGS. 2 to 4, the end of the steel bar of the lower bar 25 is hook-shaped, but the end may be bent into a U shape and fixed to the upper bar side. Not (not shown).

3)スターラップ筋26
両端にフック部を有し、自らの概門型の棒鋼の形状にて、上筋24と下筋25とを、片方から他方に互いに両者を拘束するように、∩(キャップ)状に被せるかあるいは∪(カップ)状に抄う。また、自らの概門型の棒鋼の中央の辺26(37)を、上筋24又は下筋25を成す片方の棒鋼に押し付け、先端のフック部を上筋24又は下筋25を成す他方の棒鋼に引っ掛ける態様にて配置する。
また、概門型の中央の棒鋼の辺37が、水勾配と直交方向に、また、上筋24(32)及び下筋25の水勾配と直交方向の棒鋼の水勾配の高位側となる面に面して配筋する。
3) Stirrup muscle 26
Whether to cover the upper bar 24 and the lower bar 25 in a ∩ (cap) shape so as to restrain both from one to the other in the shape of a steel bar with hooks at both ends. Alternatively, make a ∪ (cup) shape. Further, the central side 26 (37) of the self-gate type steel bar is pressed against one of the steel bars forming the upper bar 24 or the lower bar 25, and the hook portion at the tip is the other one forming the upper bar 24 or the lower bar 25. Place it so that it can be hooked on a steel bar.
Further, the side 37 of the central steel bar of the general gate type is a surface orthogonal to the water gradient and on the higher side of the water gradient of the steel bar in the direction orthogonal to the water gradient of the upper bar 24 (32) and the lower bar 25. Reinforcement is arranged facing the surface.

図20は、実施例1〜3に用いるスターラップ筋の種類を示す図である。先の説明では、スターラップ筋26は、図20の左側に示す概門型の棒鋼の形状としたが、図20の右側に示すように。両端にフック部を有し自らの棒型の棒鋼の形状98にて、上筋24と下筋25とを、片方から他方に互いに両者を拘束するように、先端のフック部40を上筋24又は下筋25を成す棒鋼に引っ掛ける態様にて配置してもよい。その際に、フック部の形状として、先端プレート型のフック部99を採用してもよい(図20の右端の場合)。この棒型の形状の場合には、せん断補強における剛性が概門型の場合に比して損なわれるのでRC構造物としての耐震性能は低下するが、設置が簡便となる効果がある。 FIG. 20 is a diagram showing the types of stirrup muscles used in Examples 1 to 3. In the above description, the stirrup bar 26 has the shape of a general gate type steel bar shown on the left side of FIG. 20, but as shown on the right side of FIG. 20. The hook portion 40 at the tip is the upper bar 24 so as to have hook portions at both ends and to restrain both the upper bar 24 and the lower bar 25 from one to the other in the shape 98 of its own bar-shaped steel bar. Alternatively, it may be arranged so as to be hooked on a steel bar forming the lower bar 25. At that time, as the shape of the hook portion, the tip plate type hook portion 99 may be adopted (in the case of the right end in FIG. 20). In the case of this rod-shaped shape, the rigidity of the shear reinforcement is impaired as compared with the case of the general gate type, so that the seismic performance as an RC structure is lowered, but there is an effect that the installation is easy.

4)網体51、52、53
細長の軸方向を路盤の水勾配の方向3と概直交させて、断面視で少なくとも各面54の内のいずれかの端部55は、上筋24の下面に面するよう、水勾配の方向3の縦断面視で勾配を持って配置する。
さらに、少なくとも概鉛直に配置する面は、スターラップ筋26の両側の辺26(38)の棒鋼の水勾配の高位側となる面に面して配置する。
4) Reticular formation 51, 52, 53
The elongated axial direction is approximately orthogonal to the direction 3 of the water gradient of the roadbed, and the direction of the water gradient so that at least one end 55 of each of the surfaces 54 faces the lower surface of the upper bar 24 in a cross-sectional view. Arrange with a gradient in the vertical cross-sectional view of 3.
Further, at least the surface to be arranged substantially vertically faces the surface of the side 26 (38) on both sides of the stirrup bar 26 on the higher side of the water gradient of the steel bar.

続いて、この「路盤鉄筋の組立構造」の効果を説明する。
スターラップ筋26を上記3)のように配筋すると、スターラップ筋26の概門型の両側の辺26(38)の棒鋼の水勾配の高位側の面に概鉛直面を面する網体が、その高位側の面に受けるコンクリートの各側圧は、スターラップ筋26の結束箇所の結束強度に依存することなく、各スターラップ筋26を通じ上筋24と下筋25にスムーズに伝達されるので、配筋の結束箇所のずれや外れが生じない。
Next, the effect of this "assembly structure of roadbed reinforcing bars" will be described.
When the stirrup bar 26 is arranged as in 3) above, a net body facing the upper surface of the water gradient of the steel bar on both sides 26 (38) of the general gate type of the stirrup bar 26. However, each lateral pressure of the concrete received on the higher surface is smoothly transmitted to the upper bar 24 and the lower bar 25 through each stirrup bar 26 without depending on the binding strength of the binding point of the stirrup bar 26. Therefore, the binding points of the reinforcing bars do not shift or come off.

次に、実施例1〜3(図2〜4)において共通の施工要素である、「型枠構造」の構成について説明する。なお、実施例2については、図13〜図15を併せて参照する。 Next, the configuration of the "formwork structure", which is a common construction element in Examples 1 to 3 (FIGS. 2 to 4), will be described. In addition, about Example 2, FIGS. 13 to 15 are also referred to.

路盤コンクリートの高位側4と低位側5の両側に配置する側面型枠61は、コンパネ60を保持する縦端太材63をさらに保持する横端太材62の背面を、水勾配の方向3に貫通するセパレーター用棒鋼(貫通用)64の両端の箱金物65にて固定する。 The side formwork 61 arranged on both sides of the high side 4 and the low side 5 of the roadbed concrete has the back surface of the horizontal end thick material 62 further holding the vertical end thick material 63 holding the control panel 60 in the direction 3 of the water gradient. It is fixed by the box metal fittings 65 at both ends of the separator steel bar (for penetration) 64 that penetrates.

続いて、この「型枠構造」の効果を説明する。
例えば、「高速道路ランプの路盤面」のように、路盤面の水勾配に位置付けられる横断勾配を距離程方向に連続的に変化させる場合の適用では、水勾配の方向3が短辺となり、この方向に貫通するセパレーター用棒鋼(貫通用)64は短くて済み、効率よく強固に組み立てられる。
Next, the effect of this "formwork structure" will be described.
For example, in the case of continuously changing the cross slope positioned in the water gradient of the roadbed surface in the distance direction, as in the case of "roadbed surface of a highway ramp", the direction 3 of the water gradient becomes the short side. The separator steel bar (for penetration) 64 that penetrates in the direction can be short and can be assembled efficiently and firmly.

また、側面型枠61は、縦端太材63の背面に横端太材62を配置するため、横端太材62は、コンパネ60と一体の縦端太材63の背面にて距離程方向に長手を取れるので、効率よく組み立てられる。 Further, since the side formwork 61 arranges the horizontal end thick material 62 on the back surface of the vertical end thick material 63, the horizontal end thick material 62 is in the distance direction on the back surface of the vertical end thick material 63 integrated with the control panel 60. Since it can take a long length, it can be assembled efficiently.

次に、実施例1〜3(図2〜4)において共通の施工要素である、「路盤コンクリートの打設方法」の構成について説明する。なお、実施例2については、図16〜図18を併せて参照する。 Next, the configuration of the "roadbed concrete placing method", which is a common construction element in Examples 1 to 3 (FIGS. 2 to 4), will be described. In addition, about Example 2, FIGS. 16 to 18 are also referred to.

上筋24の下側の水平打設範囲96については、低位側5から高位側4に向かってd〜hの順に打設する。
続いて、上筋24の下面側に面する勾配打設範囲97については、低位側5から高位側4に向かってd〜hの順に打設する。この際に、水勾配の低位側5のI状網体(縦配置)51または逆L状網体53の概鉛直の面とその水勾配の高位側4のI状網体(縦配置)51または逆L状網体53の概鉛直の面との狭隘の空間において、少なくとも低位側5のI状網体(縦配置)51または逆L状網体53の概鉛直の面の上筋24の下面に面する一端まで打設し、勾配を上がるように狭隘の空間に対し所定回数繰り返し打設する。
Regarding the horizontal casting range 96 on the lower side of the upper bar 24, casting is performed in the order of d to h from the lower side 5 to the higher side 4.
Subsequently, the gradient casting range 97 facing the lower surface side of the upper bar 24 is driven in the order of d to h from the lower side 5 to the higher side 4. At this time, the approximately vertical surface of the I-shaped reticular formation (vertical arrangement) 51 on the lower side 5 of the water gradient or the inverted L-shaped reticular formation 53 and the I-shaped reticular formation (vertical arrangement) 51 on the higher side 4 of the water gradient thereof. Or, in a space narrow with the approximate vertical surface of the inverted L-shaped formation 53, at least the I-shaped network (vertical arrangement) 51 on the lower side 5 or the upper bar 24 of the approximately vertical surface of the inverted L-shaped formation 53. It is placed up to one end facing the lower surface, and is repeatedly placed in a narrow space so as to increase the slope a predetermined number of times.

