JP2021177752A - LOW-TEMPERATURE ACIDIC PROTEASE PsAPA, AND PREPARATION METHOD AND APPLICATION OF THE SAME - Google Patents

LOW-TEMPERATURE ACIDIC PROTEASE PsAPA, AND PREPARATION METHOD AND APPLICATION OF THE SAME Download PDF

Info

Publication number
JP2021177752A
JP2021177752A JP2020141218A JP2020141218A JP2021177752A JP 2021177752 A JP2021177752 A JP 2021177752A JP 2020141218 A JP2020141218 A JP 2020141218A JP 2020141218 A JP2020141218 A JP 2020141218A JP 2021177752 A JP2021177752 A JP 2021177752A
Authority
JP
Japan
Prior art keywords
psapa
acidic protease
protease
sequence
cdna sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020141218A
Other languages
Japanese (ja)
Other versions
JP7008767B2 (en
Inventor
郭玉杰
Yujie Guo
張春暉
Chun Hui Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atomic Energy Utilization Res Institute Of Chinese Academy Of Agricultural Sciences
ATOMIC ENERGY UTILIZATION RESEARCH INSTITUTE OF CHINESE ACADEMY OF AGRICULTURAL SCIENCES
Original Assignee
Atomic Energy Utilization Res Institute Of Chinese Academy Of Agricultural Sciences
ATOMIC ENERGY UTILIZATION RESEARCH INSTITUTE OF CHINESE ACADEMY OF AGRICULTURAL SCIENCES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Utilization Res Institute Of Chinese Academy Of Agricultural Sciences, ATOMIC ENERGY UTILIZATION RESEARCH INSTITUTE OF CHINESE ACADEMY OF AGRICULTURAL SCIENCES filed Critical Atomic Energy Utilization Res Institute Of Chinese Academy Of Agricultural Sciences
Publication of JP2021177752A publication Critical patent/JP2021177752A/en
Application granted granted Critical
Publication of JP7008767B2 publication Critical patent/JP7008767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide a low-temperature acidic protease PsAPA, and a preparation method and application thereof.SOLUTION: An amino acid sequence of PsAPA of the present invention is as shown in sequence number 1; its DNA sequence is as shown in sequence number 2, and a cDNA sequence is as shown in sequence number 4. Its preparation method is: S1 preparing a recombinant expression vector pPIC9-PsAPA; S2 transforming into artificial strain Pichia pastoris Gs115; S3 fermenting and expressing an artificial strain into which a target gene is introduced to obtain crude enzyme liquid of recombinant acidic protease; and S4 concentrating and purifying the crude enzyme liquid to obtain purified recombinant protease PsAPA. The acidic protease PsAPA is applied for extracting bone collagen. In the present invention, acidic protease PsAPA is used in an extraction process of bone collagen by an enzymatic method, and the extraction rate of the bone collagen can be increased.SELECTED DRAWING: Figure 5

Description

本発明はバイオテクノロジー分野に関し、より具体的には、低温酸性プロテアーゼPsAPA並びにその調製方法及び応用に関する。 The present invention relates to the field of biotechnology, and more specifically to the low temperature acidic protease PsAPA and its preparation method and application.

家畜、家禽の骨には、機能性食品の調製に重要な原料であるコラーゲンが豊富に含まれる。骨コラーゲンの一般的な抽出方法には、酸、アルカリ、酵素法などの工程があり、このうち骨コラーゲンは酵素法による抽出が最も高効率である。骨コラーゲンは酸性溶液中で比較的高い溶解度を有するため、骨コラーゲンの抽出は、通常、低pH条件下で行う。抽出過程で酸性プロテアーゼを添加して、コラーゲンのテロペプチドの酵素分解を促進することができ、タンパクの架橋度を低下させ、骨コラーゲンの抽出効率を高める。他に、コラーゲンのらせんが熱によりほどけるのを防止するため、骨コラーゲンの抽出は、通常、低温条件下で行われるが;酵素法による抽出過程で通常使用するペプシンは常温プロテアーゼであり、骨コラーゲンの低温抽出過程では抽出率が低いなどの問題が存在する。 The bones of livestock and poultry are rich in collagen, which is an important raw material for the preparation of functional foods. Common methods for extracting bone collagen include steps such as acid, alkali, and enzymatic methods. Of these, bone collagen is most efficiently extracted by the enzymatic method. Since bone collagen has a relatively high solubility in an acidic solution, extraction of bone collagen is usually performed under low pH conditions. An acidic protease can be added during the extraction process to promote enzymatic degradation of collagen telopeptides, reduce the degree of protein cross-linking, and increase the efficiency of bone collagen extraction. Besides, in order to prevent the collagen spiral from unraveling due to heat, the extraction of bone collagen is usually performed under low temperature conditions; the pepsin normally used in the enzymatic extraction process is a room temperature protease and bone. In the low temperature extraction process of collagen, there are problems such as low extraction rate.

本発明の1つの目的は、少なくとも上記問題を解決し、少なくとも以下に説明する利点を提供することである。 One object of the present invention is to at least solve the above problems and provide at least the advantages described below.

本発明のさらなる目的は、骨コラーゲンの抽出率を高めることができる、酸性プロテアーゼPsAPAを提供することである。 A further object of the present invention is to provide an acidic protease PsAPA capable of increasing the extraction rate of bone collagen.

本発明の別の目的は、酸性プロテアーゼPsAPAの調製方法を提供することである。 Another object of the present invention is to provide a method for preparing the acidic protease PsAPA.

本発明の他の目的は、骨コラーゲンの抽出における酸性プロテアーゼPsAPAの応用を提供することである。 Another object of the present invention is to provide an application of the acidic protease PsAPA in the extraction of bone collagen.

本発明のこれらの目的及びその他の利点を実現するため、酸性プロテアーゼPsAPAのアミノ酸配列は配列番号1に示す通りである。 In order to realize these purposes and other advantages of the present invention, the amino acid sequence of the acidic protease PsAPA is as shown in SEQ ID NO: 1.

好ましくは、前記酸性プロテアーゼPsAPAのDNA配列は配列番号2に示す通りであり、前記酸性プロテアーゼPsAPAのcDNA配列は配列番号4に示す通りである。 Preferably, the DNA sequence of the acidic protease PsAPA is as shown in SEQ ID NO: 2, and the cDNA sequence of the acidic protease PsAPA is as shown in SEQ ID NO: 4.

