JP2021178592A - Columnar member - Google Patents

Columnar member Download PDF

Info

Publication number
JP2021178592A
JP2021178592A JP2020085424A JP2020085424A JP2021178592A JP 2021178592 A JP2021178592 A JP 2021178592A JP 2020085424 A JP2020085424 A JP 2020085424A JP 2020085424 A JP2020085424 A JP 2020085424A JP 2021178592 A JP2021178592 A JP 2021178592A
Authority
JP
Japan
Prior art keywords
columnar member
bending
main axis
upper wall
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020085424A
Other languages
Japanese (ja)
Other versions
JP7453538B2 (en
Inventor
智史 広瀬
Tomohito Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020085424A priority Critical patent/JP7453538B2/en
Publication of JP2021178592A publication Critical patent/JP2021178592A/en
Application granted granted Critical
Publication of JP7453538B2 publication Critical patent/JP7453538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

To provide a columnar member which can absorb more energy during a collision without increasing its weight.SOLUTION: A columnar member 100 includes a hat shaped member 10 having: an upper wall 12 extending along a main axis; vertical walls 14, 16 extending along both side edge parts 12a, 12b of the upper wall 12; and flange parts 18, 20 extending along edges parts 14a, 16b, which are opposite to the upper wall 12, of the vertical walls 14, 16, the hat shaped member 10 having a cross section which is perpendicular to the main axis and presents a substantially hat shape. The columnar member 100 includes: a bending induction part 22 which is provided at the upper wall 12 and serves as a starting point of bending of the columnar member 100 when the columnar member 100 receives a compression load in a direction of the main axis; and bead parts 14b, 16b provided at positions corresponding to the bending induction part 22 in the direction of the main axis on the vertical walls 14, 16 and having a shape spreading to the bending induction part 22.SELECTED DRAWING: Figure 2

Description

本発明は、柱状部材に関する。 The present invention relates to a columnar member.

自動車は、車両の軽量化と高剛性化のために、薄板を断面が所謂ハット形になるように塑性変形させて形成された柱状部材を互いに溶接して車体を形成している。また、自動車の衝突事故に際して客室の生存空間を確保するため、こうした柱状部材は、曲げ変形時の最大反力と吸収エネルギーを高めることが求められている。 In an automobile, in order to reduce the weight and increase the rigidity of the vehicle, columnar members formed by plastically deforming a thin plate so as to have a so-called hat-shaped cross section are welded to each other to form a vehicle body. Further, in order to secure a living space in the passenger cabin in the event of a car collision, such columnar members are required to increase the maximum reaction force and absorbed energy at the time of bending deformation.

例えば、特許文献1には、所定の主軸線に沿って延設された上壁と、該上壁の両側縁に沿って延設された側壁と、該側壁において上壁とは反対側の縁部に沿って延設されたフランジ部とを有して、前記軸線に垂直な断面が略ハット形を呈する柱状部材において、前記上壁および前記主軸線に対して垂直な平面と前記側壁表面との交線により規定される軸線を挟んで線対称に配置された少なくとも一対のビード部が前記側壁に形成され、該ビード部は、前記軸線に対して前記側壁の表面内で20〜75 °の角度を以って傾斜した中心軸線に沿って延設されている柱状部材が開示されている。 For example, Patent Document 1 describes an upper wall extending along a predetermined main axis, a side wall extending along both side edges of the upper wall, and an edge of the side wall opposite to the upper wall. In a columnar member having a flange portion extending along the portion and having a substantially hat-shaped cross section perpendicular to the axis, a plane perpendicular to the upper wall and the main axis and the side wall surface. At least a pair of bead portions arranged line-symmetrically with respect to the axis defined by the line of intersection are formed on the side wall, and the bead portions are 20 to 75 ° in the surface of the side wall with respect to the axis. A columnar member extending along a central axis inclined at an angle is disclosed.

特許第6445230号公報Japanese Patent No. 6445230

車両の要求される衝突安全性確保と軽量化の両立のため、車両に適用する材料のみならず、設計に関しても様々な工夫が求められている。中でも衝突時のエネルギー吸収を主に担うフロントサイドメンバー、リアサイドメンバー、またはセンターピラーなどの部材のコンパクト化と高効率化が強く要求されている。これらの部材は、曲げ変形により衝撃吸収を行うが、曲げ変形に伴い急激に部材が弱化してしまう。このため、これらの部材に補強部材を追加することが多く検討されているが、補強部材の追加は重量増となってしまう。また、補強部材により補強部が強くなりすぎ,想定される変形モードにならず,逆に大きく衝撃吸収性能を劣化させる問題がある。 In order to achieve both the collision safety required for the vehicle and the weight reduction, various ideas are required not only for the materials applied to the vehicle but also for the design. Above all, there is a strong demand for compactness and high efficiency of members such as front side members, rear side members, and center pillars that mainly absorb energy in the event of a collision. These members absorb impact due to bending deformation, but the members are rapidly weakened due to bending deformation. Therefore, it is often considered to add a reinforcing member to these members, but the addition of the reinforcing member increases the weight. In addition, there is a problem that the reinforcing portion becomes too strong due to the reinforcing member, the expected deformation mode is not achieved, and conversely, the impact absorption performance is significantly deteriorated.

また、近時において、自動車の駆動源は従前の内燃機関から電動機(モータ)などより小型の駆動源へシフトしつつある。自動車の駆動源が小型化されると、内燃機関の存在により制約が生じていた車体構造の自由度が高まる。例えば、内燃機関が存在していたスペースを客室のスペースとして利用できるようになり、客室をより広くしたいといったユーザのニーズに応えた車両設計が可能とされる。 Further, in recent years, the drive source of an automobile is shifting from the conventional internal combustion engine to a smaller drive source such as an electric motor (motor). When the drive source of an automobile is miniaturized, the degree of freedom of the vehicle body structure, which has been restricted by the existence of the internal combustion engine, increases. For example, the space where the internal combustion engine used to exist can be used as the cabin space, and it is possible to design a vehicle that meets the needs of users who want to make the cabin wider.

一方、内燃機関が存在するスペースは、衝突時に潰れたとしても客室内の乗員に影響を及ぼすことがないため、衝突安全性を確保するために利用されていた。このため、内燃機関が存在していたスペースを客室として利用すると、衝突時に生じる車体の潰れが直接的に客室内の乗員に影響を及ぼす可能性があり、衝突時の安全性が確保できなくなる問題がある。 On the other hand, the space in which the internal combustion engine exists is used to ensure collision safety because it does not affect the occupants in the cabin even if it collapses in the event of a collision. For this reason, if the space where the internal combustion engine used to exist is used as a passenger compartment, the collapse of the vehicle body that occurs in the event of a collision may directly affect the occupants in the passenger compartment, making it impossible to ensure safety in the event of a collision. There is.

以上のように、内燃機関が存在していたスペースを利用して客室を広くした場合、元々は衝突安全性を確保するために利用されていたスペースが減少するため、より狭いスペースで衝突エネルギーを吸収することが望まれる。 As described above, if the cabin is made wider by using the space where the internal combustion engine existed, the space originally used to ensure collision safety will be reduced, so collision energy will be used in a narrower space. It is desirable to absorb it.

特許文献1に記載された技術は、簡単な構成で曲げ変形に対する最大応力および吸収エネルギー量を高めたハット形断面を有した柱状部材を提供するものであるが、より狭いスペースで衝突エネルギーを吸収することを想定した場合、更なる改良の余地がある。 The technique described in Patent Document 1 provides a columnar member having a hat-shaped cross section in which the maximum stress for bending deformation and the amount of absorbed energy are increased with a simple configuration, but absorbs collision energy in a narrower space. There is room for further improvement if it is assumed that this will be done.

そこで、本発明は、重量増を伴うことなく、より多くの衝突時のエネルギー吸収を行うことが可能な柱状部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a columnar member capable of absorbing more energy at the time of a collision without increasing the weight.

本開示の要旨は以下のとおりである。 The gist of this disclosure is as follows.

(1)主軸線に沿って延設された上壁と、前記上壁の両側縁に沿って延設された縦壁と、前記縦壁において前記上壁とは反対側の縁部に沿って延設されたフランジ部と、を有し、前記主軸線に垂直な断面が略ハット形を呈するハット形状部材を備える柱状部材であって、前記上壁に設けられ、前記主軸線の方向に圧縮負荷を受けた際に、前記柱状部材の曲げの起点となる曲げ誘起部と、前記縦壁上において、前記主軸線の方向で前記曲げ誘起部に対応する位置に設けられ、前記曲げ誘起部に向けて広がる形状を有するビード部と、を有する、柱状部材。 (1) An upper wall extending along the main axis, a vertical wall extending along both side edges of the upper wall, and a vertical wall along the edge opposite to the upper wall. A columnar member having an extended flange portion and a hat-shaped member having a cross section perpendicular to the main axis having a substantially hat shape, which is provided on the upper wall and compressed in the direction of the main axis. When a load is applied, the bending-inducing portion that is the starting point of bending of the columnar member is provided at a position corresponding to the bending-inducing portion in the direction of the main axis on the vertical wall, and the bending-inducing portion is provided. A columnar member having a bead portion having a shape that spreads toward it.

(2)前記ビード部は、前記縦壁の外側に突出している、上記(1)に記載の柱状部材。 (2) The columnar member according to (1) above, wherein the bead portion projects to the outside of the vertical wall.

(3)前記ビード部の前記主軸線に沿った方向の長さは、前記縦壁の高さの0.5倍未満である、上記(2)に記載の柱状部材。 (3) The columnar member according to (2) above, wherein the length of the bead portion in the direction along the main axis is less than 0.5 times the height of the vertical wall.

(4)前記ビード部の高さは、前記縦壁の高さの0.75倍未満である、上記(2)又は(3)に記載の柱状部材。 (4) The columnar member according to (2) or (3) above, wherein the height of the bead portion is less than 0.75 times the height of the vertical wall.

(5)前記ビード部の上端の位置は、前記上壁と前記縦壁とを接続するR部よりも下に位置する、上記(1)〜(4)のいずれかに記載の柱状部材。 (5) The columnar member according to any one of (1) to (4) above, wherein the position of the upper end of the bead portion is located below the R portion connecting the upper wall and the vertical wall.

(6)前記曲げ誘起部は、前記上壁に設けられ、前記主軸線と直交する方向に延在する凹部又は孔から構成される、上記(1)〜(5)のいずれかに記載の柱状部材。 (6) The columnar column according to any one of (1) to (5) above, wherein the bending-inducing portion is provided on the upper wall and is composed of recesses or holes extending in a direction orthogonal to the main axis. Element.

(7)車両のフロントサイドメンバー又はリアサイドメンバーを構成する、上記(1)〜(6)のいずれかに記載の柱状部材。 (7) The columnar member according to any one of (1) to (6) above, which constitutes the front side member or the rear side member of the vehicle.