その後、上筋24の下面側に面する勾配打設範囲97の打設終了後、残る上筋24の上面側を含む打設範囲について、路盤上面1の仕上げ面まで、水勾配の高いほうから順に勾配を下るように打設する。 After that, after the placement of the gradient casting range 97 facing the lower surface side of the upper bar 24 is completed, the casting range including the upper surface side of the remaining upper bar 24 is from the one with the higher water gradient to the finished surface of the roadbed upper surface 1. Place in order to go down the slope.

ここで、コンクリートは、ポンプホース81から充填し、振動機(締固め)82にて締め固める。なお、図4に示すコンクリート圧入器71の活用は、実施例2の補足説明として後述する。 Here, the concrete is filled from the pump hose 81 and compacted by the vibrator (compacting) 82. The utilization of the concrete press-fitting device 71 shown in FIG. 4 will be described later as a supplementary explanation of the second embodiment.

続いて、この「路盤コンクリートの打設方法」の効果を説明する。
・各網体の概鉛直の面の上筋24の下面に面する一端まで、低位5から高位4に向かう勾配に打設するから、低位5の打設箇所から順に水和反応が進み硬化しつつ上方に積み上げるように充填する。このため、落差のある段状の打設においても円弧滑りを伴う側方流動を低減し、各段に十分に締め固めることができる。
Next, the effect of this "method of placing roadbed concrete" will be described.
-Since the reticular formation is cast on a gradient from the low 5 to the high 4 up to one end facing the lower surface of the upper bar 24 on the approximately vertical surface, the hydration reaction proceeds in order from the casting location of the low 5 and hardens. Fill it so that it is piled up. Therefore, even in a stepped casting with a head, the lateral flow accompanied by arc slip can be reduced, and each step can be sufficiently compacted.

・上筋24の下面側に面する勾配打設範囲97において各網体の上端まで、低位5から高位4に向かう勾配に打設した後、残る上筋24の上面側を含む打設範囲において、路盤上面1の仕上げ面まで、高位側4から低位側5に向けて打設し仕上げる。このため、打設に伴いかき揚げ作業がなくなり、効率と品質を向上する。 In the gradient casting range 97 facing the lower surface side of the upper bar 24, in the casting range including the upper surface side of the remaining upper bar 24 after casting from the low 5 to the high 4 up to the upper end of each network. , From the high side 4 to the low side 5 up to the finished surface of the roadbed upper surface 1, finish. For this reason, the kakiage work is eliminated with the placement, and the efficiency and quality are improved.

・上筋24の下方に予め設置するI状網体(横配置)52または逆L状網体53は、エキスパンドメタルなどの網状の有孔板とするか、またはこれに加え、振動機の挿入孔を配置すれば、ここより下方に網状自体の網目または挿入孔から振動機を挿入できる。この振動機を使って、コンクリートは下方と上方一体に十分に締め固められ、品質が向上する。 -The I-shaped reticular formation (horizontal arrangement) 52 or the inverted L-shaped reticular formation 53 installed in advance below the upper bar 24 is a reticular perforated plate such as expanded metal, or in addition to this, a vibrator is inserted. If a hole is arranged, the vibrator can be inserted below this through the mesh of the mesh itself or the insertion hole. Using this vibrator, the concrete is sufficiently compacted downward and upward, improving the quality.

・上筋24の下面側に面する勾配打設範囲97について、水勾配の低位側5のI状網体(縦配置)51または逆L状網体53の概鉛直の面と、その水勾配の高位側4のI状網体(縦配置)51または逆L状網体53の概鉛直の面との狭隘の空間において、コンクリートにポリプロピレンなどの繊維を混入する。そうすると、路盤上面1側へ吹き出そうとするコンクリートの粗骨材のアーチング効果を助長でき、軟練りのコンクリートでも確実に締固めてタンピングを施すことができる。 Regarding the gradient casting range 97 facing the lower surface side of the upper bar 24, the approximately vertical surface of the I-shaped reticular formation (vertical arrangement) 51 or the inverted L-shaped reticular formation 53 on the lower side 5 of the water gradient and its water gradient. In a narrow space with the approximately vertical surface of the I-shaped reticular formation (vertical arrangement) 51 or the inverted L-shaped reticular formation 53 on the higher side 4 of the concrete, fibers such as polypropylene are mixed into the concrete. Then, the arching effect of the coarse aggregate of concrete that tends to blow out to the upper surface 1 side of the roadbed can be promoted, and even soft-kneaded concrete can be reliably compacted and tamped.

また、繊維を混入するコンクリートは、繊維自体には吸水性が少なくチクソトロピー性が顕著になるので、圧送性がよく閉塞しにくいにも拘わらず、各網体によくからむため、円弧滑りを伴う側方流動を本質的に解決する。ここで、繊維としては、例えば、繊維径1.00mm、繊維長30mm、引張強度500N/mm程度のポリプロピレン繊維を、コンクリートに、4kgf/m程度混和すればよい。 In addition, concrete mixed with fibers has low water absorption and thixotropic properties, so that it is well entangled in each reticular formation even though it has good pumping properties and is difficult to block, so the side with arc slip. It essentially solves the direction flow. Here, as the fiber, for example, a polypropylene fiber having a fiber diameter of 1.00 mm, a fiber length of 30 mm, and a tensile strength of about 500 N / mm 2 may be mixed with concrete by about 4 kgf / m 3.

・上筋24の上面側を含む打設範囲の鉄筋の被り部11の仕上げは、増粘剤とポリプロピレンなどの繊維とを混入するコンクリートを打設する。そうすると、仕上げ性能を向上し垂れの問題やこれに伴う品質不良の問題を最小にできる。この場合、網体により十分にタンピングできるから、表面から繊維が突出する問題もない。 -For finishing the covering portion 11 of the reinforcing bar in the casting range including the upper surface side of the upper reinforcing bar 24, concrete in which a thickener and a fiber such as polypropylene are mixed is placed. Then, the finishing performance can be improved and the problem of sagging and the problem of poor quality associated therewith can be minimized. In this case, since the net can be sufficiently tamped, there is no problem that the fibers protrude from the surface.

次に、「網体の配置構造」について、勾配条件を異にする実施例1〜3について、図2〜図4を参照して、構成と効果を個別に説明する。 Next, with respect to the "arrangement structure of the network", the configurations and effects of Examples 1 to 3 having different gradient conditions will be described individually with reference to FIGS. 2 to 4.

1)実施例1に係る「路盤コンクリート勾配5度の打設」(図2)の場合の構成
・I状網体(縦配置)51は、概鉛直の態様にて、上筋24と下筋25との狭隘に細長の軸方向を路盤の水勾配の方向3と概直交させる。また、その一面は概門型のスターラップ筋26の両側の辺38のいずれかの棒鋼に面し、少なくとも一端は上筋24の下面に面するように、配置する。
・平面視で網体の離隔部57を間欠に空けて配置し、水勾配の方向3の縦断面視で勾配を持って配置する。
1) Configuration in the case of "casting of roadbed concrete with a gradient of 5 degrees" according to Example 1-The I-shaped reticular formation (vertical arrangement) 51 has an upper bar and a lower bar in an approximately vertical manner. The slender axial direction is approximately orthogonal to the direction 3 of the water gradient of the roadbed in a narrow space with 25. Further, one surface thereof is arranged so as to face one of the steel bars on both sides 38 of the general gate type stirrup bar 26, and at least one end thereof faces the lower surface of the upper bar 24.
-The separated portions 57 of the net body are arranged intermittently in a plan view, and are arranged with a gradient in a vertical cross-sectional view in the direction 3 of the water gradient.