好ましくは、前記酸性プロテアーゼPsAPAの調製方法は、以下の工程を含む。
S1、最初にPenicillium sp.XT7の全RNA配列を抽出し、逆転写によりPenicillium sp.XT7のcDNA配列を得る。Penicillium sp.XT7のcDNA配列をテンプレートとして酸性プロテアーゼPsAPAのcDNA配列を増幅させ、その後、酸性プロテアーゼPsAPAのcDNA配列をピキア酵母発現ベクターpPIC9に接続して、組換え発現ベクターpPIC9−PsAPAを得る。
S2、組換え発現ベクターpPIC9−PsAPAを宿主細胞のピキア酵母に形質転換し、組換え菌株を得る。
S3、組換え菌株を30℃条件下で2〜3d培養し、メタノール誘導下で組換え菌株を発現させて粗酵素液を生成する。
S4、粗酵素液を濃縮、精製することにより、精製した組換えプロテアーゼPsAPAを得る。
Preferably, the method for preparing the acidic protease PsAPA comprises the following steps.
S1, first Penicillium sp. The entire RNA sequence of XT7 was extracted, and reverse transcription was performed to detect Penicillium sp. Obtain the cDNA sequence of XT7. Penicillium sp. The cDNA sequence of the acidic protease PsAPA is amplified using the cDNA sequence of XT7 as a template, and then the cDNA sequence of the acidic protease PsAPA is connected to the Pikia yeast expression vector pPIC9 to obtain a recombinant expression vector pPIC9-PsAPA.
S2, recombinant expression vector pPIC9-PsAPA is transformed into host cell Pichia yeast to obtain a recombinant strain.
S3, the recombinant strain is cultured for 2 to 3 d under the condition of 30 ° C., and the recombinant strain is expressed under the induction of methanol to produce a crude enzyme solution.
Purified recombinant protease PsAPA is obtained by concentrating and purifying S4, a crude enzyme solution.

4、工程S1において、Penicillium sp.XT7のcDNAをテンプレートとして酸性プロテアーゼPsAPAのcDNA配列を増幅させるのは、具体的に以下の工程:
S1a、酸性プロテアーゼPsAPAの特異的プライマーPsAPA_fヌクレオチド配列をCGGAATTCATGGCCGCTGCTGCCCCAA、PsAPA_rヌクレオチド配列をTTGCGGCCGCCTAAGCCTGCTTGGCGAAGCCAAGに設計し、設計したPsAPA_f及びPsAPA_rを北京華大生物有限公司に送って合成する;
S1b、逆転写して得られたPenicillium sp.XT7のcDNAをテンプレート、PsAPA_f、PsAPA_rをプライマーとしてPCR増幅を行い、酸性プロテアーゼPsAPAのcDNA配列を得る;を含むことを特徴とする、請求項3に記載の酸性プロテアーゼPsAPAの調製方法。
4. In step S1, Penicillium sp. Amplifying the cDNA sequence of the acidic protease PsAPA using the cDNA of XT7 as a template is specifically described in the following steps:
S1a, specific primer PsAPA_f nucleotide sequence of acidic protease PsAPA is designed to CGGAATTCATGGCCGCTGCCCCAA, PsAPA_r nucleotide sequence is designed to TTGCGGCCGCCTAAGCCTCTGCTTGGCGAAGCCAAG, and PsAPA_f and PsAPA
S1b, Penicillium sp. Obtained by reverse transcription. The method for preparing an acidic protease PsAPA according to claim 3, wherein the cDNA of XT7 is used as a template and PsAPA_f and PsAPA_r are used as primers for PCR amplification to obtain a cDNA sequence of the acidic protease PsAPA.

好ましくは、工程S1において、Penicillium sp.XT7のcDNA配列をテンプレートとして酸性プロテアーゼPsAPAのcDNA配列を増幅させる条件は、95℃5min;94℃30s、60℃30s、72℃2min、35サイクル;72℃10minである。 Preferably, in step S1, Penicillium sp. The conditions for amplifying the cDNA sequence of the acidic protease PsAPA using the cDNA sequence of XT7 as a template are 95 ° C. 5 min; 94 ° C. 30s, 60 ° C. 30s, 72 ° C. 2 min, 35 cycles; 72 ° C. 10 min.

好ましくは、前記酸性プロテアーゼPsAPAの応用であり、前記酸性プロテアーゼPsAPAを骨コラーゲンの抽出に用いる応用である。 Preferably, it is an application of the acidic protease PsAPA, and is an application of using the acidic protease PsAPA for extraction of bone collagen.

本発明は、以下の有益な効果を少なくとも含む。
骨コラーゲンを酵素法で抽出する過程において、本発明で提供する酸性プロテアーゼPsAPAを使用し、骨コラーゲンの抽出率を高めることができる。
The present invention includes at least the following beneficial effects:
In the process of extracting bone collagen by an enzymatic method, the acidic protease PsAPA provided in the present invention can be used to increase the extraction rate of bone collagen.

本発明のその他の利点、目標及び特徴は、一部を以下の説明により具体的に示し、一部は本発明についての研究及び実践により、当業者に理解される。 Other advantages, goals and features of the present invention will be expressed in part in the following description and will be understood by those skilled in the art through research and practice of the present invention.

図1は、本発明の1つの技術案に記載する酸性プロテアーゼPsAPAの様々なpH条件下における相対酵素活性の曲線図である。FIG. 1 is a curve diagram of the relative enzyme activity of the acidic protease PsAPA described in one of the present inventions under various pH conditions. 図2は、本発明の1つの技術案に記載する酸性プロテアーゼPsAPAのpH安定性の曲線図である。FIG. 2 is a curve diagram of the pH stability of the acidic protease PsAPA described in one of the technical proposals of the present invention. 図3は、本発明の1つの技術案に記載する酸性プロテアーゼPsAPAの様々な温度下における相対酵素活性の曲線図である。FIG. 3 is a curve diagram of the relative enzyme activity of the acidic protease PsAPA described in one of the technical proposals of the present invention under various temperatures. 図4は、本発明の1つの技術案に記載する酸性プロテアーゼPsAPAの温度安定性の曲線図である。FIG. 4 is a curve diagram of the temperature stability of the acidic protease PsAPA described in one of the technical proposals of the present invention. 図5は、本発明の1つの技術案に記載する骨コラーゲン抽出率の比較図である。FIG. 5 is a comparative diagram of the bone collagen extraction rate described in one of the technical proposals of the present invention. 図6は、本発明の1つの技術案において酵素法で抽出し、得られた骨コラーゲンのSDS−PAGE分析図である。FIG. 6 is an SDS-PAGE analysis diagram of bone collagen extracted by an enzymatic method in one of the technical proposals of the present invention.

注:PSCはペプシン抽出したウシ骨コラーゲンを表し、ESCは酸性プロテアーゼPsAPAで処理したウシ骨コラーゲンを表す。 Note: PSC represents pepsin-extracted bovine bone collagen and ESC represents bovine bone collagen treated with the acidic protease PsAPA.

以下、実施例を組み合わせて本発明をさらに詳細に説明する。当業者は明細書の文章を参照することによって、実施することができる。 Hereinafter, the present invention will be described in more detail by combining examples. Those skilled in the art can carry out this by referring to the text of the specification.

