JP2021173129A - Water channel system - Google Patents

Water channel system Download PDF

Info

Publication number
JP2021173129A
JP2021173129A JP2020080038A JP2020080038A JP2021173129A JP 2021173129 A JP2021173129 A JP 2021173129A JP 2020080038 A JP2020080038 A JP 2020080038A JP 2020080038 A JP2020080038 A JP 2020080038A JP 2021173129 A JP2021173129 A JP 2021173129A
Authority
JP
Japan
Prior art keywords
water
airtight
open channel
pipe
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020080038A
Other languages
Japanese (ja)
Other versions
JP6751981B1 (en
Inventor
英世 村上
Hideyo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020080038A priority Critical patent/JP6751981B1/en
Application granted granted Critical
Publication of JP6751981B1 publication Critical patent/JP6751981B1/en
Publication of JP2021173129A publication Critical patent/JP2021173129A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pipeline Systems (AREA)

Abstract

To provide a water channel system suitable for automatically controlling flow speed and flow volume corresponding to water level rise in an open water channel such as a river (a water channel in which water surface exists).SOLUTION: A water channel system 1 comprises airtight pipelines 111 to 113. One end 131 and the other end 153 of the airtight pipelines are respectively positioned at a first position and a second position. A water surface level of an open water channel at the second position may be different from a water surface level of the open water channel at the first position. Of one end 131 and the other end 153 of the airtight pipelines, one positioned at least at a higher one of the water surface level at the first position and the water surface level at the second position exists in the water of the open water channel. When water in the open water channel increases at the second position more than at the second position and the water surface level of the open water channel at the second position becomes higher than the water surface level of the open water channel at the first position, the water in the open water channel flows into the other end 153 to make the water flow out from the one end 131, in the airtight pipelines 111 to 113.SELECTED DRAWING: Figure 1

Description

本願発明は、開水路における水路システムに関する。 The present invention relates to a channel system in an open channel.

河川では、水害時に流入する水量が増加する。この増加に対応して流速・流量を人工的に変更・調整できる水路は、ダム等でせき止めて実現する以外には開発されていない(特許文献1など参照)。 In rivers, the amount of water that flows in during floods increases. A water channel that can artificially change and adjust the flow velocity and flow rate in response to this increase has not been developed except by damming it with a dam or the like (see Patent Document 1 and the like).

特開2010−037770号公報Japanese Unexamined Patent Publication No. 2010-0377770

近年、小さな区域に突発的に、短期間での多量の雨量による洪水が生じている。このような場合には、河川の流量が短期間で急激に増加するため、これに対応して川の流速及び流量を増加させる必要がある。しかしながら、ダム等でせき止めることによっては、このような局所的で突発的な水量変化に充分に対応することができない。また、河川では、地下鉄などとの関係で、川底を深くしたりするなどによって流量を増加させることは困難になっている。 In recent years, small areas have been suddenly flooded by heavy rainfall in a short period of time. In such a case, the flow rate of the river increases rapidly in a short period of time, and it is necessary to increase the flow velocity and flow rate of the river correspondingly. However, by damming it with a dam or the like, it is not possible to sufficiently cope with such a local and sudden change in water volume. Moreover, in rivers, it is difficult to increase the flow rate by deepening the riverbed in relation to the subway.

そこで、本願発明は、河川などの開水路(水面が存在する水路)に対して、流速及び流量を制御することに適した水路システムを提案することを目的とする。 Therefore, an object of the present invention is to propose a water channel system suitable for controlling a flow velocity and a flow rate for an open channel (a channel having a water surface) such as a river.

本願発明の第1の観点は、一つ又は複数の開水路における水路システムであって、当該水路システムは、第1気密管路を備え、前記第1気密管路の一方端及び他方端はそれぞれ第1位置及び第2位置に位置し、前記第2位置における前記開水路の水面の標高は、前記第1位置における前記開水路の水面の標高とは異なる場合があり、前記第1気密管路の一方端及び他方端は、前記第1位置における水面の標高と前記第2位置における水面の標高のうち少なくとも高い方に位置するものが前記開水路の水中に存在し、前記第2位置において前記第1位置よりも前記開水路の水が増水して前記第2位置における前記開水路の水面の標高が前記第1位置における前記開水路の水面の標高よりも高くなったならば、前記第1気密管路は、前記他方端に前記開水路の水が流入して前記一方端から水が流出する。 A first aspect of the present invention is a channel system in one or more open channels, the channel system comprising a first airtight channel, one end and the other end of the first airtight channel, respectively. Located at the first and second positions, the elevation of the water surface of the open channel at the second position may be different from the elevation of the water surface of the open channel at the first position, and the first airtight pipeline As for one end and the other end, one located at least higher than the altitude of the water surface at the first position and the altitude of the water surface at the second position exists in the water of the open channel, and at the second position, the said If the water in the open channel is higher than the first position and the elevation of the water surface of the open channel in the second position is higher than the elevation of the water surface of the open channel in the first position, the first In the airtight pipeline, the water of the open channel flows into the other end and the water flows out from the one end.

本願発明の第2の観点は、第1の観点の水路システムであって、当該水路システムは、第2気密管路と、接続部をさらに備え、前記接続部は、前記第1気密管路の他方端と前記第2気密管路の一方端との間を、気密状態で接続することも気密状態とは異なる状態とすることもでき、前記接続部が気密状態で接続したならば、前記第1気密管路の他方端と前記第2気密管路の一方端からは開水路の水が流入も流出もせず、前記接続部が気密状態とは異なる状態としたならば、前記第1気密管路の他方端と前記第2気密管路の一方端の少なくとも一方において開水路の水が流入したり流出したりする。 The second aspect of the present invention is the waterway system of the first aspect, wherein the waterway system further includes a second airtight conduit and a connecting portion, and the connecting portion is the first airtight conduit. The other end and one end of the second airtight conduit can be connected in an airtight state or in a state different from the airtight state. If the water in the open channel does not flow in or out from the other end of the 1 airtight pipe and one end of the second airtight pipe, and the connection portion is in a state different from the airtight state, the first airtight pipe Water in the open channel flows in and out at at least one of the other end of the path and one end of the second airtight conduit.

本願発明の第3の観点は、第2の観点の水路システムであって、当該水路システムは、第3気密管路をさらに備え、前記接続部は、前記第1気密管路の他方端と前記第2気密管路の一方端と前記第3気密管路の一方端の間を、気密状態で接続したり、気密状態とは異なる状態としたり、2つの気密管路を気密状態で接続して1つを閉じたり、少なくとも2つの気密管路を気密状態で接続して水が移動する部分を狭くして流量を制限したり、3つの気密管路を気密状態で接続して水が移動する2つの気密管路と1つの気密管路との間で水が移動する部分の広さを変えて一方を流れやすくして他方を流れにくくする。 A third aspect of the present invention is the waterway system of the second aspect, wherein the waterway system further includes a third airtight conduit, and the connection portion is the other end of the first airtight conduit and the said. One end of the second airtight conduit and one end of the third airtight conduit may be connected in an airtight state, may be in a state different from the airtight state, or the two airtight pipelines may be connected in an airtight state. One is closed, at least two airtight pipelines are connected in an airtight state to narrow the part where water moves to limit the flow rate, and three airtight pipelines are connected in an airtight state to move water. The size of the portion where water moves between the two airtight pipelines and one airtight pipeline is changed to make one flow easier and the other difficult to flow.

本願発明の第4の観点は、第1から第3のいずれかの観点の水路システムであって、前記第1気密管路は、第2位置から第1位置に水が移動でき、第1位置から第2位置に水が移動できない一方向弁を備え、前記弁によって、第1位置の水面の標高が第2位置の水面の標高よりも高いならば水が移動せず、第2位置での水面の標高が第1位置の水面の標高よりも高いならば水が第2位置から第1位置に移動する。 The fourth aspect of the present invention is a water channel system according to any one of the first to third aspects, wherein water can move from the second position to the first position in the first airtight conduit, and the first position. A one-way valve that prevents water from moving from to the second position is provided, and if the altitude of the water surface at the first position is higher than the altitude of the water surface at the second position, the water does not move and the water does not move at the second position. If the elevation of the water surface is higher than the elevation of the water surface of the first position, the water moves from the second position to the first position.

本願発明の第5の観点は、第1から第4のいずれかの観点の水路システムであって、前記第1気密管路の一方端及び他方端はそれぞれ第1開水路及び第2開水路の水中に存在し、前記第1位置における前記第1開水路の水は前記第1開水路に従って移動しても前記第2位置に到達せず、前記第2位置における前記第2開水路の水は前記第2開水路に従って移動しても前記第1位置に到達せず、前記第1気密管路によって前記第1開水路と前記第2開水路との間で水が移動する。 A fifth aspect of the present invention is a water channel system according to any one of the first to fourth aspects, wherein one end and the other end of the first airtight channel are of a first open channel and a second open channel, respectively. The water in the first open channel at the first position does not reach the second position even if it moves according to the first open channel, and the water in the second open channel at the second position is present in the water. Even if it moves according to the second open channel, it does not reach the first position, and water moves between the first open channel and the second open channel by the first airtight channel.

本願発明の第6の観点は、複数の開水路における水路システムであって、当該水路システムは、第1気密管路と、第2気密管路と、接続部を備え、前記複数の開水路は、第1開水路と、第2開水路と、第3開水路を含み、前記第1開水路と前記第2開水路と前記第3開水路は、合流箇所で合流し、前記第1開水路及び前記第2開水路の水は合流箇所に向けて流れ、前記第3開水路の水は、合流箇所から遠ざかる向きに流れ、前記第1気密管路と前記第2気密管路の両端はそれぞれ前記第1開水路及び前記第2開水路に存在し、前記接続部が前記第1気密管路と前記第2気密管路の合流箇所に近い端を気密状態で接続したならば、前記第1気密管路の他方端における前記第1開水路の水面の標高と前記第2気密管路の他方端における前記第2開水路の水面の標高とに依存して前記第1気密管路、前記第2気密管路及び接続箇所における水の移動が生じ、前記接続部が前記第1気密管路と前記第2気密管路の合流箇所に近い端を気密状態とは異なる状態としたならば、合流箇所の水面の標高と、前記第1気密管路の他方端における前記第1開水路の水面の標高及び前記第2気密管路の他方端における前記第2開水路の水面の標高とに依存して前記第1気密管路と前記第2気密管路のそれぞれにおける水の移動が生じる。 A sixth aspect of the present invention is a channel system in a plurality of open channels, wherein the channel system includes a first airtight channel, a second airtight channel, and a connection portion, and the plurality of open channels are provided. The first open channel, the second open channel, and the third open channel are included, and the first open channel, the second open channel, and the third open channel merge at a confluence, and the first open channel And the water of the second open channel flows toward the merging point, the water of the third open channel flows in a direction away from the merging point, and both ends of the first airtight channel and the second airtight channel are respectively. If it exists in the first open channel and the second open channel, and the connecting portion connects the end of the first airtight channel and the second airtight channel near the confluence in an airtight state, the first The first airtight channel, said first, depends on the elevation of the water surface of the first open channel at the other end of the airtight channel and the elevation of the water surface of the second open channel at the other end of the second open channel. 2 If water moves in the airtight pipeline and the connection portion, and the connection portion makes the end near the confluence of the first airtight pipeline and the second airtight pipeline a state different from the airtight state, the confluence occurs. It depends on the elevation of the water surface at the location, the elevation of the water surface of the first open channel at the other end of the first airtight channel, and the elevation of the water surface of the second open channel at the other end of the second open channel. Therefore, the movement of water occurs in each of the first airtight channel and the second airtight channel.

本願発明の各観点によれば、河川などの開水路(水面が存在する水路)において水が流れることに加えて、第1気密管路などの管水路(水面が存在しない水路)を利用して水を移動させることにより、流量及び流速を制御することができる。ここで、管水路を利用した水の移動は、開水路での水の流れの向きと同じ向きに移動してもよく、異なる向きに移動してもよい。 According to each viewpoint of the present invention, in addition to the flow of water in an open channel (a channel having a water surface) such as a river, a pipe channel (a channel having no water surface) such as a first airtight pipeline is used. By moving the water, the flow rate and flow velocity can be controlled. Here, the movement of water using the pipe channel may move in the same direction as the direction of the flow of water in the open channel, or may move in a different direction.

本願発明の実施の形態に係る水路システムの構成及び動作の一例を示す図である。It is a figure which shows an example of the structure and operation of the waterway system which concerns on embodiment of this invention. 本願発明の他の実施の形態に係る水路システムの構成及び動作の一例を示す図である。It is a figure which shows an example of the structure and operation of the waterway system which concerns on other embodiment of this invention. 本願発明の水路システムの具体的な一例を説明するための図である。It is a figure for demonstrating a specific example of the waterway system of this invention. 直列に設置した2つの気密管路の間の構成の一例を示す図である。It is a figure which shows an example of the structure between two airtight pipes installed in series. 3つの気密管路の間の構成の一例を示す図である。It is a figure which shows an example of the structure between three airtight pipelines. 複数の気密管路を接続する接続部の一例を示す図である。It is a figure which shows an example of the connection part which connects a plurality of airtight pipes. 図7は、複数の開水路を接続する場合の一例を示す図である。FIG. 7 is a diagram showing an example in the case of connecting a plurality of open channels.