2)実施例1に係る「路盤コンクリート勾配5度の打設」(図2)の場合の効果
・勾配5度の場合、施工条件によって異なるが、コンクリートは塑性流動体に近い側方流動性のある挙動をするため、網体は、I状網体(縦配置)51とし、側面がスターラップ筋26の門型の両側の辺38の棒鋼に面するように、上筋24の下面に配置すればよい。そうすることにより、下方において累進する各側圧は、個別にスターラップ筋26を介し上筋24及び下筋25にて保持できる。よって、垂れを低減しタンピングに支障がない。
・網体51は、軸方向を水勾配の方向3と概直交方向とし、離隔を設け水平方向に間欠に固定するため、間欠に空く平面視網体の離隔部57は、コンクリートポンプのホース81及び振動機82の挿入口として、スムーズに充填し頻度細かく締め固めることができる。
2) Effect in the case of "casting of roadbed concrete with a gradient of 5 degrees" according to Example 1-In the case of a gradient of 5 degrees, although it depends on the construction conditions, concrete has a lateral fluidity close to that of a plastic fluid. In order to behave in a certain manner, the net body is an I-shaped net body (vertical arrangement) 51, and is arranged on the lower surface of the upper bar 24 so that the side surfaces face the steel bars on both sides 38 of the portal shape of the stirrup bar 26. do it. By doing so, each progressive lateral pressure in the lower direction can be individually held by the upper muscle 24 and the lower muscle 25 via the stirrup muscle 26. Therefore, sagging is reduced and tamping is not hindered.
-Since the axial direction of the net body 51 is approximately orthogonal to the direction 3 of the water gradient and a gap is provided to fix the net body intermittently in the horizontal direction, the separated portion 57 of the plan view net body that is open intermittently is the hose 81 of the concrete pump. And as an insertion port for the vibrator 82, it can be filled smoothly and compacted frequently.

3)実施例2に係る「路盤コンクリート勾配10度の打設」(図3)の場合の構成(なお図11、図12に示す「網体の配置構造」については、補足説明を後述)
・逆L状網体53は、L字の上下逆さの態様にて、上筋24と下筋25との狭隘に細長の軸方向を路盤の水勾配の方向3と概直交させる。また、その一面は概門型のスターラップ筋26の両側の辺38のいずれかの棒鋼に面し、残る一面は上筋24の下面に面するように、配置する。
3) Configuration in the case of "casting of roadbed concrete with a gradient of 10 degrees" (FIG. 3) according to the second embodiment (the supplementary explanation will be described later for the "reticular formation arrangement structure" shown in FIGS. 11 and 12).
The inverted L-shaped reticular formation 53 has an L-shaped upside down mode in which the narrow axial direction of the upper bar 24 and the lower bar 25 is approximately orthogonal to the direction 3 of the water gradient of the roadbed. Further, one surface thereof is arranged so as to face one of the steel bars on both sides 38 of the general gate type stirrup bar 26, and the remaining one surface faces the lower surface of the upper bar 24.

・平面視で網体の離隔部57を間欠に空けて配置し、水勾配の方向3の縦断面視で勾配を持って配置する。
・少なくとも一部の概格子状の上筋24の路盤の水勾配の方向3に概合致する棒鋼は、当該鉄筋自体、あるいは当該鉄筋に沿わせて固定するセパレーター用棒鋼69をPコン(プラスチックコーン)66(図15、参照)を介し、路盤の水勾配の方向3において高位側4の側面型枠を貫通させ、その背面で箱金物65にて固定する。
-The separated portions 57 of the net body are arranged intermittently in a plan view, and are arranged with a gradient in a vertical cross-sectional view in the direction 3 of the water gradient.
-For the steel bars that roughly match the direction 3 of the water gradient of the roadbed of the roadbed of at least a part of the upper grid-like upper bars, the reinforcing bars themselves or the separator steel bars 69 that are fixed along the reinforcing bars are P-con (plastic cones). ) 66 (see FIG. 15), the side form of the high side 4 is penetrated in the direction 3 of the water gradient of the roadbed, and is fixed by the box metal fitting 65 on the back surface thereof.

4)実施例2に係る「路盤コンクリート勾配10度の打設」(図3)の場合の効果
・勾配10度の場合、施工条件によって異なるが、コンクリートは、塑性流動体として円弧滑りを伴う側方流動性の挙動を示すため、網体は、この揚圧力に対抗するべく逆L状網体53とし、各面が上筋24の下面とスターラップ筋26の両側の辺に面するように配置すればよい。
4) Effect in the case of "casting of roadbed concrete with a gradient of 10 degrees" (Fig. 3) according to Example 2.-In the case of a gradient of 10 degrees, the concrete is on the side with arc slip as a plastic fluid, although it depends on the construction conditions. In order to show the behavior of directional fluidity, the net body is an inverted L-shaped net body 53 to counteract this lifting pressure, so that each surface faces the lower surface of the upper bar 24 and both sides of the stirrup bar 26. Just place it.

そうすると、各揚圧力は、逆L状網体53の上の面及び横の面を介し、各鉄筋を通じて下筋を含む全鉄筋の自重で保持できるので、全体的な円弧滑りを伴う側方流動を効果的に抑止でき、タンピングに支障がない。 Then, each lifting pressure can be held by the weight of all the reinforcing bars including the lower reinforcing bar through each reinforcing bar through the upper surface and the lateral surface of the inverted L-shaped reticular formation 53, so that the lateral flow accompanied by the overall arc slip. Can be effectively suppressed and there is no problem with tamping.

・さらに、網体は、概I状よりも概L状の方が、高価な反面、閉塞性と剛性が高いためより確実に円弧滑りを伴う側方流動を抑止することができ、また、概門型のスターラップ筋26の両側の辺の棒鋼に面して配置する場合には、位置を合わせ上筋24の上から結束固定すればよく、設置が簡便化する。 -Furthermore, the general L-shaped formation is more expensive than the general I-shaped formation, but on the other hand, it has higher obstructiveness and rigidity, so that lateral flow accompanied by arc slip can be suppressed more reliably, and the general shape is also general. When arranging the gate-shaped stirrup bar 26 facing the steel bars on both sides, it is sufficient to align the positions and bind and fix the stirrup bar 24 from above, which simplifies the installation.

・網体から側圧を受けるスターラップ筋26を保持する上筋24は、沿わせて固定するセパレーター用棒鋼69を、側面型枠を貫通させてその背面で箱金物65にて固定するため、全体に滑動することがない。 The upper bar 24 that holds the stirrup bar 26 that receives lateral pressure from the net body is the entire structure because the separator steel bar 69 that is fixed along the line is passed through the side formwork and fixed by the box hardware 65 on the back surface thereof. Does not slip.

5)実施例3に係る「路盤コンクリート勾配15度の打設」(図4)の場合の構成
・逆L状網体53を、実施例2(「路盤コンクリート勾配10度の打設」)と同様に配置する。続いて、I状網体(横配置)52を、水平の態様にて、上筋24と下筋25の狭隘に細長の軸方向を、路盤の水勾配の方向3と概直交させ、水平面は、上筋24の下面に面するように、逆L状網体53の平面視で網体の離隔部57に配置する。
・少なくとも一部の概格子状の上筋24の路盤の水勾配の方向3に概合致する棒鋼は、当該鉄筋自体、あるいは当該鉄筋に沿わせて固定するセパレーター用棒鋼69をPコン66(図15、参照)を介し、路盤の水勾配の方向3において高位側4の側面型枠を貫通させ、その背面で箱金物65にて固定する。
5) Configuration in the case of "casting of roadbed concrete gradient of 15 degrees" according to Example 3-The inverted L-shaped reticular formation 53 is referred to as Example 2 ("casting of roadbed concrete gradient of 10 degrees"). Arrange in the same way. Subsequently, the I-shaped reticular formation (horizontal arrangement) 52 is arranged in a horizontal manner so that the elongated axial direction is approximately orthogonal to the direction 3 of the water gradient of the roadbed in the narrow space of the upper and lower bars 25, and the horizontal plane is formed. The inverted L-shaped network 53 is arranged at the separated portion 57 of the network so as to face the lower surface of the upper muscle 24 in a plan view.
-For the steel bars that roughly match the direction 3 of the water gradient of the roadbed of the roadbed of at least a part of the upper grid-like upper bars, the reinforcing bars themselves or the separator steel bars 69 that are fixed along the reinforcing bars are used as P-con 66 (Fig. 15), the side form of the high side 4 is penetrated in the direction 3 of the water gradient of the roadbed, and is fixed by the box metal fitting 65 on the back surface thereof.

・少なくとも一部のスターラップ筋26の門型の両側の辺38の棒鋼に沿わせて固定するアンカー用棒鋼68を、基礎コンクリートに定着し固定する。
・続いて、ポンプホース挿入孔76が開口するI状網体(横配置)52に組み合わせるコンクリート圧入器71によって、ポンプホース81を上筋24下方に挿入してコンクリートを圧入する。
-Anchor steel bars 68, which are fixed along the steel bars on both sides 38 of the gate shape of at least a part of the stirrup bars 26, are fixed and fixed to the foundation concrete.
Subsequently, the pump hose 81 is inserted below the upper bar 24 and the concrete is press-fitted by the concrete press-fitting device 71 combined with the I-shaped net body (horizontal arrangement) 52 in which the pump hose insertion hole 76 opens.