本発明によれば、重量増を伴うことなく、より多くの衝突時のエネルギー吸収を行うことが可能な柱状部材が提供される。 According to the present invention, there is provided a columnar member capable of absorbing more energy at the time of a collision without increasing the weight.

本実施形態に係る自動車の車体フロアの構造を説明するための模式図であって、車体フロアを上方から見た平面図である。It is a schematic diagram for demonstrating the structure of the vehicle body floor of the automobile which concerns on this embodiment, and is the top view which looked at the body floor from above. 車体フロアを下方から見た図である。It is the figure which looked at the car body floor from the bottom. 本発明の一実施形態に係る柱状部材の構成を示す斜視図である。It is a perspective view which shows the structure of the columnar member which concerns on one Embodiment of this invention. 折れ誘発ビード位置で、柱状部材の主軸線の方向である長手方向に対して垂直な平面で切断した断面(横断面)を示す断面図である。It is sectional drawing which shows the cross section (cross section) which cut in the plane perpendicular to the longitudinal direction which is the direction of the main axis of a columnar member at the fold induction bead position. ビード部が設けられていないベース部材モデルの柱状部材の構成を示す斜視図である。It is a perspective view which shows the structure of the columnar member of the base member model which does not provide a bead portion. 柱状部材に主軸線の方向に圧縮負荷が加わった場合に、柱状部材の曲げ変形が進む様子を時系列に示す模式図である。It is a schematic diagram which shows in time series how the bending deformation of a columnar member progresses when a compression load is applied to a columnar member in the direction of a main axis. 柱状部材に主軸線の方向に圧縮負荷が加わった場合に、柱状部材の曲げ変形が進む様子を時系列に示す模式図である。It is a schematic diagram which shows in time series how the bending deformation of a columnar member progresses when a compression load is applied to a columnar member in the direction of a main axis. 柱状部材に主軸線の方向に圧縮負荷が加わった場合に、柱状部材の曲げ変形が進む様子を時系列に示す模式図である。It is a schematic diagram which shows in time series how the bending deformation of a columnar member progresses when a compression load is applied to a columnar member in the direction of a main axis. 図6Cに示すタイミングで、柱状部材の上壁の折れ誘発ビードの近辺を上から見た状態を示す模式図である。FIG. 6 is a schematic view showing a state in which the vicinity of the breakage-inducing bead on the upper wall of the columnar member is viewed from above at the timing shown in FIG. 6C. 縦壁にビード部が設けられた本実施形態の柱状部材に対し、図6A〜図6Cと同一条件で圧縮負荷を加えた場合に、図6Cと同じタイミングにて、柱状部材の上壁の折れ誘発ビードの近辺を上から見た状態を示す模式図である。When a compression load is applied to the columnar member of the present embodiment in which the bead portion is provided on the vertical wall under the same conditions as those in FIGS. 6A to 6C, the upper wall of the columnar member is broken at the same timing as in FIG. 6C. It is a schematic diagram which shows the state which looked at the vicinity of the induction bead from the top. 本実施形態に係る柱状部材とベース部材モデルの柱状部材に対し、主軸線Omの方向に圧縮負荷を加えた場合に、ストローク(横軸)と反力(縦軸)との関係を示す特性図である。A characteristic diagram showing the relationship between the stroke (horizontal axis) and the reaction force (vertical axis) when a compression load is applied to the columnar member and the columnar member of the base member model according to the present embodiment in the direction of the main axis Om. Is. 図9に示すストロークと反力の特性において、ストロークがS1,S2,S3のそれぞれのタイミングにおける、柱状部材の曲げ変形の状態を示す図である。In the characteristics of the stroke and the reaction force shown in FIG. 9, it is a figure which shows the state of bending deformation of a columnar member at each timing of a stroke S1, S2, S3. 図9に示すストロークと反力の特性において、ストロークがS1,S2,S3のそれぞれのタイミングにおける、柱状部材の曲げ変形の状態を示す図である。In the characteristics of the stroke and the reaction force shown in FIG. 9, it is a figure which shows the state of bending deformation of a columnar member at each timing of a stroke S1, S2, S3. 図9に示すストロークと反力の特性において、ストロークがS1,S2,S3のそれぞれのタイミングにおける、柱状部材の曲げ変形の状態を示す図である。In the characteristics of the stroke and the reaction force shown in FIG. 9, it is a figure which shows the state of bending deformation of a columnar member at each timing of a stroke S1, S2, S3. 図9に示すストロークと反力の特性において、ストロークがS1,S2,S3のそれぞれのタイミングにおける、柱状部材の曲げ変形の状態を示す図である。In the characteristics of the stroke and the reaction force shown in FIG. 9, it is a figure which shows the state of bending deformation of a columnar member at each timing of a stroke S1, S2, S3. 図9に示すストロークと反力の特性において、ストロークがS1,S2,S3のそれぞれのタイミングにおける、柱状部材の曲げ変形の状態を示す図である。In the characteristics of the stroke and the reaction force shown in FIG. 9, it is a figure which shows the state of bending deformation of a columnar member at each timing of a stroke S1, S2, S3. 縦壁14に設けられたビード部14bを詳細に示す模式図である。It is a schematic diagram which shows the bead portion 14b provided in the vertical wall 14 in detail. 主軸線の方向から柱状部材を見た場合に、ビード部を詳細に示す模式図である。It is a schematic diagram which shows the bead part in detail when the columnar member is seen from the direction of the main axis. ビード部の形状のバリエーション毎に、ストロークと反力との関係を示す特性図である。It is a characteristic diagram which shows the relationship between a stroke and a reaction force for each variation of the shape of a bead portion. ビード部の長さIとエネルギー吸収量比の関係を示す特性図である。It is a characteristic diagram which shows the relationship between the length I of a bead part and the energy absorption amount ratio. ビード部の高さhとエネルギー吸収量比の関係を示す特性図である。It is a characteristic diagram which shows the relationship between the height h of a bead part and the energy absorption amount ratio. 縦壁角度とエネルギー吸収量比の関係を示す特性図である。It is a characteristic diagram which shows the relationship between a vertical wall angle and an energy absorption amount ratio. 図12と同様に、縦壁に設けられたビード部を詳細に示す模式図であって、ビード部の上端の位置とR部の下端の位置との間に間隔を設けた例を示す図である。Similar to FIG. 12, it is a schematic diagram showing in detail the bead portion provided on the vertical wall, and is a diagram showing an example in which a space is provided between the position of the upper end of the bead portion and the position of the lower end of the R portion. be. 図14と同様に柱状部材のストロークと反力との関係を示す特性図であって、図14の特性C1、特性C2とともに、図16に示す間隔sを5mmとした柱状部材における特性を示す特性図である。Similar to FIG. 14, it is a characteristic diagram showing the relationship between the stroke of the columnar member and the reaction force, and is a characteristic showing the characteristics of the columnar member having the interval s of 5 mm shown in FIG. 16 together with the characteristics C1 and C2 of FIG. It is a figure. 曲げ誘起部が上壁に設けられた孔から構成された例を示す斜視図である。It is a perspective view which shows the example which the bending-inducing part was composed of the hole provided in the upper wall. 曲げ誘起部が主軸線の方向に延在する4本の凹状のビードから構成された例を示す斜視図である。FIG. 3 is a perspective view showing an example in which a bending-inducing portion is composed of four concave beads extending in the direction of the main axis. 柱状部材が、2つのハット形状部材から構成された例を示す模式図であって、柱状部材の主軸線の方向と直交する方向に沿った断面を示す模式図である。It is a schematic diagram which shows the example which the columnar member was composed of two hat-shaped members, and is the schematic diagram which shows the cross section along the direction orthogonal to the direction of the main axis of a columnar member.

以下、図面を参照して本発明の一実施形態に係る柱状部材について説明する。最初に、図1及び図2を参照して、本発明の一実施形態に係る柱状部材が適用される自動車の車体フロア110の構成について説明する。図1は、本実施形態に係る自動車の車体フロア110の構造を説明するための模式図であって、車体フロア110を上方から見た平面図である。図2は、車体フロア110を下方から見た図である。 Hereinafter, the columnar member according to the embodiment of the present invention will be described with reference to the drawings. First, with reference to FIGS. 1 and 2, the configuration of the vehicle body floor 110 to which the columnar member according to the embodiment of the present invention is applied will be described. FIG. 1 is a schematic view for explaining the structure of the vehicle body floor 110 of the automobile according to the present embodiment, and is a plan view of the vehicle body floor 110 as viewed from above. FIG. 2 is a view of the vehicle body floor 110 as viewed from below.

図1に示すように、車体フロア110は、フロアパネル112、フロアクロスメンバー114a〜114f、フロントバンパー115、フロントサイドメンバー116a,116b、リアサイドメンバー117a,117b、リアバンパー119、サイドシル120、を有している。 As shown in FIG. 1, the vehicle body floor 110 includes a floor panel 112, floor cross members 114a to 114f, a front bumper 115, front side members 116a and 116b, rear side members 117a and 117b, a rear bumper 119, and a side sill 120. There is.

サイドシル120は、自動車の左右の側面に沿って、自動車の前後方向(車長方向)に延在している。フロアクロスメンバー114a〜114fは、自動車の左右方向(車幅方向)に延在している。フロアクロスメンバー114a〜14fのそれぞれは、両端部において、左右のサイドシル120のそれぞれと、溶接、リベット止め、ボルト締結等(以下、溶接等という)により接合されている。 The side sill 120 extends in the front-rear direction (vehicle length direction) of the automobile along the left and right side surfaces of the automobile. The floor cross members 114a to 114f extend in the left-right direction (vehicle width direction) of the automobile. Each of the floor cross members 114a to 14f is joined to each of the left and right side sills 120 at both ends by welding, riveting, bolting or the like (hereinafter referred to as welding or the like).

フロアクロスメンバー114b〜114eは、左右のサイドシル120、フロアクロスメンバー114a、及びフロアクロスメンバー114fで囲まれた領域内で、車幅方向に延在して配置されている。 The floor cross members 114b to 114e are arranged so as to extend in the vehicle width direction in the area surrounded by the left and right side sills 120, the floor cross member 114a, and the floor cross member 114f.

フロアクロスメンバー114b〜114eの下には、フロアパネル112が配置されている。フロアパネル112は、フロアクロスメンバー114a〜114f、サイドシル120に対して、溶接等により固定されている。 Floor panels 112 are arranged under the floor cross members 114b to 114e. The floor panel 112 is fixed to the floor cross members 114a to 114f and the side sill 120 by welding or the like.

フロアクロスメンバー114a〜114fはいずれもハット材(断面ハット形状部材)から構成されてもよい。また、フロアクロスメンバー114a〜114fは、中空の管状の部材から構成されていてもよく、長手方向と直交する断面が矩形形状であってもよい。 The floor cross members 114a to 114f may be made of a hat material (cross-section hat-shaped member). Further, the floor cross members 114a to 114f may be composed of a hollow tubular member, or may have a rectangular cross section orthogonal to the longitudinal direction.