試験材料及び試薬
1、菌株及びベクター:タンパクの異種発現に用いる人工菌株はピキア酵母(Pichia pastoris GS115)であり、生工生物工程(上海)股フン有限公司から購入した。ピキア酵母発現ベクターpPIC9及び菌株GS115は、Invitrogen社から購入した。
2、酵素類及びその他の生化学試薬:エンドヌクレアーゼはTaKaRa社から購入し、リガーゼはInvitrogen社から購入し、その他はいずれも国産試薬(いずれも生化試剤公司から購入することができる)である。
3、酵素産生培地:1Lの脱イオン水中に30g/Lの小麦ふすま、30g/Lのコーンコブ粉末、30g/Lの大豆粕、5g/Lの大麦グルカン、5g/Lの(NH)SO、1g/LのKHPO、0.5g/LのMgSO・7HO、0.01g/LのFeSO・7HO、0.2g/LのCaClを添加し、温度121℃、高圧下で20min蒸気滅菌処理を行う。
4、大腸菌の培地:1%酵母抽出物、2%ペプトン、1.34%YNB、0.000049<Biotin、1%グリセリン(v/v)。
5、BMGY培地:1%酵母抽出物、2%ペプトン、1.34%YNB、0.000049<Biotin、1%グリセリン(v/v)。
6、BMMY培地:0.5%メタノールでグリセリンを代替する以外、他の成分はいずれもBMGYと同じであり、pHは4.0である。
注:以下の実施例で具体的に説明していない分子生物学実験の方法は、いずれも「分子克隆実験指南(Molecular Cloning:A Laboratory Manual)」(第3版)J.Sambrookに記載の具体的な方法を参照して行うか、又はキット及び製品の説明書に基づいて行う。
Test materials and reagents 1. Strains and vectors: The artificial strain used for heterologous expression of protein was Pichia pastoris GS115, which was purchased from Biotechnology (Shanghai) Crotch Fun Co., Ltd. The Pichia yeast expression vector pPIC9 and the strain GS115 were purchased from Invitrogen.
2. Enzymes and other biochemical reagents: Endonucleases are purchased from TaKaRa, ligases are purchased from Invitrogen, and all others are domestic reagents (both can be purchased from Biochemical Agents).
3. Enzyme-producing medium: 30 g / L wheat bran, 30 g / L corn cob powder, 30 g / L soybean cake, 5 g / L barley glucan, 5 g / L (NH 4 ) SO 4 in 1 L of deionized water. , 1 g / L of KH 2 PO 4, was added MgSO 4 · 7H 2 O in 0.5g / L, FeSO 4 · 7H 2 O of 0.01 g / L, the CaCl 2 of 0.2 g / L, temperature 121 Perform 20 min steam sterilization treatment at ° C and high pressure.
4. E. coli medium: 1% yeast extract, 2% peptone, 1.34% YNB, 0.000049 <Biotin, 1% glycerin (v / v).
5. BMGY medium: 1% yeast extract, 2% peptone, 1.34% YNB, 0.000049 <Biotin, 1% glycerin (v / v).
6. BMMY medium: All other components are the same as BMGY except that 0.5% methanol replaces glycerin, and the pH is 4.0.
Note: All of the methods of molecular biology experiments not specifically described in the following examples are "Molecular Cloning (A Laboratory Manual)" (3rd edition). It is performed by referring to the specific method described in Sambrook, or based on the instruction manual of the kit and the product.

実施例
1、酸性プロテアーゼPsAPAのDNA配列を得る
Penicillium sp.XT7のDNA配列を抽出し、−20℃の温度下で保存する。
Example 1. Obtaining the DNA sequence of the acidic protease PsAPA. The DNA sequence of XT7 is extracted and stored at a temperature of -20 ° C.

クローニングプライマーPsAPA_f及びPsAPA_rを設計し、プライマーPsAPA_f及びPsAPA_rの配列はそれぞれ配列番号5及び配列番号6である。Penicillium sp.XT7のDNA配列をテンプレートとしてPCR増幅を行い、このうち、増幅条件は95℃5min;94℃30s、60℃30s、72℃2min、35サイクル;72℃10minである。約1100bpのDNA配列が得られ、該DNA配列を回収後、叡博生物技術有限公司に送ってシークエンシングを行う。その遺伝子配列は配列番号2に示され、酸性プロテアーゼPsAPAのDNA配列であり、対応するアミノ酸配列は配列番号1である。 Cloning primers PsAPA_f and PsAPA_r were designed, and the sequences of the primers PsAPA_f and PsAPA_r are SEQ ID NO: 5 and SEQ ID NO: 6, respectively. Penicillium sp. PCR amplification was performed using the DNA sequence of XT7 as a template, and the amplification conditions were 95 ° C. 5 min; 94 ° C. 30s, 60 ° C. 30s, 72 ° C. 2 min, 35 cycles; 72 ° C. 10 min. A DNA sequence of about 1100 bp is obtained, and after collecting the DNA sequence, it is sent to Eibo Biotechnology Co., Ltd. for sequencing. The gene sequence is shown in SEQ ID NO: 2, which is the DNA sequence of the acidic protease PsAPA, and the corresponding amino acid sequence is SEQ ID NO: 1.

2、酸性プロテアーゼPsAPAのcDNA配列を得る
Penicillium sp.XT7のRNA配列を抽出し、さらに逆転写によりPenicillium sp.XT7のcDNA配列を得る。クローニングプライマーPsAPA_f及びPsAPA_rを設計し、プライマーPsAPA_f及びPsAPA_rの配列はそれぞれ配列番号5及び配列番号6である。Penicillium sp.XT7のcDNA配列をテンプレートとしてPCR増幅を行い、cDNA配列を増幅させ、増幅させたcDNA配列を叡博生物技術有限公司に送ってシークエンシングを行う。その遺伝子配列は配列番号4に示され、これは酸性プロテアーゼPsAPAのcDNA配列であり、対応するアミノ酸配列は配列番号1である。
2. Obtain the cDNA sequence of the acidic protease PsAPA. The RNA sequence of XT7 was extracted, and further by reverse transcription, Penicillium sp. Obtain the cDNA sequence of XT7. Cloning primers PsAPA_f and PsAPA_r were designed, and the sequences of the primers PsAPA_f and PsAPA_r are SEQ ID NO: 5 and SEQ ID NO: 6, respectively. Penicillium sp. PCR amplification is performed using the cDNA sequence of XT7 as a template, the cDNA sequence is amplified, and the amplified cDNA sequence is sent to Eibo Biotechnology Co., Ltd. for sequencing. Its gene sequence is set forth in SEQ ID NO: 4, which is the cDNA sequence of the acidic protease PsAPA, and the corresponding amino acid sequence is SEQ ID NO: 1.

酸性プロテアーゼPsAPAのDNA配列及びPsAPAのcDNA配列情報を分析すると、酸性プロテアーゼPsAPAのDNA配列全長は1178bpであり、1つのイントロンを含む。イントロンの塩基配列は配列番号3に示す通りであり、cDNA配列の全長は1122bpである。DNA配列が発現するアミノ酸配列は、ソフトウェアにより、N端にシグナルペプチド配列が存在しないと予測されるため、酸性プロテアーゼPsAPAのDNA配列が発現するアミノ酸配列、及びcDNA配列が発現するアミノ酸配列は同じで、いずれも配列番号1に示す通りである。Blast比較により、Penicillium sp.XT7から分離、クローニングして得られたプロテアーゼをエンコードする遺伝子は比較的高い新規性を有することが証明されている。 When the DNA sequence of the acidic protease PsAPA and the cDNA sequence information of PsAPA are analyzed, the total length of the DNA sequence of the acidic protease PsAPA is 1178 bp, and it contains one intron. The base sequence of the intron is as shown in SEQ ID NO: 3, and the total length of the cDNA sequence is 1122 bp. Since the amino acid sequence expressed by the DNA sequence is predicted by software to have no signal peptide sequence at the N-terminal, the amino acid sequence expressed by the DNA sequence of the acidic protease PsAPA and the amino acid sequence expressed by the cDNA sequence are the same. , Both are as shown in SEQ ID NO: 1. By Blast comparison, Penicillium sp. The gene encoding the protease obtained by isolation and cloning from XT7 has been proven to have relatively high novelty.