・ここで、コンクリート圧入器71について、図5〜8を参照して説明する。
コンクリート圧入器71は、図6〜図8に示すように、概格子状の上筋24より下方に下がるポンプホース81のガイド管72、ガイド管72を概格子状の上筋24の概矩形の開口に配置する少なくとも2列から成る固定桁74及び固定桁74同士の間にガイド管72を挟み両者を接続する接続材75、から構成される。そして、図5、図6に示すように、上筋24下方に予めポンプホース挿入孔76を有するI状網体52を横に配置し、このポンプホース挿入孔76を貫通するガイド管72を通じてコンクリートを所定圧で圧入する。
-Here, the concrete press-fitting device 71 will be described with reference to FIGS. 5 to 8.
As shown in FIGS. 6 to 8, in the concrete press-fitting device 71, the guide pipe 72 of the pump hose 81 that descends below the grid-shaped upper bar 24, and the guide pipe 72 are approximately rectangular in the grid-shaped upper bar 24. It is composed of a fixed girder 74 composed of at least two rows arranged in the opening and a connecting material 75 having a guide tube 72 sandwiched between the fixed girders 74 to connect the two. Then, as shown in FIGS. 5 and 6, an I-shaped net body 52 having a pump hose insertion hole 76 in advance is arranged laterally below the upper bar 24, and concrete is passed through a guide pipe 72 penetrating the pump hose insertion hole 76. Is press-fitted at a predetermined pressure.

その使用手順は、図4の中央部に示す円形枠内において、コンクリート圧入器71を設置し、ポンプホース81を挿入し、図5の上側の拡大図に示すように、コンクリートを圧入し、圧入が終了すれば、図5の下側の拡大図に示すように、コンクリート圧入器71を撤去する。 The procedure for using the concrete is to install a concrete press-fitting device 71 in the circular frame shown in the central part of FIG. 4, insert the pump hose 81, press-fit the concrete as shown in the enlarged view on the upper side of FIG. 5, and press-fit the concrete. When is completed, the concrete press-fitting device 71 is removed as shown in the enlarged view on the lower side of FIG.

6)実施例3に係る「路盤コンクリート勾配15度の打設」(図4)の場合の効果
・勾配15度の場合、施工条件によって異なるが、コンクリートは、液性の流動体として円弧滑りを伴う側方流動性の高い挙動を示すため、揚圧力も増大する。そこで、網体は、逆L状網体53を、実施例2と同様に平面視網体の離隔部57を空けて間欠に配置し、その離隔部に、I状網体(横配置)52を水平の態様にて配置する。揚圧力や液圧に耐荷するために、両者を上筋24の下面全域に配置すれば、タンピングに支障がない。
6) Effect in the case of "casting of roadbed concrete with a gradient of 15 degrees" (Fig. 4) according to Example 3.-In the case of a gradient of 15 degrees, although it depends on the construction conditions, concrete slides in an arc as a liquid fluid. Due to the high lateral fluidity that accompanies it, the lifting pressure also increases. Therefore, as the reticular formation, the inverted L-shaped reticular formation 53 is intermittently arranged with the separated portion 57 of the plan view reticular formation open in the same manner as in the second embodiment, and the I-shaped reticular formation (horizontal arrangement) 52 is arranged at the separated portion. Is arranged in a horizontal manner. If both are arranged over the entire lower surface of the upper bar 24 in order to withstand the lifting pressure and the hydraulic pressure, there is no problem in tamping.

なお、コンクリートのポンプホース挿入孔76を予め、いずれかの網体の水平の面の所定箇所に設置しておく。また、鉄筋が滑動する場合には、鉄筋全体を、スターラップ筋26を介して下方に打設するアンカー用棒鋼68に固定すればよい。 In addition, the concrete pump hose insertion hole 76 is installed in advance at a predetermined position on the horizontal surface of any of the mesh bodies. Further, when the reinforcing bar slides, the entire reinforcing bar may be fixed to the anchor steel bar 68 to be driven downward via the stirrup bar 26.

・概I状を上筋24の下面に配置するI状網体(横配置)52は、ロール状に工場で製造し、これを現場にて上筋24の下面に設置すれば、効率よく配置することができる。また、I状網体(横配置)を、立体的なT状、あるいは面的に波を打つM状又はW状の網体(共に図示せず)として上筋24の下面に面して設置すれば、剛性を上げつつ同様の効果を得ることができる。 -The I-shaped reticular formation (horizontal arrangement) 52 that arranges the approximate I-shape on the lower surface of the upper bar 24 is manufactured in a roll shape at the factory, and if this is installed on the lower surface of the upper bar 24 at the site, it is efficiently arranged. can do. Further, the I-shaped reticular formation (horizontal arrangement) is installed facing the lower surface of the upper bar 24 as a three-dimensional T-shaped or M-shaped or W-shaped reticular formation (both not shown) that undulates in a plane. Then, the same effect can be obtained while increasing the rigidity.

・網体から側圧を受けるスターラップ筋26を保持する上筋24は、沿わせて固定するセパレーター用棒鋼69を、側面型枠を貫通させてその背面で箱金物65にて固定するため、全体に滑動することがない。 The upper bar 24 that holds the stirrup bar 26 that receives lateral pressure from the net body is the entire structure because the separator steel bar 69 that is fixed along the line is passed through the side formwork and fixed by the box hardware 65 on the back surface thereof. Does not slip.

・網体から揚圧力を受ける上筋24を保持するスターラップ筋26は、基礎コンクリートに定着するアンカー棒鋼に固定するので、浮き上がることがないため、鉄筋は、滑動も浮き上がることもなく、設計書に基づき精度よく配置できる。 -Since the stirrup bar 26 that holds the upper bar 24 that receives the lifting pressure from the reticular formation is fixed to the anchor steel bar that is fixed to the foundation concrete, it does not rise, so the reinforcing bar does not slide or lift, and the design document. Can be placed accurately based on.

・コンクリート打設においては、図10に示すように、ブリージングに伴う沈降17により、鉄筋直上の割れ13や鉄筋直下の空隙14が発生するので、図9に示すタンピング85が必須である。 -In concrete placing, as shown in FIG. 10, the settling 17 due to breathing causes cracks 13 directly above the reinforcing bars and voids 14 directly below the reinforcing bars, so the tamping 85 shown in FIG. 9 is indispensable.

しかし、勾配を有するRC構造物の場合、振動機81にて締め固めると、全体的な円弧滑りを伴う側方流動が発生し、十分締め固めることができない。そこで、上述したように、コンクリート圧入器71によって、コンクリートを所定圧で圧入する。コンクリートは、元来、AE剤などの表面活性作用によって、気泡径が25〜250μm程度の微細な気泡を内包する粘弾性体であるから、所定の圧で圧入すれば、凝結始発まで継続する弾性効果により、ブリージングに伴う沈降17を相殺する。したがって、鉄筋直上の割れ13や鉄筋直下の空隙14を低減し、品質を向上できる。 However, in the case of an RC structure having a gradient, when compacted by the vibrator 81, lateral flow accompanied by overall arc slip occurs, and the RC structure cannot be sufficiently compacted. Therefore, as described above, the concrete is press-fitted at a predetermined pressure by the concrete press-fitting device 71. Originally, concrete is a viscoelastic body that contains fine bubbles with a bubble diameter of about 25 to 250 μm due to the surface active action of an AE agent or the like. The effect offsets the sedimentation 17 associated with breathing. Therefore, the crack 13 directly above the reinforcing bar and the void 14 directly below the reinforcing bar can be reduced, and the quality can be improved.

・コンクリート圧入器71は、フックを有するゴムバンド(図示せず)により、固定桁74あるいは接続材75を介し上筋24に簡便に脱着できるため、複数の本圧入器を列状に配置し、打設進捗に対し下方から上方へ脱着すれば、連続的にコンクリートが打設でき、作業効率を向上できる。 -Since the concrete press-fitting device 71 can be easily attached to and detached from the upper bar 24 via the fixed girder 74 or the connecting material 75 by using a rubber band (not shown) having a hook, a plurality of main press-fitting devices are arranged in a row. If the concrete is continuously placed and removed from the bottom to the top with respect to the progress of the placing, the work efficiency can be improved.

・圧入時に、コンクリート圧入器71にかかる揚圧力に対する反力は、フックを有するゴムバンド(図示せず)から上筋を通じて鉄筋全体の重量で耐荷するから、所定の圧にて確実にコンクリートを充填・圧縮でき、上述したように、鉄筋直上の割れ14や鉄筋直下の空隙14を低減し、品質を向上できる。 -At the time of press-fitting, the reaction force against the lifting pressure applied to the concrete press-fitting device 71 is carried by the weight of the entire reinforcing bar from the rubber band with the hook (not shown) through the upper bar, so the concrete is surely filled with the specified pressure. -It can be compressed, and as described above, the crack 14 directly above the reinforcing bar and the void 14 directly below the reinforcing bar can be reduced, and the quality can be improved.

・コンクリート圧入器71のガイド管72は、ポンプホース81よりやや拡径にし、全体形状を漏斗状にしてポンプホース81を挿入する。それにより、ポンプホース81を挿入しやすく網体の破損も招かず、コンクリート管のジョイント締結作業を不用にし、作業効率を向上できる。 -The guide pipe 72 of the concrete press-fitting device 71 has a slightly larger diameter than the pump hose 81, and the overall shape is made into a funnel shape, and the pump hose 81 is inserted. As a result, the pump hose 81 can be easily inserted and the mesh body is not damaged, the joint fastening work of the concrete pipe becomes unnecessary, and the work efficiency can be improved.