以下、図面を参照して、本願発明の実施例について述べる。なお、本願発明の実施の形態は、以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described with reference to the drawings. The embodiment of the present invention is not limited to the following examples.

図1は、本願発明の実施の形態に係る水路システムの構成及び動作の一例を示す図である。 FIG. 1 is a diagram showing an example of a configuration and operation of a water channel system according to an embodiment of the present invention.

図1(a)を参照して、水路システムの構成及び動作の一例を説明する。水路システム1は、第1段気密管路111と、第2段気密管路112と、第3段気密管路113と、第1接続部171と、第2接続部172を備える。ここで、第1段気密管路111と第2段気密管路112と第3段気密管路113は気密管路であり、水や気体(空気)を通さない媒体で構成された管路で、例えば3気圧の気圧に耐えられる媒体で構成される。気密管路の内部では、気密状態(管路の出入り口以外の外部から気体・液体が入らない状態)で流体が流れる。 An example of the configuration and operation of the waterway system will be described with reference to FIG. 1 (a). Waterway system 1 includes a first stage gas tight conduit 11 1, and the second stage gas tight conduit 11 2, and the third-stage hermetic conduit 11 3, 1 and the first connecting portion 17, the second connecting portions 17 2 Be prepared. The first stage gas tight conduit 11 1 and the second stage gas tight conduit 11 2 and the third-stage hermetic conduit 11 3 a gas-tight conduit, formed by a medium not watertight and gas (air) The pipeline is composed of a medium that can withstand a pressure of, for example, 3 atmospheres. Inside the airtight pipe, the fluid flows in an airtight state (a state in which gas or liquid does not enter from the outside other than the entrance and exit of the pipe).

水面7は、開水路(水面が存在する水路)(例えば河川など)の水面である。底部3は、開水路の底にあたるもの(例えば川底など)である。底部3には、滝部5がある。底部3は、滝部5により途中に大きな落差があり、その前後では緩やかな傾斜であるとする。開水路では、定常状態(移動の形態が時間によって変化しない状態)では、一定方向に水が流れている。図1(a)では、定常状態で、図の左側から右側に水が流れている。 The water surface 7 is the water surface of an open channel (water channel in which the water surface exists) (for example, a river). The bottom portion 3 corresponds to the bottom of an open channel (for example, a riverbed). At the bottom 3, there is a waterfall 5. It is assumed that the bottom portion 3 has a large head in the middle due to the waterfall portion 5, and has a gentle slope before and after that. In an open channel, water flows in a certain direction in a steady state (a state in which the form of movement does not change with time). In FIG. 1 (a), water is flowing from the left side to the right side of the figure in a steady state.

底部3には、第1段気密管路111と、第2段気密管路112と、第3段気密管路113が固定されている。第1段気密管路111の図中の左右の端を、それぞれ、左端131と右端151とする。第2段気密管路112の図中の左右の端を、それぞれ、左端132と右端152とする。第3段気密管路113の図中の左右の端を、それぞれ、左端133と右端153とする。 The bottom 3, a first stage gas tight conduit 11 1, and the second stage gas tight conduit 11, second and third stage airtight conduit 11 3 is fixed. The left and right ends of the first-stage hermetic pipe 11 in one figure, respectively, and the left end 13 1 and the right end 15 1. The left and right end of the second stage in FIG airtight conduit 11 2, respectively, to the left end 13 2 and the right end 15 2. The left and right ends of the third-stage hermetic pipe 11 of 3 in the figure, respectively, and left 13 3 and right 15 3.

第1接続部171は、第1段気密管路111の右端151と第2段気密管路112の左端132の接続関係を調整する。第2接続部172は、第2段気密管路112の右端152と第3段気密管路113の左端133の接続関係を調整する。図1(a)では、第1接続部171及び第2接続部172は、気密状態で接続する。第1接続部171及び第2接続部172は、例えば遠隔制御(管理センタ等からの電気通信信号による遠隔制御)によって接続関係を調整してもよい。 The first connection portion 17 1 adjusts the right end 15 of the first stage gas tight conduit 11 1 and the second stage gas tight conduit 11 second left 13 2 connection relations. The second connecting portions 17 2 adjusts the right end 15 2 of the second stage gas tight conduit 11 2 third stage airtight conduit 11 3 of the left end 13 third connection relationship. In FIG. 1A, the first connecting portion 17 1 and the second connecting portion 17 2 are connected in an airtight state. The first connection unit 17 1 and the second connection unit 17 2 may adjust the connection relationship by, for example, remote control (remote control by a telecommunication signal from a management center or the like).

第1段気密管路111の左端131の位置を第1地点とし、第3段気密管路113の右端153の位置を第2地点とする。 The position of the left end 13 of the first stage gas tight conduit 11 1 as a first point, the position of the right end 15 of the third stage airtight conduit 11 3 and the second point.

第1段気密管路111と第2段気密管路112と第3段気密管路113は、第1接続部171及び第2接続部172により気密状態でつながっている。端の一方から出水する水量と他方から出水する水量は同じである。左端131と右端153において、水が入出水する部分の面積は等しいとする。第1段気密管路111の左端131に単位時間あたりに入水する水量(入水速度)(第3段気密管路113の右端153から単位時間あたりに出水する水量(出水速度))をVaとする。 The first-stage airtight pipe 11 1 and the second-stage airtight pipe 11 2 and the third-stage airtight pipe 11 3 are connected in an airtight state by the first connection portion 17 1 and the second connection portion 17 2. The amount of water that flows out from one of the ends is the same as the amount of water that flows out from the other end. At the left end 13 1 and the right end 15 3, the area of the portion where water to enter the water are equal. Amount of water entering water per unit time to the left end 13 of the first stage gas tight conduit 11 1 (water inlet velocity) (amount of water to the water outlet from the third stage airtight conduit 11 3 of the right end 15 3 per unit time (flood speed)) It is referred to as V a.

本実施例では、「疑似水面標高」の概念を導入することによって、気密管路を容易に設計することができ、さらに、低地を流れる流水をより高い位置に移動させるための設計やその限界値の算出も可能となる。なお、本願発明において、水面の標高は、疑似水面標高によって評価されるものであってもよい。 In this embodiment, by introducing the concept of "pseudo-water surface elevation", the airtight pipeline can be easily designed, and further, the design for moving the flowing water flowing in the lowland to a higher position and its limit value. Can also be calculated. In the present invention, the altitude of the water surface may be evaluated by the pseudo water surface altitude.

疑似水面標高は、ベルヌーイの定理に基づいて構築された気密管路の流速を算出するためのものである。疑似水面標高は、通常の水面の標高値の代わりに、水の移動エネルギーをその移動方向と気密管路の入口や出口の方向の関係を考慮して位置エネルギーに換算して疑似的な水面標高として示すものである。疑似水面標高差は、各地点の疑似水面標高の値の差異を表す。 Pseudo-water elevation is for calculating the flow velocity of an airtight pipe constructed based on Bernoulli's theorem. Pseudo-water surface elevation is a pseudo-water surface elevation in which the moving energy of water is converted into potential energy in consideration of the relationship between the moving direction and the direction of the inlet and outlet of the airtight pipeline, instead of the normal water surface elevation value. It is shown as. The pseudo-water level difference represents the difference in the value of the pseudo-water level at each point.

ベルヌーイの定理により、左端131と右端153は、一方から開水路の水が入水し、他方から出水する。図1(a)の状況では、滝部5が存在して、第1地点における水面の標高は、第2地点における水面の標高よりも十分に高く、左端131に開水路の水が入水し、右端153から出水する。 Bernoulli's theorem, the left end 13 1 and the right end 15 3, and the incoming water is water open channel from one to the water from the other. In the context of FIG. 1 (a), Takibe 5 exists, the water surface elevation at the first point is sufficiently higher than the water surface elevation at the second point, the water open channel to the left end 13 1 to the water inlet, to flood from the right end 15 3.

疑似水面標高の一例について説明する。第1地点において、開水路の水の流水速度(単位時間あたりに水が流れる速度)、水面の標高及び疑似水面標高を、それぞれ、V1、h1及びZh1とする。第2地点において、開水路の水の流水速度、水面の標高及び疑似水面標高を、それぞれ、V2、h2及びZh2とする。 An example of the pseudo-water surface elevation will be described. In the first point, water flow rate of water open channel (the rate at which water flows per unit time), the water surface elevation and pseudo water elevation, respectively, and V 1, h 1 and Zh 1. In the second point, water flow rate of water open channel, the water surface elevation and pseudo water elevation, respectively, and V 2, h 2 and Zh 2.

図1(a)の状況では、開水路の水は、左端131に入水しやすい方向に流れている。そのため、開水路の水の流れを考慮したエネルギー保存則よりmgZh1=mgh1+0.5×mV1 2が成立し、Zh1=h1+0.5×V1 2/gとなる。ここで、m及びgは、それぞれ移動する水の質量及び重力加速度(gは例えば9.80665m/s2)である。右端153では、水路システム1から出水する向きと開水路の水が流れる向きが同じであり、管路の出水速度に比較して開水路の流速は通常小さいため無視し、管路の出水側の疑似水面標高Zh2は、水面標高h2に等しいとして扱う。 In the context of FIG. 1 (a), the water open channel is flowing to the incoming water tends direction to the left end 13 1. Therefore, from the energy conservation law considering the flow of water in the open channel, mgZh 1 = mgh 1 + 0.5 × mV 1 2 is established, and Zh 1 = h 1 + 0.5 × V 1 2 / g. Here, m and g are the mass and gravitational acceleration of moving water (g is, for example, 9.80665 m / s 2 ), respectively. In the right end 15 3, direction of flow direction and water open channel of the water from the water channel system 1 are the same, the flow rate of the open channel in comparison to the water velocity of the conduit is ignored because usually small, water outlet side of the pipe Pseudo-water surface elevation Zh 2 is treated as equal to water surface altitude h 2.

なお、一般的には、疑似水面標高は、開水路の水が気密管路に入る(及び/又は出る)位置における開水路の水の流水速度、水面標高及び気密管路の入水速度(及び/又は出水速度)などの関数になる。例えば図1(a)の状況では、左端131でも右端153でも、開水路の水の流れる向きと水路システム1において水が移動する向きが同じであり、出水時では、その移動エネルギーは管路出水の移動速度に比較して小さいため、開水路の水の移動エネルギーを考慮する必要はない。他方、これらが異なるならば(例えば図1(d)参照)、水路システム1において開水路の水の流れに逆らう向きに水が移動する。疑似水面標高は、厳密には左端131及び右端153での水の動きを考慮して決定されるものではあるが、出水の移動エネルギーが開水路の流水の移動エネルギーより通常数倍大きいため、水の出口地点では開水路の移動エネルギーは無視して算出する。なお、入水側及び出水側では開水路の流水の移動エネルギーを考慮してもよく、近似的に決定してもよい。 In general, the pseudo-water surface elevation is the flow rate of water in the open channel at the position where the water in the open channel enters (and / or exits) the airtight channel, the water surface elevation, and the water entry rate (and /) in the airtight channel. Or it becomes a function such as flood rate). In the context of for example FIG. 1 (a), even rightmost 15 3 Any left 13 1, a direction in which water is in the orientation and waterways system 1 of running water of the open channel to move the same, at the time of the water, the movement energy tube Since it is small compared to the moving speed of water flowing out of the canal, it is not necessary to consider the moving energy of water in the open channel. On the other hand, if they are different (see, for example, FIG. 1D), the water moves in the channel system 1 in a direction opposite to the flow of water in the open channel. Pseudo water elevation is strictly some intending to be determined by considering the movement of water at the left end 13 1 and the right end 15 3, but usually for several times larger than the surface water movement energy of the moving energy open channel Izumi , At the water outlet point, the kinetic energy of the open channel is ignored and calculated. On the water inlet side and the water outlet side, the moving energy of the flowing water in the open channel may be taken into consideration, or may be determined approximately.

理想的な状態では、ベルヌーイの定理より、水路システム1では、第1地点と第2地点の疑似水面標高差(Zhd1[m])によって生じる水の圧力差によって水を押し出すことで、水を速度Va(Va=(2×g×Zhd1)0.5[m/s])で移動させる。なお、現実には様々な抵抗などが存在するため、水路システム1の現実の入水速度(出水速度)はVa以下ではあるが、開水路の流水速度V1及びV2よりも高速で水を移動させることができる。 In an ideal state, according to Bernoulli's theorem, in the channel system 1, water is pushed out by the pressure difference of water caused by the pseudo-water surface elevation difference (Zhd 1 [m]) between the first point and the second point. Move at a velocity V a (V a = (2 × g × Zhd 1 ) 0.5 [m / s]). Note that the reality because of the presence of such various resistors, although water inlet rate of the real canal system 1 (flood speed) is in the following V a, the water faster than running water velocity V 1 and V 2 of the open channel Can be moved.