3、組換え菌株の調製
(1)組換え菌株の調製
シークエンシングが正確な酸性プロテアーゼPsAPAのcDNAをテンプレートとし、それぞれEcoRI及びNotI制限酵素切断部位を有するプライマーPsAPA_f及びPsAPA_rを設計、合成した。プライマーPsAPA_f及びPsAPA_rの配列はそれぞれ配列番号5及び配列番号6であり、このうち、プライマーPsAPA_f配列の下線部分はEcoRI制限酵素切断部位であり、プライマーPsAPA_r配列の下線部分はNotI制限酵素切断部位である。酸性プロテアーゼPsAPAのcDNAをテンプレートとし、PsAPA_f及びPsAPA_rをプライマーとしてPCR増幅を行い、その後EcoRI及びNotIを利用してPCR産物を酵素切断し、増幅した酸性プロテアーゼPsAPAのcDNA配列を得る。増幅した酸性プロテアーゼPsAPAのcDNA配列をピキア酵母発現ベクターpPIC9に接続し、組換え発現ベクターpPIC9−PsAPAを得る。すなわち酸性プロテアーゼPsAPAのcDNA配列を上記発現ベクターのシグナルペプチド配列の下流に挿入し、シグナルペプチドと正確なリーディングフレームを形成させ、ピキア酵母発現ベクターpPIC9−PsAPAを構築し、その後大腸菌培地中の大腸菌コンピテントセルTrans1中に形質転換する。陽性の形質転換体のDNAシークエンシングを行い、シークエンシングが正確な形質転換体を大量の組換えプラスミドの調製に用いる。制限エンドヌクレアーゼBglIIを用いて発現プラスミドベクターのDNA配列を線形化し、ピキア酵母GS115コンピテントセルに電気的形質転換を行い、さらに30℃の温度下で2〜3日間培養する。MDプレートで成長した形質転換体をピックアップし、さらなる発現実験を行うが、具体的な操作はピキア酵母発現操作のマニュアルを参考のこと。さらに同様の方式でPsAPAシグナルペプチド配列を含むcDNA配列の発現ベクターを構築して形質転換を行う。
3. Preparation of recombinant strains (1) Preparation of recombinant strains Using the cDNA of the acidic protease PsAPA with accurate sequencing as a template, primers PsAPA_f and PsAPA_r having EcoRI and NotI restriction enzyme cleavage sites were designed and synthesized, respectively. The sequences of the primers PsAPA_f and PsAPA_r are SEQ ID NO: 5 and SEQ ID NO: 6, respectively, of which the underlined portion of the primer PsAPA_f sequence is the EcoRI restriction enzyme cleavage site and the underlined portion of the primer PsAPA_r sequence is the NotI restriction enzyme cleavage site. .. PCR amplification is performed using the cDNA of the acidic protease PsAPA as a template and PsAPA_f and PsAPA_r as primers, and then the PCR product is enzymatically cleaved using EcoRI and NotI to obtain the amplified cDNA sequence of the acidic protease PsAPA. The cDNA sequence of the amplified acidic protease PsAPA is connected to the Pichia yeast expression vector pPIC9 to obtain a recombinant expression vector pPIC9-PsAPA. That is, the cDNA sequence of the acidic protease PsAPA is inserted downstream of the signal peptide sequence of the above expression vector to form an accurate reading frame with the signal peptide to construct the Pikia yeast expression vector pPIC9-PsAPA, and then E. coli competence in E. coli medium. Transform into tent cell Trans1. DNA sequencing of positive transformants is performed and transformants with accurate sequencing are used to prepare large quantities of recombinant plasmids. The DNA sequence of the expression plasmid vector is linearized using the restriction endonuclease BglII, electrical transformation is performed on Pikia yeast GS115 competent cells, and the cells are further cultured at a temperature of 30 ° C. for 2 to 3 days. Transformants grown on the MD plate will be picked up for further expression experiments, but for specific operations, refer to the manual for Pichia yeast expression operations. Further, an expression vector of a cDNA sequence containing a PsAPA signal peptide sequence is constructed and transformed in the same manner.

(2)高プロテアーゼ活性形質転換体のスクリーニング
滅菌した爪楊枝を用いて形質転換体が生長したMDプレートから複数のシングルコロニーをピックアップし、番号に応じて別のMDプレートに植菌する。MDプレートを30℃のインキュベータで1〜2日間培養し、コロニーまで成長させる。番号に応じて、順番にMDプレートから形質転換体をピックアップし、3mLのBMGY培地を入れた遠沈管中にそれぞれ対応して接種し、温度30℃、回転速度220rpmの条件下で48h振とう培養する。48h振とう培養した菌液を3000×gで15min遠心分離して上清を除去し、遠沈管中に0.5%メタノールを含む1mLのBMMY培地を添加し、温度30℃、回転速度220rpmの条件下で誘導培養を行う。48h誘導培養を行った後、3000×gで5min遠心分離し、上清を酵素活性の測定に用い、ここから高プロテアーゼ活性の形質転換体をスクリーニングするが、具体的な操作はピキア酵母発現操作マニュアルを参照のこと。
(2) Screening for high protease active transformants Using sterilized toothpicks, a plurality of single colonies are picked up from the MD plate on which the transformants have grown, and inoculated into another MD plate according to the number. The MD plate is cultured in an incubator at 30 ° C. for 1 to 2 days to grow into a colony. Transformants were sequentially picked up from the MD plate according to the number, inoculated correspondingly into a centrifuge tube containing 3 mL of BMGY medium, and cultured with shaking at a temperature of 30 ° C. and a rotation speed of 220 rpm for 48 hours. do. Centrifuge the bacterial solution cultured for 48 hours at 3000 × g for 15 minutes to remove the supernatant, add 1 mL of BMMY medium containing 0.5% methanol to the centrifuge tube, and add 1 mL of BMMY medium at a temperature of 30 ° C. and a rotation speed of 220 rpm. Induction culture is performed under the conditions. After 48h induction culture, centrifuge at 3000 × g for 5 minutes, the supernatant is used for measuring enzyme activity, and transformants with high protease activity are screened from this, but the specific operation is Pichia yeast expression operation. See manual.