・コンクリートの圧入が終了してポンプホース81をガイド管72から抜く際、ポンプホース挿入孔76はガイド管72によって防護されているから網体は破損することがないため、所定の圧力でのコンクリート封入を継続することができる。したがって、ブリージングに伴う沈降17の相殺、鉄筋直上の割れ13や鉄筋直下の空隙14の低減に寄与し、品質を向上できる。 -When the press-fitting of concrete is completed and the pump hose 81 is pulled out from the guide pipe 72, the pump hose insertion hole 76 is protected by the guide pipe 72, so that the net body is not damaged. Encapsulation can be continued. Therefore, it contributes to offsetting the sedimentation 17 due to breathing, reducing the crack 13 directly above the reinforcing bar and the void 14 directly below the reinforcing bar, and can improve the quality.

・同様に、コンクリートの圧入が終了し、ポンプホース81をガイド管72から抜く際、所定の圧力で封入されるコンクリートは、図5の下側の図に示すように、ポンプホース挿入孔76の近傍で、粗骨材のアーチング効果77により噴出することがないので、円弧滑りを伴う側方流動を効果的に抑止できる。 Similarly, when the press-fitting of the concrete is completed and the pump hose 81 is pulled out from the guide pipe 72, the concrete sealed at a predetermined pressure is formed in the pump hose insertion hole 76 as shown in the lower figure of FIG. Since it does not spout in the vicinity due to the arching effect 77 of the coarse aggregate, lateral flow accompanied by arc slip can be effectively suppressed.

次に、図3に示す実施例2に係る「路盤コンクリート勾配10度の打設」は、本発明の施工要素を多岐にわたり活用しているが、図11〜15に示す「網体の配置構造」を基にして、補足説明をする。 Next, the "casting of a roadbed concrete gradient of 10 degrees" according to the second embodiment shown in FIG. 3 utilizes the construction elements of the present invention in a wide variety of ways, but the "reticular formation arrangement structure" shown in FIGS. 11 to 15 is used. , A supplementary explanation will be given.

図3は、高位側の逆L状網体53の状況を限定して示す図であるが、低位側については、図11の断面図に示すとおり、実施例3と同様に、逆L状網体53の平面視網体の離隔部57に、I状網体(横配置)52を、その水平面は上筋24の下面に面するように配置する。 FIG. 3 is a diagram showing only the situation of the inverted L-shaped net 53 on the high side, but on the low side, as shown in the cross-sectional view of FIG. 11, the inverted L-shaped net is the same as in Example 3. The I-shaped reticular formation (horizontal arrangement) 52 is arranged at the separated portion 57 of the plan view reticular formation of the body 53 so that its horizontal plane faces the lower surface of the upper streaks 24.

ここで、上述したように、少なくとも一部の概格子状の上筋24の路盤の水勾配の方向3に概合致する棒鋼は、図15に示すように、当該鉄筋自体、あるいは当該鉄筋に沿わせて固定するセパレーター用棒鋼69をPコン66を介し、路盤の水勾配の方向3において高位側4の側面型枠を貫通させ、その背面で箱金物65にて固定する。 Here, as described above, as shown in FIG. 15, the steel bars that roughly match the direction 3 of the water gradient of the roadbed of at least a part of the upper bars 24 having a general grid pattern are the reinforcing bars themselves or along the reinforcing bars. The separator steel bar 69 to be fixed is passed through the side formwork of the high side 4 in the direction 3 of the water gradient of the roadbed through the P-con 66, and is fixed by the box metal fitting 65 on the back surface thereof.

実施例3と同様に、少なくとも一部のスターラップ筋26の門型の両側の辺38の棒鋼に沿わせて固定するアンカー用棒鋼68は、図14に示すように、基礎コンクリートに定着し固定する。 Similar to the third embodiment, the anchor steel bar 68 to be fixed along the steel bars on both sides 38 of the gate shape of at least a part of the stirrup bars 26 is fixed and fixed to the foundation concrete as shown in FIG. do.

ここで、上述した、上筋24に沿わせて固定するセパレーター用棒鋼69及びスターラップ筋26の門型の両側の辺38の棒鋼に沿わせて固定するアンカー用棒鋼68、それぞれの固定方法としては、図14、図15に示すように、それぞれ両者をかしめる楕円筒状のかしめ材79に両者(鉄筋と棒鋼)を挿入した上で、その間にかしめ用ピン80を油圧治具にてかしめる方法によってもよい。また、溶接その他の方法によっても差し支えない。 Here, as the fixing method of each of the above-mentioned separator steel bar 69 fixed along the upper bar 24 and the anchor steel bar 68 fixed along the steel bars 38 on both sides of the portal of the stirrup bar 26. As shown in FIGS. 14 and 15, after inserting both (reinforcing bar and steel bar) into the elliptical tubular caulking material 79 that crimps both, the caulking pin 80 is inserted between them with a hydraulic jig. It may be done by the method of tightening. Further, welding or other methods may be used.

実施例3で使用するコンクリート圧入器71については、実施例2でも、図11の断面図及び平面図に示すように、低位側(ポンプホース挿入孔76を有するI状網体52を配置した部分)において活用する。 Regarding the concrete press-fitting device 71 used in the third embodiment, as shown in the cross-sectional view and the plan view of FIG. 11, in the second embodiment, the lower side (the portion where the I-shaped reticular formation 52 having the pump hose insertion hole 76 is arranged) is arranged. ).

次に、実施例2に係る「路盤コンクリート勾配10度の打設」の場合の「網体の配置構造」の効果を、図11〜図15を参照して補足説明をする。
上述したように、実施例2におけるコンクリートは、塑性流動体として円弧滑りを伴う側方流動性の挙動を示し、その際に、高位側に比して低位側は、さらに側方流動性が卓越する。
Next, the effect of the "arrangement structure of the net body" in the case of "casting with a roadbed concrete gradient of 10 degrees" according to the second embodiment will be supplementarily explained with reference to FIGS. 11 to 15.
As described above, the concrete in Example 2 exhibits the behavior of lateral fluidity accompanied by arc slip as a plastic fluid, and at that time, the lateral fluidity is more predominant on the lower side than on the higher side. do.

そこで、図11に示すように、高位側の網体は、この揚圧力に対抗するために、逆L状網体53とし、上筋24の下面とスターラップ筋26の両側の辺に面するように配置すればよい。 Therefore, as shown in FIG. 11, the high-level reticular formation is an inverted L-shaped reticular formation 53 in order to counteract this lifting pressure, and faces the lower surface of the upper bar 24 and both sides of the stirrup bar 26. It may be arranged as follows.

一方で、側方流動性が卓越する低位側の網体は、高位側に比して揚圧力も増大するので、図12に示すように、実施例3の場合と同様、逆L状網体53を平面視網体の離隔部57を空けて間欠に配置し、その離隔部に、I状網体(横配置)52を水平の態様にて配置し、揚圧力や液圧に耐荷するように両者を上筋24の下面に配置すれば、タンピングに支障がない。 On the other hand, the lower reticular formation with predominant lateral fluidity also has a higher lifting pressure than the higher reticular formation, so as shown in FIG. 12, as in the case of Example 3, the inverted L-shaped reticular formation The 53 is intermittently arranged with the separated portion 57 of the plan view network open, and the I-shaped reticular formation (horizontal arrangement) 52 is arranged in the separated portion in a horizontal manner so as to withstand the lifting pressure and the hydraulic pressure. If both are arranged on the lower surface of the upper bar 24, there is no problem in tamping.

また、低位側の網体は、実施例3の場合と同様に、コンクリートのポンプホース挿入孔76を予め、いずれかの網体の概水平の面において、所定箇所に設置しておく。さらに、鉄筋が浮き上がる場合には、図14に示すように、鉄筋全体を、スターラップ筋26を介して下方に打設するアンカー用棒鋼68に固定すればよい。
以上により、全体的な円弧滑りを伴う側方流動を、効果的に抑止でき、タンピングに支障がない。
Further, as in the case of the third embodiment, the concrete pump hose insertion hole 76 is previously installed at a predetermined position on the substantially horizontal surface of any of the lower net bodies. Further, when the reinforcing bar is lifted, as shown in FIG. 14, the entire reinforcing bar may be fixed to the anchor steel bar 68 to be driven downward via the stirrup bar 26.
As described above, the lateral flow accompanied by the overall arc slip can be effectively suppressed, and the tamping is not hindered.