開水路での水の動きと水路システム1(管水路)での水の動きの違いを説明する。河川などでは、通常、川底の傾斜などの地形に起因する水面勾配によって水が流れる。そのため、傾斜が緩やかなところでは水の流れが遅い。他方、管水路では、水が充填されており、両端での水面の標高差(水の圧力差)によって水が移動する。水路システム1では、水が充填されており、一方の端部で水が入り、他方の端部で水が出るため、水が流れるというよりは、水を押し出して移動すると表現すべきものである。このような違いにより、例えば第2地点において局所的に水が急増したときには、開水路では、水面の傾斜等に従って徐々に上流へと影響することになる。それに対し、気密管路では、第1地点と第2地点との水面標高差(疑似水面標高差)が変化することによって、左端131から入る水の量が減少し、さらに大幅に増加して水面標高差が逆転したときは右端153から左端131に水を押し出すようになる。 The difference between the movement of water in an open channel and the movement of water in a channel system 1 (tube channel) will be described. In rivers and the like, water usually flows due to the water surface gradient caused by the topography such as the slope of the riverbed. Therefore, the flow of water is slow where the slope is gentle. On the other hand, the pipe channel is filled with water, and the water moves due to the difference in elevation of the water surface (difference in water pressure) at both ends. In the water channel system 1, water is filled, water enters at one end and water exits at the other end, so it should be expressed as pushing out and moving water rather than flowing. Due to such a difference, for example, when the water suddenly increases locally at the second point, the open channel gradually affects the upstream according to the inclination of the water surface or the like. In contrast, in the gas-tight conduit by the water surface elevation difference between the first and the second points (pseudo water elevation difference) is changed, and reduces the amount of water entering from the left end 13 1, further significantly increased by when water altitude difference is reversed thereby pushing the water from the right end 15 3 to the left end 13 1.

第1接続部171及び第2接続部172は、少なくとも一方が気密状態とは異なる状態とすることもできる。この場合、複数の気密管路が直列に存在するものとして考えることができる。 At least one of the first connecting portion 17 1 and the second connecting portion 17 2 may be in a state different from the airtight state. In this case, it can be considered that a plurality of airtight pipes exist in series.

図1(b)〜(d)を参照して、他の構成を用いて動作の一例を説明する。水路システムは、開水路において、左側気密管路21(本願発明の「第1気密管路」の一例)と、右側気密管路23(本願発明の「第2気密管路」の一例)を備える。左側気密管路21は図の左側に位置し、右側気密管路23は右側に位置する。 An example of the operation will be described with reference to FIGS. 1 (b) to 1 (d) using other configurations. The water channel system includes a left airtight line 21 (an example of the "first airtight line" of the present invention) and a right side airtight line 23 (an example of the "second airtight line" of the present invention) in an open channel. .. The left airtight pipe 21 is located on the left side of the figure, and the right airtight pipe 23 is located on the right side.

左側気密管路21の左右端を、左端25と右端27とする。左端25及び右端27の位置を、それぞれ第3地点及び第4地点とする。右側気密管路23の左右端を、左端29と右端31とする。左端29及び右端31の位置を、それぞれ第5地点及び第6地点とする。 The left and right ends of the left airtight pipe line 21 are the left end 25 and the right end 27. The positions of the left end 25 and the right end 27 are set as the third point and the fourth point, respectively. The left and right ends of the right airtight pipe line 23 are the left end 29 and the right end 31. The positions of the left end 29 and the right end 31 are set as the fifth point and the sixth point, respectively.

第3位置における開水路の水の流水速度、水面の標高及び疑似水面標高を、それぞれ、V3、h3及びZh3とする。第4位置における開水路の水の流水速度、水面の標高及び疑似水面標高を、それぞれ、V4、h4及びZh4とする。第5位置における開水路の水の流水速度、水面の標高及び疑似水面標高を、それぞれ、V5、h5及びZh5とする。第6位置における開水路の水の流水速度、水面の標高及び疑似水面標高を、それぞれ、V6、h6及びZh6とする。 Water flow rate of water open channel at the third position, the water surface elevation and pseudo water elevation, respectively, and V 3, h 3, and Zh 3. Water flow rate of water open channel in the fourth position, the water surface elevation and pseudo water elevation, respectively, and V 4, h 4 and Zh 4. Water flow rate of water open channel in the fifth position, the water surface elevation and pseudo water elevation, respectively, and V 5, h 5 and Zh 5. Water flow rate of water open channel in the 6 position, the water surface elevation and pseudo water elevation, respectively, and V 6, h 6 and Zh 6.

左側気密管路21において、左端25に入水する開水路の水の入水速度と、右端27から出水する出水速度は等しいとする。図1(b)、(c)及び(d)で、それぞれ、Vc、Ve及びVfとする。右側気密管路23において、左端29に入水する開水路の水の入水速度と、右端31から出水する出水速度は等しいとする。図1(b)、(c)及び(d)で、それぞれ、Vd、Ve及びVgとする。 In the left airtight pipe line 21, it is assumed that the inflow rate of water in the open channel that enters the left end 25 and the outflow rate of water that flows out from the right end 27 are equal. In FIGS. 1 (b), (c) and (d), let them be V c , V e and V f, respectively. In the right airtight pipe 23, it is assumed that the inflow rate of water in the open channel that enters the left end 29 and the outflow rate of water that flows out from the right end 31 are equal. In FIGS. 1 (b), (c) and (d), let them be V d , V e and V g , respectively.

第4位置と第5位置の間の合流箇所において開水路と支流が合流し、支流から開水路に水が流入しているとする。そのため、支流における水量が急増して、第4位置における水面標高(疑似水面標高)が、第3地点における水面標高(疑似水面標高)よりも高くなる場合があるとする。 It is assumed that the open channel and the tributary merge at the confluence between the 4th position and the 5th position, and water flows from the tributary into the open channel. Therefore, it is assumed that the amount of water in the tributary increases rapidly, and the water level at the fourth position (pseudo-water level) may be higher than the water level at the third point (pseudo-water level).

図1(b)は、通常の定常状態を示す。定常状態では、基本的に、開水路の水面は、開水路の底部の傾斜と同様に傾斜する。そのため、開水路の水は、第3地点、第4地点、第5地点及び第6地点で左から右に流れている。また、左側気密管路21及び右側気密管路23は、共に左から右に水を移動させる。 FIG. 1B shows a normal steady state. In the steady state, the water surface of the open channel basically slopes in the same way as the slope of the bottom of the open channel. Therefore, the water in the open channel flows from left to right at the third, fourth, fifth and sixth points. Further, the left airtight pipe 21 and the right airtight pipe 23 both move water from left to right.

左側気密管路21では、第3地点及び第4地点の疑似水面標高は図1(a)と同様に近似計算することができる。他方、第4地点と第5地点では、左側気密管路21の右端27から出た水は、第5地点における流水速度V5よりも充分に速い速度で右側気密管路23の左端29に入る位置関係にある。そのため、右側気密管路23についての第5地点及び第6地点の疑似水面標高は、左側気密管路21から出水された水の影響を考慮する必要がある。右側気密管路23における移動速度Vdは、Vcの影響によって変わり、第5地点での疑似水面標高はVcを考慮して決定される。 In the left airtight pipe line 21, the pseudo-water surface elevations at the third and fourth points can be approximately calculated in the same manner as in FIG. 1 (a). On the other hand, at the 4th and 5th points, the water discharged from the right end 27 of the left airtight pipe 21 enters the left end 29 of the right airtight pipe 23 at a speed sufficiently faster than the flowing water velocity V 5 at the 5th point. There is a positional relationship. Therefore, it is necessary to consider the influence of the water discharged from the left airtight pipe 21 for the pseudo water level elevations of the fifth and sixth points for the right airtight pipe 23. The moving speed V d in the right airtight pipe 23 changes depending on the influence of V c , and the pseudo water surface elevation at the fifth point is determined in consideration of V c.

図1(c)は、接続部33が、左側気密管路21の右端27と右側気密管路23の左端29を気密状態で接続した状態を示す。この場合、左側気密管路21と右側気密管路23は、接続部33を経由して連続した気密管路となる。第1地点及び第4地点の疑似水面標高は、図1(a)と同様に計算することができる。 FIG. 1C shows a state in which the connecting portion 33 connects the right end 27 of the left airtight pipe 21 and the left end 29 of the right airtight pipe 23 in an airtight state. In this case, the left airtight pipe 21 and the right airtight pipe 23 become a continuous airtight pipe via the connecting portion 33. The pseudo-water surface elevations at the first and fourth points can be calculated in the same manner as in FIG. 1 (a).

図1(d)は、第4地点と第5地点において急に増水して開水路の水面が急上昇した場合を示す。この場合、開水路の水は、第5地点から第6地点に向けた流速V5が増え、第4地点から第3地点に向けて逆流が生じる。逆流は第3地点では生じておらず、左から右に流れる順流の状態である。この場合、第3地点と第4地点の間で水の流れの衝突が生じる。 FIG. 1D shows a case where the water level of the open channel rises sharply due to a sudden increase in water at the 4th and 5th points. In this case, the flow velocity V 5 of the water in the open channel increases from the 5th point to the 6th point, and a backflow occurs from the 4th point to the 3rd point. Backflow does not occur at the third point, and it is a forward flow state that flows from left to right. In this case, a water flow collision occurs between the third and fourth points.

左側気密管路21では、増水により第4地点の水面が上昇するために、増水の最初の段階では、第3地点と第4地点の水面標高差(疑似水面標高差)が小さくなり、左端25の入水量が減り、右端27の出水量が減る。さらに増水すると、第3地点と第4地点の水面標高(疑似水面標高)が逆転し、第4地点の水面標高(疑似水面標高)が第3地点の水面標高(疑似水面標高)よりも高くなり、右端27から入水し、左端25から出水するようになる。左側気密管路21での水の動きは、第3地点から第4地点までの開水路の水の動きとは異なるため、例えば第3地点において順流であっても逆流してもよい。第4地点及び第5地点で急増した水は、左側気密管路21及び右側気密管路23によって第3地点及び第6地点に分散させることができる。特に左側気密管路21によって、第3地点で開水路の逆流が生じていない段階でも、第4地点から第3地点に水を移動させて、水面標高差(疑似水面標高差)を小さくしたり、逆流の勢いを弱めたりすることができるという効果が認められる。 In the left airtight pipe 21, the water level at the 4th point rises due to the flooding, so at the first stage of the flooding, the water level difference between the 3rd point and the 4th point (pseudo water level difference) becomes small, and the left end 25 The amount of water entering the water is reduced, and the amount of water discharged from the right end 27 is reduced. When the water level rises further, the water level at the 3rd and 4th points (pseudo-water level) is reversed, and the water level at the 4th point (pseudo-water level) becomes higher than the water level at the 3rd point (pseudo-water level). , Water enters from the right end 27 and comes out from the left end 25. Since the movement of water in the left airtight pipe 21 is different from the movement of water in the open channel from the third point to the fourth point, for example, it may flow forward or backward at the third point. The water that has surged at the 4th and 5th points can be dispersed to the 3rd and 6th points by the left airtight pipe 21 and the right airtight pipe 23. In particular, the left airtight pipe 21 moves water from the 4th point to the 3rd point even at the stage where the backflow of the open channel does not occur at the 3rd point to reduce the water surface elevation difference (pseudo water surface elevation difference). , The effect of being able to weaken the momentum of backflow is recognized.

なお、本願発明を、第1開水路に設置された気密管路であって、第1開水路と第2開水路は合流箇所で合流し、第1開水路と第2開水路の水は定常状態で合流箇所に向けて流れており、気密管路は、一方端が他方端よりも合流箇所より遠く、第2開水路の水が合流箇所に定常状態よりも多く流入することによって合流箇所の水面が上昇した場合に、前記気密管路は、一方端から他方端に移動する単位時間あたりの水量を定常状態よりも減少したり、他方端から一方端に水を移動させたりして、気密管路を利用して合流箇所での水面上昇の影響を第1開水路の一方端側に反映するものとして捉えてもよい。 It should be noted that the present invention is an airtight pipeline installed in the first open channel, the first open channel and the second open channel merge at the confluence, and the water in the first open channel and the second open channel is steady. It is flowing toward the merging point in the state, and the airtight pipeline is located at the merging point because one end is farther than the merging point than the other end and more water from the second open channel flows into the merging point than in the steady state. When the water level rises, the airtight pipeline is airtight by reducing the amount of water per unit time that moves from one end to the other end or by moving water from the other end to one end. The influence of the rise in water level at the confluence may be reflected on one end side of the first open channel using the pipeline.

図1(b)について具体的な数値で説明する。左側気密管路21と右側気密管路23は、直列にあり、ほぼ直線上に並んでいる。左側気密管路21と右側気密管路23は、長さが500[m]であり、断面積(Sv)は1.0[m2]とする。気密管路内では、水の粘性、管路内の表面の摩擦や管路の曲がり等による水の移動抵抗があるが、気密管路の断面積を大きく設定してかつ水の摩擦やカーブの角度等を小さくすれば、移動の距離の長さにあまり依存せずに、気密管路の両端の水の圧力差によって高速に水を移動させることができる。また、第4地点と第5地点は距離が離れておらず、水面標高は同じとする。 FIG. 1B will be described with specific numerical values. The left airtight pipe 21 and the right airtight pipe 23 are in series and are arranged in a substantially straight line. The left airtight pipe 21 and the right airtight pipe 23 have a length of 500 [m] and a cross-sectional area (Sv) of 1.0 [m 2 ]. In an airtight pipeline, there is resistance to movement of water due to the viscosity of water, friction on the surface of the pipeline, bending of the pipeline, etc., but the cross-sectional area of the airtight pipeline is set large and the friction and curve of water If the angle or the like is made small, the water can be moved at high speed by the pressure difference of the water at both ends of the airtight pipe without depending on the length of the moving distance. Further, it is assumed that the 4th point and the 5th point are not separated from each other and the water surface elevation is the same.