4、組換えプロテアーゼPsAPAの調製
(1)組換え菌株pPIC9−PsAPAの発現
酵素活性が比較的高い形質転換体をスクリーニングし、300mLのBMGY液体培地内に接種し、温度30℃、回転速度220rpmの条件下で48h振とう培養する。振とう培養後に5000rpmで5min遠心分離し、上清を除去してから、菌体に0.5%メタノールを含む100mLのBMMY液体培地を添加し、温度30℃、回転速度220rpmの条件下で72h誘導培養を行う。誘導培養の期間、24hごとに1回メタノール溶液を追加してメタノールの損失を補い、メタノール濃度を0.5%前後に保持する。72h誘導培養した後、12000×gで10min遠心分離し、上清の発酵液を集めて酵素活性を測定し、さらにSDS−PAGEタンパク質電気泳動により分析する。
4. Preparation of recombinant protease PsAPA (1) Expression of recombinant strain pPIC9-PsAPA Transformants with relatively high enzyme activity were screened, inoculated into 300 mL of BMGY liquid medium, and at a temperature of 30 ° C. and a rotation speed of 220 rpm. Incubate with shaking for 48 hours under the conditions. After shaking culture, centrifuge at 5000 rpm for 5 min, remove the supernatant, add 100 mL of BMMY liquid medium containing 0.5% methanol to the cells, and add them to the cells under the conditions of a temperature of 30 ° C. and a rotation speed of 220 rpm for 72 hours. Perform induction culture. During the induction culture period, a methanol solution is added once every 24 hours to compensate for the loss of methanol and keep the methanol concentration around 0.5%. After the induction culture for 72 hours, the mixture is centrifuged at 12000 × g for 10 minutes, the fermentation broth of the supernatant is collected, the enzyme activity is measured, and further analyzed by SDS-PAGE protein electrophoresis.

(2)組換えプロテアーゼPsAPAを精製して得る
発現した組換え菌株のプロテアーゼ上清液を振とうフラスコに収集して、10kDaメンブレンにより濃縮し、さらにこの培地を低塩緩衝液で置換し、その後10kDa限外ろ過チューブでさらに濃縮する。濃縮物は一定倍数の組換えプロテアーゼPsAPAに希釈することができ、さらにイオン交換クロマトグラフィで精製することにより、組換えプロテアーゼPsAPAが得られる。具体的に、組換えプロテアーゼPsAPA濃縮液2.0mLを、予め20mMTris−HCl(pH7.5)で平衡化したHiTrapQ Sepharose XL陰イオンカラムに供し、その後0.1mol/LのNaClで直線勾配溶出を行う。段階的に収集した溶出液の酵素活性を測定し、さらにタンパク濃度を測定する。
(2) Purification of recombinant protease PsAPA The protease supernatant of the expressed recombinant strain is collected in a shaking flask, concentrated with a 10 kDa membrane, and this medium is further replaced with a low salt buffer, and then Further concentrate in a 10 kDa ultrafiltration tube. The concentrate can be diluted with a constant multiple of recombinant protease PsAPA, and further purified by ion exchange chromatography to obtain recombinant protease PsAPA. Specifically, 2.0 mL of the recombinant protease PsAPA concentrate was applied to a HiTrapQ Sepharose XL anion column previously equilibrated with 20 mM Tris-HCl (pH 7.5), followed by linear gradient elution with 0.1 mol / L NaCl. conduct. The enzyme activity of the eluate collected stepwise is measured, and the protein concentration is further measured.

5、酸性プロテアーゼPsAPAの一部の性質を分析する
フォリンフェノール試薬による呈色法を用いて、本発明で調製した組換えプロテアーゼPsAPA、すなわち酸性プロテアーゼPsAPAの活性分析を行う。具体的な方法は以下の通りである。酸性プロテアーゼPsAPAを1mLの反応系で10min反応させた後、1mLのトリクロロ酢酸(0.4mol/L)を添加して反応を終了させる。このうち、1mLの反応系のpHは3.0、温度は30℃であり、さらに500μLの適当に希釈した酵素液、500μLの基質を含む。反応を終了させた後、該反応系を12000rpmで3min遠心分離し、500μLの上清液を吸い取り、2.5mLの炭酸ナトリウム(0.4mol/L)を添加する。さらに500μLのフォリンフェノール試薬を添加し、40℃の温度下で20min呈色させ、冷却後、紫外波長680nmの条件下でOD値を測定する。プロテアーゼ活性単位は、一定条件下、1分当たり基質のカゼインを分解して1μmolのチロシンを生成するのに必要な酵素量を1活性単位(U)と定義する。
5. Analyzing some properties of the acidic protease PsAPA The activity of the recombinant protease PsAPA prepared in the present invention, that is, the acidic protease PsAPA, is analyzed by using the coloring method using a forinphenol reagent. The specific method is as follows. After reacting the acidic protease PsAPA in a 1 mL reaction system for 10 minutes, 1 mL of trichloroacetic acid (0.4 mol / L) is added to terminate the reaction. Of these, 1 mL of the reaction system has a pH of 3.0 and a temperature of 30 ° C., and further contains 500 μL of an appropriately diluted enzyme solution and 500 μL of the substrate. After completion of the reaction, the reaction system is centrifuged at 12000 rpm for 3 min, 500 μL of the supernatant is sucked up, and 2.5 mL of sodium carbonate (0.4 mol / L) is added. Further, 500 μL of the forinphenol reagent is added, the color is developed for 20 minutes at a temperature of 40 ° C., and after cooling, the OD value is measured under the condition of an ultraviolet wavelength of 680 nm. Protease activity unit defines the amount of enzyme required to decompose the substrate casein per minute to produce 1 μmol of tyrosine under certain conditions as 1 activity unit (U).

(1)酸性プロテアーゼPsAPAの最適pH及びpH安定性の測定
本発明で精製して得られた組換えプロテアーゼPsAPA、すなわち酸性プロテアーゼPsAPAについて、様々なpH条件下で酵素反応を行い、その最適pH値を測定する。用いる緩衝液はpHが1.0〜3.0のグリシン−塩酸緩衝液、pHが3.0〜8.0のクエン酸−リン酸水素二ナトリウム系緩衝液、及びpHが8.0〜10.0のTris−HCl系緩衝液である。精製して得られた酸性プロテアーゼPsAPAについて、様々なpHの緩衝体系において、温度30℃の条件下で測定した最適pHの結果は図1に示す通りである。つまり温度30℃の条件下、酸性プロテアーゼPsAPAの最適pHは3.0であり、pHが2.5〜3.5の範囲内で、該酵素はその70%以上の酵素活性を維持することができる。
(1) Measurement of Optimal pH and pH Stability of Acidic Protease PsAPA The recombinant protease PsAPA purified and obtained in the present invention, that is, acidic protease PsAPA, is subjected to an enzymatic reaction under various pH conditions, and the optimum pH value thereof. To measure. The buffers used are glycine-hydrochloric acid buffer with a pH of 1.0 to 3.0, citrate-hydrogen disodium phosphate buffer with a pH of 3.0 to 8.0, and pH 8.0-10. It is a Tris-HCl buffer of 0.0. The results of the optimum pH of the purified acidic protease PsAPA measured under the condition of a temperature of 30 ° C. in various pH buffer systems are as shown in FIG. That is, under the condition of a temperature of 30 ° C., the optimum pH of the acidic protease PsAPA is 3.0, and the enzyme can maintain its enzyme activity of 70% or more within the pH range of 2.5 to 3.5. can.

酵素液を様々なpH値の緩衝液中において10℃下で60min処理してから、酵素活性を測定して酵素のpH安定性を研究する。結果は図2に示す通りであり、結果は、酸性プロテアーゼPsAPAはpHが3.0〜6.0の間で90%以上の酵素活性を維持することができることを表し、該酵素が酸性条件下で良好なpH安定性を有することを説明している。 The enzyme solution is treated in buffers of various pH values at 10 ° C. for 60 minutes, and then the enzyme activity is measured to study the pH stability of the enzyme. The results are as shown in FIG. 2, and the results show that the acidic protease PsAPA can maintain 90% or more enzyme activity between 3.0 and 6.0 pH, and the enzyme is under acidic conditions. Explains that it has good pH stability.