さらに、実施例2に係る「路盤コンクリート勾配10度の打設」の場合の方法手順を、図16〜図18を参照して、図16、図17に示すステップごとに説明する。ここで、図16は、実施例2におけるステップ1(Step1)〜ステップ3(Step3)を示す図、図17は、実施例2におけるステップ4(Step4)〜ステップ6(Step6)を示す図、図18は、実施例2におけるステップ1〜3の平面的な打設順序を示す図、である。 Further, a method procedure in the case of “casting with a roadbed concrete gradient of 10 degrees” according to the second embodiment will be described for each step shown in FIGS. 16 and 17 with reference to FIGS. 16 to 18. Here, FIG. 16 is a diagram showing Step 1 (Step 1) to Step 3 (Step 3) in Example 2, and FIG. 17 is a diagram and a diagram showing Step 4 (Step 4) to Step 6 (Step 6) in Example 2. 18 is a diagram showing the planar casting order of steps 1 to 3 in the second embodiment.

1)ステップ1(Step1)
水平の打設範囲Iは、上筋24の下側に水平に位置する。そこで、低位側5から高位側4に向かってa〜hの順に、ポンプホース(充填)81による打設、振動機による締固め82を効率よく行う。なお、I状網体(横配置)52が障害する箇所は、局部的に結束をはずしてずらせばよい(図示せず)。
1) Step 1
The horizontal casting range I is located horizontally below the upper bar 24. Therefore, the pump hose (filling) 81 is used for driving and the vibrator is used for compaction 82 in the order of a to h from the low side 5 to the high side 4. It should be noted that the portion where the I-shaped reticular formation (horizontal arrangement) 52 is obstructed may be locally untied and displaced (not shown).

2)ステップ2(Step2)
勾配の打設範囲IIは、上筋24の下面側に面する。そこで、低位側の網体の概鉛直の面と高位側の網体の概鉛直の面との狭隘の空間に対して、勾配を上がるように所定回数打設を繰り返し、低位側5から高位側4に向かってa〜cの順に、ポンプホース(充填)81による打設、振動機による締固め82を行う。網体の下方への振動機の挿入は、予め網体に小径の挿入孔(図示せず)を設けて貫通させても、網体自体の網目を貫通させてもよい。
2) Step 2
The gradient casting range II faces the lower surface side of the upper bar 24. Therefore, in the narrow space between the approximately vertical surface of the low-level network and the approximately vertical surface of the high-level network, the placement is repeated a predetermined number of times so as to increase the gradient, and the low-level side 5 to the high-level side In the order of a to c toward No. 4, the pump hose (filling) 81 is used for driving and the vibrator is used for compaction 82. The vibrator may be inserted below the network by providing a small-diameter insertion hole (not shown) in the network in advance, or by penetrating the mesh of the network itself.

また、勾配の打設範囲IIは、逆L状網体53のみの配置だけでは、その後のタンピングにおいて円弧滑りを伴う側方流動が懸念される。そこで、勾配の打設範囲IIでは、逆L状網体53に加えてI状網体(横配置)52を配置し、側方流動を抑止しつつ、コンクリート圧入器71によって、コンクリートを圧入しつつ、振動機による締固め82を行う。コンクリート圧入器71は、複数設置しておき、連続的にずらせばよい(図示せず)。 Further, in the gradient casting range II, if only the inverted L-shaped network 53 is arranged, there is a concern about lateral flow accompanied by arc slip in the subsequent tamping. Therefore, in the gradient casting range II, an I-shaped reticular formation (horizontal arrangement) 52 is arranged in addition to the inverted L-shaped reticular formation 53, and concrete is press-fitted by the concrete press-fitting device 71 while suppressing lateral flow. At the same time, compaction 82 is performed by a vibrator. A plurality of concrete press-fitting devices 71 may be installed and continuously displaced (not shown).

3)ステップ3(Step3)
水平の打設範囲IIIでは、間欠に配置する逆L状網体53の平面視網体の離隔部57から、ポンプホース(充填)81によって、効率よく打設し、振動機による締固め82を行う。
3) Step 3
In the horizontal casting range III, the inverted L-shaped reticular formation 53 arranged intermittently is efficiently driven by a pump hose (filling) 81 from the separated portion 57 of the plan view reticular formation, and the compaction 82 by the vibrator is applied. conduct.

4)ステップ4(Step4)
残る勾配の打設範囲IVでは、間欠に配置する逆L状網体53の平面視網体の離隔部57から、ポンプホース(充填)81にて、低位側の網体の概鉛直の面と高位側の網体の概鉛直の面との狭隘の空間に対して、勾配を上がるように所定回数打設を繰り返し、低位側5から高位側4に向かってd〜hの順に、ポンプホース(充填)81による打設、振動機による締固め82を行う。網体の下方への振動機の挿入も、逆L状網体53の平面視網体の離隔部57から効率よく行う。
4) Step 4
In the casting range IV of the remaining gradient, the pump hose (filling) 81 is used from the separated portion 57 of the plan-viewing network of the inverted L-shaped network 53 arranged intermittently to the approximately vertical surface of the lower network. Pump hoses (pump hoses in the order of d to h from the low side 5 to the high side 4) are repeatedly driven a predetermined number of times so as to increase the gradient in the narrow space with the approximate vertical surface of the high side net. Filling) 81 is used for placing and compaction 82 is performed with a vibrator. The vibrator is also efficiently inserted below the network from the separated portion 57 of the plan view network of the inverted L-shaped network 53.

5)ステップ5(Step5)
仕上げ面の打設範囲Vは、残る上筋24の上面側を含む。そこで、仕上げ面の打設範囲Vでは、路盤上面の仕上げ面まで、水勾配の高い方から、順に勾配を下るように、ポンプホース(充填)81による打設、振動機による締固め82、木鏝による粗仕上げ83を行った上で、所定のタイミングにて人力タンパーによるタンピング85を行う。
5) Step 5
The casting range V of the finished surface includes the upper surface side of the remaining upper bar 24. Therefore, in the casting range V of the finished surface, the pump hose (filling) 81 is used for driving, the compaction 82 is performed by a vibrator, and the wood is used so that the slope is lowered in order from the one with the highest water gradient to the finished surface on the upper surface of the roadbed. After rough finishing 83 with a hose, tamping 85 with a human-powered tamper is performed at a predetermined timing.

6)ステップ6(Step6)
仕上げ面の打設範囲Vに対して、金鏝による最終仕上げ88を行う。
6) Step 6
The final finishing 88 with a trowel is performed on the casting range V of the finished surface.

ここで、実施例2について先に述べた効果以外の効果について、補足して説明する。
上述したように、実施例2では、コンクリートは、塑性流動体として円弧滑りを伴う側方流動性の挙動を示し、高位側に比して低位側は、さらに側方流動性が卓越する。
Here, the effects other than the effects described above will be supplementarily described with respect to the second embodiment.
As described above, in the second embodiment, the concrete exhibits the behavior of lateral fluidity accompanied by arc slip as a plastic fluid, and the lateral fluidity is further predominant on the lower side as compared with the higher side.

そこで、低位側は、逆L状網体53及びI状網体(横配置)52を配置して、この側方流動を抑止しつつ、コンクリート圧入器71によって、コンクリートを圧入しつつ締固め、低位側の円弧滑りを伴う側方流動を抑止する。 Therefore, on the lower side, an inverted L-shaped reticular formation 53 and an I-shaped reticular formation (horizontal arrangement) 52 are arranged, and the concrete is compacted while being pressed in by the concrete press-fitting device 71 while suppressing the lateral flow. Suppresses lateral flow with arc slip on the lower side.

また、高位側は、逆L状網体53のみを間欠に配して、安価かつ効率よく締固め、再流動するコンクリートの垂れを抑止する。そうすれば、十分に締固めてタンピングをすることができる。 Further, on the higher side, only the inverted L-shaped reticular formation 53 is intermittently arranged to compact the concrete inexpensively and efficiently, and prevent the concrete from dripping again. Then, it can be sufficiently compacted and tamped.

図19は、実施例2の打設ステップを従来工法にて施工した場合の課題と本発明による効果を示す図である。
実施例2のステップ2〜4(Step2〜4)及びステップ5(Step5)に対して、無対策の従来工法で行った場合を対比する。実施例2が対象とする勾配10度の場合、上述したように、コンクリートは、塑性流動体として円弧滑りを伴う側方流動性21の挙動を示すが、高位側に比して低位側は、さらに揚圧力22が増大し側方流動性21が卓越する。そのため、十分に締固めてタンピングをすることができない。しかし、本発明によれば、上述したとおり、十分に締固めてタンピングをすることができる。
FIG. 19 is a diagram showing the problems and the effects of the present invention when the casting step of the second embodiment is performed by the conventional method.
The case where steps 2 to 4 (Step 2 to 4) and step 5 (Step 5) of the second embodiment are carried out by the conventional method without countermeasures is compared. In the case of the target gradient of 10 degrees in Example 2, as described above, concrete exhibits the behavior of lateral fluidity 21 accompanied by arc slip as a plastic fluid, but the lower side is compared with the higher side. Further, the lifting pressure 22 is increased and the lateral fluidity 21 is predominant. Therefore, it cannot be sufficiently compacted and tamped. However, according to the present invention, as described above, it is possible to sufficiently compact and tamping.