左側気密管路21では、左端25と右端27との疑似水面標高差(Zhd3,4[m]=Zh3−Zh4)による水の圧力差によって水を押し出して、水を速度Vc(Vc=(2×g×Zhd3,4)0.5[m/s])で移動する。 In the left airtight pipe 21, the water is pushed out by the pressure difference of the water due to the pseudo water level difference (Zhd 3,4 [m] = Zh 3 -Zh 4 ) between the left end 25 and the right end 27, and the water speed V c ( V c = (2 x g x Zhd 3,4 ) 0.5 [m / s]).

他方、右側気密管路23では、左端29の近くでの開水路の流水速度V5は、Vcに比べて充分に小さい。そのため、左側気密管路21の右端27から出た水は、その移動速度Vcのまま右側気密管路23の左端29に到達し、第5地点での開水路の水の流れる速度はVcと仮定する。左端29での疑似水面標高Zh5は、Zh5=h5+0.5×Vc 2/gとなる。他方、右端31での疑似水面標高Zh6は、水面標高h6である。 On the other hand, in the right airtight pipe 23, the flow velocity V 5 of the open channel near the left end 29 is sufficiently smaller than V c. Therefore, the water discharged from the right end 27 of the left airtight pipe 21 reaches the left end 29 of the right airtight pipe 23 with the moving speed V c , and the flowing speed of the water in the open water pipe at the fifth point is V c. Suppose. The pseudo water surface elevation Zh 5 at the left end 29 is Zh 5 = h 5 + 0.5 × V c 2 / g. On the other hand, the pseudo water surface altitude Zh 6 at the right end 31 is the water surface altitude h 6 .

定常状態(水かさが増加していない状態)でのh3、h4、h5及びh6を、それぞれ、20[m]、15[m]、15[m]、10[m]とする。 The h 3, h 4, h 5 and h 6 under steady state conditions (volume of water does not increase), respectively, 20 [m], 15 [ m], 15 [m], and 10 [m].

開水路は、左側気密管路21と右側気密管路23がない状態で、河川の断面積(S0)は、200[m2](河川の断面を長方形として河川の川幅(20[m])×堤防高さ(10[m]))であり、流速(単位時間に水が移動する距離)V0=1[m/s]とする。定常状態の流量(単位時間に通過する体積)(Qs)は、最大量の10分の1とすると、0.1×S×V[m3/s]となる。Qs=0.1×200×1=20[m3/s]となる。 In the open channel, there is no left airtight line 21 and right side airtight line 23, and the cross-sectional area (S 0 ) of the river is 200 [m 2 ] (the cross section of the river is rectangular and the width of the river (20 [m]]. ) × Embankment height (10 [m])), and the flow velocity (distance that water moves in a unit time) V 0 = 1 [m / s]. The steady-state flow rate (volume passing per unit time) (Qs) is 0.1 × S 0 × V 0 [m 3 / s], assuming that it is 1/10 of the maximum amount. Qs = 0.1 × 200 × 1 = 20 [m 3 / s].

左側気密管路21を設置すると、左側気密管路21では、Zh3=h3+0.5×V3 2/g=20.05[m]、Zh4=h4=15[m]である。ベルヌーイの定理及びZhd3,4=Zh3-Zh4=5.05[m]から、右端27の水の流出速度Vcは、Vc=(2×g×Zhd3,4)0.5=(2×9.8×5.05)0.5≒9.9[m/s]である。左側気密管路21の断面積を1.0[m2]とすると、流量Qv1は、Qv1=Vc×1=9.9[m3/s]である。すなわち、河川の定常的な流れる量Qs=20[m3/s]の内の9.9[m3/s]が、左側気密管路21によって流れている状態になる。よって、第3地点から第4地点に対して、左側気密管路21では、河川に比較して9.9倍の流速で移動している。左側気密管路21は、河川の断面積の内の0.5%の断面積(1.0[m2])を使用して、河川で移動する水量の約半分の量Qv1を高速で移動させている。また、河川と気密管路による最大総合流量は、河川の断面積が気密管路の河川内に設置しているため19[m2]となり、流量は19[m3/s]となる。気密管路の流量は9.9[m3/s]である。従って河川と気密管路との最大総合流量は、28.9[m3/s](28.9=19+9.9)であり、従来のQs=20[m3/s]より拡大している。また、最大総合流量を移動させている時の総合流速は、総合流量/河川の断面積=28.9/20≒1.5[m/s]であり、約1.5倍となっている。 When the left airtight pipe 21 is installed, Zh 3 = h 3 + 0.5 × V 3 2 / g = 20.05 [m] and Zh 4 = h 4 = 15 [m] in the left airtight pipe 21. From Bernoulli's theorem and Zhd 3,4 = Zh 3 -Zh 4 = 5.05 [m], the water outflow velocity V c at the right end 27 is V c = (2 × g × Zhd 3,4 ) 0.5 = (2 ×) 9.8 × 5.05) 0.5 ≒ 9.9 [m / s]. Assuming that the cross-sectional area of the left airtight pipe 21 is 1.0 [m 2 ], the flow rate Qv 1 is Qv 1 = V c × 1 = 9.9 [m 3 / s]. That is, 9.9 [m 3 / s] out of the steady flow amount Qs = 20 [m 3 / s] of the river is flowing by the left airtight pipe 21. Therefore, the airtight pipe 21 on the left side moves at a flow velocity 9.9 times that of the river from the third point to the fourth point. The left airtight pipe 21 uses 0.5% of the cross-sectional area of the river (1.0 [m 2 ]) to move Qv 1 at high speed, which is about half the amount of water moving in the river. .. The maximum total discharge of the river and the airtight pipeline is 19 [m 2 ] because the cross-sectional area of the river is installed in the river of the airtight pipeline, and the discharge is 19 [m 3 / s]. The flow rate of the airtight pipe is 9.9 [m 3 / s]. Thus the maximum total flow rate of the river and the airtight conduit is 28.9 [m 3 /s](28.9=19+9.9), it has expanded from conventional Qs = 20 [m 3 / s ]. In addition, the total flow velocity when moving the maximum total flow rate is the total flow rate / river cross-sectional area = 28.9 / 20 ≒ 1.5 [m / s], which is about 1.5 times.

次に、右側気密管路23を分析する。右側気密管路23の左端29の疑似水面標高は、次のように計算することができる。左側気密管路21の水の流出速度Vcは9.9[m/s]である。右側気密管路23の左端29での開水路の水の速度が速度Vcであるとの仮定により、第5地点の疑似水面標高Zh5は、Zh5=h5+0.5×Vc 2/g=20.0[m]となる。また、第6地点での右側気密管路23の右端31の疑似水面標高Zh6=h6=10[m]である。従って、疑似水面標高差Zhd5,6は、Zhd5,6=Zh5―Zh6=10[m]となり、この状態での速度Vdは、Vd=(2×g×Zhd5,6)0.5=(2×9.8×10)0.5=14[m/s]となる。速度Vdは、左側気密管路21の出水速度の1.4倍である。 Next, the right airtight pipe line 23 is analyzed. The pseudo water level of the left end 29 of the right airtight pipe 23 can be calculated as follows. The outflow velocity V c of water in the left airtight pipe 21 is 9.9 [m / s]. Assuming that the velocity of the water in the open channel at the left end 29 of the right airtight pipe 23 is the velocity V c , the pseudo water elevation Zh 5 at the 5th point is Zh 5 = h 5 + 0.5 × V c 2 / g = 20.0 [m]. Further, the pseudo water surface elevation Zh 6 = h 6 = 10 [m] at the right end 31 of the right airtight pipe 23 at the sixth point. Therefore, the pseudo water level difference Zhd 5,6 is Zhd 5,6 = Zh 5 ―Zh 6 = 10 [m], and the velocity V d in this state is V d = (2 × g × Zhd 5,6). ) 0.5 = (2 × 9.8 × 10) 0.5 = 14 [m / s]. The velocity V d is 1.4 times the flood rate of the left airtight pipeline 21.

定常状態では、左側気密管路21での速度Vcと右側気密管路23での速度Vdは大きな差異がないようにすることが望ましい。(既存の河川で流量が一定で流れていると仮定すると、数キロに渡って上流から下流に向かって川幅が多少広くなったり、狭くなったりしてもほぼ同一量の水が流れているため、河川自体と同様に河川に沿って同一流量を水路システムで移動させる必要がある。)そこで、第1地点と第2地点の疑似水面標高差と、第3地点と第4地点の疑似水面標高差を概略同一値に調節して、左側気密管路21の速度Vcと右側気密管路23の速度Vdを近似的に同一値にしてもよい。例えば、左側気密管路21の右端27と右側気密管路23の左端29の間で、左側気密管路21から出水した水の速度を減衰する。ここでは、左側気密管路21から出水した水の速度Vc=9.9[m/s]をV5≒1.0[m/s]に近い値に減速させる。例えば左側気密管路21の気密管路の断面における中心線を、右側気密管路23の気密管路の断面の中心線に3次元的に一致させて、一定距離量(Lb[m])離して水中に設置すれば、左側気密管路21から出水した水の速度を減速できる。その減速度合いは、他の水の流れや設置場所構造などにも影響するが、ほぼLbの距離長によって決定することができる。なお、左側気密管路21と右側気密管路23の流速は、完全に同一値にする必要はなく、20%程度の誤差はあっても右側気密管路23は故障などせずに動作できる。 In the steady state, the speed V d at a rate V c and right airtight conduit 23 on the left side hermetic pipe 21 is preferably set to be no significant difference. (Assuming that the flow rate is constant in the existing river, almost the same amount of water is flowing even if the river width becomes slightly wider or narrower from upstream to downstream over several kilometers. , It is necessary to move the same flow rate along the river by the waterway system as well as the river itself.) Therefore, the pseudo water level difference between the first point and the second point and the pseudo water level elevation of the third point and the fourth point. adjust the difference in substantially the same value, it may be a velocity V d of the velocity V c and right airtight pipe 23 on the left side hermetic pipe 21 to approximately the same value. For example, between the right end 27 of the left airtight pipe 21 and the left end 29 of the right airtight pipe 23, the velocity of the water discharged from the left airtight pipe 21 is attenuated. Here, the velocity V c = 9.9 [m / s] of the water discharged from the left airtight pipe 21 is decelerated to a value close to V 5 ≈ 1.0 [m / s]. For example, the center line in the cross section of the airtight pipe of the left airtight pipe 21 is three-dimensionally aligned with the center line of the cross section of the airtight pipe of the right airtight pipe 23, and is separated by a certain distance (Lb [m]). If it is installed in water, the speed of water discharged from the left airtight pipe 21 can be reduced. The degree of deceleration affects the flow of other water and the structure of the installation site, but can be determined by the distance length of Lb. The flow velocities of the left airtight pipe 21 and the right airtight pipe 23 do not have to be completely the same value, and the right airtight pipe 23 can operate without failure even if there is an error of about 20%.

また、Lb=2[m]とし、左側気密管路21から出水した水の第5地点での速度V5を5.0[m/s]とする。第5地点の疑似水面標高はZh5=h5+0.5×5.02/g=16.3[m]であり、第6地点の疑似水面標高Zh6=h6=10[m]である。 Further, Lb = 2 [m], and the velocity V 5 at the fifth point of the water discharged from the left airtight pipe 21 is 5.0 [m / s]. The pseudo water level at the 5th point is Zh 5 = h 5 + 0.5 × 5.0 2 / g = 16.3 [m], and the pseudo water level at the 6th point is Zh 6 = h 6 = 10 [m].