(2)酸性プロテアーゼPsAPAの最適反応温度及び熱安定性の測定
精製して得られた酸性プロテアーゼPsAPAについて、pH3.0の条件下で、様々な温度(5〜40℃)における酵素活性を測定する。図3に示す通りであり、つまり該酵素の最適反応温度は30℃であり、さらに10℃のときも依然として40%以上の酵素活性を有する。精製して得られた酸性プロテアーゼPsAPAについて、それぞれ30℃、35℃及び40℃の条件下で様々な時間処理してから、30℃下で酵素活性の測定を行う。結果は図4に示す通りであり、PsAPAは40℃条件下で30min処理すると、タンパクを完全に失活させることができる。まとめると、該プロテアーゼは低温条件下で高効率のタンパク質加水分解活性を有し、さらに比較的低い熱不活性化温度を有することがわかる。これは、新しく発明したプロテアーゼが食品、医薬などの分野で重要な応用的価値を有することを意味している。
(2) Measurement of optimum reaction temperature and thermal stability of acidic protease PsAPA The enzyme activity of the purified acidic protease PsAPA is measured at various temperatures (5 to 40 ° C.) under the condition of pH 3.0. .. As shown in FIG. 3, that is, the optimum reaction temperature of the enzyme is 30 ° C., and even at 10 ° C., the enzyme activity is still 40% or more. The purified acidic protease PsAPA is treated at 30 ° C., 35 ° C. and 40 ° C. for various times, and then the enzyme activity is measured at 30 ° C. The results are as shown in FIG. 4, and PsAPA can completely inactivate the protein when treated for 30 minutes under the condition of 40 ° C. In summary, it can be seen that the protease has a highly efficient protein hydrolyzing activity under low temperature conditions and a relatively low heat inactivation temperature. This means that the newly invented protease has important applied value in fields such as food and medicine.

(3)酸性プロテアーゼPsAPAの触媒特異性
酸性プロテアーゼPsAPAの触媒特性は、アスパラギン酸プロテアーゼファミリーのその他のプロテアーゼと基本的に一致し、主に基質分子中の疎水性アミノ酸残基又は芳香族アミノ酸残基間のペプチド結合、例えばLeu−Tyr、Phe−Phe、Phe−Tyrなどを切断する。プロテアーゼの活性はPepstatinAに特異的に阻害されることができ、PepstatinAは酸性プロテアーゼPsAPAの触媒ポケットに特異的に結合することができるが、切断はされず、これにより触媒残基の活性を阻害している。したがって、該種の阻害剤は基質類似阻害剤に属する。
(3) Catalytic Specificity of Acidic Protease PsAPA The catalytic properties of acidic protease PsAPA are basically consistent with other proteases in the aspartic protease family, mainly hydrophobic amino acid residues or aromatic amino acid residues in substrate molecules. It cleaves the peptide bonds between them, such as Leu-Tyr, Phe-Phe, Phe-Tyr and the like. Protease activity can be specifically inhibited by Pepstatin A, which can specifically bind to the catalytic pocket of the acidic protease PsAPA but is not cleaved, thereby inhibiting the activity of the catalytic residue. ing. Therefore, such inhibitors belong to substrate-like inhibitors.

6、ウシ骨コラーゲンの抽出における酸性プロテアーゼPsAPAの応用
ウシ骨コラーゲンの抽出過程:
ウシの骨を破砕した後、0.1MNaOH溶液(v/w)を添加し、8h撹拌して非コラーゲン成分を除去する。その後蒸留水で洗浄してから水を切り、さらに10%n−ヘキサンを添加し、12h撹拌して脂肪を除去する。脂肪を除去した後、溶液が中性になるまで蒸留水で繰り返し洗浄してから水を切り、水を切ったウシの骨が得られる。pH7.4、濃度0.25MのEDTA−Na溶液を用いて、水を切ったウシの骨に対してカルシウム塩を除去する処理を行い、カルシウム塩を除去したウシの骨が得られる。カルシウム塩を除去したウシの骨を平均して2つに分け、このうちの1つのカルシウム塩を除去したウシの骨に5倍体積(v/w)の0.5M酢酸溶液及びウシの骨の質量の1.6%倍(w/w)のペプシンを添加し、もう1つには5倍体積(v/w)の0.5M酢酸溶液及びウシの骨の質量の1.6%倍(w/w)の酸性プロテアーゼPsAPAを添加し、2つの混合物が得られる。各混合物をいずれも24h撹拌して抽出し、その後2層のガーゼでろ過してウシ骨粗コラーゲンのろ液が得られる。各ろ液中にNaClを添加してNaClの終濃度を0.9M(0.05MTrisを含む。pH7.0)に調整し、撹拌して綿状の沈殿物が析出すると、NaClを添加したろ液が得られる。各NaClを添加したろ液を、温度4℃、回転速度10000gの条件下で20min遠心分離し、沈殿、すなわち塩析後のウシ骨粗コラーゲンを収集する。各塩析後のウシ骨粗コラーゲンを0.5M酢酸溶液に溶解し、順番に0.1mol/Lの酢酸及び超純水を用いてそれぞれ24h透析し、期間中それぞれ3回液を交換する。得られた透析物を−20℃の温度下で凍結乾燥させると、ペプシン抽出したウシ骨コラーゲン(PSC)及び酸性プロテアーゼPsAPAで処理したウシ骨コラーゲン(ESC)が得られる。その後PSC及びESCの抽出率を計算し、さらにSDS−PAGEタンパク電気泳動により分析する。結果はそれぞれ図5及び図6に示す。
6. Application of acidic protease PsAPA in the extraction of bovine bone collagen Extraction process of bovine bone collagen:
After crushing bovine bone, 0.1 MNaOH solution (v / w) is added and stirred for 8 hours to remove non-collagen components. After that, it is washed with distilled water, drained, further 10% n-hexane is added, and the mixture is stirred for 12 hours to remove fat. After removing the fat, the solution is repeatedly washed with distilled water until it becomes neutral and then drained to obtain drained bovine bone. Using an EDTA-Na 2 solution having a pH of 7.4 and a concentration of 0.25 M, a treatment for removing calcium salt from drained bovine bone is performed to obtain bovine bone from which calcium salt has been removed. Divide the bovine bone from which the calcium salt has been removed into two on average, and add a 0.5 M acetic acid solution of 5 times the volume (v / w) to the bovine bone from which one of the calcium salts has been removed and the bovine bone. Add 1.6% times (w / w) pepsin by weight, the other is a 5 times volume (v / w) 0.5M acetic acid solution and 1.6% times the mass of bovine bone (w / w). The acidic protease PsAPA of w / w) is added to give a mixture of the two. Each mixture is extracted by stirring for 24 hours and then filtered through two layers of gauze to obtain a filtrate of bovine bone crude collagen. NaCl was added to each filtrate to adjust the final concentration of NaCl to 0.9 M (including 0.05 MTris, pH 7.0), and the mixture was stirred to precipitate a cotton-like precipitate. Then, NaCl was added. Liquid is obtained. The filtrate to which each NaCl is added is centrifuged for 20 minutes under the conditions of a temperature of 4 ° C. and a rotation speed of 10000 g, and precipitation, that is, crude bovine bone collagen after salting out is collected. The crude bovine bone collagen after each salting out is dissolved in a 0.5 M acetic acid solution, and dialyzed with 0.1 mol / L acetic acid and ultrapure water for 24 hours each, and the solutions are exchanged three times during the period. The obtained dialysate is freeze-dried at a temperature of −20 ° C. to obtain bovine bone collagen (PSC) extracted with pepsin and bovine bone collagen (ESC) treated with the acidic protease PsAPA. After that, the extraction rates of PSC and ESC are calculated and further analyzed by SDS-PAGE protein electrophoresis. The results are shown in FIGS. 5 and 6, respectively.