サイドシル120よりも車幅方向の内側には、車長方向に2つのフロントサイドメンバー116a,116bが延在している。フロントサイドメンバー116a,116bの後側の端部は、フロアクロスメンバー114fに当接し、溶接等によりフロアクロスメンバー114fに対して固定されている。 Two front side members 116a and 116b extend in the vehicle length direction inside the side sill 120 in the vehicle width direction. The rear ends of the front side members 116a and 116b are in contact with the floor cross member 114f and are fixed to the floor cross member 114f by welding or the like.

フロントサイドメンバー116a,116bの上面は、フロアパネル112に当接してもよく、フロアパネル112に対して溶接等により固定されていてもよい。 The upper surfaces of the front side members 116a and 116b may be in contact with the floor panel 112, or may be fixed to the floor panel 112 by welding or the like.

フロアクロスメンバー114fの後側には、車長方向に2つのリアサイドメンバー117a,117bが延在している。リアサイドメンバー117a,117bの前側の端部は、溶接等によりフロアクロスメンバー114fに固定されている。リアサイドメンバー117a,117bの後側の端部には、リアバンパー119が固定されている。また、リアサイドメンバー117a,117bの前後方向の中間には、リアサイドメンバー117aとリアサイドメンバー117bを結合するクロスメンバー117cが配置されている。クロスメンバー117cの端部は、溶接等によりリアサイドメンバー117a及びリアサイドメンバー117bのそれぞれに固定されている。 Two rear side members 117a and 117b extend in the vehicle length direction behind the floor cross member 114f. The front ends of the rear side members 117a and 117b are fixed to the floor cloth member 114f by welding or the like. A rear bumper 119 is fixed to the rear end of the rear side members 117a and 117b. Further, a cross member 117c that connects the rear side member 117a and the rear side member 117b is arranged in the middle of the rear side members 117a and 117b in the front-rear direction. The end portion of the cross member 117c is fixed to each of the rear side member 117a and the rear side member 117b by welding or the like.

前述のように、衝突時のエネルギー吸収を主に担うフロントサイドメンバー116a,116b、リアサイドメンバー117a,117b、またはセンターピラーなどの部材は、車両が衝突した場合に、衝突時のエネルギー吸収を主に担う部材であり、コンパクト化と高効率化が強く要求されている。 As described above, members such as front side members 116a and 116b, rear side members 117a and 117b, or center pillars, which are mainly responsible for energy absorption during a collision, mainly absorb energy during a collision when a vehicle collides. It is a member that bears the burden, and there is a strong demand for compactness and high efficiency.

本発明者らは曲げ変形に伴い部材が弱化することの解消と、重量増回避を両立するため、これらの部材の曲げ誘起部に近い部位に比較的小さなビード部を設置することを見出した。本発明により補強部材の追加をせずに曲げ変形に伴うこれらの部材の弱化を軽減することができる. The present inventors have found that a relatively small bead portion is installed in a portion close to a bending-inducing portion of these members in order to eliminate the weakening of the member due to bending deformation and to avoid an increase in weight. According to the present invention, it is possible to reduce the weakening of these members due to bending deformation without adding reinforcing members.

図3は、本発明の一実施形態に係る柱状部材100の構成を示す斜視図である。柱状部材100は、車体フロア110を構成する部材のうち、特にフロントサイドメンバー116a,116b、またはリアサイドメンバー117a,117bに適用して好適である。なお、柱状部材100は、フロアクロスメンバー114a〜114f、またはサイドシル120など、図1に示す車体フロア110の他の構成要素に適用されてもよい。更には、柱状部材100は、車両のセンターピラー、Aピラー、Bピラーなどの車体フロア110以外の構成要素に適用されてもよい。 FIG. 3 is a perspective view showing the configuration of the columnar member 100 according to the embodiment of the present invention. The columnar member 100 is particularly suitable for application to the front side members 116a and 116b or the rear side members 117a and 117b among the members constituting the vehicle body floor 110. The columnar member 100 may be applied to other components of the vehicle body floor 110 shown in FIG. 1, such as the floor cross members 114a to 114f or the side sill 120. Further, the columnar member 100 may be applied to components other than the vehicle body floor 110 such as the center pillar, the A pillar, and the B pillar of the vehicle.

図3に示すように、柱状部材100は、ハット形状部材10と、プレート形状部材30とを有する。ハット形状部材10およびプレート形状部材30は、例えば鋼板から形成される。 As shown in FIG. 3, the columnar member 100 has a hat-shaped member 10 and a plate-shaped member 30. The hat-shaped member 10 and the plate-shaped member 30 are formed of, for example, a steel plate.

ハット形状部材10は、直線状の主軸線Omに沿って延びる平板状の上壁12と、該上壁12の両側縁部12a、12bに沿って延設された縦壁14、16と、各縦壁14、16の反対側の縁部14a、16a に沿って延設されたフランジ部18、20とを具備している。 The hat-shaped member 10 includes a flat plate-shaped upper wall 12 extending along a linear main axis Om, and vertical walls 14 and 16 extending along both side edges 12a and 12b of the upper wall 12, respectively. It includes flanges 18 and 20 extending along the opposite edges 14a and 16a of the vertical walls 14 and 16.

ハット形状部材10の上壁12には、曲げ誘起部22が形成されている。また、縦壁14には、ビード部14bが形成されている。同様に、縦壁16には、ビード部16bが形成されている。曲げ誘起部22とビード部14b、16bは、主軸線Omに沿う方向で同じ位置に形成されている。 A bending-inducing portion 22 is formed on the upper wall 12 of the hat-shaped member 10. Further, a bead portion 14b is formed on the vertical wall 14. Similarly, a bead portion 16b is formed on the vertical wall 16. The bending inducing portion 22 and the bead portions 14b and 16b are formed at the same position in the direction along the main axis Om.

図4は、曲げ誘起部22の位置で、柱状部材100の主軸線Omの方向である長手方向に対して垂直な平面で切断した断面(横断面)を示す断面図である。より詳細には、図4は、図3に示す一点鎖線II−II’に沿った断面を示しており、後述するビード部14b、16bの位置では、ビード部14b、16bの長手方向に沿った断面を示している。図4に示すように、ハット形状部材10の横断面は、概ねハット形となっている。プレート形状部材30は、ハット形状部材10のフランジ部18、20に対して、点溶接、線溶接などにより接合されている。 FIG. 4 is a cross-sectional view showing a cross section (cross section) cut in a plane perpendicular to the longitudinal direction, which is the direction of the main axis Om of the columnar member 100, at the position of the bending inducing portion 22. More specifically, FIG. 4 shows a cross section along the alternate long and short dash line II-II'shown in FIG. 3, and at the positions of the bead portions 14b and 16b described later, along the longitudinal direction of the bead portions 14b and 16b. The cross section is shown. As shown in FIG. 4, the cross section of the hat-shaped member 10 is substantially hat-shaped. The plate-shaped member 30 is joined to the flange portions 18 and 20 of the hat-shaped member 10 by spot welding, line welding, or the like.

曲げ誘起部22は、上壁12の表側(図1で上壁12の上側)が凹となる折れ誘発ビード(凹部)から構成されている。曲げ誘起部22は、ハット形状部材10の母材である鋼板をプレス加工することにより形成されている。曲げ誘起部22は、鋼板を折り曲げてハット形状部材10をプレス成形するプレス加工の際に、ハット形状部材10の成形と同時に形成されてもよい。 The bending-inducing portion 22 is composed of a bending-inducing bead (recess) in which the front side (upper side of the upper wall 12 in FIG. 1) of the upper wall 12 is concave. The bending-inducing portion 22 is formed by pressing a steel plate which is a base material of the hat-shaped member 10. The bending-inducing portion 22 may be formed at the same time as the forming of the hat-shaped member 10 at the time of press working in which the steel plate is bent and the hat-shaped member 10 is press-formed.

車体フロア110を構成するフロントサイドメンバー116a,116b、またはリアサイドメンバー117a,117bは、自動車が衝突した場合に、車長方向に大きな衝撃力を受け、圧縮変形する。柱状部材100がフロントサイドメンバー116a,116b、またはリアサイドメンバー117a,117bに適用された場合に、衝突により車長方向に大きな衝撃力が加わると、柱状部材100の主軸線Omの方向に圧縮負荷がかかり、柱状部材100が曲げ変形する。柱状部材100が曲げ変形することで、衝突のエネルギーが吸収される。 The front side members 116a, 116b or the rear side members 117a, 117b constituting the vehicle body floor 110 receive a large impact force in the vehicle length direction and are compressed and deformed when an automobile collides. When the columnar member 100 is applied to the front side members 116a, 116b or the rear side members 117a, 117b, when a large impact force is applied in the vehicle length direction due to a collision, a compression load is applied in the direction of the main axis Om of the columnar member 100. The columnar member 100 is bent and deformed. The energy of the collision is absorbed by the bending deformation of the columnar member 100.

曲げ誘起部22は、柱状部材100に折れ易い箇所を設けるために形成されており、柱状部材100が主軸線Omの方向に圧縮負荷を受けた際に、柱状部材100の曲げの起点となる。これにより、柱状部材100に圧縮負荷が加わった際に、予め想定された一定の変形モードで柱状部材100が曲げ変形する。したがって、柱状部材100に圧縮負荷が加わった際に、柱状部材100が想定外に変形することが抑制され、安全性が確保される。 The bending-inducing portion 22 is formed to provide a portion easily broken in the columnar member 100, and becomes a starting point of bending of the columnar member 100 when the columnar member 100 receives a compression load in the direction of the main axis Om. As a result, when a compression load is applied to the columnar member 100, the columnar member 100 is bent and deformed in a predetermined deformation mode assumed in advance. Therefore, when a compression load is applied to the columnar member 100, the columnar member 100 is suppressed from being unexpectedly deformed, and safety is ensured.

ビード部14b、16bは、縦壁14,16の表側が凸となるように形成され、周囲の縦壁14、16の面よりも凸状に突出している。また、ビード部14bの平面形状はV字形状を成し、曲げ誘起部22に向けて末広がりの形状とされている。 The bead portions 14b and 16b are formed so that the front side of the vertical walls 14 and 16 is convex, and protrudes more convexly than the surfaces of the surrounding vertical walls 14 and 16. Further, the planar shape of the bead portion 14b is a V-shape, and the shape is such that the bead portion 14b expands toward the bending-inducing portion 22.

ビード部14b、16bは、ハット形状部材10の母材である鋼板をプレス加工することにより形成されている。ビード部14bは、プレス加工により鋼板を裏側から打ち出すようにして形成されることから、縦壁14、16の裏側から見ると、ビード部14b、16bの裏側は凹部となっている。ビード部14b、16bは、鋼板を折り曲げてハット形状部材10をプレス成形するプレス加工の際に、ハット形状部材10の成形と同時に形成されてもよい。 The bead portions 14b and 16b are formed by pressing a steel plate which is a base material of the hat-shaped member 10. Since the bead portion 14b is formed by stamping a steel plate from the back side by press working, the back side of the bead portions 14b and 16b is a recess when viewed from the back side of the vertical walls 14 and 16. The bead portions 14b and 16b may be formed at the same time as the formation of the hat-shaped member 10 at the time of press working in which the steel plate is bent and the hat-shaped member 10 is press-formed.