定常状態では、ベルヌーイの定理及びZd5,6=Zh6-Zh5=6.3[m]から、右側気密管路23での入水速度Vdは、Vd=(2×g×Zd5,6)0.5=(2×9.8×6.3)0.5≒11.1[m/s]である。右側気密管路23の管路の断面積は1.0[m2]であるから、Qv2は、Qv2=Vd×1=11.1[m3/s]である。開水路の定常的に流れる流量Qs=20[m3/s]の内の11.1[m3/s]が、右側気密管路23によって流れている状態になる。つまり、右側気密管路23の入水速度Vdは、左側気密管路21の流出速度Vcに比べて約1.1倍と、大きな値となる。(なお、左側気密管路21の出水速度と右側気密管路23の入水速度の違いによって、河川の流量が変化する。)結果として、定常状態では、河川の流量Qs=20[m3/s]に対して、第3地点から第4地点まで左側気密管路21で流量Qs=9.9[m3/s]を、第5地点から第6地点まで右側気密管路23で流量Qs=11.1[m3/s]を移動させている。Vd≒11.1[m/s]がVcに比較して多少大きいが問題ない。本願発明の水路システムでは多量の水を高速に移動させることが要求されており、かつ、もしVdをより小さな値にする必要がある場合にはLbを2[m]より大きくすることで実現できる。 In the steady state, from Bernoulli's theorem and Zd 5,6 = Zh 6 -Zh 5 = 6.3 [m], the water entry velocity V d in the right airtight pipeline 23 is V d = (2 × g × Zd 5,6). ) 0.5 = (2 × 9.8 × 6.3) 0.5 ≒ 11.1 [m / s]. Since the cross-sectional area of the right airtight pipe 23 is 1.0 [m 2 ], Qv 2 is Qv 2 = V d × 1 = 11.1 [m 3 / s]. 11.1 [m 3 / s] out of the constantly flowing flow rate Qs = 20 [m 3 / s] in the open channel is in a state of flowing by the right airtight pipe 23. That is, the inflow velocity V d of the right airtight pipeline 23 is about 1.1 times as large as the outflow velocity V c of the left airtight pipeline 21. (Note that the flow rate of the river changes depending on the difference between the discharge rate of the left airtight pipe 21 and the water entry speed of the right airtight pipe 23.) As a result, the river flow rate Qs = 20 [m 3 / s] in the steady state. ], The flow rate Qs = 9.9 [m 3 / s] in the left airtight pipe 21 from the 3rd point to the 4th point, and the flow rate Qs = 11.1 [m 3 / s] in the right airtight pipe 23 from the 5th point to the 6th point. m 3 / s] is being moved. V d ≒ 11.1 [m / s] is slightly larger than V c , but there is no problem. In the water channel system of the present invention, it is required to move a large amount of water at high speed, and if V d needs to be made smaller, it is realized by making L b larger than 2 [m]. can.

雨が続き、第3地点〜第6地点での水面の標高が同じく5[m]上昇した場合、各地点間の疑似水面標高差は上記の説明事象と同一値である。なお、通常の河川では、最終地点は河口を介して海岸である。海面は水害時でも5mの海面上昇は生じないため、少なくとも最終段の気密管路の疑似水面標高差は大きく、最終段の気密管路で高速に水を移動させると、前段の出水口の水面の標高が下がり、結果として前段の疑似水面標高差が生じて、この前後の気密管路も高速に水を移動させる。このように順次気密管路が水を移動させることで高速に水を移動させることができる。最終段の気密管路が水を急速に移動すると、その前段の気密管路は、疑似水面標高差が大きくなって水を急速に移動する。このように、少なくとも下流の方から水を高速に移動して、玉突き的に前段の気密管路を有効に運用することができる。 When the rain continues and the elevation of the water surface at the 3rd to 6th points rises by 5 [m], the pseudo-water elevation difference between the points is the same as the above-mentioned explanatory event. In a normal river, the final point is the coast via the estuary. Since the sea level does not rise by 5 m even in the event of a flood, at least the pseudo-water level difference in the airtight pipeline in the final stage is large, and if water is moved at high speed in the airtight pipeline in the final stage, the water surface at the outlet of the previous stage As a result, the pseudo-water surface elevation difference in the previous stage is generated, and the airtight pipelines before and after this also move water at high speed. In this way, the airtight pipelines move the water in sequence, so that the water can be moved at high speed. When the airtight pipe in the final stage moves rapidly with water, the airtight pipe in the previous stage moves rapidly with a large pseudo-water level difference. In this way, it is possible to move water at a high speed from at least the downstream side and effectively operate the airtight pipe in the previous stage in a billiard manner.

図1(b)の設置形態で、第3地点でのみ水かさが5[m]急激に増加した状態とする。第3地点の疑似水面標高が、Zh3=h3+0.5×V3 2/g=25.05[m]に上昇する。そのため、左側気密管路21では、開水路で流れる量Qsの内の14.0[m3/s]が移動している状態で、左側気密管路21の定常的な流量の1.4倍の流量を移動させている。左側気密管路21の出水速度が増加すると、第5地点の疑似水面標高が増加し、右側気密管路23の流出速度が増加して、定常状態よりも多い水量を移動させることができる。 In the installation mode shown in FIG. 1 (b), the water level is rapidly increased by 5 [m] only at the third point. The pseudo water level at the third point rises to Zh 3 = h 3 + 0.5 × V 3 2 / g = 25.05 [m]. Therefore, in the left airtight pipe 21, 14.0 [m 3 / s] of the amount Qs flowing in the open channel is moving, and the flow rate is 1.4 times the constant flow rate of the left airtight pipe 21. I'm letting you. When the outflow speed of the left airtight pipe 21 increases, the pseudo water level at the fifth point increases, the outflow speed of the right airtight pipe 23 increases, and a larger amount of water than in the steady state can be moved.

この設置形態で、第4地点及び第5地点でのみ水かさが5[m]急激に増加した状態とする(図1(d)参照)。左側気密管路21では、第4地点の疑似水面標高が高くなり、定常状態よりも少ない水量を移動させることになる。右側気密管路23では、第5地点の疑似水面標高が増加し、出水速度が増加して、定常状態よりも多い水量を移動させることができる。第4地点及び第5地点で水かさがさらに高まると、左側気密管路21でも右端27から左端25に水が移動することとなる。 In this installation mode, the water level is rapidly increased by 5 [m] only at the 4th and 5th points (see FIG. 1 (d)). In the left airtight pipe 21, the pseudo-water surface elevation at the fourth point becomes high, and a smaller amount of water than in the steady state is moved. In the right airtight pipe 23, the pseudo-water surface elevation at the fifth point increases, the water discharge rate increases, and a larger amount of water than in the steady state can be moved. If the water level is further increased at the 4th and 5th points, the water will move from the right end 27 to the left end 25 even in the left airtight pipe 21.

この設置形態で、第6地点でのみ水かさが5[m]急激に増加した状態とする。右側気密管路23では、第6地点の疑似水面標高が高くなる。そのため、定常状態よりも少ない水量を移動させることになる。左側気密管路21は、第4地点の疑似水面標高が高まるにつれて、定常状態よりも少ない水量を移動させる状態になる。 In this installation mode, the water level is rapidly increased by 5 [m] only at the 6th point. In the airtight pipe 23 on the right side, the pseudo-water surface elevation at the sixth point becomes high. Therefore, a smaller amount of water than in the steady state is moved. The left airtight pipe 21 is in a state of moving a smaller amount of water than in the steady state as the pseudo water level at the fourth point increases.

この設置形態で、第6地点の水面の標高が第4地点及び第5地点の水面の標高より高い場合(h3=20[m]、h4=h5=15[m]、h6=16[m])について考察する。これら地点の水面の標高は、地形に依存して固定的であるとする。例えば、第6地点が河口で急速に汐が満ちた場合や、水源が乏しい特異な地点への水の供給が必要であるが供給地点より標高が高いなどである。この場合、第5地点の水面は第6地点の水面よりも低く、水は、定常状態では第5地点から第6地点へは流れない。左側気密管路21の動作は既述のとおりVc=9.9[m/s]である。左側気密管路21と右側気密管路23の間の距離Lbを小さく取りLb=0.2[m]とする。右側気密管路23の左端29における開水路の水の速度V5は、9.9[m3/s]から減速した6.0[m3/s]とする。第5地点の疑似水面標高はZh5=h5+0.5×6.02/g=16.8[m]であり、第6地点の疑似水面標高 Zh6=h6=16.0[m]である。この設置形態では、ベルヌーイの定理及びZd5,6=Zh5- Zh6=0.8[m]から、右側気密管路23では左端29から右端31に水が流れる。既存の河川では定常的には流れない場所への水の移動が可能であることを示している。なお、左側気密管路21から水の移動エネルギーをより大きくして出水すれば、より高い標高の第6地点に水を移動できる。水の移動の経路構成をより柔軟に設計して、水供給路を構成できる。 In this installation mode, when the altitude of the water surface at the 6th point is higher than the altitude of the water surface at the 4th and 5th points (h 3 = 20 [m], h 4 = h 5 = 15 [m], h 6 = Consider 16 [m]). The elevation of the water surface at these points is fixed depending on the topography. For example, when the sixth point is rapidly filled with estuary, water needs to be supplied to a peculiar point where the water source is scarce, but the altitude is higher than the supply point. In this case, the water surface at the 5th point is lower than the water surface at the 6th point, and the water does not flow from the 5th point to the 6th point in the steady state. The operation of the left airtight pipe 21 is V c = 9.9 [m / s] as described above. The distance Lb between the left airtight pipe 21 and the right airtight pipe 23 is set to be small, and Lb = 0.2 [m]. The velocity V 5 of the water in the open channel at the left end 29 of the right airtight pipe 23 is 6.0 [m 3 / s] decelerated from 9.9 [m 3 / s]. The pseudo water level at the 5th point is Zh 5 = h 5 + 0.5 × 6.0 2 / g = 16.8 [m], and the pseudo water level at the 6th point is Zh 6 = h 6 = 16.0 [m]. In this installation mode, from Bernoulli's theorem and Zd 5,6 = Zh 5 -Zh 6 = 0.8 [m], water flows from the left end 29 to the right end 31 in the right airtight pipe 23. It shows that it is possible to move water to places where it does not flow constantly in existing rivers. If the moving energy of water is increased from the left airtight pipe 21 and the water is discharged, the water can be moved to the sixth point at a higher altitude. The water supply path can be constructed by designing the path configuration of water movement more flexibly.

気密管路内の水の移動速度は、河川の水移動速度に比較して一定以上高速であると利用価値が高い。一般に、河川の定常的な水の移動速度は約2[m/s]以下がほとんどで、山岳地帯の河川は高低差が大きく流れも速い。ただし、山岳地帯の河川は川幅が短くかつ容量が小さいため、突発的に氾濫する可能性は高い。このため、突発的な氾濫を避けるための気密管路装置の設計は、河川の構造に留意した設計が必要になる。一方、中流、下流域の氾濫は重大な被害を招くため、今後の突発的な氾濫に対処できる気密管路装置の適用は、中流、下流域での適用が重要・必須となる。 The utility value is high when the moving speed of water in the airtight pipeline is higher than a certain level as compared with the moving speed of water in a river. In general, the steady movement speed of water in rivers is about 2 [m / s] or less, and rivers in mountainous areas have large height differences and fast flow. However, rivers in mountainous areas are short in width and small in capacity, so there is a high possibility of sudden flooding. Therefore, when designing an airtight pipeline device to avoid sudden flooding, it is necessary to pay attention to the structure of the river. On the other hand, inundation in the middle and lower reaches causes serious damage, so it is important and essential to apply an airtight pipeline device that can deal with sudden inundation in the middle and lower reaches.

図2を参照して、本願発明の他の実施の形態について説明する。河川は、開水路(水面が存在する水路)であり、上流から下流に水が流れている。河川41から河川43の水の流れが本流である。河川45は支流であり、合流箇所において本流に合流する。河川41及び河川45は、定常状態では合流箇所に向けて流れており、河川43は合流箇所から離れる向きに流れている。 Other embodiments of the present invention will be described with reference to FIG. A river is an open channel (a channel where the water surface exists), and water flows from upstream to downstream. The flow of water from river 41 to river 43 is the main stream. The river 45 is a tributary and joins the main stream at the confluence. The river 41 and the river 45 flow toward the confluence in a steady state, and the river 43 flows away from the confluence.

図2(a)を参照して、水路システムは、第1気密管路51(本願発明の「第1気密管路」の一例)と、第2気密管路63(本願発明の「第2気密管路」の一例)と、第3気密管路57(本願発明の「第3気密管路」の一例)と、接続部69(本願発明の「接続部」の一例)と、固定部71を備える。 With reference to FIG. 2A, the water channel system includes a first airtight line 51 (an example of the “first airtight line” of the present invention) and a second airtight line 63 (the “second airtight” of the present invention). An example of a “pipeline”), a third airtight pipeline 57 (an example of the “third airtight pipeline” of the present invention), a connecting portion 69 (an example of the “connecting portion” of the present invention), and a fixing portion 71. Be prepared.

第1気密管路51、第2気密管路63及び第3気密管路57は、それぞれ、河川41、河川43及び河川45に設置されている。第1気密管路51は、上端55は下端53よりも合流箇所から遠い。第2気密管路63は、上端65は下端67より合流箇所に近い。第3気密管路57は、上端61は下端59よりも合流箇所から遠い。 The first airtight pipe 51, the second airtight pipe 63, and the third airtight pipe 57 are installed in the river 41, the river 43, and the river 45, respectively. In the first airtight pipe 51, the upper end 55 is farther from the confluence than the lower end 53. In the second airtight pipe 63, the upper end 65 is closer to the confluence than the lower end 67. In the third airtight pipe 57, the upper end 61 is farther from the confluence than the lower end 59.

固定部71は、第1気密管路51の下端53と第2気密管路63の上端65と第3気密管路57の下端59を川底に固定する。 The fixing portion 71 fixes the lower end 53 of the first airtight pipe 51, the upper end 65 of the second airtight pipe 63, and the lower end 59 of the third airtight pipe 57 to the riverbed.