1 路盤上面、2 路盤下面、3 水勾配の方向、4 高位側、5 低位側、
11 被り部、12 劣化因子、13 鉄筋直上の割れ、14 鉄筋直下の空隙、
15 水筋、16 鉄筋、17 ブリージング沈降、20 鉄筋の滑動、
21 側方流動(円弧滑り)、22 揚圧力、23 反力、24 上筋、25 下筋、
26 スターラップ筋(概門型)、31 上筋(水勾配の方向の棒鋼)、
32 上筋(水勾配と概直交方向の棒鋼)、33 下筋(水勾配の方向の棒鋼)、
34 下筋(水勾配と概直交方向の棒鋼)、35 スターラップ筋(被せ)、
36 ターラップ筋(抄い)、37 門型の中央の辺、38 門型の両側の辺、
39 門型の両側の辺の棒鋼の水勾配の高位側の面、40 フック部、41 端部筋、
51 I状網体(縦配置)、52 I状網体(横配置)、53 逆L状網体、
54 網体の各面、55 網体の各端、57 平面視網体の離隔部、
58 上筋の上面側を含む打設範囲、59 上筋の下面側に面する打設範囲、
60 コンパネ、61 側面型枠、62 横端太材、63 縦端太材、
64 セパレーター用棒鋼(貫通用)、65 箱金物、
66 Pコン(プラスチックコーン)、67 既設コンクリート、
68 アンカー用棒鋼(スターラップ筋26固定用)、
69 セパレーター用棒鋼(上筋31固定用)、70 基礎コンクリート、
71 コンクリート圧入器、72 ガイド管、73 ガイド管の下端、74 固定桁、
75 接続材、76 網体のポンプホース挿入孔、77 粗骨材のアーチング効果、
79 かしめ材、80 かしめ用ピン、81 ポンプホース(充填)、
82 振動機(締固め)、83 木鏝(粗仕上げ)、84 トンボ(粗仕上げ)、
85 人力タンパー(タンピング)、86 エンジンタンパー(タンピング)、
87 振動体、88 金鏝(最終仕上げ)、89 トロウェル(最終仕上げ)、
90 回転体、91 打設順序、92 打設範囲I、93 打設範囲II、
94 打設範囲III、95 打設範囲IV、95 打設範囲V、96 水平打設範囲、
97 勾配打設範囲、98 スターラップ筋(棒型)、
99 フック部(先端プレート型)
1 Roadbed upper surface, 2 Roadbed lower surface, 3 Water gradient direction, 4 High side, 5 Low side,
11 Covered part, 12 Deterioration factor, 13 Crack just above the reinforcing bar, 14 Void just below the reinforcing bar,
15 water bars, 16 rebars, 17 breathing subsidence, 20 rebar sliding,
21 lateral flow (arc slip), 22 lifting pressure, 23 reaction force, 24 upper bar, 25 lower bar,
26 Stirrup bar (general gate type), 31 Upper bar (steel bar in the direction of water gradient),
32 Upper bar (steel bar in the direction approximately orthogonal to the water gradient), 33 Lower bar (steel bar in the direction of the water gradient),
34 Lower bar (steel bar approximately orthogonal to the water gradient), 35 Stirrup bar (cover),
36 Tarlap muscle (abstract), 37 gate-shaped central side, 38 gate-shaped both sides,
39 Higher side surface of water gradient of steel bars on both sides of gantry, 40 hooks, 41 end streaks,
51 I-shaped formation (vertical arrangement), 52 I-shaped formation (horizontal arrangement), 53 inverted L-shaped formation,
54 Each surface of the formation, 55 Each end of the formation, 57 Separation of the plan view,
58 Casting range including the upper surface side of the upper bar, 59 Casting range facing the lower surface side of the upper bar,
60 control panel, 61 side formwork, 62 horizontal end thick material, 63 vertical end thick material,
64 Separator steel bar (for penetration), 65 Box hardware,
66 P-con (plastic cone), 67 existing concrete,
68 Anchor steel bar (for fixing stirrup bar 26),
69 Separator steel bar (for fixing upper bar 31), 70 foundation concrete,
71 concrete press-fitting device, 72 guide pipe, 73 lower end of guide pipe, 74 fixed girder,
75 Connection material, 76 Reticular formation pump hose insertion hole, 77 Coarse aggregate arching effect,
79 caulking material, 80 caulking pins, 81 pump hoses (filling),
82 Vibrator (compacting), 83 Wooden trowel (rough finish), 84 Dragonfly (rough finish),
85 manpower tamper (tamping), 86 engine tamper (tamping),
87 Vibrating body, 88 Gold trowel (final finish), 89 Trowell (final finish),
90 rotating body, 91 driving order, 92 driving range I, 93 driving range II,
94 driving range III, 95 driving range IV, 95 driving range V, 96 horizontal driving range,
97 Gradient casting range, 98 Stirrup bar (bar type),
99 Hook part (tip plate type)

Claims (4)

路盤コンクリート打設のための組立構造物であって、
概格子状に組む直線状の第1の縦横の棒鋼が形成する面の向きが路盤コンクリートの上面の向きと概合致し、前記第1の縦横の棒鋼のいずれかの棒鋼の方向が前記上面の水勾配の方向に概直交し、前記上面から所定の被り部を空けて配置される前記第1の縦横の棒鋼から成る上筋と、
概格子状に組む直線状の第2の縦横の棒鋼のいずれかの棒鋼の方向が前記第1の縦横の棒鋼の前記水勾配の方向に概直交する棒鋼の方向に概合致する構造を有し、前記路盤コンクリートの下面から所定の被り部を空けて配置される前記第2の縦横の棒鋼から成る下筋と、
前記上筋と前記下筋に対して両者の離隔を拘束する態様として、前記上筋を成す前記第1の縦横の棒鋼と前記下筋を成す前記第2の縦横の棒鋼のいずれかの棒鋼を、自らの両端にフック部を有し自らを概門型あるいは棒型に成す第3の棒鋼の当該フック部にて引っ掛ける構造を有して配置されるスターラップ筋と
を備える路盤鉄筋と、
帯状で細長の少なくとも1つ以上の平面を有する複数の網体を備え、
前記上筋を成す前記第1の縦横の棒鋼と前記下筋を成す前記第2の縦横の棒鋼との狭隘に、前記複数の網体の軸方向を前記水勾配の方向と概直交させ、少なくとも前記網体が有する前記平面の1つは、前記スターラップ筋を成す前記第3の棒鋼の概鉛直のいずれかの棒鋼部分に面してあるいは前記第1の縦横の棒鋼の下面に面して配置され、断面視で少なくとも前記網体が有する前記平面の1つの端部は、前記第1の縦横の棒鋼の下面に面して前記水勾配の方向の縦断面視で勾配部分に配置される網体構造物と
から構成される組立構造物。
An assembly structure for placing roadbed concrete,
The orientation of the surface formed by the linear first vertical and horizontal steel bars assembled in a general lattice pattern roughly matches the orientation of the upper surface of the roadbed concrete, and the direction of any of the first vertical and horizontal steel bars is the direction of the upper surface. An upper bar made of the first vertical and horizontal steel bars, which is approximately orthogonal to the direction of the water gradient and is arranged with a predetermined covering portion from the upper surface.
It has a structure in which the direction of any of the linear second vertical and horizontal steel bars assembled in a general lattice pattern roughly matches the direction of the steel bars that are approximately orthogonal to the direction of the water gradient of the first vertical and horizontal steel bars. , The lower bar made of the second vertical and horizontal steel bars arranged with a predetermined covering portion from the lower surface of the roadbed concrete, and
As an embodiment for restraining the separation between the upper bar and the lower bar, one of the first vertical and horizontal steel bars forming the upper bar and the second vertical and horizontal bar steel forming the lower bar is used. A roadbed reinforcing bar having hook portions at both ends thereof and having a stirrup bar arranged so as to be hooked at the hook portion of a third steel bar that forms a general gate type or a rod shape.
It comprises a plurality of reticular formations having at least one or more planes striped and elongated.
In the narrow space between the first vertical and horizontal steel bars forming the upper bar and the second vertical and horizontal steel bars forming the lower bar, the axial direction of the plurality of net bodies is approximately orthogonal to the direction of the water gradient, and at least. One of the planes of the net body faces the steel bar portion of any of the approximately vertical bars of the third steel bar forming the stirrup bar, or faces the lower surface of the first vertical and horizontal steel bars. Arranged, at least one end of the plane of the net body in cross-sectional view faces the lower surface of the first vertical and horizontal steel bars and is arranged in the slope portion in vertical cross-sectional view in the direction of the water gradient. An assembled structure composed of a network structure.
請求項1に記載の組立構造物であって、
前記水勾配の方向の高位側に配置する側面型枠を更に有し、
前記上筋を成す前記第1の縦横の棒鋼の前記水勾配の方向に概合致する棒鋼自体、あるいは、前記第1の縦横の棒鋼の前記水勾配の方向に概合致する棒鋼に沿わせて固定するセパレーター用棒鋼が、前記側面型枠の背面で固定される
ことを特徴とする組立構造物。
The assembled structure according to claim 1.
Further having a side formwork to be placed on the higher side in the direction of the water gradient
Fixed along the steel bars that roughly match the direction of the water gradient of the first vertical and horizontal steel bars forming the upper bar, or the steel bars that roughly match the direction of the water gradient of the first vertical and horizontal steel bars. An assembly structure characterized in that a steel bar for a separator is fixed to the back surface of the side formwork.
請求項1または2に記載の組立構造物に着脱するコンクリート圧入器であって、
コンクリートのポンプホースを挿入し前記上筋より下方に突出する下向きのガイド管と、
前記ガイド管を前記上筋を成す前記第1の縦横の棒鋼の概矩形の開口に配置する少なくとも2列から成る固定桁と、
前記固定桁の前記2列の間に前記ガイド管を挟み当該2列を接続する接続材と
から構成されるコンクリート圧入器。
A concrete press-fitting device that is attached to and detached from the assembly structure according to claim 1 or 2.
A downward guide pipe that inserts a concrete pump hose and protrudes downward from the upper bar,
A fixed girder consisting of at least two rows in which the guide tube is arranged in the generally rectangular opening of the first vertical and horizontal steel bars forming the upper bar.
A concrete press-fitting device composed of a connecting material that sandwiches the guide pipe between the two rows of the fixed girder and connects the two rows.
請求項1又は2に記載の組立構造物への路盤コンクリートの打設方法であって、
前記上筋の下面側に面する打設範囲に対しては、前記水勾配の低位側に配置する前記網体の概鉛直の面と前記水勾配の高位側に隣接して配置する前記網体の概鉛直の面との狭隘の空間に、少なくとも前記低位側に配置する前記網体の概鉛直の面で前記上筋の下面に面する一端まで路盤コンクリートを打設する工法を、順次勾配を上げて前記狭隘の空間に対して所定回数繰り返す第1の工程と、
続いて、前記上筋の上面側を含む打設範囲に対しては、前記路盤上面の仕上げ面まで、前記水勾配の高い方から順次勾配を下げて路盤コンクリートを打設する第2の工程と
を有する路盤コンクリートの打設方法。
The method for placing roadbed concrete on the assembled structure according to claim 1 or 2.
With respect to the casting range facing the lower surface side of the upper bar, the net body arranged adjacent to the approximately vertical surface of the net body arranged on the lower side of the water gradient and the higher side of the water gradient. In a narrow space with the approximate vertical surface of the reticular formation, a method of placing roadbed concrete to at least one end facing the lower surface of the upper bar on the approximately vertical surface of the reticular formation arranged on the lower side is sequentially graded. The first step of raising and repeating the narrow space a predetermined number of times,
Subsequently, with respect to the casting range including the upper surface side of the upper bar, the second step of placing the roadbed concrete by sequentially lowering the gradient from the one having the higher water gradient to the finished surface of the upper surface of the roadbed. How to place roadbed concrete with.
JP2020085985A 2020-05-15 2020-05-15 Assembly structure for roadbed concrete placement, concrete press-fitting device and roadbed concrete placement method Active JP7008989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085985A JP7008989B2 (en) 2020-05-15 2020-05-15 Assembly structure for roadbed concrete placement, concrete press-fitting device and roadbed concrete placement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085985A JP7008989B2 (en) 2020-05-15 2020-05-15 Assembly structure for roadbed concrete placement, concrete press-fitting device and roadbed concrete placement method