曲げ誘起部22を設けたことにより、柱状部材100に主軸線Omの方向に圧縮負荷が加わった際に、曲げ誘起部22の位置で柱状部材100に曲げ変形が生じ、曲げ誘起部22の位置で柱状部材100が屈曲する。圧縮負荷が加わった際の柱状部材100の主軸線Omの方向の反力は、柱状部材100が曲げ変形により屈曲するまでは増加し、柱状部材100が屈曲すると減少する。 By providing the bending-inducing portion 22, when a compression load is applied to the columnar member 100 in the direction of the main axis Om, bending deformation occurs in the columnar member 100 at the position of the bending-inducing portion 22, and the position of the bending-inducing portion 22 The columnar member 100 bends at. The reaction force in the direction of the main axis Om of the columnar member 100 when a compression load is applied increases until the columnar member 100 bends due to bending deformation, and decreases when the columnar member 100 bends.

柱状部材100が屈曲する際には、曲げ誘起部22の位置で、上壁12に主軸線Omと直交する方向の溝状の凹みが形成される。柱状部材100の変形が進み、屈曲が大きくなるほど、溝状の凹みの幅は狭くなり、溝状の凹みの向かい合う内壁の距離が近くなる。そして、溝状の凹みの向かい合う内壁が衝突すると、柱状部材100の屈曲が一時的に止まり、減少していた反力は増加に転じる。 When the columnar member 100 bends, a groove-shaped recess in the direction orthogonal to the main axis Om is formed on the upper wall 12 at the position of the bending inducing portion 22. As the deformation of the columnar member 100 progresses and the bending becomes larger, the width of the groove-shaped dent becomes narrower, and the distance between the inner walls facing the groove-shaped dent becomes shorter. Then, when the inner walls facing the groove-shaped dents collide with each other, the columnar member 100 temporarily stops bending, and the reduced reaction force starts to increase.

縦壁14.16に設けられたビード部14b、16bは、柱状部材100が屈曲して変形する過程で、溝状の凹みを段階的で生じさせ、曲げ変形の早期に溝状の凹みの向かい合う内壁を衝突させ、曲げ変形の早期から反力を高めるように設けられている。ビード部14b、16bが設けられることで、柱状部材100が曲げ誘起部22の位置で曲げ変形した後、溝状の凹みの向かいうあう内壁が段階的に衝突することにより、反力の低下が抑制され、衝突エネルギーの吸収量が増大する。 The bead portions 14b and 16b provided on the vertical wall 14.16 gradually generate groove-shaped dents in the process of bending and deforming the columnar member 100, and the groove-shaped dents face each other at an early stage of bending deformation. It is provided so as to collide with the inner wall and increase the reaction force from the early stage of bending deformation. By providing the bead portions 14b and 16b, after the columnar member 100 is bent and deformed at the position of the bending inducing portion 22, the inner walls facing each other of the groove-shaped dents collide stepwise, so that the reaction force is reduced. It is suppressed and the amount of collision energy absorbed increases.

ビード部14b、16bの有無による反力の違いを説明するため、ビード部14b、16bが設けられていないベース部材モデルの柱状部材102と、ビード部14b、16bが設けられた本実施形態に係る柱状部材100とを比較して説明する。図5は、ビード部14b、16bが設けられていないベース部材モデルの柱状部材102の構成を示す斜視図である。図5に示す柱状部材102の構成は、ビード部14b、16bが設けられていない点以外は、図3に示した本実施形態に係る柱状部材100と同一である。 In order to explain the difference in reaction force depending on the presence or absence of the bead portions 14b and 16b, the present invention relates to the columnar member 102 of the base member model in which the bead portions 14b and 16b are not provided and the present embodiment in which the bead portions 14b and 16b are provided. This will be described in comparison with the columnar member 100. FIG. 5 is a perspective view showing the configuration of the columnar member 102 of the base member model in which the bead portions 14b and 16b are not provided. The structure of the columnar member 102 shown in FIG. 5 is the same as that of the columnar member 100 according to the present embodiment shown in FIG. 3, except that the bead portions 14b and 16b are not provided.

図6A〜図6Cは、ベース部材モデルの柱状部材102を側面から見た状態を示しており、柱状部材102に主軸線Omの方向に圧縮負荷が加わった場合に、柱状部材102の曲げ変形が進む様子を時系列に示す模式図である。なお、図6A〜図6Cにおいて、一点鎖線の位置は曲げ誘起部22の位置を示している。 6A to 6C show a state in which the columnar member 102 of the base member model is viewed from the side surface, and when a compression load is applied to the columnar member 102 in the direction of the main axis Om, the columnar member 102 is bent and deformed. It is a schematic diagram which shows the progress in time series. In FIGS. 6A to 6C, the position of the alternate long and short dash line indicates the position of the bending-inducing portion 22.

図6Aには、柱状部材102に圧縮負荷を与えるための治具40が示されている。柱状部材102に曲げ変形が進む様子を解析するため、柱状部材102の両端の治具40の孔42に回転軸が挿入され、回転軸を互いに近づけた場合の変形が解析される。 FIG. 6A shows a jig 40 for applying a compression load to the columnar member 102. In order to analyze how the bending deformation progresses in the columnar member 102, the rotation axis is inserted into the holes 42 of the jig 40 at both ends of the columnar member 102, and the deformation when the rotation axes are brought close to each other is analyzed.

図6Aは、柱状部材102の長手方向に圧縮負荷を加え始めた状態を示している。この状態では、柱状部材102は未だ屈曲していない。 FIG. 6A shows a state in which a compression load is started to be applied in the longitudinal direction of the columnar member 102. In this state, the columnar member 102 is not yet bent.

次に、図6Bに示すように、孔42に挿入された回転軸が互いに近づくことで柱状部材102の長手方向に圧縮負荷が加わり、曲げ誘起部22の位置で柱状部材102が屈曲し始めると、縦壁14、16に皺状の膨らみ14c、16cが生じ、曲げ誘起部22の位置で上壁12に凹み13aが生じる。 Next, as shown in FIG. 6B, when the rotation axes inserted into the holes 42 approach each other, a compression load is applied in the longitudinal direction of the columnar member 102, and the columnar member 102 begins to bend at the position of the bending inducing portion 22. , Wrinkle-shaped bulges 14c and 16c are formed on the vertical walls 14 and 16, and dents 13a are formed on the upper wall 12 at the position of the bending inducing portion 22.

次に、図6Cに示すように、孔42に挿入された回転軸が更に近づくと、柱状部材102が更に屈曲し、凹み13aが溝状になる。なお、図6Cに示すタイミングは、図6Aから一定時間Tが経過したタイミングである。図6Cに示す状態から柱状部材102が更に屈曲すると、溝状の凹み13aの向かい合う内壁が衝突する。 Next, as shown in FIG. 6C, when the rotation axis inserted into the hole 42 gets closer, the columnar member 102 further bends and the recess 13a becomes groove-shaped. The timing shown in FIG. 6C is the timing when T has elapsed from FIG. 6A for a certain period of time. When the columnar member 102 is further bent from the state shown in FIG. 6C, the inner walls facing each other of the groove-shaped recesses 13a collide with each other.

図7は、図6Cに示すタイミングで、柱状部材102の上壁12の曲げ誘起部22の近辺を上から見た状態を示す模式図である。図7に示すように、上壁12には、幅d2の溝状の凹み13aが形成されている。図7に示す状態の後、柱状部材102が更に屈曲すると、溝状の凹み13aの向かい合う内壁13b同士が衝突する。 FIG. 7 is a schematic view showing a state in which the vicinity of the bending-inducing portion 22 of the upper wall 12 of the columnar member 102 is viewed from above at the timing shown in FIG. 6C. As shown in FIG. 7, a groove-shaped recess 13a having a width d2 is formed on the upper wall 12. When the columnar member 102 is further bent after the state shown in FIG. 7, the inner walls 13b of the groove-shaped recesses 13a facing each other collide with each other.

ビード部14b、16bが設けられた本実施形態の柱状部材100に対し、図6A〜図6Cと同一条件で圧縮負荷を加えると、柱状部材100は、基本的にはベース部材モデルの柱状部材102と同様に曲げ変形する。しかし、本実施形態の柱状部材100では、ビード部14b、16bの作用により、曲げ変形の早期に溝状の凹みの向かい合う内壁が衝突するため、反力の低下が抑制される。 When a compression load is applied to the columnar member 100 of the present embodiment provided with the bead portions 14b and 16b under the same conditions as those in FIGS. 6A to 6C, the columnar member 100 basically becomes the columnar member 102 of the base member model. It bends and deforms in the same way as. However, in the columnar member 100 of the present embodiment, due to the action of the bead portions 14b and 16b, the inner walls facing the groove-shaped dents collide with each other at an early stage of bending deformation, so that the decrease in reaction force is suppressed.

図8は、縦壁14、16にビード部14b、16bが設けられた本実施形態の柱状部材100に対し、図6A〜図6Cと同一条件で圧縮負荷を加えた場合に、図6Cと同じタイミング(圧縮負荷を加え始めてから一定時間Tの経過後)にて、柱状部材100の上壁12の曲げ誘起部22の近辺を上から見た状態を示す模式図である。 FIG. 8 is the same as FIG. 6C when a compression load is applied to the columnar member 100 of the present embodiment in which the bead portions 14b and 16b are provided on the vertical walls 14 and 16 under the same conditions as those in FIGS. 6A to 6C. It is a schematic diagram which shows the state which looked at the vicinity of the bending induction part 22 of the upper wall 12 of a columnar member 100 from the top at the timing (after the elapse of a certain time T from the start of applying a compression load).

本実施形態の柱状部材100では、曲げ誘起部22の位置で柱状部材100が屈曲し始めると、ビード部14b、16bが形成されていることにより、縦壁14、16が外側に変形し易くなる。このため、ベース部材モデルの柱状部材102よりも早い段階で、縦壁14、16に膨らみ14d、16dが生じ、上壁12に凹み13dが生じる。 In the columnar member 100 of the present embodiment, when the columnar member 100 starts to bend at the position of the bending inducing portion 22, the bead portions 14b and 16b are formed, so that the vertical walls 14 and 16 are easily deformed to the outside. .. Therefore, the vertical walls 14 and 16 have bulges 14d and 16d, and the upper wall 12 has dents 13d at an earlier stage than the columnar member 102 of the base member model.