接続部69は、第1気密管路51の下端53と第2気密管路63の上端65と第3気密管路57の下端59の接続関係を変更する。 The connection portion 69 changes the connection relationship between the lower end 53 of the first airtight pipe 51, the upper end 65 of the second airtight pipe 63, and the lower end 59 of the third airtight pipe 57.

なお、第1気密管路51、第2気密管路63及び第3気密管路57は、一つの気密管路でもよく、図1(a)と同様に複数の気密管路を直列に並べたものであってもよい。 The first airtight pipe 51, the second airtight pipe 63, and the third airtight pipe 57 may be one airtight pipe, and a plurality of airtight pipes are arranged in series as in FIG. 1A. It may be a thing.

第1気密管路51、第2気密管路63及び第3気密管路57は気密管路であり、両端は河川の水中にある。 The first airtight pipe 51, the second airtight pipe 63, and the third airtight pipe 57 are airtight pipes, and both ends are in the water of the river.

第1気密管路51の上端55及び第3気密管路57の上端61は、入水する水の方向に適切に設定され、かつ高速な入水によって変形・振動・移動をしないように、図示を省略する固定部や設置地点の岩盤などに固定してもよい。ただし、流水が安定していたり、流入が妨害されたり振動や移動したりする可能性が低い場合、固定せずに設置される場合もありうる。第2気密管路63の下端67も同様である。 The upper end 55 of the first airtight pipe 51 and the upper end 61 of the third airtight pipe 57 are not shown so that they are appropriately set in the direction of the incoming water and do not deform, vibrate, or move due to high-speed entry of water. It may be fixed to the fixed part to be fixed or the bedrock at the installation point. However, if the running water is stable, the inflow is unlikely to be obstructed, vibrated or moved, it may be installed without being fixed. The same applies to the lower end 67 of the second airtight pipe 63.

接続部69が無い場合に、定常状態では、第1気密管路51及び第3気密管路57から出水した水は、第2気密管路63に入水する。第1気密管路51及び第3気密管路57から出水した水は、第2気密管路63の上端65での水の圧力を増加させて、第2気密管路63の両端間の水の圧力差を変化させる。 In the steady state, when there is no connecting portion 69, the water discharged from the first airtight pipe 51 and the third airtight pipe 57 enters the second airtight pipe 63. The water discharged from the first airtight pipe 51 and the third airtight pipe 57 increases the pressure of the water at the upper end 65 of the second airtight pipe 63, and the water between both ends of the second airtight pipe 63. Change the pressure difference.

接続部69は、第1気密管路51及び第3気密管路57から出水した水の移動方向を調整したり移動速度を調整したりして、第1気密管路51及び第3気密管路57から出水した水による、第2気密管路63の上端65における水の圧力の変化を調整する。接続部69は、例えば、第2気密管路63の上端65における河川の流量が少なくならないように、定常時でも水を供給するために貯水する機能を装備してもよい。 The connecting portion 69 adjusts the moving direction and the moving speed of the water discharged from the first airtight pipe 51 and the third airtight pipe 57, and adjusts the moving direction of the first airtight pipe 51 and the third airtight pipe 57. The change in water pressure at the upper end 65 of the second airtight pipe 63 due to the water discharged from 57 is adjusted. The connecting portion 69 may be provided with, for example, a function of storing water to supply water even in a steady state so that the flow rate of the river at the upper end 65 of the second airtight pipe 63 does not decrease.

第1気密管路51、第2気密管路63及び第3気密管路57の両端では、岩石や流木などの流動物の衝突などにより破損する危険がある。そのため、例えば全面に障害物を排除できるようなフィルタを設けることが望ましい。このフィルタは、何段か重ねて設置して、巨大なものから小さなものまでゴミを排除してもよい。 At both ends of the first airtight pipe 51, the second airtight pipe 63, and the third airtight pipe 57, there is a risk of damage due to collision of fluid such as rocks and driftwood. Therefore, for example, it is desirable to provide a filter that can remove obstacles on the entire surface. This filter may be installed in several layers to remove dust from large to small ones.

図2(b)〜(f)は、接続部69による接続関係の一例を示す。 2 (b) to 2 (f) show an example of the connection relationship by the connection unit 69.

図2(b)は、気密状態で接続する場合である。この場合は、第1気密管路51の上端55と、第2気密管路63の下端67と、第3気密管路57の上端61の水面の標高によって、各気密管路で移動する水量や向きが変化する。 FIG. 2B shows a case where the connection is made in an airtight state. In this case, the amount of water moving in each airtight pipe depends on the elevation of the water surface of the upper end 55 of the first airtight pipe 51, the lower end 67 of the second airtight pipe 63, and the upper end 61 of the third airtight pipe 57. The direction changes.

図2(c)は、開いた状態(気密状態でない状態)で接続する場合である。この場合は、第1気密管路51の上端55と、第2気密管路63の下端67と、第3気密管路57の上端61と、合流箇所における水面の標高によって、各気密管路で移動する水量や向きが変化する。 FIG. 2C shows a case where the connection is made in an open state (not in an airtight state). In this case, the upper end 55 of the first airtight pipe 51, the lower end 67 of the second airtight pipe 63, the upper end 61 of the third airtight pipe 57, and the altitude of the water surface at the confluence, in each airtight pipe. The amount and direction of water that moves changes.

図2(d)では、第1気密管路51と第2気密管路63を気密状態で接続し、第3気密管路57から出水した水が入らないようにする。この場合、図1(a)と同様に、第1気密管路51の上端55と、第2気密管路63の下端67の水面の標高によって水の移動が生じる。 In FIG. 2D, the first airtight pipe 51 and the second airtight pipe 63 are connected in an airtight state to prevent water flowing out from the third airtight pipe 57 from entering. In this case, as in FIG. 1A, the movement of water occurs depending on the elevation of the water surface at the upper end 55 of the first airtight pipe 51 and the lower end 67 of the second airtight pipe 63.

図2(e)では、第1気密管路51と第2気密管路63と第3気密管路57を気密状態で接続するが、第1気密管路51と第3気密管路57から出水する水量を手動もしくは遠隔制御で制限する。例えば第1気密管路51の上端55と第3気密管路57の上端61で水面の急上昇があった場合に、支流河川45で堤防の低いところがあるならば、当初は第1気密管路51の水の移動を制限して第3気密管路57の水の移動を優先し、徐々に第1気密管路51の水の移動を緩和して、第1気密管路51と第3気密管路57の水の移動のバランスを調整することができる。 In FIG. 2E, the first airtight pipe 51, the second airtight pipe 63, and the third airtight pipe 57 are connected in an airtight state, but water flows out from the first airtight pipe 51 and the third airtight pipe 57. Limit the amount of water to be used manually or remotely. For example, if there is a sudden rise in water level at the upper end 55 of the first airtight pipe 51 and the upper end 61 of the third airtight pipe 57, and there is a low embankment in the tributary river 45, the first airtight pipe 51 is initially The movement of water in the first airtight pipe 57 is prioritized, the movement of water in the first airtight pipe 51 is gradually relaxed, and the movement of the first airtight pipe 51 and the third airtight pipe is gradually relaxed. The balance of water movement on the road 57 can be adjusted.

図2(f)では、第1気密管路51と第3気密管路57を気密状態で接続し、第2気密管路63には水が移動しないようにする。例えば第1気密管路51の上端55で水面が急上昇した場合に、それを直接に河川43に流すのではなく、河川45の上流を経由させることにより、河川43の水面が上昇するようになるまでの時間を遅らせることができる。なお、第2気密管路63の上端65は、これを閉じて第2気密管路63を使用しないようにしてもよく、第2気密管路63の上端65を開いた状態として、第2気密管路63を第1気密管路51及び第3気密管路57と独立に動作させてもよい。 In FIG. 2F, the first airtight pipe 51 and the third airtight pipe 57 are connected in an airtight state so that water does not move to the second airtight pipe 63. For example, when the water level rises sharply at the upper end 55 of the first airtight pipe 51, the water level of the river 43 rises by passing it through the upstream of the river 45 instead of flowing it directly to the river 43. You can delay the time until. The upper end 65 of the second airtight pipe 63 may be closed so that the second airtight pipe 63 is not used, and the second airtightness is made with the upper end 65 of the second airtight pipe 63 open. The pipeline 63 may be operated independently of the first airtight pipeline 51 and the third airtight pipeline 57.

本願発明は、洪水の被害減少に寄与できる。洪水が発生しやすい地域の川に気密管路を水中につけて、下流側端部を川下に(例えば河口の水面近くに)設置すれば、上流側端部から入った水が高速に下流側端部まで移動して放出される。その水の移動速度を、河川の水の移動速度の10倍程度に設定し、かつ気密管路の断面積を、河川の最大水流の断面積の0.1倍に設定すれば、気密管路の流量は、河川の流量(=10×0.1)と同一となる。従って、気密管路を河川にそってその内部に設置すれば、気密管路と河川による流水の容量を約1.9倍にすることができ、洪水になる可能性を大幅に抑えることができる。この例では、約1.9倍の流量増加する例を示したが、約5倍程度の流速は、実現できる。従って、洪水の発生確率を下げて、かつ増水した雨水を急速に移動させて、水被害期間を短縮でき、社会基盤の安定に寄与できる。 The invention of the present application can contribute to the reduction of flood damage. If an airtight pipe is submerged in a river in a flood-prone area and the downstream end is installed downstream (for example, near the water surface of the estuary), the water entering from the upstream end will flow at high speed to the downstream end. It moves to the part and is released. If the moving speed of the water is set to about 10 times the moving speed of the water in the river and the cross-sectional area of the airtight pipeline is set to 0.1 times the cross-sectional area of the maximum water flow of the river, the flow rate of the airtight pipeline is set. Is the same as the flow rate of the river (= 10 × 0.1). Therefore, if the airtight pipe is installed inside the river along the river, the capacity of the airtight pipe and the flowing water from the river can be increased by about 1.9 times, and the possibility of flooding can be greatly reduced. .. In this example, an example in which the flow rate increases by about 1.9 times is shown, but a flow velocity of about 5 times can be realized. Therefore, it is possible to reduce the probability of flood occurrence and rapidly move the flooded rainwater to shorten the flood damage period and contribute to the stability of the social infrastructure.

さらに、河川に沿って、洪水が発生しやすい幾つかの地点の川の水中に気密管路をつけて設置してあれば、気密管路を川下に直列に設置して、例えば最終段の気密管路の下流側端部を河口の水面近くに設置すれば、それらが設置された範囲の任意の場所で発生した大量の水は、その下流の複数の気密管路を経て最終段の下流側端部から噴出して高速に水が移動することができ、河川の流速が大幅に拡大する。 Furthermore, if airtight pipes are installed in the water of the river at some points along the river where floods are likely to occur, the airtight pipes are installed in series downstream, for example, the airtightness of the final stage. If the downstream end of the pipeline is installed near the water surface of the river mouth, a large amount of water generated anywhere in the area where they are installed will pass through multiple airtight pipelines downstream of the pipeline and downstream of the final stage. Water can move at high speed by ejecting from the end, and the flow velocity of the river is greatly increased.

第1気密管路51、第2気密管路63及び第3気密管路57は、弁を備えてもよい。この弁により、気密管路で水を移動させるか否かを調整したり、移動する水量を調整したりすることなどができる。弁は、制御栓などであってもよい。また、弁の開閉状態の制御は、自動制御であってもよく、遠隔又は手動で人が制御してもよい。また、一方向弁のようなものでもよい。弁(制御栓を含む)を利用することにより、津波を防いだり、制御が必要でない場合(例えば上流側端部又は下流側端部において水が少ない場合など)には閉じて水を確保したりすることができる。 The first airtight pipe 51, the second airtight pipe 63, and the third airtight pipe 57 may be provided with a valve. With this valve, it is possible to adjust whether or not water is moved in the airtight pipe, and to adjust the amount of water to be moved. The valve may be a control plug or the like. Further, the control of the open / closed state of the valve may be automatic control, or may be remotely or manually controlled by a person. It may also be something like a one-way valve. By using valves (including control plugs), tsunami can be prevented, and when control is not required (for example, when there is little water at the upstream end or downstream end), it can be closed to secure water. can do.

図3を参照して、本願発明において弁を設けた場合の具体的な一例について説明する。図3(a)を参照して、この例では、気密管路の海に近い方の端に弁を設けている。弁は、海側から気密管路に水が入るのを防ぎ(閉じた状態)、気密管路内の水が海側に出水することは許容する(開いた状態)。図3(b)にあるように、気密管路は、例えば河口に並列に設置する。 A specific example of the case where the valve is provided in the present invention will be described with reference to FIG. With reference to FIG. 3A, in this example, a valve is provided at the end of the airtight pipeline near the sea. The valve prevents water from entering the airtight pipe from the sea side (closed state) and allows water in the airtight pipe to flow out to the sea side (open state). As shown in FIG. 3 (b), the airtight pipelines are installed in parallel, for example, at the estuary.