Publications (2)

Publication Number Publication Date
JP2021179149A true JP2021179149A (en) 2021-11-18
JP7008989B2 JP7008989B2 (en) 2022-01-25

Family

ID=78511203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085985A Active JP7008989B2 (en) 2020-05-15 2020-05-15 Assembly structure for roadbed concrete placement, concrete press-fitting device and roadbed concrete placement method

Country Status (1)

Country Link
JP (1) JP7008989B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022009871A (en) * 2018-05-25 2022-01-14 株式会社三共 Game machine
JP2022009872A (en) * 2018-05-25 2022-01-14 株式会社三共 Game machine
JP7333663B1 (en) 2022-04-01 2023-08-25 ゲートアップ合同会社 Apparatus for finishing sloped concrete and method for finishing sloped concrete

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412503U (en) * 1990-05-16 1992-01-31
JPH0853848A (en) * 1994-08-10 1996-02-27 Rongu Kikaku:Kk Construction of side protection frame, and form therefor
JPH0967890A (en) * 1995-08-30 1997-03-11 Shimizu Corp Placing method for gradient concrete slab
JP3035506U (en) * 1996-09-06 1997-03-28 日本フエラス工業株式会社 Pitched roof forming equipment
JP2000038839A (en) * 1998-07-22 2000-02-08 Taisei Corp Form method of concrete placing joint in beam
JP2002309699A (en) * 2001-04-12 2002-10-23 Konguro Engineering Kk Panel for concrete permanent form and permanent form
JP2017075448A (en) * 2015-10-13 2017-04-20 ジャパンコンステック株式会社 Connecting structure of net-shaped body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412503U (en) * 1990-05-16 1992-01-31
JPH0853848A (en) * 1994-08-10 1996-02-27 Rongu Kikaku:Kk Construction of side protection frame, and form therefor
JPH0967890A (en) * 1995-08-30 1997-03-11 Shimizu Corp Placing method for gradient concrete slab
JP3035506U (en) * 1996-09-06 1997-03-28 日本フエラス工業株式会社 Pitched roof forming equipment
JP2000038839A (en) * 1998-07-22 2000-02-08 Taisei Corp Form method of concrete placing joint in beam
JP2002309699A (en) * 2001-04-12 2002-10-23 Konguro Engineering Kk Panel for concrete permanent form and permanent form
JP2017075448A (en) * 2015-10-13 2017-04-20 ジャパンコンステック株式会社 Connecting structure of net-shaped body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022009871A (en) * 2018-05-25 2022-01-14 株式会社三共 Game machine
JP2022009872A (en) * 2018-05-25 2022-01-14 株式会社三共 Game machine
JP7333663B1 (en) 2022-04-01 2023-08-25 ゲートアップ合同会社 Apparatus for finishing sloped concrete and method for finishing sloped concrete

Also Published As

Publication number Publication date
JP7008989B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP7008989B2 (en) Assembly structure for roadbed concrete placement, concrete press-fitting device and roadbed concrete placement method
CN110847044B (en) Semi-prefabricated assembled bent cap construction method
US9988775B1 (en) Concrete i-beam for bridge construction
CN206859235U (en) For the edge slope structure after the precast lattice beam of slope reinforcement and reinforcing
CN102828468B (en) Construction method for controlling prefabricated crack of high-strength thin-walled box girder under high-temperature dry condition
CN107268878A (en) The fabrication and installation method of prefabricated sandwich wallboard
CN110055979A (en) For the precast prestressed concrete anchor pier of slope reinforcement and production and construction method
CN107090777A (en) A kind of T beam manufacture methods for reducing blibbing
CN111042010A (en) T-beam bridge widening structure and construction method
CN108951399A (en) A kind of Single-box multi-chamber box beam bridge and its construction method
CN115262626B (en) Construction method of underground space prestress steel reinforced concrete top cover under ultra-large span heavy load
CN103046764A (en) Method for reinforcing pre-stressed concrete core unit by using bar-mat reinforcement fine aggregate concrete
CN113756339A (en) Construction method of prestressed anchor cable frame beam structure
CN110409283A (en) It is a kind of based on retarded adhesive prestressed UHPC permanent template without the rib prestressed Self-curing combination beam of abdomen and construction method
CN113202010A (en) Prestressed concrete cast-in-place box girder structure and construction method thereof
KR101021475B1 (en) Construction method for prefabricated type concrete road using precasted concrete panel
CN209114299U (en) A kind of Single-box multi-chamber box beam bridge
CN110777635A (en) Side arch rib construction method and side arch rib
CN110306398B (en) Sectional beam-setting pretensioning staggered symmetrical tensioning prestressed tendon superposed assembly road and construction method thereof
CN211900603U (en) Face combination shield structure hole of hoist enclosed construction forever
CN107869147A (en) Super-length prestressed raft board construction method
CN112458915A (en) Construction method of bent cap
CN112627066A (en) UHPC and slow-bonding steel strand based hollow slab bridge comprehensive reinforcing system and construction method thereof
KR20090095204A (en) Method of repairing and reinforcing submarine concrete constructions
CN110016986A (en) A kind of GFC hollow pipe cast-in-place concrete hollow floor slab construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7008989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150