より詳細には、ビード部14b、16bは、膨らみ14d、16dが形成される輪郭に沿って、膨らみ14d、16dが形成される予想位置に設けられている。ビード部14b、16bが膨らみ14d、16dが形成される位置に予め設けられると、柱状部材100が屈曲した際に、2箇所のビード部14b、16bの位置で座屈がそれぞれ発生するため、図8中に二点鎖線E2で示すように縦壁14、16に鋭角状の膨らみ14d、16dが生じ、縦壁14、16への膨らみ14d、16dの形成が助長される。一方、図7に示すように、ベース部材モデルの柱状部材102では、ビード部14b、16bによる座屈が生じないため、膨らみ14c、16cは二点鎖線E1で示すように円弧状であり、本実施形態の柱状部材100ほど顕著に膨らみ14c、16cは生じない。したがって、本実施形態の柱状部材100では、ベース部材モデルの柱状部材102に比べて、縦壁14、16に早期に膨らみ14d、16dが生じ、早期に上壁12に凹み13dが形成される。 More specifically, the bead portions 14b and 16b are provided at expected positions where the bulges 14d and 16d are formed along the contour where the bulges 14d and 16d are formed. If the bead portions 14b and 16b are provided in advance at the positions where the bulges 14d and 16d are formed, buckling occurs at the positions of the two bead portions 14b and 16b when the columnar member 100 is bent. As shown by the two-dot chain line E2 in 8, acute-angled bulges 14d and 16d are formed on the vertical walls 14 and 16, and the formation of the bulges 14d and 16d on the vertical walls 14 and 16 is promoted. On the other hand, as shown in FIG. 7, in the columnar member 102 of the base member model, buckling by the bead portions 14b and 16b does not occur, so that the bulges 14c and 16c are arcuate as shown by the alternate long and short dash line E1. The bulges 14c and 16c do not occur as significantly as the columnar member 100 of the embodiment. Therefore, in the columnar member 100 of the present embodiment, the vertical walls 14 and 16 are bulged 14d and 16d earlier than the columnar member 102 of the base member model, and the dent 13d is formed in the upper wall 12 earlier.

このため、図7及び図8に示すように、本実施形態の柱状部材100の上壁12に形成される溝状の凹み13dの幅d1は、同じタイミングでベース部材モデルの柱状部材102に形成される溝状の凹み13aの幅よりも狭くなる。したがって、ビード部14b、16bを設けた場合は、ビード部14b、16bを設けない場合に比べて、溝状の凹み13dの向かい合う内壁13eがより早い段階で衝突する。 Therefore, as shown in FIGS. 7 and 8, the width d1 of the groove-shaped recess 13d formed in the upper wall 12 of the columnar member 100 of the present embodiment is formed in the columnar member 102 of the base member model at the same timing. It becomes narrower than the width of the groove-shaped recess 13a to be formed. Therefore, when the bead portions 14b and 16b are provided, the inner walls 13e facing the groove-shaped recesses 13d collide at an earlier stage than when the bead portions 14b and 16b are not provided.

図9は、本実施形態に係る柱状部材100とベース部材モデルの柱状部材102に対し、主軸線Omの方向に圧縮負荷を加えた場合に、ストローク(横軸)と反力(縦軸)との関係を示す特性図である。図9において、実線で示す特性C1は、縦壁14,16にビード部14b、16bが設けられた本実施形態の柱状部材100における、ストロークと反力の特性を示している。また、破線で示す特性C2は、ベース部材モデルの柱状部材102における、ストロークと反力の特性を示している。 FIG. 9 shows the stroke (horizontal axis) and reaction force (vertical axis) when a compression load is applied to the columnar member 100 and the columnar member 102 of the base member model according to the present embodiment in the direction of the main axis Om. It is a characteristic diagram which shows the relationship of. In FIG. 9, the characteristic C1 shown by the solid line shows the characteristics of the stroke and the reaction force in the columnar member 100 of the present embodiment in which the bead portions 14b and 16b are provided on the vertical walls 14 and 16. Further, the characteristic C2 shown by the broken line indicates the characteristics of the stroke and the reaction force in the columnar member 102 of the base member model.

また、図10A及び図10B、図11A〜図11Cは、図9に示すストロークと反力の特性において、ストロークがS1,S2,S3のそれぞれのタイミングにおける、柱状部材100,102の曲げ変形の状態を示す図である。図10A及び図10Bは、本実施形態の柱状部材100の曲げ変形の状態を示している。また、図11A〜図11Cは、ベース部材モデルの柱状部材102の曲げ変形の状態を示している。図10A及び図10B、図11A〜図11Cは、それぞれのタイミングにおいて、図3及び図5に示す一点鎖線I−I’に沿って柱状部材100を破断した状態を示している。 Further, FIGS. 10A and 10B, and FIGS. 11A to 11C show the bending deformation states of the columnar members 100 and 102 at the respective timings of the strokes S1, S2 and S3 in the stroke and reaction force characteristics shown in FIG. It is a figure which shows. 10A and 10B show the bending deformation state of the columnar member 100 of the present embodiment. 11A to 11C show the bending deformation state of the columnar member 102 of the base member model. 10A and 10B, and FIGS. 11A to 11C show a state in which the columnar member 100 is broken along the alternate long and short dash line I-I'shown in FIGS. 3 and 5.

図10A及び図11Aは、図9に示すストロークS1のタイミングでの柱状部材100,102の曲げ変形の状態を示している。また、図10B及び図11Bは、図9に示すストロークS2のタイミングでの柱状部材100,102の曲げ変形の状態を示している。また、図11Cは、図9に示すストロークS3のタイミングでの柱状部材102の曲げ変形の状態を示している。 10A and 11A show the bending deformation state of the columnar members 100 and 102 at the timing of the stroke S1 shown in FIG. Further, FIGS. 10B and 11B show the bending deformation state of the columnar members 100 and 102 at the timing of the stroke S2 shown in FIG. Further, FIG. 11C shows a state of bending deformation of the columnar member 102 at the timing of the stroke S3 shown in FIG.

図9に示すように、柱状部材100,102に主軸線Omの方向に圧縮負荷を加えると、ストロークがS0に到達するまでは、ストロークの増加に伴い反力が増加する。ストロークがS0に到達すると、柱状部材100,102が曲げ誘起部22の位置で屈曲する。 As shown in FIG. 9, when a compressive load is applied to the columnar members 100 and 102 in the direction of the main axis Om, the reaction force increases as the stroke increases until the stroke reaches S0. When the stroke reaches S0, the columnar members 100 and 102 bend at the position of the bending inducing portion 22.

ストロークS0以降は、柱状部材100の曲げ変形が進行し、ストロークの増加に伴い、反力は低下する。また、本実施形態の柱状部材100では上壁12に溝状の凹み13dが形成され、ベース部材モデルの柱状部材102では上壁12に溝状の凹み13aが形成される。ストロークがS1に到達するまでは、特性C1と特性C2との間に大きな相違は見られない。 After the stroke S0, the bending deformation of the columnar member 100 progresses, and the reaction force decreases as the stroke increases. Further, in the columnar member 100 of the present embodiment, a groove-shaped recess 13d is formed in the upper wall 12, and in the columnar member 102 of the base member model, a groove-shaped recess 13a is formed in the upper wall 12. Until the stroke reaches S1, there is no significant difference between characteristic C1 and characteristic C2.

ストロークがS1に到達すると、本実施形態の柱状部材100では、図10Aに示すように、溝状の凹み13dの向かい合う内壁13eが衝突する(第1衝突)。これにより、図9に示す実線の特性C1では、ストロークS1以降に反力が一時的に増加する。その後、ストロークS2までの間に、特性C1の反力は緩やかに減少する。 When the stroke reaches S1, in the columnar member 100 of the present embodiment, as shown in FIG. 10A, the inner walls 13e facing the groove-shaped recesses 13d collide with each other (first collision). As a result, in the solid line characteristic C1 shown in FIG. 9, the reaction force temporarily increases after the stroke S1. After that, the reaction force of the characteristic C1 gradually decreases until the stroke S2.

一方、ベース部材モデルの柱状部材100では、図11Aに示すように、ストロークがS1に到達しても、溝状の凹み13aの向かい合う内壁13bは衝突せず、向かい合う内壁13bの間には比較的大きな空間が存在している。このため、図9に示す破線の特性C2では、ストロークS1以降も反力は減少し続ける。 On the other hand, in the columnar member 100 of the base member model, as shown in FIG. 11A, even if the stroke reaches S1, the inner walls 13b facing each other of the groove-shaped recesses 13a do not collide, and the inner walls 13b facing each other do not collide with each other. There is a large space. Therefore, in the characteristic C2 of the broken line shown in FIG. 9, the reaction force continues to decrease even after the stroke S1.

ストロークがS2に到達すると、本実施形態の柱状部材100では、図10Bに示すように、ストロークS1で衝突した内壁13eの上で、溝状の凹み13dの向かい合う内壁13eが再び衝突する(第2衝突)。これにより、図9に示す実線の特性C1では、ストロークS2以降に反力が一時的に増加する。その後、特性C1の反力は、ストロークが増加してもほぼ一定値となる。 When the stroke reaches S2, in the columnar member 100 of the present embodiment, as shown in FIG. 10B, the inner wall 13e facing the groove-shaped recess 13d collides again on the inner wall 13e that collided with the stroke S1 (second). collision). As a result, in the solid line characteristic C1 shown in FIG. 9, the reaction force temporarily increases after the stroke S2. After that, the reaction force of the characteristic C1 becomes a substantially constant value even if the stroke increases.

一方、ベース部材モデルの柱状部材102では、図11Bに示すように、ストロークがS2に到達しても、溝状の凹み13aの向かい合う内壁13bは依然として衝突せず、向かい合う内壁13bの間には空間が存在している。このため、図9に示す破線の特性C2では、ストロークS2以降も反力は減少し続ける。 On the other hand, in the columnar member 102 of the base member model, as shown in FIG. 11B, even when the stroke reaches S2, the facing inner walls 13b of the groove-shaped recesses 13a still do not collide, and there is a space between the facing inner walls 13b. Exists. Therefore, in the characteristic C2 of the broken line shown in FIG. 9, the reaction force continues to decrease even after the stroke S2.

ストロークがS3に到達すると、ベース部材モデルの柱状部材102では、図11Cに示すように、溝状の凹み13aの向かい合う内壁13bがようやく衝突する。これにより、図8に示す破線の特性C2では、ストロークS3以降に反力が増加し、その後は実線の特性C1と同様に、反力はストロークが増加してもほぼ一定値となる。 When the stroke reaches S3, in the columnar member 102 of the base member model, as shown in FIG. 11C, the inner walls 13b facing the groove-shaped recesses 13a finally collide with each other. As a result, in the characteristic C2 of the broken line shown in FIG. 8, the reaction force increases after the stroke S3, and thereafter, the reaction force becomes a substantially constant value even if the stroke increases, as in the characteristic C1 of the solid line.