例えば津波が到来したときのように海から部分的に水面の高まった状態が移動してくる場合に(気密管路は充分に長く、気密管路の長さに比較して水面が高まった部分が充分に短い場合に)、図3(c)にあるように弁は閉じた状態にあり、気密管路において水が海側から水が入るのを防ぐ。図3(d)及び(e)にあるように、弁が設けられていない方の端に水面の高まった状態が到達するまでは、弁は閉じた状態である。図3(f)にあるように、少なくとも弁が設けられていない方の端まで水面の高まった状態が移動したときに、気密管路の両端での水面標高差(疑似水面標高差)により気密管路において海側の水圧が低くなるため、弁が内側から押されて、弁は開いた状態になり、気密管路から海側に出水する。この出水量だけ、津波の量が減少する。なお、もちろん、弁を設けなくても適用できる。その際は、海側から気密管路に水が入り、気密管路内を河口側に高速に移動される。その移動された水の量だけは、津波の波高から分離され、河口の方向に移動する難点があるが、波高は低くなる。 For example, when the water level is partially raised from the sea, such as when a tsunami arrives (the airtight pipe is long enough and the water level is raised compared to the length of the airtight pipe). (When is short enough), the valve is in the closed state as shown in FIG. 3 (c) to prevent water from entering from the sea side in the airtight pipeline. As shown in FIGS. 3 (d) and 3 (e), the valve is in the closed state until the raised state of the water surface reaches the end where the valve is not provided. As shown in FIG. 3 (f), when the raised state of the water surface moves to at least the end where the valve is not provided, the airtightness is due to the difference in water level between both ends of the airtight pipeline (pseudo water level difference). Since the water pressure on the sea side in the pipeline becomes low, the valve is pushed from the inside, the valve is opened, and water flows out from the airtight pipeline to the sea side. The amount of tsunami decreases by this amount of flooding. Of course, it can be applied without providing a valve. At that time, water enters the airtight pipe from the sea side and moves at high speed in the airtight pipe to the estuary side. Only the amount of water that has been moved is separated from the wave height of the tsunami, and there is a difficulty in moving in the direction of the estuary, but the wave height is low.

図4は、直列に設置した2つの気密管路の間の構成の一例を示す。図4(a)にあるように、2つの気密管路の間は単純に距離をとったものでもよい。図4(b)にあるように中心軸の方向が異なる場合などに、水の移動方向を変えるような移動制御部材を設けてもよい。図4(c)にあるように移動制御部材を連続して複数設けて、移動方向を変えつつ移動速度を減らすようにしてもよい。 FIG. 4 shows an example of the configuration between two airtight pipelines installed in series. As shown in FIG. 4A, there may be a simple distance between the two airtight pipes. A movement control member that changes the movement direction of water may be provided when the direction of the central axis is different as shown in FIG. 4 (b). As shown in FIG. 4C, a plurality of movement control members may be continuously provided to reduce the movement speed while changing the movement direction.

図5は、3つの気密管路の間の構成の一例を示す。図5(a)にあるように、3つの気密管路の間は距離を開けてもよい。図5(b)にあるように水量や水流抵抗を調整する水量等調整部材を設けてもよい。図5(c)及び(d)は、水量調整部材の一例を示す。例えば、図5(c)及び(d)に示すように、下流側の気密管路の上流側端部の形状をジョウロ型にすれば、等価的に高低差を調整できる。さらに、図5(c)に示すように、下流側の気密管路の上流側端部の上流に、水流を誘導するように水流抵抗となる抵抗装置を設置しても、流入する水流の流れが遅くなったり速くなったりして、等価的に高低差を調整できる。このような水量等調整部材は、適切に入水するように端部の間の位置関係(それらの間隔・中心軸の角度・端部の面積や形状・水流抵抗装置)を設計して、設計値通りにそれらの接続器を設置して実現すればよい。 FIG. 5 shows an example of the configuration between the three airtight pipelines. As shown in FIG. 5A, there may be a distance between the three airtight pipelines. As shown in FIG. 5B, a water amount adjusting member for adjusting the water amount and the water flow resistance may be provided. 5 (c) and 5 (d) show an example of a water amount adjusting member. For example, as shown in FIGS. 5 (c) and 5 (d), if the shape of the upstream end of the airtight pipeline on the downstream side is made into a watering can shape, the height difference can be adjusted equivalently. Further, as shown in FIG. 5C, even if a resistance device that acts as a water flow resistance is installed upstream of the upstream end of the airtight pipeline on the downstream side to guide the water flow, the flow of the inflowing water flow. The height difference can be adjusted equivalently by slowing down or speeding up. Such a member for adjusting the amount of water, etc. is designed by designing the positional relationship between the ends (the distance between them, the angle of the central axis, the area and shape of the ends, the water flow resistance device) so that water can enter appropriately. All you have to do is install those connectors on the street.

下流側の気密管路が入水する際の疑似水面標高値は、その上流に設置された気密管路の出水の移動エネルギー量に依存する。そのため、図4及び図5にあるように、気密管路の端部の3次元的な面構造とその面積、その向きや、複数の気密管路の間での3次元の中心軸の一致度合いを設定することなどにより、気密管路に望ましい動作をさせるとすることができる。 The pseudo-water level elevation value when the airtight pipeline on the downstream side enters the water depends on the amount of moving energy of the outflow of the airtight pipeline installed upstream. Therefore, as shown in FIGS. 4 and 5, the three-dimensional surface structure and its area at the end of the airtight pipeline, its orientation, and the degree of coincidence of the three-dimensional central axes among the plurality of airtight pipelines. It is possible to make the airtight pipe perform a desired operation by setting.

図6は、複数の気密管路を接続する接続部の一例を示す。図6(a)は、上流側に2つの接続口を、下流側に1つの接続口があるものである。上流側の接続口の一つに気密管路を接続し、もう一つには接続しない。下流側の接続口には気密管路を接続する。気密管路を接続した接続口の制御栓を開き、気密管路を接続しない接続口の制御栓を開くと、2つの気密管路を気密でない状態で接続することができる。気密管路が接続していない接続口の制御栓を閉じ、気密管路を接続した接続口の制御栓をすべて開くと、2つの気密管路を気密状態で接続することができる。図6(b)にあるように、気密管路を接続しない接続口を対向して設けるなどの工夫をしてもよい。図6(c)及び(d)にあるように上流側に複数の接続口を設けてもよく、図6(e)にあるように下流側に複数の接続口を設けてもよく、図6(f)にあるように上流側にも下流側にも複数の接続口を設けてもよい。このような接続部を利用して、図2(b)〜(d)の制御を実現することができる。 FIG. 6 shows an example of a connecting portion connecting a plurality of airtight pipes. FIG. 6A shows two connection ports on the upstream side and one connection port on the downstream side. Connect the airtight pipe to one of the connection ports on the upstream side, and do not connect to the other. An airtight pipeline is connected to the connection port on the downstream side. If the control plug of the connection port to which the airtight pipe is connected is opened and the control plug of the connection port to which the airtight pipe is not connected is opened, the two airtight pipes can be connected in an unairtight state. When the control plugs of the connection ports to which the airtight pipes are not connected are closed and all the control plugs of the connection ports to which the airtight pipes are connected are opened, the two airtight pipes can be connected in an airtight state. As shown in FIG. 6B, a device may be devised such as providing connection ports that do not connect the airtight pipeline so as to face each other. A plurality of connection ports may be provided on the upstream side as shown in FIGS. 6 (c) and 6 (d), and a plurality of connection ports may be provided on the downstream side as shown in FIG. 6 (e). As shown in (f), a plurality of connection ports may be provided on both the upstream side and the downstream side. The control of FIGS. 2 (b) to 2 (d) can be realized by using such a connection portion.

図7は、複数の開水路を接続する場合の一例を示す。 FIG. 7 shows an example in the case of connecting a plurality of open channels.

図7(a)は、気密管路の一部分の標高値が、両端の水面よりも高い位置にある場合に、その気密管路装置の初期設定をする構成を示す。図7に示すように、河川の構造によっては、例えば堤防を越えるように、気密管路を設置する際に気密管路の一部の位置が河川の水面より高い位置を通って設置する必要がある場合がある。この場合に、気密管路内に気体(空気など)があると水は気密管路を流れ込まず、流れ出ない。このため、気密管路を気密状態にするために初期設定する必要がある。最も高い位置に、水栓と空気栓を設ける。設置地点の気圧が1気圧とすると、ベルヌーイの定理より、最も高い個所の高さと高いほうの水面の高さとの違いが約9m以下であれば、一度初期設定された気密管路においては、それから以後は継続的に水が移動して噴出する。気密管路の初期設定は、「両端の水栓を閉じて、かつ、最も高い個所の水栓と空気栓を開いて、開いた水栓の水挿入口から水を送入して開いた空気栓の空気口から空気を出して終えて水が出るまで送入する。最も高い個所の水栓と空気栓を閉じる。そして、両端の水栓を開くと、水が、低い方の端部から放出する」作業である。その放出速度は、高い方の水面の位置と他方の端部の標高(もしくは他方が設置された開水路の水面の標高)の差に依存する。通常、川には水があるが、渇水時などには水がなくなる場合がありうる。そのため、両端の水の状況に応じて端部の水栓を制御する必要がある。これは、遠隔自動制御でもよく、手動制御でもよい。 FIG. 7A shows a configuration in which the airtight pipeline device is initially set when the altitude value of a part of the airtight pipeline is higher than the water surface at both ends. As shown in FIG. 7, depending on the structure of the river, it is necessary to install a part of the airtight pipe through a position higher than the water surface of the river when installing the airtight pipe so as to cross the embankment, for example. There may be. In this case, if there is gas (air, etc.) in the airtight pipe, water does not flow into the airtight pipe and does not flow out. Therefore, it is necessary to make initial settings to make the airtight pipe airtight. Install a faucet and an air faucet at the highest position. Assuming that the pressure at the installation point is 1 atm, according to Bernoulli's theorem, if the difference between the height of the highest point and the height of the higher water surface is about 9 m or less, then in the airtight pipe that was initially set, then After that, the water continuously moves and spouts. The initial setting of the airtight pipe is "Close the faucets at both ends, open the faucet and air faucet at the highest point, and send water from the water inlet of the open faucet to open the air. Blow out air from the tap's air outlet and feed in until water comes out. Close the highest tap and the tap. Then open the taps at both ends and the water will come from the lower end. It is the work of "releasing". Its release rate depends on the difference between the position of the higher water surface and the elevation of the other end (or the elevation of the water surface of the open channel in which the other is installed). Normally, rivers have water, but water may run out during times of drought. Therefore, it is necessary to control the faucet at the end according to the water condition at both ends. This may be remote automatic control or manual control.

図7(b)にあるように、2つの独立した河川との間で、本願発明の水路システムを利用して水の移動ができるようにしてもよい。局所的な降雨などにより、一方の河川の狭い範囲でのみ水面が上昇する場合がある。本願発明の水路システムの一方端をこのような局所的な水面上昇が生じる箇所に設け、他方端を異なる河川に設ける。定常状態では、この両端の水面の標高がほぼ同一な場所に設置する。一方端がある河川の水は、河川に従って移動しても他方端がある位置には到達しない。同様に、他方端がある河川の水は、河川に従って移動しても一方端がある位置には到達しない。このような場合でも、本願発明の水路システムを利用して、一つの河川での局所的な水面が上昇した場合、他方より疑似水面標高が高くなり、自動的に高い方から低い方に水が移動する。したがって、洪水などのリスクを低減することができる。なお、このような河川を横断する気密管路を利用して、例えば3つ以上の河川の間で水を移動させてもよい。 As shown in FIG. 7B, water may be allowed to move between two independent rivers using the waterway system of the present invention. Due to local rainfall, the water level may rise only in a narrow area of one river. One end of the waterway system of the present invention is provided at a location where such a local rise in water level occurs, and the other end is provided in a different river. In the steady state, the water surfaces at both ends should be installed at almost the same altitude. The water of a river with one end does not reach the position with the other end even if it moves along the river. Similarly, the water of a river with the other end does not reach the position with the other end when moving along the river. Even in such a case, when the local water level in one river rises by using the waterway system of the present invention, the pseudo water level becomes higher than the other, and the water automatically flows from the higher side to the lower side. Moving. Therefore, the risk of floods can be reduced. It should be noted that water may be moved between, for example, three or more rivers by using an airtight pipe that crosses such a river.

なお、図7(a)にあるように、気密管路の両端が位置する開水路において、少なくとも水面の標高が高い方に対応する気密管路の端が水中にあればよく、水面の標高が低い方に対応する端は、水中にあってもよく、空中にあってもよい。一方端が水中にあり、他方端が空中にある場合には、空中にある他方端の疑似水面標高は他方端の標高と等しくする。また、他方端を常に空中にして、固定的に出水口として使用してもよい。 As shown in FIG. 7A, in the open channel where both ends of the airtight pipe are located, it is sufficient that at least the end of the airtight pipe corresponding to the higher altitude of the water surface is underwater, and the altitude of the water surface is high. The lower corresponding end may be in the water or in the air. If one end is in the water and the other end is in the air, the pseudo-water elevation of the other end in the air is equal to the elevation of the other end. Further, the other end may be always in the air and used as a water outlet in a fixed manner.