図5に示すように、PSCの収率は8.34±0.27しかなく、ESCの収率は11.93±0.53に達する。ペプシンと比較して、酸性プロテアーゼPsAPA処理は骨コラーゲンの抽出率を明らかに高めた。骨コラーゲンのテロペプチドは分子架橋が容易に生じ、その酸性条件下での溶解度を低下させ、骨コラーゲンの抽出に不利である。酸性プロテアーゼPsAPA処理はコラーゲンのテロペプチドの酵素分解を触媒することができ、コラーゲンの酸性条件下における溶解度を高め、コラーゲンの収率を高める。SDS−PAGEタンパク電気泳動による分析は図6に示す通りである。酸性プロテアーゼPsAPAで抽出したコラーゲンのバンドはペプシン抽出したコラーゲンと一致する。これは、酸性プロテアーゼPsAPAが抽出液中のコラーゲン濃度を高めることができるが、その全体構造は破壊しないことを表している。まとめると、酸性プロテアーゼPsAPAは骨コラーゲンの抽出効率を顕著に高めることができ、骨コラーゲンの収率を高める。 As shown in FIG. 5, the yield of PSC is only 8.34 ± 0.27, and the yield of ESC reaches 11.93 ± 0.53. Compared with pepsin, treatment with the acidic protease PsAPA clearly increased the extraction rate of bone collagen. Bone collagen terrorpeptides easily undergo molecular cross-linking, which reduces their solubility under acidic conditions and is disadvantageous for the extraction of bone collagen. Acidic protease PsAPA treatment can catalyze the enzymatic degradation of collagen telopeptides, increasing the solubility of collagen under acidic conditions and increasing the yield of collagen. Analysis by SDS-PAGE protein electrophoresis is as shown in FIG. The band of collagen extracted with the acidic protease PsAPA is consistent with the collagen extracted with pepsin. This indicates that the acidic protease PsAPA can increase the collagen concentration in the extract but does not destroy its overall structure. In summary, the acidic protease PsAPA can significantly increase the extraction efficiency of bone collagen and increase the yield of bone collagen.

本発明の実施案を上記のように開示したが、本発明は明細書及び実施方式に列記した利用に限定されず、各種本発明に適した分野に完全に適用することができ、当業者は、他の修正を容易に実現することができる。従って、特許請求の範囲及び同等の範囲による限定を逸脱しない一般的な概念下で、本発明は特定の細部並びにここで提示及び記載した凡例に限定されない。 Although the proposed embodiment of the present invention has been disclosed as described above, the present invention is not limited to the uses listed in the specification and the embodiment, and can be fully applied to various fields suitable for the present invention. , Other modifications can be easily realized. Accordingly, the invention is not limited to the particular details and the legends presented and described herein, under the general concept of not departing from the limitations of the claims and equivalents.

Claims (6)

アミノ酸配列が配列番号1に示す通りであることを特徴とする、酸性プロテアーゼPsAPA。 The acidic protease PsAPA, characterized in that the amino acid sequence is as shown in SEQ ID NO: 1. DNA配列が配列番号2に示す通りであり、cDNA配列が配列番号4に示す通りであることを特徴とする、請求項1に記載の酸性プロテアーゼPsAPA。 The acidic protease PsAPA according to claim 1, wherein the DNA sequence is as shown in SEQ ID NO: 2 and the cDNA sequence is as shown in SEQ ID NO: 4. 以下の工程:
S1、最初にPenicillium sp.XT7の全RNA配列を抽出し、逆転写によりPenicillium sp.XT7のcDNA配列を得、Penicillium sp.XT7の前記cDNA配列をテンプレートとして前記酸性プロテアーゼPsAPAのcDNA配列を増幅させ、その後、前記酸性プロテアーゼPsAPAの前記cDNA配列をピキア酵母発現ベクターpPIC9に接続して、組換え発現ベクターpPIC9−PsAPAを得る;
S2、前記組換え発現ベクターpPIC9−PsAPAを宿主細胞のピキア酵母に形質転換し、組換え菌株を得る;
S3、前記組換え菌株を30℃条件下で2〜3d培養し、メタノール誘導下で前記組換え菌株を発現させて組換えPsAPAの粗酵素液を生成する;
S4、前記粗酵素液を濃縮、精製することにより、精製した組換え酸性プロテアーゼPsAPAを得る;を含むことを特徴とする、請求項2に記載の酸性プロテアーゼPsAPAの調製方法。
The following steps:
S1, first Penicillium sp. The entire RNA sequence of XT7 was extracted, and reverse transcription was performed to detect Penicillium sp. The cDNA sequence of XT7 was obtained, and Penicillium sp. The cDNA sequence of the acidic protease PsAPA is amplified using the cDNA sequence of XT7 as a template, and then the cDNA sequence of the acidic protease PsAPA is connected to the Pikia yeast expression vector pPIC9 to obtain a recombinant expression vector pPIC9-PsAPA;
S2, the recombinant expression vector pPIC9-PsAPA is transformed into Pichia yeast as a host cell to obtain a recombinant strain;
S3, the recombinant strain is cultured for 2 to 3 d under the condition of 30 ° C., and the recombinant strain is expressed under methanol induction to produce a crude enzyme solution of recombinant PsAPA;
The method for preparing an acidic protease PsAPA according to claim 2, wherein S4, the purified recombinant acidic protease PsAPA is obtained by concentrating and purifying the crude enzyme solution.
工程S1において、Penicillium sp.XT7のcDNAをテンプレートとして前記酸性プロテアーゼPsAPAの前記cDNA配列を増幅させるのは、具体的に以下の工程:
S1a、前記酸性プロテアーゼPsAPAの特異的プライマーPsAPA_fヌクレオチド配列をCGGAATTCATGGCCGCTGCTGCCCCAA、PsAPA_rヌクレオチド配列をTTGCGGCCGCCTAAGCCTGCTTGGCGAAGCCAAGに設計し、設計したPsAPA_f及びPsAPA_rを北京華大生物有限公司に送って合成する;
S1b、逆転写して得られたPenicillium sp.XT7のcDNAをテンプレート、PsAPA_f、PsAPA_rをプライマーとしてPCR増幅を行い、前記酸性プロテアーゼPsAPAの前記cDNA配列を得る;を含むことを特徴とする、請求項3に記載の酸性プロテアーゼPsAPAの調製方法。
In step S1, Penicillium sp. Amplifying the cDNA sequence of the acidic protease PsAPA using the cDNA of XT7 as a template is specifically described in the following steps:
S1a, the specific primer PsAPA_f nucleotide sequence of the acidic protease PsAPA was designed to CGGAATTCATGGCCGCTGCCCCAA, the PsAPA_r nucleotide sequence was designed to TTGCGGCCGCCTAAGCCTCTGCTTGGCGAAGCCAAG, and PsAPA_f and PsAPA
S1b, Penicillium sp. Obtained by reverse transcription. The method for preparing an acidic protease PsAPA according to claim 3, wherein the cDNA of XT7 is used as a template and PsAPA_f and PsAPA_r are used as primers for PCR amplification to obtain the cDNA sequence of the acidic protease PsAPA.
工程S1において、Penicillium sp.XT7の前記cDNA配列をテンプレートとして前記酸性プロテアーゼPsAPAの前記cDNA配列を増幅させる条件は、95℃5min;94℃30s、60℃30s、72℃2min、35サイクル;72℃10minであることを特徴とする、請求項3に記載の酸性プロテアーゼPsAPAの調製方法。 In step S1, Penicillium sp. The conditions for amplifying the cDNA sequence of the acidic protease PsAPA using the cDNA sequence of XT7 as a template are 95 ° C. 5 min; 94 ° C. 30s, 60 ° C. 30s, 72 ° C. 2 min, 35 cycles; 72 ° C. 10 min. The method for preparing the acidic protease PsAPA according to claim 3. 骨コラーゲンの抽出に用いることを特徴とする、請求項1に記載の酸性プロテアーゼPsAPAの使用方法。 The method for using the acidic protease PsAPA according to claim 1, which is used for extracting bone collagen.
JP2020141218A 2020-05-14 2020-08-24 Cold acidic protease PsAPA and its preparation method and application Active JP7008767B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020104062801 2020-05-14
CN202010406280.1A CN111647584B (en) 2020-05-14 2020-05-14 Low-temperature acid protease PsAPA and preparation method and application thereof