以上のように、本実施形態に係る柱状部材100の特性C1では、ストロークS1とストロークS2のタイミングで合計2回の内壁13eの衝突が生じるため、ストロークS1以降の反力の減少が抑制される。これにより、小さいストロークで大きな反力を生じさせることができるため、より少ないスペースで衝突時のエネルギー吸収を行うことが可能となる。 As described above, in the characteristic C1 of the columnar member 100 according to the present embodiment, the inner wall 13e collides twice in total at the timing of the stroke S1 and the stroke S2, so that the decrease in the reaction force after the stroke S1 is suppressed. .. As a result, a large reaction force can be generated with a small stroke, so that energy can be absorbed at the time of a collision in a smaller space.

一方、ベース部材モデルの柱状部材102では、ストロークS3に到達するまでの間は、向かい合う内壁13bが衝突しないため、内壁13bが衝突するまでの間は反力が減少し続ける。したがって、ベース部材モデルの柱状部材102では、本実施形態の柱状部材100に比べて、同じストローク時に発生する反力がより低下しまい、本実施形態の柱状部材100と同じ衝突エネルギーを吸収するに当たり、より大きなスペースが必要になる。 On the other hand, in the columnar member 102 of the base member model, since the inner walls 13b facing each other do not collide until the stroke S3 is reached, the reaction force continues to decrease until the inner walls 13b collide. Therefore, in the columnar member 102 of the base member model, the reaction force generated at the same stroke is further reduced as compared with the columnar member 100 of the present embodiment, and the same collision energy as that of the columnar member 100 of the present embodiment is absorbed. More space is needed.

特性C1または特性C2と横軸とによって囲まれた領域の面積は、柱状部材100が曲げ変形することによって吸収される衝突エネルギーの大きさを示している。縦壁14,16にビード部14b、16bが設けられた本実施形態の柱状部材100の特性C1によれば、縦壁14,16にビード部14b、16bが設けられていないベース部材モデルの柱状部材102の特性C2に比べて、ハッチングで示した面積の分だけより大きな衝突エネルギーが吸収される。 The area of the region surrounded by the characteristic C1 or the characteristic C2 and the horizontal axis indicates the magnitude of the collision energy absorbed by the columnar member 100 being bent and deformed. According to the characteristic C1 of the columnar member 100 of the present embodiment in which the bead portions 14b and 16b are provided on the vertical walls 14 and 16, the columnar columns of the base member model in which the bead portions 14b and 16b are not provided on the vertical walls 14 and 16. Compared to the characteristic C2 of the member 102, a larger collision energy is absorbed by the area indicated by the hatching.

なお、上述した実施形態では、ビード部14b,16bとして、縦壁14の外側に向かって凸状のものを示したが、ビード部14b,16bは、縦壁14の内側に向かって凸状であってもよい。 In the above-described embodiment, the bead portions 14b and 16b are convex toward the outside of the vertical wall 14, but the bead portions 14b and 16b are convex toward the inside of the vertical wall 14. There may be.

また、上述した実施形態では、凹状のビードからなる曲げ誘起部22を示したが、曲げ誘起部22は、柱状部材100の曲げの起点となる部位であればよく、上壁12に設けられた凸部、孔、または柱状部材100の曲率の変化点から構成されていてもよい。また、曲げ誘起部22は、柱状部材100の材料強度が局所的に低下する部位から構成されていてもよい。 Further, in the above-described embodiment, the bending-inducing portion 22 made of a concave bead is shown, but the bending-inducing portion 22 may be a portion that is the starting point of bending of the columnar member 100, and is provided on the upper wall 12. It may be composed of a convex portion, a hole, or a change point of the curvature of the columnar member 100. Further, the bending-inducing portion 22 may be composed of a portion where the material strength of the columnar member 100 is locally reduced.

例えば、図18は、曲げ誘起部22が上壁12に設けられた孔から構成された例を示す斜視図である。また、図19は、曲げ誘起部22が主軸線Omの方向に延在する4本の凹状のビードから構成された例を示す斜視図である。柱状部材100の曲げ剛性は主軸線Omと直交する断面の形状で定まる。曲げ変形は断面2次モーメントの変化点で生じ易く、図18及び図19のいずれの例においても、曲げ誘起部22を設けたことにより、主軸線Omと直交する断面の断面2次モーメントが曲げ誘起部22の位置で変化するため、柱状部材100の主軸線Omの方向に圧縮負荷が加わった場合に、曲げ誘起部22が曲げの起点となる。図18は曲げ誘起部22で断面2次モーメントが高く変化する例であり、図19は曲げ誘起部22で断面2次モーメントが低く変化する例である。 For example, FIG. 18 is a perspective view showing an example in which the bending inducing portion 22 is composed of a hole provided in the upper wall 12. Further, FIG. 19 is a perspective view showing an example in which the bending inducing portion 22 is composed of four concave beads extending in the direction of the main axis Om. The flexural rigidity of the columnar member 100 is determined by the shape of the cross section orthogonal to the main axis Om. Bending deformation is likely to occur at the change point of the moment of inertia of area, and in both the examples of FIGS. 18 and 19, the provision of the bending inducing portion 22 causes the moment of inertia of area of the cross section orthogonal to the main axis Om to bend. Since it changes depending on the position of the induced portion 22, the bent induced portion 22 becomes the starting point of bending when a compression load is applied in the direction of the main axis Om of the columnar member 100. FIG. 18 is an example in which the moment of inertia of area changes high in the bending-inducing portion 22, and FIG. 19 shows an example in which the moment of inertia of area changes low in the bending-inducing portion 22.

また、上述した実施形態では、曲げ誘起部22が上壁12に設けられた例を示したが、曲げ誘起部22は、上壁12の反対側のプレート形状部材30に設けられていてもよい。この場合、ビード部14b,16bは、プレート形状部材30に設けられた曲げ誘起部22に向かって広がる逆V字形状となる。 Further, in the above-described embodiment, the example in which the bending-inducing portion 22 is provided on the upper wall 12 is shown, but the bending-inducing portion 22 may be provided on the plate-shaped member 30 on the opposite side of the upper wall 12. .. In this case, the bead portions 14b and 16b have an inverted V shape that spreads toward the bending-inducing portion 22 provided on the plate-shaped member 30.

また、上述した実施形態では、柱状部材100がハット形状部材10とプレート形状部材30とから構成される例を示したが、柱状部材100は2つのハット形状部材から構成されてもよい。図20は、柱状部材100が、ハット形状部材10とハット形状部材50とから構成された例を示す模式図であって、柱状部材100の主軸線Omの方向と直交する方向に沿った断面を示す模式図である。図20に示す柱状部材100では、ハット形状部材10のフランジ部18、20に対して、プレート形状部材50のフランジ部52、54が点溶接、線溶接などにより接合される。プレート形状部材50の上壁56は、ハット形状部材10側に位置してもよいし、ハット形状部材10とは反対側に位置していてもよい。なお、図20では、主軸線Omの方向において、凹部、または孔が設けられていない位置の断面を示している。 Further, in the above-described embodiment, the columnar member 100 is composed of the hat-shaped member 10 and the plate-shaped member 30, but the columnar member 100 may be composed of two hat-shaped members. FIG. 20 is a schematic view showing an example in which the columnar member 100 is composed of the hat-shaped member 10 and the hat-shaped member 50, and shows a cross section along a direction orthogonal to the direction of the main axis Om of the columnar member 100. It is a schematic diagram which shows. In the columnar member 100 shown in FIG. 20, the flange portions 52 and 54 of the plate-shaped member 50 are joined to the flange portions 18 and 20 of the hat-shaped member 10 by spot welding, line welding, or the like. The upper wall 56 of the plate-shaped member 50 may be located on the hat-shaped member 10 side, or may be located on the opposite side of the hat-shaped member 10. Note that FIG. 20 shows a cross section at a position where no recess or hole is provided in the direction of the main axis Om.

以上説明したように本実施形態によれば、曲げ誘起部22の位置で縦壁14にビード部14b,16bを設け、ビード部14b,16bの形状を曲げ誘起部22に向かって広がる形状としたことにより、柱状部材100に圧縮負荷が加えられた場合に、曲げ変形による反力の低下が抑制される。これにより、重量を増加させることなく柱状部材100の衝撃吸収性能が向上される。 As described above, according to the present embodiment, the bead portions 14b and 16b are provided on the vertical wall 14 at the position of the bending inducing portion 22, and the shapes of the bead portions 14b and 16b are made to expand toward the bending inducing portion 22. As a result, when a compression load is applied to the columnar member 100, a decrease in reaction force due to bending deformation is suppressed. This improves the impact absorption performance of the columnar member 100 without increasing the weight.

以下、本実施形態の具体的な実施例について説明する。 Hereinafter, specific examples of this embodiment will be described.

柱状部材100は、曲げ誘起部22およびビード部14b、16bを含むハット形状部材10と、プレート形状部材30とをフランジ部18、20にて点溶接した構造体とした。ハット形状部材10は引張強度1180MPa級の板厚1.6mmの鋼板から構成し、プレート形状部材30は引張強度980MPa級の板厚1.2mmの鋼板から構成した。 The columnar member 100 is a structure in which a hat-shaped member 10 including a bending-inducing portion 22 and bead portions 14b and 16b and a plate-shaped member 30 are spot-welded at flange portions 18 and 20. The hat-shaped member 10 was made of a steel plate having a tensile strength of 1180 MPa and having a plate thickness of 1.6 mm, and the plate-shaped member 30 was made of a steel plate having a tensile strength of 980 MPa and having a plate thickness of 1.2 mm.

点溶接ピッチは30mmとし、スポット溶接の溶接径は6mmとした。また、部材長(図6Aに示すL1)は340mm、ハット形状部材10の高さ(図4に示すH)は72mm、プレート形状部材30の幅(図4に示すW)は160mmとし、全ての柱状部材100およびベース部材モデルの柱状部材102で共通とした。 The point welding pitch was 30 mm, and the welding diameter of spot welding was 6 mm. The member length (L1 shown in FIG. 6A) is 340 mm, the height of the hat-shaped member 10 (H shown in FIG. 4) is 72 mm, and the width of the plate-shaped member 30 (W shown in FIG. 4) is 160 mm. It is common to the columnar member 100 and the columnar member 102 of the base member model.

本発明者らが鋭意検討した結果、ビード部14b、16bの形状と縦壁14,16の角度(図4に示すθ)に応じて、ベース部材モデルに対する反力とエネルギー吸収量が異なることが判明した。 As a result of diligent studies by the present inventors, the reaction force and the amount of energy absorption with respect to the base member model may differ depending on the shapes of the bead portions 14b and 16b and the angles of the vertical walls 14 and 16 (θ shown in FIG. 4). found.