本願発明は、気密管路の両端部分における開水路(河川など)の水面の標高によって作動し、両端部分の間は、河川などの位置構造に依存せずに作動する。そのため、例えば堤防などを超えて、水の移動を実現してもよい。さらに、水の移動速度は0〜30m/sと高速であるが、その作動動作からの動作開始時間は水圧の変化の伝達速度に依存し、設定からほぼ瞬時に作動する。また、気密管路の断面は、円形、楕円形、四角形、6角形等の形状がありうる。気密管路の入水口から出水口までの形状は、その内部の水移動の制御のために任意の方向への曲がった形状がありうる。 The present invention operates by the altitude of the water surface of an open channel (river or the like) at both ends of the airtight pipe, and operates between both ends independently of the position structure of the river or the like. Therefore, for example, the movement of water may be realized beyond the embankment. Further, the moving speed of water is as high as 0 to 30 m / s, but the operation start time from the operating operation depends on the transmission speed of the change in water pressure, and the water operates almost instantly from the setting. Further, the cross section of the airtight pipeline may have a shape such as a circle, an ellipse, a quadrangle, or a hexagon. The shape of the airtight pipeline from the water inlet to the water outlet may be curved in any direction in order to control the movement of water inside the airtight pipe.

1 水路システム、3 底部、5 滝部、7 水面、11,21,23,51,57,63 気密管路、13,25,29 左端、15,27,31 右端、17,69 接続部、41,43,45 河川、53,59,67 上端、55,59,67 下端、71 固定部 1 Waterway system, 3 Bottom, 5 Waterfall, 7 Water surface, 11,1,23,51,57,63 Airtight pipe, 13,25,29 Left end, 15,27,31 Right end, 17,69 Connection, 41, 43,45 river, 53,59,67 upper end, 55,59,67 lower end, 71 fixed part

Claims (6)

一つ又は複数の開水路における水路システムであって、
当該水路システムは、第1気密管路を備え、
前記第1気密管路の一方端及び他方端はそれぞれ第1位置及び第2位置に位置し、
前記第2位置における前記開水路の水面の標高は、前記第1位置における前記開水路の水面の標高とは異なる場合があり、前記第1気密管路の一方端及び他方端は、前記第1位置における水面の標高と前記第2位置における水面の標高のうち少なくとも高い方に位置するものが前記開水路の水中に存在し、
前記第2位置において前記第1位置よりも前記開水路の水が増水して前記第2位置における前記開水路の水面の標高が前記第1位置における前記開水路の水面の標高よりも高くなったならば、前記第1気密管路は、前記他方端に前記開水路の水が流入して前記一方端から水が流出する、水路システム。
A channel system in one or more open channels,
The channel system includes a first airtight pipeline and
One end and the other end of the first airtight pipe are located at the first position and the second position, respectively.
The elevation of the water surface of the open channel at the second position may be different from the elevation of the water surface of the open channel at the first position, and one end and the other end of the first airtight pipeline are the first. Of the altitude of the water surface at the position and the altitude of the water surface at the second position, the one located at least higher is present in the water of the open channel.
At the second position, the water in the open channel increased from that at the first position, and the elevation of the water surface of the open channel at the second position became higher than the elevation of the water surface of the open channel at the first position. If so, the first airtight pipeline is a water channel system in which water from the open channel flows into the other end and water flows out from the one end.
当該水路システムは、第2気密管路と、接続部をさらに備え、
前記接続部は、前記第1気密管路の他方端と前記第2気密管路の一方端との間を、気密状態で接続することも気密状態とは異なる状態とすることもでき、
前記接続部が気密状態で接続したならば、前記第1気密管路の他方端と前記第2気密管路の一方端からは開水路の水が流入も流出もせず、
前記接続部が気密状態とは異なる状態としたならば、前記第1気密管路の他方端と前記第2気密管路の一方端の少なくとも一方において開水路の水が流入したり流出したりする、請求項1記載の水路システム。
The channel system further comprises a second airtight pipeline and a connection.
The connecting portion may be connected between the other end of the first airtight pipe line and one end of the second airtight pipe line in an airtight state or in a state different from the airtight state.
If the connecting portion is connected in an airtight state, water in the open channel does not flow in or out from the other end of the first airtight pipe and one end of the second airtight pipe.
If the connection portion is in a state different from the airtight state, water in the open channel may flow in or out at at least one of the other end of the first airtight pipe and one end of the second airtight pipe. , The waterway system according to claim 1.
当該水路システムは、第3気密管路をさらに備え、
前記接続部は、前記第1気密管路の他方端と前記第2気密管路の一方端と前記第3気密管路の一方端の間を、気密状態で接続したり、気密状態とは異なる状態としたり、2つの気密管路を気密状態で接続して1つを閉じたり、少なくとも2つの気密管路を気密状態で接続して水が移動する部分を狭くして流量を制限したり、3つの気密管路を気密状態で接続して水が移動する2つの気密管路と1つの気密管路との間で水が移動する部分の広さを変えて一方を流れやすくして他方を流れにくくする、請求項2記載の水路システム。
The channel system further comprises a third airtight pipeline.
The connection portion connects the other end of the first airtight pipeline, one end of the second airtight conduit, and one end of the third airtight conduit in an airtight state, or is different from the airtight state. The state can be set, two airtight pipelines can be connected in an airtight state to close one, or at least two airtight pipelines can be connected in an airtight state to narrow the part where water moves to limit the flow rate. By connecting three airtight pipelines in an airtight state and moving water between the two airtight pipelines and one airtight pipeline, the size of the part where water moves is changed to make one flow easier and the other The waterway system according to claim 2, which makes the flow difficult.
前記第1気密管路は、第2位置から第1位置に水が移動でき、第1位置から第2位置に水が移動できない一方向弁を備え、
前記弁によって、第1位置の水面の標高が第2位置の水面の標高よりも高いならば水が移動せず、第2位置での水面の標高が第1位置の水面の標高よりも高いならば水が第2位置から第1位置に移動する、請求項1から3のいずれかに記載の水路システム。
The first airtight pipe is provided with a one-way valve capable of moving water from a second position to a first position and not from a first position to a second position.
With the valve, if the elevation of the water surface at the first position is higher than the elevation of the water surface at the second position, the water does not move, and if the elevation of the water surface at the second position is higher than the elevation of the water surface at the first position. The water channel system according to any one of claims 1 to 3, wherein the water moves from the second position to the first position.
前記第1気密管路の一方端及び他方端はそれぞれ第1開水路及び第2開水路の水中に存在し、
前記第1位置における前記第1開水路の水は前記第1開水路に従って移動しても前記第2位置に到達せず、
前記第2位置における前記第2開水路の水は前記第2開水路に従って移動しても前記第1位置に到達せず、
前記第1気密管路によって前記第1開水路と前記第2開水路との間で水が移動する、請求項1から4のいずれかに記載の水路システム。
One end and the other end of the first airtight pipe are present in the water of the first open channel and the second open channel, respectively.
The water in the first open channel at the first position does not reach the second position even if it moves according to the first open channel.
The water in the second open channel at the second position does not reach the first position even if it moves according to the second open channel.
The water channel system according to any one of claims 1 to 4, wherein water is moved between the first open channel and the second open channel by the first airtight pipe.
複数の開水路における水路システムであって、
当該水路システムは、第1気密管路と、第2気密管路と、接続部を備え、
前記複数の開水路は、第1開水路と、第2開水路と、第3開水路を含み、
前記第1開水路と前記第2開水路と前記第3開水路は、合流箇所で合流し、
前記第1開水路及び前記第2開水路の水は合流箇所に向けて流れ、前記第3開水路の水は、合流箇所から遠ざかる向きに流れ、
前記第1気密管路と前記第2気密管路の両端はそれぞれ前記第1開水路及び前記第2開水路に存在し、
前記接続部が前記第1気密管路と前記第2気密管路の合流箇所に近い端を気密状態で接続したならば、前記第1気密管路の他方端における前記第1開水路の水面の標高と前記第2気密管路の他方端における前記第2開水路の水面の標高とに依存して前記第1気密管路、前記第2気密管路及び接続箇所における水の移動が生じ、
前記接続部が前記第1気密管路と前記第2気密管路の合流箇所に近い端を気密状態とは異なる状態としたならば、合流箇所の水面の標高と、前記第1気密管路の他方端における前記第1開水路の水面の標高及び前記第2気密管路の他方端における前記第2開水路の水面の標高とに依存して前記第1気密管路と前記第2気密管路のそれぞれにおける水の移動が生じる、水路システム。

A channel system in multiple open channels
The water channel system includes a first airtight pipe, a second airtight pipe, and a connection portion.
The plurality of open channels include a first open channel, a second open channel, and a third open channel.
The first open channel, the second open channel, and the third open channel merge at the confluence.
The water in the first open channel and the second open channel flows toward the confluence, and the water in the third open channel flows away from the confluence.
Both ends of the first airtight pipe and the second airtight pipe exist in the first open channel and the second open channel, respectively.
If the connecting portion connects the end near the confluence of the first airtight pipe and the second airtight pipe in an airtight state, the water surface of the first open water passage at the other end of the first airtight pipe. Depending on the altitude and the altitude of the water surface of the second open waterway at the other end of the second airtight pipe, the movement of water in the first airtight pipe, the second airtight pipe and the connection point occurs.
If the end of the connecting portion near the confluence of the first airtight pipeline and the second airtight pipeline is in a state different from the airtight state, the altitude of the water surface at the confluence and the altitude of the first airtight pipeline The first airtight pipeline and the second airtight pipeline depend on the elevation of the water surface of the first open channel at the other end and the elevation of the water surface of the second open channel at the other end of the second airtight pipeline. A channel system in which the movement of water occurs in each of the.

JP2020080038A 2020-04-30 2020-04-30 Waterway system Active JP6751981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020080038A JP6751981B1 (en) 2020-04-30 2020-04-30 Waterway system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020080038A JP6751981B1 (en) 2020-04-30 2020-04-30 Waterway system

Publications (2)

Publication Number Publication Date
JP6751981B1 JP6751981B1 (en) 2020-09-09
JP2021173129A true JP2021173129A (en) 2021-11-01

Family

ID=72333513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020080038A Active JP6751981B1 (en) 2020-04-30 2020-04-30 Waterway system

Country Status (1)

Country Link
JP (1) JP6751981B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (en) 2022-04-11 2022-08-30 株式会社美鷹 Channel system for backwater countermeasures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685011A (en) * 1979-12-11 1981-07-10 Akio Urabe Controlling method for flow rate of river water
JP2005180110A (en) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd Stagnation preventive method using water flow of river
WO2019160524A1 (en) * 2018-02-16 2019-08-22 Иван Иванович КОТУРБАЧ Power-generating ecological flood control system
JP3224678U (en) * 2019-08-05 2020-01-16 敏雄 森本 Equipment to prevent river floods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685011A (en) * 1979-12-11 1981-07-10 Akio Urabe Controlling method for flow rate of river water
JP2005180110A (en) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd Stagnation preventive method using water flow of river
WO2019160524A1 (en) * 2018-02-16 2019-08-22 Иван Иванович КОТУРБАЧ Power-generating ecological flood control system
JP3224678U (en) * 2019-08-05 2020-01-16 敏雄 森本 Equipment to prevent river floods

Also Published As

Publication number Publication date
JP6751981B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US7798175B2 (en) High capacity water diversion conduit
US3667234A (en) Reducing and retarding volume and velocity of a liquid free-flowing in one direction
CN108086260B (en) Differential type High-low Bucket Energy Dissipation Building-height falls bank type stilling pond system and energy dissipating method
JP6751981B1 (en) Waterway system
JP7127791B1 (en) Channel system for backwater countermeasures
GB2475606A (en) Waterfall hydro-electric power
WO2011121603A1 (en) Mild slope channel hydro power generation hydro power generation from subcriticalcanals
US11578469B2 (en) Electrical generating ecological flood control system
RU2255171C1 (en) Energy release and spillway structure for concrete dam
KR20150090794A (en) Non dam hydroelectric power
JP2863994B2 (en) Bag-type closed pressure regulating water tank
CN210395270U (en) Portable tubular fishway
CN109083107B (en) Aeration facility for forming aeration cavity by utilizing water flow centripetal force inertia turbulence
EP3177816B1 (en) A system for generating hydrokinetic power from a subcritical channel
Brombach Flood protection by vortex valves
US1249227A (en) Method and means for controlling the flow in fluid-conduit systems.
CN212801756U (en) Multifunctional forward water inlet curvilinearity forebay of pump station on sediment-laden river
CN215053497U (en) Dual-purpose pump station for irrigation and drainage of waterlogging
TWI660098B (en) Diversion type drainage system
JPH08247099A (en) Pumping device
CN117536172A (en) Vertical jet energy dissipation system for flood discharge of high dam
Taddeucci et al. A Case Study of Hydraulic Jump Utilization in Pipeline Design
Sakakibari et al. Energy loss at surcharged manholes—Model experiment
WO2021240396A1 (en) Tidal hydroelectric generating system
JP3266732B2 (en) Upsurge mitigation control method and apparatus, and deep underground drainage pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200430

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200430

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6751981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250