Publications (2)

Publication Number Publication Date
JP2021177752A true JP2021177752A (en) 2021-11-18
JP7008767B2 JP7008767B2 (en) 2022-02-10

Family

ID=72349240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141218A Active JP7008767B2 (en) 2020-05-14 2020-08-24 Cold acidic protease PsAPA and its preparation method and application

Country Status (2)

Country Link
JP (1) JP7008767B2 (en)
CN (1) CN111647584B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647584B (en) * 2020-05-14 2021-10-22 中国农业科学院农产品加工研究所 Low-temperature acid protease PsAPA and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108154A (en) * 1977-03-02 1978-09-20 Roehm Gmbh Process for solving collagenncontained waste from leather production
JPH09510347A (en) * 1994-03-08 1997-10-21 ヒューマン・ジェノム・サイエンシズ・インコーポレイテッド Cathepsin derived from human osteoclast
JP2011193870A (en) * 2010-02-24 2011-10-06 National Research Inst Of Brewing New acid protease and use thereof
WO2017073785A1 (en) * 2015-10-30 2017-05-04 学校法人近畿大学 Differentiation inducer and method for inducing differentiation, and decomposed bone tissue production method used therefor
CN108103048A (en) * 2017-11-22 2018-06-01 中国科学院理化技术研究所 Low-temperature matrix metalloproteinase and coding gene and application thereof
CN111647584A (en) * 2020-05-14 2020-09-11 中国农业科学院农产品加工研究所 Low-temperature acid protease PsAPA and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988191B (en) * 2017-11-22 2020-11-24 中国科学院理化技术研究所 Low-temperature acidic protease and coding gene and application thereof
CN108893458A (en) * 2018-07-19 2018-11-27 中国农业科学院饲料研究所 Acid protease Bs2688 and its gene and application
CN109371004B (en) * 2018-12-11 2021-11-05 中国农业科学院北京畜牧兽医研究所 Acid protease Bs2688 mutant K203E with improved thermal stability and gene and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108154A (en) * 1977-03-02 1978-09-20 Roehm Gmbh Process for solving collagenncontained waste from leather production
JPH09510347A (en) * 1994-03-08 1997-10-21 ヒューマン・ジェノム・サイエンシズ・インコーポレイテッド Cathepsin derived from human osteoclast
JP2011193870A (en) * 2010-02-24 2011-10-06 National Research Inst Of Brewing New acid protease and use thereof
WO2017073785A1 (en) * 2015-10-30 2017-05-04 学校法人近畿大学 Differentiation inducer and method for inducing differentiation, and decomposed bone tissue production method used therefor
CN108103048A (en) * 2017-11-22 2018-06-01 中国科学院理化技术研究所 Low-temperature matrix metalloproteinase and coding gene and application thereof
CN111647584A (en) * 2020-05-14 2020-09-11 中国农业科学院农产品加工研究所 Low-temperature acid protease PsAPA and preparation method and application thereof

Also Published As

Publication number Publication date
JP7008767B2 (en) 2022-02-10
CN111647584B (en) 2021-10-22
CN111647584A (en) 2020-09-11

Similar Documents

Publication Publication Date Title
CN107384900B (en) The acid protease 6749 and its gene of a kind of originated from fungus and application
JPH10508475A (en) Tripeptidyl aminopeptidase
Petrova et al. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties
JP7008767B2 (en) Cold acidic protease PsAPA and its preparation method and application
CN107338234A (en) A kind of production method of new rhizomucor miehei aspartic protease and its application
RU2603054C2 (en) Method of wheat cysteine protease proteins family (triticum aestivum) producing and preparation of tritikaie-alpha protein, obtained using said method
JP6991423B2 (en) Glucose oxidase CnGODA and its genes and their use
CN113736766B (en) Collagen hydrolase and its coding gene, preparation method and use
CN104711200B (en) A kind of neutral proteinase production bacterial strain and its application
US20070166785A1 (en) Recombinant calf-chymosin and a process for producing the same
CN106957803A (en) One plant of clostridiopetidase A production bacterial strain and its collagenase gene sequence and application
EP1535999B1 (en) Milk-coagulating enzyme originating in bacterium and process for producing cheese using the same
EP2976356B1 (en) Aspartic proteases
CN104711242B (en) A kind of neutral proteinase and its application
CN107988191B (en) Low-temperature acidic protease and coding gene and application thereof
KR0180103B1 (en) Thrombosis dissolution enzyme from bacillus subtilis
JP4021123B2 (en) New production method of raffinose
CN115125247B (en) Combined promoter palpha 2-alpha 2 and application thereof
CN115125248B (en) Combined promoter pctsR-alpha 2 and application thereof
KR100365838B1 (en) A New thermostable D-stereospecific dipeptidase from Brevibacillus borstelensis BCS-1 and its use as a biocatalyst for the synthesis of peptides containing D-amino acids
JP3516318B2 (en) Novel endopeptidase
JP4815568B2 (en) Thermophilic prolyl endopeptidase
JPH0235083A (en) Dna having genetic information of lipase
RU2140453C1 (en) Recombinant plasmid dna puabc 22 encoding modified activator of uricase type plasminogen, nontranslated dna-element - artificial intergene sequence mgp-14 and strain of bacterium escherichia coli - producer of modified activator of uricase type plasminogen
KR101223062B1 (en) Production method for fibzyme using recombinant E. coli MK-15

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7008767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150