図12は、縦壁14に設けられたビード部14bを詳細に示す模式図である。また、図13は、主軸線Omの方向から柱状部材100を見た場合に、ビード部14bを詳細に示す模式図である。図12及び図13において、h1は上壁12の表面から、上壁12と縦壁14、16との境界に形成されるR部15の下端までの距離を示している。ビード部14b、16bの上端の位置は、上壁12からh1の距離であるR部15の下端の位置とほぼ一致している。図12において、ビード部16bの形状は、主軸線Omの方向の長さI[mm]と高さh[mm]により定まる。ビード部14bは、縦壁14の表面から少しでも突出していれば、上述の効果が得られる。好ましくは、図13に示す縦壁14の表面からのビード部14bの突出量sは、ハット形状部材10の板厚以上である。 FIG. 12 is a schematic view showing in detail the bead portion 14b provided on the vertical wall 14. Further, FIG. 13 is a schematic view showing the bead portion 14b in detail when the columnar member 100 is viewed from the direction of the main axis Om. In FIGS. 12 and 13, h1 indicates the distance from the surface of the upper wall 12 to the lower end of the R portion 15 formed at the boundary between the upper wall 12 and the vertical walls 14 and 16. The positions of the upper ends of the bead portions 14b and 16b substantially coincide with the positions of the lower ends of the R portion 15 which is the distance from the upper wall 12 to h1. In FIG. 12, the shape of the bead portion 16b is determined by the length I [mm] and the height h [mm] in the direction of the main axis Om. If the bead portion 14b protrudes from the surface of the vertical wall 14 as much as possible, the above-mentioned effect can be obtained. Preferably, the amount s of the bead portion 14b protruding from the surface of the vertical wall 14 shown in FIG. 13 is equal to or larger than the plate thickness of the hat-shaped member 10.

(ビード部の形状と反力との関係)
先ず、長さIおよび高さhに応じたビード部14b、16bの形状のバリエーションと、反力との関係について検討した結果を示す。図5に示したような、ウェブ面の長手方向中央に曲げ誘起部22を形成したベース部材モデルの柱状部材102を基準として、図3に示した本発明例の柱状部材100との反力の比較をCAEにて実施した。
(Relationship between the shape of the bead and the reaction force)
First, the results of examining the relationship between the variation in the shapes of the bead portions 14b and 16b according to the length I and the height h and the reaction force are shown. The reaction force with the columnar member 100 of the example of the present invention shown in FIG. 3 is based on the columnar member 102 of the base member model in which the bending inducing portion 22 is formed in the center of the longitudinal direction of the web surface as shown in FIG. The comparison was carried out by CAE.

反力の検討では、図12に示すビード部14b、16bの主軸線Omの方向の長さI[mm]、ビード部14b、16bの高さh[mm]について複数のバリエーションを用意し、ビード部14b、16bのサイズのバリエーション毎に、図9と同様のストロークと反力との関係を示す特性を得た。 In the examination of the reaction force, a plurality of variations were prepared for the length I [mm] of the bead portions 14b and 16b in the direction of the main axis Om and the height h [mm] of the bead portions 14b and 16b shown in FIG. For each of the size variations of the portions 14b and 16b, the same characteristics as in FIG. 9 showing the relationship between the stroke and the reaction force were obtained.

この際、図6Aと同様に、柱状部材102の両端の治具40の孔42に挿入された回転軸を互いに近づけた場合の変形を解析した。図6Aにおいて、柱状部材102の長手方向で端部からL2=67mm、高さ方向で上壁12からL3=15mm、の位置に設けられた孔42に対し、柱状部材102の幅方向を軸とする回転軸が挿入され、これらの回転軸を500mm/sの速度で互いに近づけることで強制変位を付与し、柱状部材100,102の曲げ変形を解析した。 At this time, similarly to FIG. 6A, the deformation when the rotation axes inserted into the holes 42 of the jig 40 at both ends of the columnar member 102 were brought close to each other was analyzed. In FIG. 6A, the width direction of the columnar member 102 is the axis with respect to the hole 42 provided at the position of L2 = 67 mm from the end in the longitudinal direction of the columnar member 102 and L3 = 15 mm from the upper wall 12 in the height direction. The rotating shafts were inserted, and forced displacement was applied by bringing these rotating shafts closer to each other at a speed of 500 mm / s, and bending deformation of the columnar members 100 and 102 was analyzed.

図14は、ビード部14b、16bの形状のバリエーション毎に、ストロークと反力との関係を示す特性図である。ビード部14b、16bの形状のバリエーションとして、主軸線Omの方向の長さI[mm]、高さh[mm]が異なるものを複数用意し、図14に示すストロークと反力の特性C1〜C4を測定した。特性C1〜C4において、長さI[mm]、高さh[mm]の高さHに対する比率は、以下の通りである。なお、図14に示す特性C1、特性C2は、図8に示した特性C1、特性C2と同一である。 FIG. 14 is a characteristic diagram showing the relationship between the stroke and the reaction force for each variation of the shapes of the bead portions 14b and 16b. As variations in the shapes of the bead portions 14b and 16b, a plurality of those having different lengths I [mm] and height h [mm] in the direction of the main axis Om are prepared, and the stroke and reaction force characteristics C1 to those shown in FIG. 14 are prepared. C4 was measured. In the characteristics C1 to C4, the ratios of the length I [mm] and the height h [mm] to the height H are as follows. The characteristics C1 and C2 shown in FIG. 14 are the same as the characteristics C1 and C2 shown in FIG.

Figure 2021178592
Figure 2021178592

図14に示すように、ベース部材モデル(特性C2)に対する比較では、特性C1の反力が最も大きく、次いで特性C3、特性C4の順で反力が大きかった。 As shown in FIG. 14, in the comparison with the base member model (characteristic C2), the reaction force of the characteristic C1 was the largest, followed by the characteristic C3 and the characteristic C4 in that order.

(エネルギー吸収量)
また、上記と同じ条件で柱状部材100に強制変位を付与し、ビード部14b、16bのサイズ(長さI、高さh)と柱状部材100のエネルギー吸収性能の関係を、ベース部材モデルにおけるエネルギー吸収量と比較することで検討した。また、柱状部材100の縦壁14,16の角度θとエネルギー吸収性能の関係も同様に導出した。
(Energy absorption)
Further, forced displacement is applied to the columnar member 100 under the same conditions as described above, and the relationship between the sizes (length I, height h) of the bead portions 14b and 16b and the energy absorption performance of the columnar member 100 is determined by the energy in the base member model. It was examined by comparing with the amount of absorption. Further, the relationship between the angles θ of the vertical walls 14 and 16 of the columnar member 100 and the energy absorption performance was also derived in the same manner.

上記と同様、ビード部14b、16bのサイズは、縦壁14,16の高さHに対する比率で表し、長さIと高さhのそれぞれについて、比率0.1, 0.2, 0.25, 0.33, 0.4, 0.5, 0.75, 1.0のバリエーションを準備した。縦壁角度のバリエーションは、50[deg],60[deg],70[deg], 80[deg]の4種類とした。 Similar to the above, the sizes of the bead portions 14b and 16b are expressed by the ratio of the vertical walls 14 and 16 to the height H, and the ratios of the length I and the height h are 0.1, 0.2 and 0.25, respectively. , 0.33, 0.4, 0.5, 0.75, 1.0 variations were prepared. There were four types of vertical wall angle variations: 50 [deg], 60 [deg], 70 [deg], and 80 [deg].

長さIを検討する場合は、高さHに対する高さhの比率を0.33とし、縦壁角度を80[deg]とした。高さhを検討する場合は、高さHに対する長さIの比率を0.33とし、縦壁角度を80[deg]とした。縦壁角度を検討する場合は、高さHに対する高さhの比率を0.33とし、高さHに対する長さIの比率を0.33とした。それぞれの水準を以下の表2に示す。 When the length I was examined, the ratio of the height h to the height H was set to 0.33, and the vertical wall angle was set to 80 [deg]. When considering the height h, the ratio of the length I to the height H was set to 0.33, and the vertical wall angle was set to 80 [deg]. When examining the vertical wall angle, the ratio of the height h to the height H was set to 0.33, and the ratio of the length I to the height H was set to 0.33. Each level is shown in Table 2 below.

Figure 2021178592
Figure 2021178592

図15A〜図15Cに検討結果を示す。図15A〜図15Cでは、縦軸にベース部材モデルにおけるエネルギー吸収量に対する、検討対象の柱状部材100のエネルギー吸収量の比率(エネルギー吸収量比)を示している。この比率が1より大きい場合、ベース部材モデルよりもエネルギー吸収量が大きくなる。 The examination results are shown in FIGS. 15A to 15C. In FIGS. 15A to 15C, the vertical axis shows the ratio of the energy absorption amount of the columnar member 100 to be examined (energy absorption amount ratio) to the energy absorption amount in the base member model. When this ratio is larger than 1, the amount of energy absorbed is larger than that of the base member model.

図15Aは、ビード部14b、16bの長さIとエネルギー吸収量比の関係を示している。図15Aにおいて、横軸は、長さI[mm]の高さHに対する比率I/Hを示している。図15Aに示すように、I/Hが0.5未満であれば、ベース部材に対するエネルギー吸収量比が1よりも大きかった。 FIG. 15A shows the relationship between the length I of the bead portions 14b and 16b and the energy absorption amount ratio. In FIG. 15A, the horizontal axis indicates the ratio I / H of the length I [mm] to the height H. As shown in FIG. 15A, when the I / H was less than 0.5, the energy absorption ratio to the base member was larger than 1.

図15Bは、ビード部14b、16bの高さhとエネルギー吸収量比の関係を示している。図15Aにおいて、横軸は、高さh[mm]の高さHに対する比率h/Hを示している。図15Bに示すように、h/Hが0.75未満であれば、ベース部材に対するエネルギー吸収量比が1よりも大きかった。 FIG. 15B shows the relationship between the height h of the bead portions 14b and 16b and the energy absorption amount ratio. In FIG. 15A, the horizontal axis indicates the ratio h / H of the height h [mm] to the height H. As shown in FIG. 15B, when h / H was less than 0.75, the energy absorption ratio with respect to the base member was larger than 1.

図15Cは、縦壁角度とエネルギー吸収量比の関係を示している。図15Cにおいて、横軸は縦壁角度を示している。図15Cに示すように、縦壁角度が50[deg]を超えていれば、ベース部材モデルに対するエネルギー吸収量比が1よりも大きかった。 FIG. 15C shows the relationship between the vertical wall angle and the energy absorption ratio. In FIG. 15C, the horizontal axis indicates the vertical wall angle. As shown in FIG. 15C, when the vertical wall angle exceeded 50 [deg], the energy absorption ratio with respect to the base member model was larger than 1.

なお、図15A、図15Bにおいて、横軸の比率(I/H,h/H)が0.0の場合のエネルギー吸収量比のデータは、ビード部14b、16bが設けられていないベース部材での結果を示している。 In addition, in FIGS. 15A and 15B, the data of the energy absorption amount ratio when the ratio (I / H, h / H) on the horizontal axis is 0.0 is the data of the base member not provided with the bead portions 14b and 16b. The result of is shown.

(R部からビード部の上端までの距離)
柱状部材100が主軸線Omの方向に圧縮負荷を受けると、R部15で比較的大きな反力が生じる。このため、ビード部14b、16bがR部15まで侵入していると、R部15で発生する反力が減少してしまい、柱状部材100の衝突エネルギー吸収能力が低下する。このため、ビード部14b、16bの上端の位置は、R部15よりも下に位置していることが好ましい。
(Distance from R part to the upper end of bead part)
When the columnar member 100 receives a compressive load in the direction of the main axis Om, a relatively large reaction force is generated in the R portion 15. Therefore, when the bead portions 14b and 16b penetrate to the R portion 15, the reaction force generated in the R portion 15 decreases, and the collision energy absorption capacity of the columnar member 100 decreases. Therefore, it is preferable that the upper ends of the bead portions 14b and 16b are located below the R portion 15.

より好ましくは、ビード部14b、16bの上端の位置は、上壁12からh1の距離であるR部15の下端の位置と一致していることが好ましい。この構成によれば、柱状部材100に圧縮負荷が加えられた場合に、R部15で大きな反力を生じさせるとともに、早期に凹み13dの向かい合う内壁13eを衝突させることができる。 More preferably, the positions of the upper ends of the bead portions 14b and 16b coincide with the positions of the lower ends of the R portion 15 which is the distance from the upper wall 12 to h1. According to this configuration, when a compressive load is applied to the columnar member 100, a large reaction force can be generated in the R portion 15 and the inner walls 13e facing the recesses 13d can be collided at an early stage.

一方、ビード部14b、16bの上端の位置が、R部15の下端の位置よりも下に位置している場合であっても、ベース部材モデルに対する反力を高めることは可能である。 On the other hand, even when the position of the upper end of the bead portions 14b and 16b is located below the position of the lower end of the R portion 15, it is possible to increase the reaction force against the base member model.

図16は、図12と同様に、縦壁14に設けられたビード部14bを詳細に示す模式図であって、ビード部14b、16bの上端の位置とR部15の下端の位置との間に間隔sを設けた例を示している。 FIG. 16 is a schematic view showing in detail the bead portion 14b provided on the vertical wall 14, as in FIG. 12, between the positions of the upper ends of the bead portions 14b and 16b and the positions of the lower ends of the R portion 15. An example in which an interval s is provided is shown.

図17は、図14と同様に柱状部材100,102のストロークと反力との関係を示す特性図であって、図14の特性C1、特性C2とともに、図16に示す間隔sを5mmとした柱状部材100における特性C5を示している。 FIG. 17 is a characteristic diagram showing the relationship between the stroke and the reaction force of the columnar members 100 and 102 as in FIG. 14, and the interval s shown in FIG. 16 is set to 5 mm together with the characteristics C1 and C2 of FIG. The characteristic C5 in the columnar member 100 is shown.

図17に示すように、ビード部14b、16bの上端の位置とR部15の下端の位置との間に5mmの間隔を設けた柱状部材100の特性C5は、特性C1に比べると反力は低下するものの、ベース部材モデルの特性C2よりも反力は大きく上回っている。したがって、図16に示したように、ビード部14b、16bの上端の位置とR部15の下端の位置との間に間隔sを設けてもよい。この場合、ビード部14b、16bの上端の位置とR部15の下端の位置を必ずしも一致させなくてもよいことから、ビード部14b、16bの設計の自由度が大きくなり、且つ製造コストの低減が見込まれる。 As shown in FIG. 17, the characteristic C5 of the columnar member 100 having a gap of 5 mm between the positions of the upper ends of the bead portions 14b and 16b and the positions of the lower ends of the R portion 15 has a reaction force higher than that of the characteristic C1. Although it decreases, the reaction force greatly exceeds the characteristic C2 of the base member model. Therefore, as shown in FIG. 16, a gap s may be provided between the positions of the upper ends of the bead portions 14b and 16b and the positions of the lower ends of the R portion 15. In this case, since the positions of the upper ends of the bead portions 14b and 16b and the positions of the lower ends of the R portion 15 do not necessarily match, the degree of freedom in designing the bead portions 14b and 16b is increased and the manufacturing cost is reduced. Is expected.

10,50 ハット形状部材
12,56 上壁
12a 側縁部
13a、13d 凹み
13b,13e 内壁
14 縦壁
14a,16a 縁部
14b,16b ビード部
15 R部
16 縦壁
18,20,52,54 フランジ部
22 曲げ誘起部
30 プレート形状部材
40 治具
42 孔
100,102 柱状部材
110 車体フロア
10,50 Hat-shaped member 12,56 Upper wall 12a Side edge 13a, 13d Indentation 13b, 13e Inner wall 14 Vertical wall 14a, 16a Edge 14b, 16b Bead 15 R 16 Vertical wall 18, 20, 52, 54 Flange Part 22 Bending-inducing part 30 Plate-shaped member 40 Jig 42 Hole 100, 102 Columnar member 110 Body floor

Claims (7)

主軸線に沿って延設された上壁と、
前記上壁の両側縁に沿って延設された縦壁と、
前記縦壁において前記上壁とは反対側の縁部に沿って延設されたフランジ部と、
を有し、前記主軸線に垂直な断面が略ハット形を呈するハット形状部材を備える柱状部材であって、
前記上壁に設けられ、前記主軸線の方向に圧縮負荷を受けた際に、前記柱状部材の曲げの起点となる曲げ誘起部と、
前記縦壁上において、前記主軸線の方向で前記曲げ誘起部に対応する位置に設けられ、前記曲げ誘起部に向けて広がる形状を有するビード部と、
を有する、柱状部材。
The upper wall extending along the main axis and
A vertical wall extending along both side edges of the upper wall,
A flange portion extending along the edge of the vertical wall opposite to the upper wall, and a flange portion.
A columnar member comprising a hat-shaped member having a substantially hat-shaped cross section perpendicular to the main axis.
A bending-inducing portion provided on the upper wall and serving as a starting point for bending of the columnar member when a compression load is applied in the direction of the main axis.
On the vertical wall, a bead portion provided at a position corresponding to the bending-inducing portion in the direction of the main axis and having a shape extending toward the bending-inducing portion, and a bead portion.
A columnar member having.
前記ビード部は、前記縦壁の外側に突出している、請求項1に記載の柱状部材。 The columnar member according to claim 1, wherein the bead portion projects to the outside of the vertical wall. 前記ビード部の前記主軸線に沿った方向の長さは、前記縦壁の高さの0.5倍未満である、請求項2に記載の柱状部材。 The columnar member according to claim 2, wherein the length of the bead portion in the direction along the main axis is less than 0.5 times the height of the vertical wall. 前記ビード部の高さは、前記縦壁の高さの0.75倍未満である、請求項2又は3に記載の柱状部材。 The columnar member according to claim 2 or 3, wherein the height of the bead portion is less than 0.75 times the height of the vertical wall. 前記ビード部の上端の位置は、前記上壁と前記縦壁とを接続するR部よりも下に位置する、請求項1〜4のいずれか1項に記載の柱状部材。 The columnar member according to any one of claims 1 to 4, wherein the position of the upper end of the bead portion is located below the R portion connecting the upper wall and the vertical wall. 前記曲げ誘起部は、前記上壁に設けられ、前記主軸線と直交する方向に延在する凹部又は孔から構成される、請求項1〜5のいずれか1項に記載の柱状部材。 The columnar member according to any one of claims 1 to 5, wherein the bending-inducing portion is provided on the upper wall and is composed of recesses or holes extending in a direction orthogonal to the main axis. 車両のフロントサイドメンバー又はリアサイドメンバーを構成する、請求項1〜6のいずれか1項に記載の柱状部材。 The columnar member according to any one of claims 1 to 6, which constitutes the front side member or the rear side member of the vehicle.
JP2020085424A 2020-05-14 2020-05-14 columnar member Active JP7453538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085424A JP7453538B2 (en) 2020-05-14 2020-05-14 columnar member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085424A JP7453538B2 (en) 2020-05-14 2020-05-14 columnar member

Publications (2)

Publication Number Publication Date
JP2021178592A true JP2021178592A (en) 2021-11-18
JP7453538B2 JP7453538B2 (en) 2024-03-21

Family

ID=78510858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085424A Active JP7453538B2 (en) 2020-05-14 2020-05-14 columnar member

Country Status (1)

Country Link
JP (1) JP7453538B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136660A (en) * 1979-04-11 1980-10-24 Fuji Heavy Ind Ltd Frame structure
JPH107032A (en) * 1996-06-25 1998-01-13 Daihatsu Motor Co Ltd Structure of towing hook for vehicle
JP2015020474A (en) * 2013-07-16 2015-02-02 新日鐵住金株式会社 Thin-walled columnar member enhancing maximum reaction force and absorption energy in bending deformation
JP2015020476A (en) * 2013-07-16 2015-02-02 新日鐵住金株式会社 Thin-walled columnar member enhancing maximum reaction force and absorption energy in bending deformation
JP2020040593A (en) * 2018-09-13 2020-03-19 ダイハツ工業株式会社 Vehicle front part structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136660A (en) * 1979-04-11 1980-10-24 Fuji Heavy Ind Ltd Frame structure
JPH107032A (en) * 1996-06-25 1998-01-13 Daihatsu Motor Co Ltd Structure of towing hook for vehicle
JP2015020474A (en) * 2013-07-16 2015-02-02 新日鐵住金株式会社 Thin-walled columnar member enhancing maximum reaction force and absorption energy in bending deformation
JP2015020476A (en) * 2013-07-16 2015-02-02 新日鐵住金株式会社 Thin-walled columnar member enhancing maximum reaction force and absorption energy in bending deformation
JP2020040593A (en) * 2018-09-13 2020-03-19 ダイハツ工業株式会社 Vehicle front part structure

Also Published As

Publication number Publication date
JP7453538B2 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
JP4900095B2 (en) Auto body floor structure
JP6315292B2 (en) Vehicle frame structure
JP5549964B2 (en) Frame structure for vehicles with excellent collision resistance
WO2018207668A1 (en) Structural member, vehicle structure, and bumper reinforcement
CN107792183B (en) Rear vehicle body structure of vehicle
WO2019146789A1 (en) Shock-absorbing member
CN113490617B (en) Structural member for vehicle
KR101779568B1 (en) Shock absorbing member
JPWO2018131516A1 (en) Structural member and structural member for vehicle
US9296430B2 (en) Front floor panel
JP2021178592A (en) Columnar member
WO2021230331A1 (en) Columnar member
JP5488769B2 (en) Shock absorbing member
JP2019166855A (en) Vehicular structural member and vehicle
JP4362952B2 (en) Bumpy stay
JP2022135071A (en) Structural member of automobile body
JP2019189022A (en) Bumper member
JP7323823B2 (en) Reinforcement structure for automotive exterior panels
JP7567968B1 (en) Automotive subframe structure
JP7376836B2 (en) Structural components of automobile bodies
JP7192837B2 (en) Vehicle structural member
EP3604086B1 (en) Shock-absorbing member and side member of automobile
JP2022129444A (en) Impact absorption member
JP2024148936A (en) Axial crushing shock absorbing material
JP2024524226A (en) Vehicle side sill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R151 Written notification of patent or utility model registration

Ref document number: 7453538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151